R-automata*

Parosh Abdulla, Pavel Krcal, and Wang Yi

Department of Information Technology,
Uppsala University, Sweden
Email: {parosh,pavelk,yi}@it.uu.se

Abstract. We introduce R-automata — finite state machines which oper-
ate on a finite number of unbounded counters. The values of the counters
can be incremented, reset to zero, or left unchanged along the transitions.
R-automata can be, for example, used to model systems with resources
(modeled by the counters) which are consumed in small parts but which
can be replenished at once. We define the language accepted by an R-
automaton relative to a natural number D as the set of words allowing
a run along which no counter value exceeds D. As the main result, we
show decidability of the universality problem, i.e., the problem whether
there is a number D such that the corresponding language is universal.
We present a proof based on finite monoids and the factorization for-
est theorem. This theorem was applied for distance automata in [Sim94]
— a special case of R-automata with one counter which is never reset.
As a second technical contribution, we extend the decidability result to
R-automata with BSchi acceptance conditions.

1 Introduction

We consider systems operating on resources which are consumed in small parts
and which can be (or have to be) replenished completely at once. To model such
systems, we introduce R-automata — finite state machines extended by a finite
number of unbounded counters corresponding to the resources. The counters
can be incremented, reset to zero, or left unchanged along the transitions. When
the value of a counter is equal to zero then the stock of this resource is full.
Incrementing a counter means using one unit of the resource and resetting a
counter means the full replenishment of the stock.

We define the language accepted by an R-automaton relative to a natural
number D as the set of words allowing an accepting run of the automaton such
that no counter value exceeds D in any state along the run. We study the problem
of whether there is a number D such that the corresponding language is universal.
This problem corresponds to the fact that with stock size D, the system can
exhibit all the behaviors without running out of resources. We show that this
problem is decidable in 2-EXPSPACE. As a second technical contribution, we
extend the decidability result to R-automata with BSchi acceptance conditions.

* This work has been partially supported by the EU CREDO project.

To prove decidability of the universality problem, we adopt the technique
from [Sim94] and extend it to our setting. The proof reformulates the problem
in the language of finite monoids and solves it using the factorization forest the-
orem [Sim90]. In [Sim94], this theorem has been used for solving the limitedness
problem for distance automata. Distance automata are a subclass of R-automata
with only one counter which is never reset. In contrast to this model, we handle
several counters and resets. This extension cannot be encoded into the distance
automata.

The decision algorithm deals with abstractions of collections of runs in order
to find and analyze the loops created by these collections. The main step in
the correctness proof is to show that each collection of runs along the same
word can be split (factorized) into short repeated loops, possibly nested. Having
such a factorization, one can analyze all the loops to check that none of the
counters is only increased without being reset along them. If none of the counters
is increased without being reset then we can bound the counter values by a
constant derived from the length of the loops. Since the length of the loops is
bounded by a constant derived from the automaton, all words can be accepted
by a run with bounded counters. Otherwise, we show that there is a +-free
regular expression such that for any bound there is a word obtained by pumping
this regular expression which does not belong to the language. Therefore, the
language cannot be universal for any D.

Related work. The concept of distance automata and the limitedness problem
were introduced by Hashiguchi [Has82]. The limitedness problem is to decide
whether there is a natural number D such that all the accepted words can also
be accepted with the counter value smaller than D. Different proofs of the decid-
ability of the limitedness problem are reported in [Has90,Leu91,5im94|. The last
of these results [Sim94] is based on the factorization forest theorem [Sim90,K107].
The model of R-automata, which we consider in this paper, extends that of dis-
tance automata by introducing resets and by allowing several counters. Further-
more, all the works mentioned above only consider the limitedness problem on
finite words, while we here extend the decidability result of the universality prob-
lem to the case of infinite words. Distance automata were extended by [Kir04]
with one additional counter which is either incremented or reset to zero along
every transition. R-automata form a superclass of this extension.

The fact that R-automata can have several counters which can be reset al-
lows, for instance, to capture the abstractions of the sampled semantics of timed
automata [KP05,AKY07]. A sampled semantics given by a sampling rate e = 1/ f
for some positive integer f allows time to pass only in steps equal to multiples of
€. The number of different clock valuations within one clock region (a bounded
set of valuations) corresponds to a resource. It is finite for any e while infinite in
the standard (dense time) semantics of timed automata. Timed automata can
generate runs along which clocks are forced to take different values from the
same clock region (an increment of a counter), take exactly the same value (a
counter is left unchanged), or forget about the previously taken values (a counter
reset).

2 Preliminaries

First, we introduce the model of R-automata and its unparameterized semantics.
Then, we introduce the parameterized semantics, the languages accepted by the
automaton, and the universality problem.

R-automata. R-automata are finite state machines extended with counters.
A transition may increase the value of a counter, leave it unchanged, or reset
it back to zero. The automaton on its own does not have the capability of
testing the values of the counters. However, the semantics of these automata is
parameterized by a natural number D which defines an upper bound on counter
values which may appear along the computations of the automaton. Let N denote
the set of non-negative integers.

An R-automaton with n counters is a 5-tuple A = (S, X', A, so, F') where

— S is a finite set of states,

— X is a finite alphabet,

- ACSxXx{0,1,7}" x S is a transition relation,
— 5o € S is an initial state, and

— F C S is a set of final states.

Transitions are labeled (together with a letter) by an effect on the counters.
The symbol 0 corresponds to leaving the counter value unchanged, the symbol
1 represents an increment, and the symbol r represents a reset. We use t,t1, . ..
to denote elements of {0,1,7}"™ which we call effects. A path is a sequences of
transitions (s1,a1,t1,52),(82,a2,t2,53), -, (Sm, @m, tm, Sm+1), such that V1 <
i < m.(si,a;,ti,si+1) € A. An example of an R-automaton is given in Figure 1.

Fig. 1. An R-automaton with two counters.

Unparameterized semantics. We define an operation & on the counter
values as follows: for any k € N, k0 =k, k®1 =k+1,and kr = 0.
We extend this operation to n-tuples by applying it componentwise. The oper-
ational semantics of an R-automaton A = (S, X, A, so, F') is given by a labeled
transition systems (LTS) [A] = (S, X, T, so), where the set of states S contains
pairs (s, (c1,-.-,¢n)), s € S;¢; € N for all 1 < ¢ < n, with the initial state

S0 = (s0,(0,...,0)). The transition relation is defined by ({s, (c1,...,cn)),a, (s,
(cy,...,c))) € Tif and only if (s,a,t,s"y € Aand (cf,...,¢c),) = (c1,...,cn) DtL.
We shall call the states of the LTS configurations.

