
FIFO Cache Analysis for WCET Estimation:
A Quantitative Approach

Nan Guan1,2, Xinping Yang1, Mingsong Lv2 and Wang Yi1,2

1 Uppsala University, Sweden
2 Northeastern University, China

Abstract—Although most previous work in cache analysis
for WCET estimation assumes the LRU replacement policy,
in practise more processors use simpler non-LRU policies for
lower cost, power consumption and thermal output. This paper
focuses on the analysis of FIFO, one of the most widely used
cache replacement policies. Previous analysis techniques for FIFO
caches are based on the same framework as for LRU caches using
qualitative always-hit/always-miss classifications. This approach,
though works well for LRU caches, is not suitable to analyze
FIFO and usually leads to poor WCET estimation quality. In
this paper, we propose a quantitative approach for FIFO cache
analysis. Roughly speaking, the proposed quantitative analysis
derives an upper bound on the “miss ratio” of an instruction (set),
which can better capture the FIFO cache behavior and support
more accurate WCET estimations. Experiments with benchmarks
show that our proposed quantitative FIFO analysis can drastically
improve the WCET estimation accuracy over pervious techniques
(the average overestimation ratio is reduced from around 70% to
10% under typical setting).

I. INTRODUCTION

A fundamental problem in the design and analysis of hard
real-time systems is to bound the worst-case execution time
(WCET) of programs [7]. To derive safe and tight WCET
bounds, the analysis must take into account the cache archi-
tecture of the target processor. However, the cache analysis
problem of statically determining whether each memory access
is a hit or a miss is a challenging problem.

In the last two decades, precise and efficient analysis
techniques have been developed for caches with a particular
replacement policy, LRU (Least-Recently-Used). In contrast,
less work has been done for other policies like MRU [16],
FIFO [8] and PLRU [13] However, in practice it is more
common for commercial processors to use non-LRU caches,
which are simpler in hardware implementation but still have
almost as good average-case performance as LRU [1]. There-
fore, hardware manufacturers tend to choose these non-LRU
policies, especially for embedded processors that are subject
to strict cost, power and thermal constraints.

This paper studies the analysis of FIFO (First-In-First-
Out), a cache replacement policy that is widely adopted in
processor architectures like Intel XScale, ARM9, ARM11 [18].
The FIFO policy is very simple, but analyzing it is much
harder than analyzing LRU. The state-of-the-art cache analysis
techniques for WCET estimation is based on qualitative mem-
ory access classifications: to determine whether the memory
accesses related to a particular instruction are always hits or

always misses. Such an approach is highly effective for LRU
caches since most instructions under LRU indeed exhibit such
a “black or white” behavior. However, as will be shown in this
paper, many instructions under FIFO exhibit a more nuanced
behavior: a portion of the accesses are misses while all the
other accesses are hits (e.g., at most 1/3 of the accesses
are misses). By existing analysis techniques based on the
qualitative classification, such a behavior has to be treated as
if these accesses are all misses, which inherently leads to very
pessimistic analysis results. Recently, Grund and Reineke have
developed FIFO analysis techniques based on the qualitative
classification [8], [9]. Although their techniques are rather
sophisticated, the derived WCET bounds are still grossly over-
pessimistic (as shown in Section VI).

In this paper we propose a quantitative approach to analyze
FIFO caches, by which we can better capture the FIFO cache
behavior and thus obtain much tighter WCET bounds for
common programs. The proposed analysis derives an upper
bound on the number of misses an instruction (set) may en-
counter through the whole program execution. As an efficient
implementation, we use the cache analysis results of the same
program under LRU replacement to derive the quantitative
miss bound under FIFO replacement. Therefore, our technique
inherits the advantages in efficiency and precision from the
state-of-the-art LRU analysis techniques based on abstract
interpretation [19].

The proposed analysis is based on a general metric miss
distance of the underlying cache, and thus applies to any re-
placement policy as long as the miss distance of the underlying
cache is known. The miss distance metric also enables an
efficient persistence analysis to determine instructions that only
encounter a cold miss but will always be hits afterwards, which
further improves the overall analysis precision.