We write (s, (c1,...,¢n)) —= (s,(ch,...,ch)) if ((s,(c1,...,cn)),a, (s, (c),
..,) € T. We extend this notation also for words, (s, (c1,...,¢,)) —
(s,(ch,...,ch)), where w € X',

Paths in an LTS are called runs to distinguish them from paths in the un-
derlying R-automaton. Observe that the LTS contains infinitely many states,
but the counter values do not influence the computations, since they are not
tested anywhere. In fact, for any R-automaton A, [A] is bisimilar to A consid-
ered as a finite automaton (without counters and effects). The LTS induced by
the R-automaton from Figure 1 is in Figure 2.

Fig. 2. The unparameterized semantics of the R-automaton in Figure 1.

Parameterized Semantics. Next, we define the D-semantics of R-automata.
We assume that the resources associated to the counters are not infinite and we
can use them only for a bounded number of times before they are replenished
again. If a machine tries to use a resource which is already completely used up,
it is blocked and cannot continue its computation.

For a given D € N, let Sp be the set of configurations restricted to the config-
urations which do not contain a counter exceeding D, i.e., Sp = {(s,(c1y-..,cn))]
(s,(c1,...,¢n)) € S and (c1,...,¢,) < (D,...,D)} (< is applied component-
wise). For an R-automaton A, the D-semantics of A, denoted by [A]p, is [A4]

restricted to Sp. We write (s, (c1,...,¢n)) —=p (5,(c),...,c,)) to denote the
transition relation of [A] p. We extend this notation for words, (s, (c1,...,¢n)) —p
(s,(c},...,c,)) where w € XT.

The 2-semantics of the R-automaton from Figure 1 is in Figure 3.

It is easy to see that for each D1 < Do, [A]p, simulates [A]p, and [A]
simulates [A]p,-

We abuse the notation to avoid stating the counter values explicitly when it
is not necessary. We define the reachability relations — and —p over pairs
of states and words as follows. For s,s' € S and w € ¥+, s = s’ if and only
if there is a path (s, a1,t1,51), (51,02,t2,52), ..., (Sjw|—1, @Jw| tjw|, ") such that
w = ay - az---ap. For each D € N, s p s'if also for all 1 < i < |w|,
L1®te® - dt; < (D,...,D).

Fig. 3. The 2-semantics of the R-automaton in Figure 1.

It also holds that s ——p s’ if and only if there is a run (s, (0,...,0)) —=p
(s',(c1,---50n))-

Language. The (unparameterized or D-) language of an R-automaton is
the set of words which can be read along the runs in the corresponding LTS
ending in an accepting state (in a configuration whose first component is an
accepting state). The unparameterized language accepted by an R-automaton A
is L(A) = {w|sop — sy,s; € F}.Foragiven D € N, the D-language accepted by
an R-automaton A is Lp(A) = {w|sy —p sy,s; € F}. The unparameterized
language of the R-automaton from Figure 1 is ab*a*. The 2-language of this
automaton is a(e + b+ bb + bbb)a*.

Problem Definition. Now we can ask questions about language non-emptiness
or universality of an R-automaton A parameterized by D, i.e., is there a natural
number D such that Lp(A) # @ or Lp(A) = X*. Figure 4 shows an R-automaton
A such that Ly(A) = X*.

Fig. 4. A 2-universal R-automaton.

The language definitions and the questions can also be formulated for infinite
words with Biichi acceptance conditions. The unparameterized w-language of the
automaton from Figure 1 is ab” 4 ab*a®. The 2-w-language of this automaton is
a(€e+ b+ bb + bbb)a®.

3 Universality

The main result of the paper is the decidability of the universality problem for
R-automata formulated in the following theorem.

Theorem 1. For a given R-automaton A, the question whether there is D € N
such that Lp(A) = X* is decidable in 2-EXPSPACE.

First, we introduce and also formally define the necessary concepts (pat-
terns, factorization, and reduction) together with an overview of the whole proof.
Then we show the construction of the reduced factorization trees and state the
correctness of this construction. Finally, we present an algorithm for deciding
universality.

3.1 Concepts and Proof Overview

When an R-automaton A is not universal for all D € N then there is an infinite
set X of words such that for each D € N there is wp € X and wp ¢ Lp(A). We
say then that X is a counterexample. The main step of the proof is to show that
there is an X which can be characterized by a +-free regular expression. In fact,
we show that X also satisfies a number of additional properties which enable
us to decide for every such a +-free regular expression, whether it corresponds
to a counterexample or not. Another step of the proof is to show that we need
to check only finitely many such +-free regular expressions in order to decide
whether there is a counterexample at all.

Patterns. The standard procedure for checking universality in the case of
finite automata is subset construction. Whenever there are non-deterministic
transitions s — s; and s — so then we build a “summary” transition {s} ——
{51, s2}. This summary transition says that from the set of states {s} we get to
the set of states {s1,s2} after reading the letter a. In the case of R-automata,
subset construction is in general not guaranteed to terminate since the values
of the counters might grow unboundedly. To deal with this problem, we exploit
the fact that the values of the counters do not influence the computations of the
automaton. Therefore, we perform an abstraction which hides the actual values
of the counters and considers only the effects along the transitions instead. The
abstraction leads to a more complicated variant of summary transitions namely
so called patterns.

We define a commutative, associative, and idempotent operation o on the set
{0,1,7}: 000=0,001=1,00r=r,1l0l=1,1or =7, and ror = r. In fact,
if we define an order 0 < 1 < r then o is the operation of taking the maximum.
We extend this operation to effects, i.e., n-tuples, by applying it componentwise
(this preserves all the properties of o). An effect obtained by adding several other
effects through the application of the operator o summarizes the manner in which
the counters are changed. More precisely, it describes whether a counter is reset
or whether it is increased but not reset or whether it is only left untouched.

A pattern o : (S x §) — 2091 i5 a function from pairs of automaton
states to sets of effects. Let us denote patterns by o,01,0',.... As an example,

consider a pattern ¢ involving states s and s’ and two counters. Let o(s,s) =
{(07 0)7 (17 1)}7 U(Sla SI) = {(17 1)7 (17 O)}7 0(57 SI) = {(17 1)} and U(Sla 5) = {(17 1)}
This pattern is depicted in Figure 5a.

Clearly, for a given R-automaton there are only finitely many patterns; let us
denote this finite set of all patterns by P. We define an operation e on P as follows.
Let (01 002)(s,s") = {t|3s", t1,t2. t1 € 01(s,5"),t2 € 02(s",s),t = t10t2}. Note,
that e is associative and it has a unit o., where o¢(s,s’) = {(0,...,0)} if s = ¢’
and o¢(s,s') = () otherwise. Therefore, (P,) is a finite monoid.

For each word we obtain a pattern by running the R-automaton along this
word. Formally, let Run : ¥* — P be a homomorphism defined by Run(a) = o,
where t € o(s,s') if and only if (s,a,t,s') € A.

Loops. In the case of finite automata, a set of states L and a word w con-
stitute a loop in the subset construction if L —» L, i.e., starting from L and
reading w, we end up in L again. The intuition behind the concept of a loop
is that several iterations of the loop have the same effect as a single iteration.
In our abstraction using patterns, loops are words w such that w yields the
same pattern as w2, w3, We can skip the starting set of states, because the
function Run starts implicitly from the whole set of states S (if there are no
runs between some states then the corresponding set of effects is empty). More
precisely, a word w is a loop if Run(w) is an idempotent element of the pattern
monoid. Two loops are identical if they produce the same pattern. Observe that
the pattern in Figure 5a is idempotent.

Factorization. We show that each word can be split into short identical
loops repeated many times. The loops can possibly be nested, so that this split
(factorization) defines a factorization tree. The idea is that since we have such a
factorization for each word, it is sufficient to analyze only the (short) loops and
either find a run with bounded maximal value of the counters or use the loop
structure to construct a counterexample regular expression.

On a higher level we can see a factorization of words as a function which for
every word w = aias - --a; returns its factorization tree, i.e., a finite tree with
branching degree at least 2 (except for the leaves) and with nodes labeled by
subwords v of w such that the labeling function satisfies the following conditions:

— if a node labeled by v has children labeled by wi,ws,...,w,, then v =
Wy - Wa - Wy,

— if m > 3 then 0 = Run(v) = Run(w;) for all 1 <4 < m and o is idempotent,

— the leaves are labeled by a1, as,...,a; from left to right.

An example of such a tree is in Figure 5b. It follows from the factorization
forest theorem [Sim90,K107] that there is such a (total) function which returns
trees whose height is bounded by 3 - |P| where |P| is the size of the monoid.

We define the length of a loop as the length of the word (or a pattern se-
quence) provided that only the two longest iterations of the nested loops are
counted. This concept is defined formally in Subsection 3.3. We say that the
loops are short if there is a bound given by the automaton so that the length
of all the loops is shorter than this bound. A consequence of the factorization
forest theorem is that there is a factorization such that all loops are short.

(0,0), (1,1) acabbac
S S T
w3 / abbac

a AN
31(1’1) a/ \c a/ \b a/ \c

(a) (b)

Fig.5. A pattern involving two states and two counters (a) and a factorization tree
(b). Run(abbac) = Run(ab) = Run(b) = Run(ac) and it is idempotent.

Reduction. We have defined the loops so that the iterations of a loop have
the same effect as the loop itself. Therefore, it is enough to analyze a single
iteration to tell how the computations look when the loop is iterated an arbitrary
number of times. By a part in an idempotent pattern o, we mean an element (an
effect) in the set o(s,s') for some states s and s'. We will distinguish between
two types of parts, namely bad and good parts. A bad part corresponds only to
runs along which the increase of some counter is at least as big as the number
of the iterations of the loop. A part is good if there is a run along which the
increase is bounded by the maximal increase induced by two iterations of the
loop. Formally, we define a function reduce which for each pattern returns a
pattern containing all good parts of the original pattern, but no bad part. Then
we illustrate it on a number of examples.

For a pattern o, core(o) is defined as follows:

o(s,s'YN{0,r}* ifs=s
-1{;

n _
core(0) (s, 8') = otherwise

Let reduce(o) = o e core(o) e 0.

For an automaton with one state s, one counter, and a loop w with pattern o,
if o(s,s) = {(1)} then the whole pattern is bad, i.e., reduce(o)(s, s) = 0. Notice
that any run over w* increases the counter by k. On the other hand, if o (s, s) =
{(0)} or o(s,s) = {(r)} then the whole pattern is good, i.e., reduce(c) = 0.

With more complicated patterns we need a more careful analysis. Let us con-
sider a loop w with pattern o where o(s,s) = {(0)}, o(s',s") = {(1)}, o(s,s") =
{(1)}, and o(s',s) = {(1)}. We will motivate why the part (1) € o(s', s') is good.
For any k, we can take the run over w* which starts from s’, moves to s after the
first iteration, stays in s for k — 2 iterations, and finally moves back to s’ after
the k! iteration. Then, the effect of the run is (1). Furthermore, the counter
increase along the run is bounded by twice the maximal counter increase while
reading w. In fact, using a similar reasoning, we can show that all parts of o are
good (which is consistent with the fact that reduce(o) = o).

As the last example, let us consider the pattern from Figure 5a. First, we
show that the part (1,0) € o(s’,s') is bad. The only run over w* with effect

(1,0) is the one which comes back to s’ after each iteration. However, this run
increases the first counter by k. On the other hand, the part (1,1) € o(s',s") is
good by a similar reasoning to the previous example. In fact, we can show that
all other parts of the pattern are good (which is consistent with the value of
reduce(o) in Figure 6).

©,0), (1, 1) 0,0 0,0y, (1, 1) 0,0y, (1,1)
S S S S —
@D D D
(.1 (1,1 (1)
M - P S
wo, @y S S Two,an f 5 o s

Fig. 6. o e core(o) ® o0 = reduce(o) where o is the pattern from Figure 5a

Reduced Factorization Trees. For a factorization of a word w, we need
to check whether there is a run which goes through a good part in every loop.
In order to do that, we enrich the tree structure, so that each node will now be
labeled, in addition to a word, also by a pattern. The patterns are added by the
following function: given an input sequence of patterns, the leaves are labeled
by the elements of the sequence, nodes with branching degree 2 are labeled by
the composition of the children labels, and we label each node with branching
degree at least 3 by o, where o is the idempotent label of all its children. Now,
we build a reduced factorization tree for w in several steps (formally described
in Subsection 3.2).

We start with the sequence of patterns obtained by Run from the letters of
the word. In each step, we take the resulting sequence from the previous step
and build a factorization tree from it. Then we take the lowest nodes such that
they have at least 3 children and they are labeled by a pattern ¢ such that
reduce(o) # o. We change the labels of these nodes to reduce(c). We pack the
subtrees which have these nodes as roots into elements of the new sequence and
we leave other elements of the sequence unmodified. This procedure eventually
terminates and returns one tree with the following properties (the important
invariant is shown in Lemma 1):

— if a node labeled by ¢ has two children labeled by o1, 02 then 0 = o1 ® 03,
— if a node labeled by ¢ has m children labeled by o1,...,0,, m > 3, then
o; =o;j for all 1 <1i,j <m, oy is idempotent, and o = reduce(o).