We have conducted experiments with benchmark programs
on instruction caches to evaluate the quality of our proposed
analysis. Experiments show that the estimated WCET by our
FIFO analysis is much tighter than previous techniques (the
average overestimation ratio is reduced from around 170%
to 10% under typical setting), while still maintaining good
analysis efficiency.

A. Relation to Previous Work

Although the always-hit/always-miss classification ap-
proach is dominating in previous work on cache analysis for
WCET estimation [20], [7], recently there also have been a
couple of work towards the direction of quantitative cache978-3-9815370-0-0/DATE13/ c©013 EDAA



analysis. Reineke and Grund [17] studied the relative competi-
tiveness between different policies by providing upper (lower)
bounds of the ratio on the number of misses (hits) between
two different replacement policies during the whole program
execution. By this, one can use cache analysis results under
one replacement policy to predict the number of cache misses
(hits) of the same program under another policy. This approach
differs from our proposed quantitative cache analysis in several
ways: Firstly, while the relative competitiveness approach pro-
vides bounds on the number of misses of the whole program,
our quantitative cache analysis bounds the number of misses
at individual program points. Secondly, while the relative
competitiveness computation suffers scalability problems and
thus does not cover cases with great number of ways, our
analysis can efficiently deal with large caches. Thirdly, the miss
(hit) bounds derived by the relative competitiveness is universal
to all programs and thus is much more pessimistic than our
quantitative cache analysis in analyzing a concrete program.
Another closely related work to this paper is [11], which
analyzed MRU caches based on the k-Miss classification
(at most k of an instruction’s memory accesses are misses).
Unfortunately, the k-Miss classification is not suitable to FIFO
caches, so in this paper we have to seek more general forms of
guarantees. On the other hand, the quantitative analysis in this
paper involves complex constraints (regarding multiple nodes
and structure information of the CFG), which introduces new
difficulties in IPET [15] encoding for path analysis.

II. PRELIMINARIES

A. Basic Concepts

For simplicity of presentation, we assume a fully-
associative cache. However, the analysis techniques of this
paper are directly applicable to set-associative caches, since
the accesses to memory references mapped to different cache
sets do not affect each other, and each cache set can be treated
as a fully-associative cache and analyzed independently. The
memory content that fits into one cache line is called a block.

Since this work focuses on the cache behavior, we do
not consider the timing effect of other components in the
processor (e.g., pipeline and memory controller), but assume
the execution delay of each instruction only differs depending
on whether the cache access is a hit or a miss.

The program can be represented by a control-flow-graph
(CFG) G = (N,E), where N = {n1,n2, · · ·} is the set of nodes,
and E = {e1,e2, · · ·} is the set of directed edges. A loop L in
the CFG is a strongly connected subgraph of G. Note that here
we only provide a simple definition of the CFG and loops since
the proposed cache analysis does not rely on any particular
CFG or loop structure. In section V we will redefine these
definitions for the presentation of path analysis.

At runtime, when (a node of) the program accesses a block,
the processor first checks whether the block is in the cache.
If yes, it is a hit, and the program directly accesses this block
from the cache. Otherwise, it is a miss, and this block is first
installed in the cache before the program accesses it.

A block occupies only one cache line regardless how many
times it is accessed. So the number of different blocks in an
access sequence is important to the cache behavior. We use
the following concept to reflect this:

Fig. 1. Illustration of LRU and FIFO replacement.

Definition 1 (Stack Length). The stack length of an access
sequence corresponding to a path p in the CFG, denoted by
π(p), is the number of different blocks accessed along p.

For example, the stack length of access sequence “a→ b→
c→ a→ b” is 3, since only a, b and c are accessed.

B. LRU and FIFO

The cache update rule of LRU and FIFO is the same upon
misses: when the program accesses a block δ that is not in the
cache, all the blocks in the cache will be shifted one position to
the next cache line (the block in the last cache line is removed
from the cache), and δ is installed to the first cache line.