An example of a reduced factorization tree is in Figure 7. We show that there
is a factorization function such that the height of all reduced factorization trees
produced by it is bounded by 3 - |P|* (Lemma 2) using the factorization forest
theorem and a property of the reduction function that reduce(c) <y o, where
<7 is the usual ordering of the J-classes on P, J is a standard Green’s relation;
o <7 o' if and only if there are o1, 09 such that o = o1 e o’ @ 09; 0 <7 o' if and
only if 0 <7 ¢’ and ¢’ £7 0 (Lemma 6 in Appendix).

o1, abcdecc

PN

o2, ab reduce(os), cdecc
03,4 04,b o5, de 05, C ,C
o6, d 07, ¢

Fig. 7. An example reduced factorization tree. 01 = o2 ® reduce(os), 02 = 03 ® 04, and
05 = o6 ® o7. For all leaves labeled by &,d, 6 = Run(a).

Correctness. Let o be the label of the root of a reduced factorization tree
for a word w and let pump(r, k) for a +-free regular expression and for a k € N
be the word obtained by repeating each ri, where r] is a subexpression of r,
k-times. Then

— if o(sg,sy) # 0 for some sy € F then there is a run from sy to s over w in
8IP°_semantics,

— otherwise, there is a +-free regular expression r such that for all D there is
a k such that there is a counter which exceeds D along all runs from sy to
sf, sy € F', over pump(r, k).

The previous items are formulated in Subsection 3.3, in Lemma 4 and Lemma 5.

Relation to Simon’s Approach. There are several important differences
between the method presented in this paper and that of Simon [Sim94]|. Our
notion of pattern is a function to a set of effects, while in Simon’s case it is a
function to the set {0,1,w}. Because of the resets and the fact that there are
several counters, it is not possible to linearly order the effects. Thus, a collection
of automaton runs can be abstracted into several incomparable effects. The sets
are necessary in order to remember all of them. Furthermore, the different no-
tion of pattern requires a new notion of reduction which does not remove loops
labeled also by resets. We need to show then that application of this notion of
reduction during the construction of the reduced factorization trees preserves
the correctness.

3.2 Construction of the Reduced Factorization Tree

We define labeled finite trees to capture the looping structure of the sequences of
patterns. Let I" be a set of finite trees with two labeling functions Pat and Word,
which for each node return a pattern and a word, respectively. We will abuse
the notation and, for a tree T'; we use Pat(T") or Word(T') to denote Pat(NN) or
Word(N), respectively, where NV is the root of T'. We also identify nodes with the
subtrees in which they are roots. We can then say that a node 7" has children

10

Ty,...,Ty and then use Tj’s as trees. For a tree T', we define its height h(T)
as h(T) = 1if T is a leaf, h(T) = 1 + max{h(T4),...,h(Ty)} if T1,..., Ty, are
children of the root of 7.

By I't we mean the set of nonempty sequences of elements of I'. By (I'™)* we
mean the set of nonempty sequences of elements of I'". Let us denote elements
of I'* by v,71,7,.... For v € I'", let || denote the length of ~.

Let f : I'" — P be a homomorphism with respect to e defined by f(T') =
Pat(T). We call a function d : I't — (I'") ™ a factorization function if it satisfies
the following conditions. If d(v) = (y1,72,--,Ym) then v = v1 - y2 - vy, if
m =1 then |y]| =1, and if m > 3 then f(y) = f(v;) for all 1 <47 <m and f(7)
is an idempotent element.

For a factorization function d we define two functions tree : I'" — I' and
cons : I't — 't inductively as follows. Let (o, w) denote a tree with consists of
only the root labeled by ¢ and w.

v if |[y[=1,
(01 ® 02, w1 - wy) with children tree(y), tree(yz2), if d(y) = (711,72),
o; = Pat(tree(7;)), w; = Word(tree(ry;)) for i € {1,2},
(reduce(o),wy - wg -+ - wy,) with children tree(y1),. .., tree(yy), if
m Z 37 d(’)/) = (71;727 v ;7m)7 o= Pat(tree(vl)L
and w; = Word(tree(y;)) for all 1 < i < m.

tree(y) =

The function tree builds a reduced factorization tree (or a factorization tree)
from the sequence of trees according to the function d. The only difference from
straightforward following the function d is that the labeling function Pat might
be changed by the function reduce. Let us color the trees in the function cons
either green or red during the inductive construction of a new sequence.

/

y if |y| = 1. Mark v green.

cons(7y1) - cons(7yz) - - - cons(Ym,)
it d(v) = (71,72, - - - »¥m) and either m = 2 or
there is 1 < i < such that cons(v;) contains
a red tree or reduce(f (1)) = f(y1).

tree(v) if d(r)/) = (717 Y2y ,'Ym); m > 3, no cons(%)
contains a red tree and reduce(f(v1)) # f(711)-
Mark the tree red.

cons(y) =

\

The function cons updates the sequence of trees trying to leave as much as
possible untouched, but whenever Pat would be changed by the reduce function
for the first time (on the lowest level), it packs the whole sequence into a single
tree with changed Pat label of the root using the function tree.

The important property of the construction is that for each tree in the new
sequence it holds that whenever a node has more than two children, they are all
labeled by identical idempotent patterns. Let us call a tree balanced if whenever
a node T has children T1,T5,...,T,,, where m > 3, then Pat(T}) = Pat(Ts) =
-+ = Pat(T),), it is an idempotent element in P, and Pat(T") = reduce(Pat(7})).

11

Ty
Ta

Ty Tp Tz Ty Ty Te T7 Tg Ty Tio Ti1 Ti2 T13 Ti14 Tis

Fig. 8. Application of cons to T4 - - - T15. The black nodes represent the nodes for which
reduce(o) # o. The resulting sequence is T1 121314 TaTsToTBT1s5.

Lemma 1. For ay € I'", if all trees in v are balanced then all trees in cons(7y)
are balanced.

Now we show how to get a sequence of trees from runs of the automaton. Let
treeRun : X7 — I'" be a homomorphism with respect to the word composition
defined by treeRun(a) = (Run(a), a).

Assume that there is a factorization function d fixed. Let for a word w € X'+,
~Yw be defined as cons™ (treeRun(w)), where n € N is such that cons™(treeRun(w)) =
cons"*1(treeRun(w)). Note that 7, is always defined, because for all v € I't,
|cons(y)| < |y| and if |cons(vy)| = || then cons(y) = . Let T, = tree(7yy,). From
Lemma 1 it follows that T, is balanced (note that if cons”™ () = cons"*1(v) then
cons”(vy) contains only green trees).

Remark. Notice that we do not explicitly mention the factorization function
d in the definition of a reduced factorization tree T,, constructed by d from a
word w. It is always clear from the context which factorization function we mean.

We show that for each R-automaton there is a factorization function such
that for any w the height of the tree T}, is bounded by a constant computed
from the parameters of the automaton. The proof of this lemma is based on the
fact that reduce(o) <7 o.

Lemma 2. Given an R-automaton A, there is a factorization function d such
that for all words w € X, h(Ty) < 3-|P|%.

3.3 Correctness

To formulate the first correctness lemma, we define the following concept of a
length function ! : I' — N inductively by

1 if T is a leaf
U(T) =< U(Th) +1(T2) if T has two children T4, T»
2 -max{l(Ty),...,l(T},)} if T has children T1,..., Ty, m > 3

By induction on h(T}) and using the bound derived in Lemma 2, one can
show the following claim.

12

Lemma 3. Given an R-automaton A,chere is a factorization function d such
that for all words w € X+, 1(T,,) < 8IPI".

We say that s — s' or s —p s' realizes t if there is a witnessing path
(s,a1,t1,51), (51,02,t2,52), -+ +, (8]w|=1, Qjw|, tjw|, 5') Such that t = tj0tg0- - -0t .

Let us define Runp(w) to be the pattern obtained by running the automaton
over w in the D-semantics. Formally, Runp(w)(s,s") contains ¢ if and only if
s —sp s’ realizes t. Note that the function Runp is not a homomorphism with
respect to the word composition. We also define a relation C on patterns by
o C o' if and only if for all s,s', o(s,s’) C o'(s,s").

From Lemma 3 we show that there is a factorization function such that for
every w, Pat(T,,) corresponds to the runs of the R-automaton which can be
performed in the D-semantics for any big enough D. This is formulated in the
following lemma.

Lemma 4. Given an R-automaton, there 2is a factorization function such that
for allw € X* and for all D € N, D >8I, Pat(T,,) C Runp(w).

Of particular interest are runs starting in the initial state.

Corollary 1. Given an R-automaton A, there is a factorization function such
that for all words w, if Pat(Ty)(so,s) # 0 then there is a run (so,(0,...,0))
b (s,(c1,...,cn)) where D =1(T,,).

It remains to show that if the relation between the patterns in the previous
lemma is strict then there is a word for each D which is a witness for the
strictness, i.e., the runs over this word in the D-semantics generate a smaller
pattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r; for all subexpressions r} of r. Let
us define a function re which for a reduced factorization tree returns a +-free
regular expression inductively by

Word(T") if T' is a leaf
re(T) = < re(Ty) - re(T%) if T has two children Ty, T»
(re(Th))* if T has children T4,T5,...,T),,m > 3

For a +-free regular expression r and a natural number k£ > 0, let the function
pump(r, k) be defined inductively as follows: pump(a, k) = a, pump(ry - 79, k) =
pump(r, k) - pump(rz, k), and pump(r*, k) = pump(r,)*.

For example, pump(a(bc*d)*aa*,2) = abcedbecdaaa.

Lemma 5. Given an R-automaton and a factorization function, for allw € ¥+
and all D € N there is a k € N such that Runp(pump(re(Ty), k)) C Pat(Ty,).

A special case are runs starting from the initial state.

Corollary 2. Given an R-automaton, for any w € X7, if Pat(Ty)(s0,s) = 0
then YD3k such that there is no run (sq, (0,...,0)) —=p (s, (c1,...,cn)) where
U= pump(re(Tw)a k)

13

3.4 Algorithm

To check the universality of an R-automaton A, we have to check all patterns o
such that o = Pat(T},) for some w € X7 and some factorization function. If there
is a o such that for all sy € F, 0(so,sy) = 0 then for all D € N, Lp(A) # X*.
This gives us the following algorithm. Recall that o, denotes the unit of (P,).

The algorithm uses a set of patterns P as the data structure. Given an R-
automaton A = (S, X, A, so, F') on the input, it answers "YES’ or 'NO’. The set
P is initialized by P = {o|o = Run(a),a € X} U {o¢}.

While |P| increases the algorithm performs the following operations:

— pick 01,02 € P and add o1 ® 03 back to P.
— pick a o € P such that o is idempotent and add reduce(s) back to P.

If there is 0 € P such that for all sy € F, o(sg,sf) = 0, answer 'NO’,
otherwise, answer 'YES’.

The correctness proof is given in the following theorem. See Appendix for
the full proof.

Theorem 2. The algorithm is correct and runs in 2-EXPSPACE.

Proof. The algorithm terminates because P is finite. Its correctness follows from
the previous two corollaries. The algorithm needs space |P| (the number of dif-
ferent patterns). The size of P is 23™)I1SI° (|S|2 different pairs of states, 263"
different sets of effects). Therefore, the algorithm needs double exponential space.

O

4 Biichi Universality

The universality problem is also decidable for R-automata with Biichi acceptance
conditions.

Theorem 3. For a given R-automaton A, the question whether there is D € N
such that LY (A) = X is decidable in 2-EXPSPACE.

To show this result, we need to extend patterns by accepting state infor-
mation. A pattern is now a function o : S x § — 2{0Ix{0Lr}" * where
for s,s" and (a,t) € o(s,s'), the value of a encodes whether there is a path
from s to s’ realizing ¢ which meets an accepting state. For instance, o(s,s’) =
{(0,(0,7)),(1,(1,1))} means that there are two different types of paths between
s and s': they either realize (0,r) but do not visit an accepting state, or realize
(1,1) and visit an accepting state. We define the composition e by defining the
composition on the accepting state: 0 o0 = 0,001 =100 =101 = 1. The
set of patterns (denote again P) with e is a finite monoid. We define the func-
tion reduce in the same way as before, i.e., the accepting state information does
not play any role there. Clearly, reduce(o) <z o, so the reduced factorization
trees produced by reduce have bounded height. Lemma 4 and Lemma 5 also

14

hold, because (non)visiting an accepting state does not influence the runs in the
D-semantics.

This allows us to use the same algorithm as for the finite word universality
problem, except for the condition for concluding non-universality. The condition
is whether there are 01,02 € P such that o5 is idempotent and for all s such
that o1(so,s) # 0 the following holds. If {(a,t) € o2(s,s) then either a = 0 or

t ¢ {0,r}".

5 Conclusions

We have defined R-automata — finite automata extended with unbounded coun-
ters which can be left unchanged, incremented, or reset along the transitions.
As the main result, we have shown that the following problem is decidable in
2-EXPSPACE. Given an R-automaton, is there a bound such that all words are
accepted by runs along which the counters do not exceed this bound? We have
also extended this result to R-automata with Biichi acceptance conditions.