LRU and FIFO only differ in their update rules upon hits.
Let the program access a block δ that is already in the cache. In
LRU caches, δ is moved to the first cache line and all blocks
that were stored before δ ’s old position will be shifted one
position to the next cache line. In FIFO caches, δ stays at the
original position and thus the whole cache keeps unchanged.
Figure 1 illustrates the cache update upon an access to block
δ on a 4-way LRU and FIFO cache respectively.

C. LRU Cache Analysis

As mentioned in Section I, our quantitative FIFO analysis
uses the analysis results of the same program under LRU to
infer the cache behavior under FIFO. Thus, we provide a brief
review of the state-of-the-art LRU cache analysis technique.

WCET estimation with precise cache analysis suffers from
serious state space explosion, so people resort to approximation
techniques separating path analysis based on IPET (Implicit
Path Enumeration Techniques) and cache analysis based on
AI (Abstract Interpretation) for good scalability [19]. The AI-
based LRU cache analysis uses three fix-point analyses on the
abstract cache domain:

• Must analysis determines if the accesses of a node are
always hits (AH);

• May analysis determines if the accesses of a node are
always misses (AM);

• Persistence analysis determines if a node will at most
encounter a cold miss and afterwards will be always-
hit when the program executes inside a particular loop;
the classification of such nodes is first-miss (FM)
regarding the corresponding loop.

If a node is not determined by any of the above analyses, then
it is classified as not-classified (NC). Under the problem model
assumption of this paper, NC nodes are treated in the same way
as AM in the path analysis to calculate safe WCET bounds.
We refer to the references [19], [3], [14], [5] for details about
these fix-point analyses.



III. A NEW METRIC: MISS DISTANCE

This section introduces a general metric miss distance,
which will be useful to establish the quantitative FIFO cache
analysis in the next section. Before formally introducing the
miss distance, we first use the following example to moti-
vate why is it an interesting metric relevant to the timing
predictability of cache replacement policies:

Given a loop accessing K blocks and a K-way cache. Since
the whole loop can be fit into the cache, there is a strong
intuition to claim the property that each node in the loop is
FM regarding this loop. However, this is not always true. It
depends on the underlying replacement policy: it holds for
many policies including LRU, MRU and FIFO, but not for
others including PLRU.

This property is attractive since it enables a very efficient
Persistence analysis by only counting the number of different
blocks accessed in a loop. Since a program typically spends
most of its execution time in loops, this property is highly
relevant to the timing analysis of the whole program. There-
fore, it is interesting to ask the following questions: What
is the essence for a cache replacement policy to have this
property? If it does not hold under a given policy, would it
be true for a smaller loop? If yes, what is the upper limit of
the loop size? Unfortunately, the existing cache replacement
predictability metrics [18] cannot answer these questions.

Now we formally introduce the new metric miss distance:

Definition 2 (Miss Distance). The miss distance of a cache is
the minimal number of different blocks being accessed between
any pair of consecutive cache misses on the same block.

By examining the FIFO rule, it is easy to know:

Lemma 1. The miss distance of a K-way FIFO cache is K.

Proof: A block is installed to the first cache line upon a
miss, and other K blocks need to be accessed to evict it.

With this new metric, we can answer the above questions:

Lemma 2. Given a cache with miss distance X, and a loop
L in which the number of different blocks is no larger than X.
Any block in L encounters at most one miss (the cold miss)
every time when the program executes inside L.

Proof: Since the miss distance of the underlying cache is
X , after the cold miss of a block δ , at least X other different
blocks are needed for the next miss on δ to happen. However,
this is impossible when the program executes inside the loop
L since it does not contain enough blocks.