As a future work, one can consider the (bounded) universality or limitedness
question to vector addition systems (VASS) or reset vector addition systems
(R-VASS), where the latter form a superclass of R-automata. The limitedness
problem can be shown undecidable for R-VASS for both finite word and w-word
case, while it is an open question for VASS. The universality problem can be
shown to be undecidable for R-VASS for w-word case, in other cases it is open.

References

[AKYO07] Parosh Abdulla, Pavel Krcal, and Wang Yi. Sampled universality of timed
automata. In Proc. of FOSSACS’07, volume 4423 of LNCS, pages 2-16.
Springer- Verlag, 2007.

[Has82] Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance
functions. Journal of Computer and System Sciences, 24(2):233-244, 1982.

[Has90] Kosaburo Hashiguchi. Improved limitedness theorems on finite automata with
distance functions. Theoretical Computer Science, 72(1):27-38, 1990.

[Kir04] Daniel Kirsten. Distance desert automata and the star height one problem.
In Igor Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Com-
puter Science, pages 257-272. Springer, 2004.

[K107] Manfred Kufleitner. A proof of the factorization forest theorem. Technical
report Nr. 2007/05, Formale Methoden der Informatik, Universitdt Stuttgart,
Germany, October 2007.

[KP05] Pavel Krcal and Radek Pelanek. On sampled semantics of timed systems. In
Proc. of FSTTCS’05, volume 3821 of LNCS, pages 310-321. Springer-Verlag,
2005.

[Leu9l] Hing Leung. Limitedness theorem on finite automata with distance functions:
an algebraic proof. Theoretical Computer Science, 81(1):137-145, 1991.

[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer
Science, 72(1):65-94, 1990.

[Sim94] Imre Simon. On semigroups of matrices over the tropical semiring. Informa-
tique Theorique et Applications, 28(3-4):277-294, 1994.

15

A Appendix

Proof (Lemma 1). The only possibility where a new tree can occur in cons(vy)
is as a result of tree(y') for some . The conditions on 4’ are that d(y) =
(71,---,7m) and for all 1 < i < m, cons(y;) does not contain a red tree. Then we
prove that Pat(tree(y)) = f(v) for any v € I't such that cons(v) contains only
green trees by induction on h(tree(y)). If h(tree(y)) = 1 then it follows directly
from the definition of f. If h(tree(y)) > 1 and d(y) = (71,72) then the claim
follows from the induction hypothesis and the fact that f is a homomorphism. If
h(tree(y)) > 1 and d(y) = (71,-+.,7Ym), m > 3, then the claim follows from the
induction hypothesis and the fact that cons(vy) contains only red trees, concretely,
tree(wy) is green, from which it follows that reduce(f(y1)) = f(71)-

The fact that tree(y') is balanced follows directly from the previous property
and the condition on the function d that Pat(y1) = f(y1) = f(v;) = Pat(y;) for
all 1 <7 <m.

O

To prove Lemma 2, we need to show a technical property of the reduction
function, namely that reduction strictly reduces the J level of the pattern (7
is a standard Green’s relation; o <7 ¢’ if and only if there are o1, 02 such that
o=0100 8090 <y ifandonly if 0 <7 0" and o' £7 0).

Lemma 6. For any idempotent pattern o, either reduce(o) = o orreduce(o) <z
.

Proof. From the idempotence of ¢ it follows that reduce(o) = o e reduce(c) e 0.
This property is sufficient for the proof of Lemma 3 from [Sim94] which applies
to our case. This proof uses Green’s relations.

We present also an alternative proof without using Green’s relations here.

First we show that if reduce(o) # o then there are ¢t and s such that t € o (s, s)
but ¢ ¢ reduce(o)(s, s). Assume that it is not the case. Because o is idempotent
and the function reduce does not add anything to the pattern, there are s,s’, ¢
such that t € o(s,s'), t ¢ reduce(o)(s,s’). Because o is idempotent, there are
s, t1,ta,t3 such that ¢, € o(s,s"),ta € o(s",s"),t3 € o(s",s'),t = t1 oty 0t3.
From the assumption, to € reduce(o)(s",s"), i.e., there are §,¢',¢",t"" such that
t' € o(s",8),t" € core(o)(8,5),t" € 0(8,s"),t2 =t ot" ot'". But because o is
idempotent, t1 ot € o(s,§) and " ots € 0(8,s'), so t € reduce(o)(s, s"), which
is a contradiction with the assumption.

Let us say that s and s’ are merged by ¢ in o if t € o(s,s),t € o(s',8'),t €
o(s,s"),t € o(s',s). We write it (s,t) ~,, (s',t). In fact, for an idempotent pat-
tern o, the relation ~,, is an equivalence relation on the set of pairs (s,t). Note
that if s, s’ are merged by ¢ in o and ¢ ¢ reduce(o)(s, s) then ¢ ¢ reduce(o)(s', s').
Therefore, the number of ~,, equivalence classes of reduce(o) is strictly smaller
than that of o (unless they are equal).

Let 0 <1 <r. Lett = (br,...,b,) <t = (b,...,b),) if b; < b} for all
1 < i < n. The set of effects together with this order is a finite lattice. Let | ¢
denote a principal ideal in this lattice generated by ¢t. We try to construct o1, o2

16

so that ¢/ = o, where ¢’ = 01 e reduce(c) 02, and we show that if we do not
want to fail then reduce(o) = o.

Let us say that s,t where t € o'(s, s) goes through s', ¢’ if there are t1, t2, t3, t4, t5
such that ¢1 € o1(s,s1),t2 € o(s1,8'),ts € core(o)(s',s"),ta € o(s',82),t5 €
02(82,5),t3 < t',and t' € o(s', s'). The main idea of the rest of this proof is that
to be able to construct ¢ different equivalence classes wrt. ~,,, we need ¢ different
equivalence classes in reduce(o). We will be interested only in the effects on the
loops, i.e., only in t € o'(s,s") where s = s'.

Note that if o’ is idempotent (and we want this, because o is idempotent)
then if s1,%1, s2,t2 go through ss,t', s4,t', respectively, and (s3,t') ~p, (84,t)
in o then (s1,t1 Vt2) ~u, (s2,t1 Via) in o', This follows from the idempotency of
o' and the definition of the relation merged; the reasoning is similar to the one
in the first paragraph of this proof.

We show by induction on the size of | ¢ that if ¢ € o(s, s) for some s then
we need as many equivalence classes which contain a t' €] ¢ in their second
component in reduce(o) as in o to not to introduce any ¢ € o(s, s') such that ¢ ¢
o(s,s'). The basic step is clear from the previous paragraph. For the induction
step, if s,t goes through some s';¢' such that ¢’ < t then ¢ € reduce(o)(s’,s’)
must hold and thus it also goes through s',¢. Also, each s,t, s’,¢ which are not
merged in o have to go through s1, %, se,t which are not merged in o. Therefore,
there are needed as many equivalence classes which contain ¢ in their second
component as there are in o.

O

We state the factorization forest theorem. It was formulated and proved by
Simon [Sim90], the best known bound is shown in [KI107].

Theorem 4 (Factorization Forest Theorem). For a finite monoid P and a
homomorphism f : I't — P, there is a factorization function d such that for
all v € I't, h(tree(y)) < 3IP1,

Now we can continue with the proofs of Lemmata from the paper.

Proof (Lemma 2). Let us first define the nesting depth function nd : 't — N
by

1 if v = (o, a)

1+ nd(7') i 9] = 1,

nd(y) = v # (0,a),
~v = tree(y')

max{nd(T;),...,nd(Tp)}if y=T1--- T}

Note that for any w € X% and for any tree in +,,, either the tree consists of
only a root (it is equal to (o, a) for some ¢ and a) or it has been obtained as
tree(v’) for some 4" € I'*. Note also, that for each such tree, there is exactly one
such v (for a fixed d). Therefore, the nesting depth function nd is well-defined
for all .

From Lemma 6 it follows that whenever nd is applied to a 7 such that |y| = 1,
v # (0,a), v =tree(y'), v = Ty - - - T then for all 1 <i <k, Pat(y) <z Pat(T}).
Thus, for any w € X, nd(7y,) < |P|.

17

From factorization forest theorem, we know that there is d such that h(tree(y))
max{h(T1), ..., h(Ty)}+3-|P| for all sequences v = T - - - Tj,. Therefore, h(T},) =
h(tree((7w)) < 3+ |P| - nd(vy) < 3+ |P|? for this d.

a
Before showing the two following proofs, let us consider the following prop-
erty. If s %55 s' (or s — s') realizes t = (b1,...,b,), the counter values

along a run (s, (c1,...,cn)) — (s',(c},-..,c,)) produced by this path satisfy
the following conditions:

— if b; = 0 then ¢; = ¢ for all states (s, (¢{,...,c)) along the run,
— if b; = r then ¢} = 0 (since it is reset) in some state (s”, (c{,...,c)) along
the run, and

— if b; =1 then ¢; < ¢ (and it is not reset along the run).

Proof (Lemma 4). Let us fix a factorization function d satisfying Lemma 3. We
show this lemma by proving the following claim by induction on h(Ty,). For any
w e Tt if t € Pat(T,)(s,s') then s —»p s' realizing ¢ for D = I(T},). From
Lemma 3 we have that such a run exists also in any D-semantics for D > 8P,

The basic step follows directly from the definition of the function treeRun.

Assume that the tree has the root (o1 ® 02, w1 - we) with children T3, and
Ty, (note that for each subtree T', T' = T\yora(r)), Where o1 = Pat(Ty,), o2 =
Pat(T,,). Then there are s”,t1,t2 such that t1 € o1(s,s"),t2 € o2(s",s’), and
t = ty ots. From the induction hypothesis, s ﬂ)pl s" realizes t; and s” %Dz s'
realizes to, where Dy = (T,), D2 = I(T,). Clearly, if we concatenate any two
paths given by these relations, we get s —+p,+p, s’ realizing ¢, o t5. From the
definition of the length function, {(T3,) = (T,) + {(Tw,) = D1 + Da.

Assume that the tree has the root (reduce(o), w; - - - wy,) with children T, , . ..
where m > 3,0 = Pat(Ty,). Then there are s”,t1,t2,t3 such that ¢1 € o(s,s”),
to € o(s",s"), t3 € o(s",s'), t = t1 oty 0ts, and t2 € {0,r}" (this follows
directly from the definition of the function reduce). Since Pat(T,,) = o for all
1 < i < m ((which we have from Lemma 1) then from the induction hypothesis
s ﬂ)l(Tm) s realizes tq, s %Z(Tw,—) s realizes to for all 2 < i < m — 1, and

s Ml(Twm) s’ realizes ts.

Let us analyze the length of the concatenation of the paths given by these
relations. For each counter, if its corresponding effect in ¢5 is 0 then the bound on
this counter during the whole path is {(Ty,) +1(Tw,,), because it is left unchanged
during the path part over ws - w3 ... w,,_1. If the corresponding effect in t5 of
the counter is r then the counter is reset at least once in each path part over
wa,ws, - -+ , Wy, 1. Therefore, it is bounded by the maximal length between two
resets, which is bounded by max{l(Tw,) +1(Tws)s ! (Tws) +1(Tws)s -« - s 1T, _,) +
(T,)}. Then, s % s' realizes t, where D = 2 - max{l(Ty,),. .., (Tw,)}

O

Proof (Lemma 5). We show this lemma by proving the following claim by induc-
tion on h(Ty). For all D € N there is k € N such that for v = pump(re(Ty,), k),

18

<

s T,

if s —»p s realizes t then t € Pat(T,)(s,s’) (note that this holds also for all
kK > k).

The basic step follows directly from the definition of the function treeRun
(with any k).

Assume that the tree has the root (o ® og, w1 - we) with children T, and
Tw,, where o1 = Pat(T,,), o2 = Pat(Ty,). Let k1, k2 be the constants from the
induction hypothesis applied to Ty, and T, . Let k = max{k1, k2}. Let us denote
vy = pump(re(Ty,), k),va = pump(re(Ty,),k),v = v1 - v2 = pump(re(Ty), k).
Assume that s — p s”' realizes ¢t. Then there must be an s such that s —»p s,
s" 25 p s’ realize t1,to, respectively, such that t = ¢, o t5. From the induction
hypothesis, t1 € Pat(Ty,)(s,s"”) and t2 € Pat(Ty,)(s",s’). Because Pat(T,) =
o1 @ o5 = Pat(T),,) @ Pat(Ty,), we have that t = t1 oty € Pat(Ty,)(s,s').