Thus we have obtained a very efficient Persistence anal-
ysis: Given a K-way FIFO (LRU, MRU) cache, if the total
number of different blocks accessed in loop L is no larger
than K, then all the nodes are FM regarding L. Similarly all
the nodes in a loop accessing at most log2K+1 different blocks
are FM regarding this loop on a K-way PLRU cache.

IV. QUANTITATIVE FIFO ANALYSIS

The idea behind the quantitative FIFO cache analysis is
fairly simple. Consider the following access sequence:

Fig. 2. A CFG example. The letter inside each circle denotes the block
accessed by this node.

δ → a→ b→ δ → c→ d→ δ → e→ f → g→ δ → h→ i→ δ

Suppose the underlying FIFO cache has 4 ways, then by
Lemma 2 and 1 we know that for any pair of consecutive
misses to δ there are at least 4 different blocks accessed in
between. In the above sequence, if the first access to δ is a
miss, then the second one must be a hit since only 2 blocks
are accessed in between. One can see that at most 3 out of
the total 5 accesses to δ are misses. For any memory access
sequence, one can calculate an upper bound on the misses for
each block. However, there are exponentially many paths in
the CFG and it is infeasible to do the above analysis for each
individual path. In the following, we will show how to do the
quantitative analysis in the context of the CFG structure, and
in the next section the analysis result will be integrated into
the IPET framework to efficiently calculate a WCET bound
of the whole program. First define the maximal stack distance
between two nodes accessing the same block in the scope of
a certain loop:

Definition 3 (Maximal Stack Distance). Let ni and n j be nodes
in loop L accessing the same block δ (ni and n j may be
the same node). The maximal stack distance from ni to n j
regarding loop L, denoted by ΠL(ni,n j), is defined as:

ΠL(ni,n j)=

{
max{π(p)|p ∈ PL(ni,n j)} if PL(ni,n j) 6= /0
0 otherwise

where PL(ni,n j) is the set of paths satisfying:

• All nodes along the path are included in loop L;

• ni (n j) is the first (last) node of the path;

• No other nodes in the path, besides ni and n j, access
δ .

Fig. 2 illustrates the maximal stack distance related to block
δ with an inner loop Lin and an outer loop Lout respectively.
For example, we have ΠLin(n6,n6) = 3 since a “longest” path
from n6 back to n6 in the scope of Lin accesses 3 different
blocks (n6→ n3→ n5→ n6), while ΠLout (n6,n6) = 6 since the
“longest” path in the scope of Lout accesses 6 different blocks
(n6→ n9→ n2→ n7→ n9→ n2→ n3→ n5→ n6).

Lemma 3. Given a cache with miss distance K. Let ∆ be the
set of nodes in a loop L accessing block δ , and it holds

∀ni,n j ∈ ∆ : ΠL(ni,n j)≤ ` (1)

where ` is a positive integer no larger than K. Then the total
number of misses for nodes in ∆ is bounded by:

bγ · xc+ y (2)



where γ = 1/(1+ b(K−1)/(`−1)c), x is the total number of
executions of nodes in ∆ and y is the total number of times the
program enters loop L during the whole program execution.

Proof: The first step is to prove there are at least b(K−
1)/(`−1)c hits by nodes in ∆ between any pair of consecutive
misses for nodes in ∆. Since the miss distance of the underlying
cache is K, after a miss of δ , at least K different blocks need to
be accessed in order to evict δ from the cache. In other words,
all the accesses to δ are hits as long as the number different
blocks have been accessed after the first miss to δ does not
exceed K−1. By (1) we know that when the program executes
inside loop L, the number of different blocks accessed between
any two consecutive accesses to δ (not including δ ) is at most
`−1. So δ will be accessed for at least b(K−1)/(`−1)c times
before it is evicted from the cache.

The program enters loop L for y times. We use xm (1≤m≤
y) to denote how many times δ is accessed when the program
for the mth time enters and executes inside L. Above, we have
proved there are at least b(K−1)/(`−1)c hits by nodes in ∆

between any pair of consecutive misses for nodes in ∆, so the
total number of misses among these xm accesses to δ can be
bounded by:

1+ bxm/(1+ b(K−1)/(`−1)c)c

Summing up this for each xm we get an upper bound on the
total number of misses for nodes in ∆:

y+
y

∑
i=1
bxm/(1+ b(K−1)/(`−1)c)c

By the general inequality property
⌊ a

c

⌋
+
⌊ b

c

⌋
≤
⌊ a+b

c

⌋
and

∑
y
i=1 xm = x, the above expression is bounded by (2).

Intuitively speaking, Lemma 3 implies a “ratio” γ of the
misses over all the accesses by a set of nodes when the program
iterates inside a loop. We call such a node set a γ-set regarding
L. Note that a node may be included by several γ-sets
regarding different loops and different γ values. For example,
suppose the CFG in Fig. 2 is executed with a cache of miss
distance 8, then n6 is included in a singleton 1

4 -set regarding
Lin (γ = 1/(1+ b(8−1)/(3−1)c) = 1/4), as well as a 1

2 -set
{n6,n8} regarding Lout (γ = 1/(1+ b(8−1)/(6−1)c) = 1/2).

To use Lemma 3, one needs to compute the maximal stack
distance ΠL(). In general, the time complexity of computing
ΠL() is at least exponential regarding the number of cache
ways1, so we need efficient approximation to handle real-
life-size problems. Actually, computing ΠL() is exactly the
essential problem to solve in the analysis of LRU caches.
Therefore, we can use the over-approximate AI-based LRU
analysis introduced in Section II-C to efficiently bound ΠL().

Lemma 4. Given a `-way LRU cache. Let ∆ be the set of
nodes in a loop L accessing block δ . If all the nodes in ∆ are
classified as AH or FM regarding L by the cache analysis,
then it must hold:

∀ni,n j ∈ ∆ : ΠL(ni,n j)≤ ` (3)

1This can be shown by a reduction from the well-known 3-SAT problem,
the details of which are omitted due to the space limit.

Proof: Prove by contradiction. Assume two nodes ni
and n j in S have ΠL(ni,n j) > `. Then by the definition of
ΠL(ni,n j) there is at least one path from ni to n j inside L has
stack length larger than `. Now suppose this particular path
is always taken when the program iterates inside the loop,
then n j will always encounter misses. This contradicts that the
cache analysis claims that n j is miss for at most once when
the program executes inside this loop.

Now combining Lemma 1, Lemma 3 and 4, we obtain the
main result of this section:

Theorem 1. Let ∆ be the set of nodes in a loop L accessing
block δ . If all the nodes in ∆ are classified as AH or FM
regarding L by a safe analysis on a `-way LRU cache, then
the total number of misses for nodes in ∆ on a K-way FIFO
cache is bounded by:

bγ · xc+ y

where γ = 1/(1+ b(K−1)/(`−1)c), x is the total number of
executions of nodes in ∆ and y is the total number of times the
program enters loop L during the whole program execution.

Since γ is non-decreasing with respect to `, we want to
find the minimal ` such that all nodes in ∆ are classified as
AH or FM regarding L under LRU in order to minimize the
“miss ratio”. To do this, we actually only need to conduct the
LRU cache analysis once with a K-way cache. This is because
the Must and Persistence analysis for LRU maintains the
information about the maximal age of a block at certain point
in the CFG (when the program executes in a certain loop),
which can be directly transferred to the analysis result with
any LRU cache of size smaller than K. For example, suppose
in the Must analysis with a 8-way LRU cache, a block δ has
maximal age of 4 before the execution of a node accessing δ ,
then by the Must analysis with a 4-way LRU cache this node
will be classified as AH. We will not recite the LRU Must
and Persistence analysis details, neither explain how the age
information is maintained in the analysis procedure. Interested
readers can find details in the references [3], [14], [5].

V. COMPUTATION OF WCET BOUNDS

In this section we introduce how to integrate the quanti-
tative FIFO cache analysis results from the last section into
IPET to efficiently compute a WCET bound of the analyzed
program. First redefine the CFG on the basis of basic blocks:

Definition 4 (CFG). A CFG is a tuple G = (B,E,bst):

• B= {b1,b2, · · ·} is the set of basic blocks in the CFG;

• E = {e1,e2, · · ·} is the set of directed edges connecting
the basic blocks in the CFG;

• bst ∈ B is the unique starting basic block of the CFG.

As a common restriction in structured programming [6],
we assume each loop contains a single head basic block, and
the program can jump into the loop by reaching the head
basic block via some entry edges. The loop bound restricts the
maximal times the loop iterates every time the program enters
it. The head basic block tests whether the loop condition is
satisfied. If yes, the program continues to execute the body



basic blocks, which are the basic blocks in the loop excluding
the head basic block, otherwise the program exists the loop.
Formally, a loop is defined as:

Definition 5 (Loop). A loop in the CFG is a tuple Ll =
(entrl ,headl ,bodyl , lpbl) with:

• entrl: the set of entry edges of the loop;

• headl: the head basic block of the loop;

• bodyl: the set of all body basic blocks of the loop;

• lpbl: the loop bound.

The overall FIFO cache analysis results can be summarized
as follows: AH nodes decided by the Must analysis in [8], [9],
FM nodes (regarding some loop) decided according to Lemma
2 and γ-sets (regarding some loop) determined by Theorem
1. Finally, the nodes that do not belong to any of the above
classification are treated as AM. Note that if a node ni is FM
regarding loop L, the number of misses with ni is bounded by
the number of times the program enters this loop, so {ni} can
be viewed as a special case of γ-set with γ = 0 (the bound (2)
becomes y+b0 ·xc= y). For simplicity of presentation, in the
following we use term γ-set to include both the original ones
derived by Theorem 1 and the FM singleton sets with γ = 0.

The standard IPET for WCET computation with LRU
caches is encoded as an ILP (Integer Linear Programming)
problem. Since our FIFO cache analysis results involve non-
integers (miss ratio γ), we encode the IPET for FIFO cache as
an MILP (Mixed-Integer Linear Programming) problem. The
constants used in MILP formulation include Ch (the execution
delay of each node upon a cache hit), Cm (the execution delay
of each node upon a cache miss) and the miss ratio γ for each
γ-set.

The formulation uses the following non-negative variables:

• ca: for each ba, ca is ba’s total execution cost,

• xa: for each ba, xa is the execution count of ba,

• y j: for each edge e j, y j counts how many times this
edge is taken during the whole execution,

• zi: for each node ni included in some γ-set, zi counts
how many times ni executes as cache misses.

The following maximization object is a safe WCET bound
of the analyzed program:

Maximize

{
∑

all ba

ca

}
The following constraints are respected to bound the object.

Cost Constraints: The overall delay of an AH (AM) node
ni in ba is simply Ch · xa (Cm · xa). The remaining nodes are
the ones included in some γ-set (including FM nodes as stated
above). For each of such nodes ni, we use a variables zi (s.t.
zi≤ xa) to denote the execution count of ni with cache accesses
being misses. So the overall delay of such a node ni is Cm ·
zi +Ch · (xa− zi). Putting the above discussions together, we
have the total execution cost of each basic block:

∀ba : ca =(πahCh +πamCm) · xa + ∑
ni∈b∗a

(
zi ·Cm +(xa− zi) ·Ch

)

Fig. 3. Experiment results with a 0.5K 4-way cache.

where πah and πam is the number of AH and AM nodes in ba
respectively, and b∗a is the set of nodes in ba that are involved
in some γ-set.

γ-Set Constraints: The total number of misses for nodes
in a γ-set regarding a loop Ll is bounded by bγ ·xc+y, where
x is the total number of executions of nodes in this γ-set and
y is the total number of times the program enters Ll . So we
can bound the number of misses incurred by a γ-set:

∀(S,Ll) s.t. S is a γ-set regarding Ll :

∑
ni∈S

zi ≤ ∑
e j∈entrl

y j + ∑
ni∈S
bxa · γc

where entrl is the set of entry edges of Ll and y j to denotes
how many times an edge e j ∈ entrl is taken during the whole
program execution. Recall that a node may be contained by
multiple γ-sets, so each zi may be involved in several of the
above constraints.

Structure Constraints: The same as in the standard en-
coding of IPET with LRU caches [19].

VI. EXPERIMENTAL EVALUATION

We assume the execution delay of each node only differs
depending on whether the cache access is a hit or a miss:
all instructions have the same execution delay of 1 cycle, the
memory access penalty is 1 cycle upon a cache hit and 10
cycles upon a cache miss. Each instruction is 8 bytes, and each
block (cache line) is 16 bytes (i.e., each block contains two
instructions). The programs used in the experiments are from
the Mälardalen Real-Time Benchmark [12]. Some loop bounds
cannot be automatically inferred, which are manually set to be
50. The size of these programs used in our experiments ranges
from several tens to about 4000 lines of C code, or from several
tens to about 8000 assembly instructions compiled by a gcc
compiler re-targeted to the SimpleScalar [2] with -o0 option.

Simulation experiments are conducted with our in-house
simulator, which is driven by the worst-case path information
extracted from the solution of the MILP formulation. This
approach can exclude the effects of other factors orthogonal
to the cache behavior (e.g., the tightness of loop bounds), by
which we can better evaluate the quality of the cache analysis
itself than using traditional full-processor simulations. The
solution of the MILP formulation only restricts how many
times a basic block executes on the worst-case path, which
allows the flexibility of arbitrarily choosing upon branches as
long as the execution counts of basic blocks still comply with
the MILP solution. In order to obtain execution paths that
are as close to the worst-case path as possible, our simulator
always takes different branches alternatively which leads to
more cache misses.



Figure 3 shows the WCET estimations with a 0.5K 4-
way FIFO cache by the analysis of this work and Grund and
Reineke’s Must analyses [8], [9] (a node is classified as AH
if it is determined by one of these two analyses). The must
analyses in [8], [9] can only determine AH nodes. However, for
a more fair comparison, we integrate these two must analyses
with the VIVU technique [19] and thus they can also be used
to determine FM nodes. The x-axis of the figure represents
different benchmark programs (the last group is the average
over all programs), and the y-axis is the normalized WCET
estimation (the ratio between the WCET estimation and the
execution time obtained by simulation). For most programs,
the WCET estimation with our quantitative analysis is very
close to simulation results: the normalized WCET estimation
is on average 110.3%. In contrast, the WCET estimation by
Grund and Reineke’s Must analysis is grossly pessimistic: the
normalized WCET estimation is on average 171.8%. In other
words, by our new analysis, the overestimation ratio is reduced
from 71.8% to 10.3%.

We also conducted experiments with various configura-
tions: the cache size is 0.5K, 1K or 2K; the number of ways
is 4, 8, 16 or 32 (the number of sets changes correspondingly,
resulting in 12 different configurations). These experiments
showed that our analysis is even more accurate with a greater
cache size and/or a large number of cache ways, while the
quality of Grund and Reineke’s Must analysis is similar under
different configurations. Detailed result figures with different
configurations are omitted due to space limit.

Our FIFO analysis uses the analysis results of the same
program under LRU to derive the quantitative guarantee, and
thus is as efficient as the state-of-the-art LRU cache analysis
based on abstract interpretation. The IPET with our quantita-
tive FIFO analysis is encoded as an MILP problem and uses
a greater number of variables, thus in general takes more time
to solve than the standard ILP formulation in previous LRU
analysis. However, some pragmatic optimizations in the MILP
encoding are possible to improve the efficiency of the MILP
solver performance2. Experiments showed that this approach
has a good analysis efficiency with the benchmark programs
in use. We solved the MILP formulation by lp solve [4] on a
laptop with an Intel Core i7 CPU (2.7GHZ). The computation
for each program takes at most several seconds.

VII. DISCUSSION AND CONCLUSION

This paper presented a quantitative approach for FIFO
cache analysis. Unlike the previous standard cache analysis
based on qualitative AH/AM classification, this new approach
quantitatively bound the number of misses cause by an instruc-
tion (set) during the whole program execution. Experiments
with benchmark programs showed that the proposed analysis
can significantly improve the WCET estimation accuracy over
previous techniques while still maintains good efficiency.

Although the quantitative analysis approach supports a
significantly better precision in predicting the number of cache
hits/misses, we would like to point out that the guarantee
provided by qualitative analysis is stronger and has the ben-
efit of, e.g., being easier to be integrated in the analysis

2The idea is to group as many nodes with the same γ-set characterization
into “blocks”, to reduce the number of variables used in the MILP encoding.

of architectures that are not fully timing-compositional [21].
Therefore, the next step of our work is to study how to
integrate the quantitative cache analysis with the analysis of
other components in the processor (e.g., pipelines). We also
plan to evaluate the scalability of the proposed analysis with
large-scale programs, and extend to multi-level caches and
another widely used policy PLRU [10].

ACKNOWLEDGEMENT

We thank Daniel Grund and Jan Reineke from Saarland
University and the anonymous reviewers for their valuable
comments. The third author Mingsong Lv is partially sup-
ported by NSF of China (Grant No. 60973017).

REFERENCES

[1] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evalua-
tion of cache replacement policies for the SPEC CPU2000 benchmark
suite. In ACM-SE, 2004.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. Computer, 2002.

[3] C. Ballabriga and H. Casse. Improving the first-miss computation in
set-associative instruction caches. In ECRTS, 2008.

[4] M. Berkelaar. lp solve: a mixed integer linear program solver. In
Relatorio Tecnico, Eindhoven University of Technology, 1999.

[5] C. Cullmann. Cache persistence analysis: A novel approach theory and
practice. In LCTES, 2011.

[6] E. W. Dijkstra. Structured programming. chapter Chapter I: Notes on
structured programming.

[7] R. Wilhelm etc. The worst-case execution-time problem overview
of methods and survey of tools. ACM Transaction on Embedded
Computing Systems, 7, May 2008.

[8] D. Grund and J. Reineke. Abstract interpretation of FIFO replacement.
In SAS, 2009.

[9] D. Grund and J. Reineke. Precise and efficient FIFO-Replacement
analysis based on static phase detection. In ECRTS, 2010.

[10] D. Grund and J. Reineke. Toward precise PLRU cache analysis. In
WCET, 2010.

[11] N. Guan, M. Lv, W. Yi, and G. Yu. WCET analysis with MRU caches:
Challenging LRU for predictability. In RTAS, 2012.

[12] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen
WCET benchmarks: Past, present and future. In WCET, 2010.

[13] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The
influence of processor architecture on the design and the results of
wcet tools. In Proceedings of the IEEE, 2003.

[14] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache
analysis for wcet estimation. In RTAS, 2011.

[15] Y. S. Li, S. Malik, and A. Wolfe. Performance analysis of embedded
software using implicit path enumeration. In DAC, 1995.

[16] A. Malamy, R. Patel, and N. Hayes. Methods and apparatus for
implementing a pseudo-lru cache memory replacement scheme with
a locking feature. In United States Patent 5029072, 1994.

[17] J. Reineke and D. Grund. Relative competitive analysis of cache
replacement policies. In LCTES, 2008.

[18] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability
of cache replacement policies. In Real-Time Systems, 2007.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET
prediction by separated cache and path analyses. In Real-Time Systems,
2000.

[20] R. Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor
ILP alone. In VMCAI, 2004.

[21] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory hierarchies, pipelines and buses for future
architectures in time-critical embedded systems. IEEE Transaction on
Computer-Aided Design of Integrated Circus Systems, 28, July 2009.