Assume that the tree has the root (reduce(o), w; - - - wy,) with children T, , . ..
where m > 3,0 = Pat(Ty,). Let k1 be the constant from the induction hypoth-
esis applied to Ty, and kz = (D + 1)" - |S|. Let k = max{ky, k2}. Let us denote
U1 = pump(re(Twl), k),’l) = U]f = pump(re(Tw), k)

Assume that s —p s’ realizes t. Then there must be a sequence of states
s; for 1 < i < k + 1 such that s; N s;+1 realizes t;, s1 = s, 8541 = &', and
t =ty oty o---oty. First, we show by contradiction that there are indices i,
such that ¢ < j,s; = s; and t;0---0t;_q1 € {0,7}". Let us assume that for all
i < j such that s; = sj, t;0---ot;_1 ¢ {0,r}". Let us pick an § such that
G = [{ils; = §,1 < i < k+ 1}| is maximal. From the choice of k¥ we have that
G > D™. We show that there is a counter exceeding D along all paths witnessing
s — s’ realizing t. We know from our assumption (t;0---ot;_; ¢ {0,r}") and
from the definition of realizing that for all ¢, j such that s; = s; = §, the counter
values in any run over v cannot be identical in s; and s;. There are D" different
configurations with all counters smaller than or equal to D. Since G > D, some
counter has to exceed D. This contradicts that s —>p s realizes t.

From the induction hypothesis we have that for all 1 <i < k, t; € Pat(Ty,).
Let ¢ and j satisfy the condition from the previous paragraph, i.e., i < j,8; =
sj and t; 0 ---otj_1 € {0,7r}". Because Pat(T,,) is idempotent (follows from
Lemma 1), we have that ¢;0---ot;_1 € Pat(Ty,)(s;,5;) and thus t;0---0t;_1 €
core(Pat(T,,))(si,sj). Also, ty o ---ot;_1 € Pat(Ty,)(s,s;) and tjo---oty €
Pat(Tw,)(sj,s"). From the definition of the function reduce, we can conclude
that ¢ € reduce(Pat(Ty,))(s,s").

O

Lemma 7. For any o € P obtained by the algorithm there is a factorization
function and a word w such that o = Pat(T,,).

Proof. Consider the tree labeled by the patterns defined inductively as follows.
The root is labeled by o. If a node is labeled by ¢’ which was created (for the first
time) by composing o; ® oo then this node has two children labeled by o and
os. If a node is labeled by ¢’ which was created (for the first time) by reducing
o1 then this node has one child labeled by o1. The leaf labels have been added
in the initialization step. Clearly, is o1 = o9 are labels of two nodes in the tree
then their subtrees are identical.

19

s Tw,,s

Now we define a partial function w : P — X+ which for each pattern in the
tree returns a word and if o1 # o2 then w(o1) # w(o2). Such a labeling also
defines a factorization function which for w = w(o) yields the tree T}, such that
o = Pat(Ty).

We start from the leaves and move inductively up. During the whole construc-
tion, we maintain a counter ¢, which is initially set to ¢ = 1. For each o in a leaf,
w(o) = a such that Run(a) = o (if there are several, we assume some ordering
and pick the least one). If a node is labeled by ¢’ and it has two children labeled
by o1 and o3 then w(o') = w(oy) - w(o2). If a node is labeled by ¢' and it has
one child labeled by o7 then w(o') = (w(o1))* such that |P|¢ < |w(o’)| < 2-|P|°
and we increment c.

For two different patterns such that at least one of them has a reduction in
its subtree, the words have to have a different length . For two different patterns
such that there is no reduction in their subtrees, the words have to be different
because of the definition of Run and e (and all such words are shorter than |P|).

O

Proof (Theorem 2). Clearly, the algorithm "checks" all possible o’s such that
there is a factorization function and a word w such that o = Pat(T,,). Also, for
any o obtained by the algorithm there is a factorization function and a word w
such that o = Pat(T),) (Lemma 7 in Appendix), with the exception of o, which
corresponds to w = € (for which is the correctness clear).

If the algorithm obtains a o such that o(sg,sys) = 0 for all sy € F' then let us
fix a factorization function and a word w such that o = Pat(T,,). Let r = re(Ty,).
From Corollary 2, for all D there is a k such that there is no accepting run over
pump(r, k) in D-semantics.

If for all patterns o, o(sg,sy) # 0 for some sy € F then we can fix a factor-
ization function satisfying Lemma 3. For all words, there is an accepting run in
8IPI*_semantics given by Corollary 1.

The complexity follows from the size of the monoid P.

O

Proof (Sketch, Theorem 8). Let us denote the new pattern function by Pat®
and the new function which extracts a pattern from the runs in the D-semantics
by Rung.

Let for an R-automaton, C' = 8IPI” and for an w-word W, W= Wi Wy W3 "
be a split of this word such that all w; are finite. For each w; we define a
pattern o,, which captures the effects of the corresponding fragments of all
infinite runs over w in 2 - C-semantics. The choice of 2 - C' is motivated by
the reasons explained below. Let for all 1 < 4, o, be a pattern defined by
(a,t) € oy, (s,s') if and only if there is an infinite run in 2 - C-semantics

(50,(0,...,0)) "B 0 (5, (cty s en)) o (51, (E, .0 dh)) B o such
that the fragment (s, (c1,...,c,)) —> (s',(c},...,c,)) realizes t and a = 1 if

and only if this fragment contains an accepting state.
Assume that for all D, the R-automaton is not Biichi universal in the D-
semantics. Let w be a counterexample for D = 2- |P|- C, i.e., w ¢ LY (A). Let

20

us split w = w; - wp - w3--- so that all w; are finite and o, = o, for all
2<1i,j. Let us denote 01 = 0y, and g2 = 0y,

Let [€ N be such that o} is an idempotent (I < |P||). For all s, ob(s,s)
does not contain (1, (b1,...,b,)), where b; € {0,7}. Otherwise, i.e., if there was
s,t € {0,7}" such that (1,t) € ob(s, s), there would be an accepting infinite run
over w in the D-semantics, which would contradict the fact that w ¢ L (A).
This follows from the fact that all patterns were obtained in the 2 - C'-semantics
and [< |P.

It is not necessary that Rung(wz) C o9, because the set of starting states
for RunZ is S. Even if we restrict the set of starting states to L(o3), denoted
RunZ (w,)’, the relation RunZ (ws)" T o5 does not have to hold. This is because
a fragment of a run over wy in 2 - C-semantics could have started from a state
with high counter values and Rund starts from zeros. However, if we restrict
the set of starting states to the states which are in 2 - C-semantics reachable

~ B
after reading w; with counter values smaller than C, denote Rung(wz), then

Rﬂng(wg) C o5 holds, because now Run® starts from zeros and is limited by C,
whereas o2 contains all runs which start from counter values smaller than C' and
they are limited by 2 - C.

From Lemma 4 we know that there is a factorization function such that
o3 = Pat?(T,,) C RunB(w) and o4 = Pat®(T,,) T Rund (ws). Let m be such
that o7 is idempotent. Note that o' C ob. We know that if o3 e 0 (s0,s) # 0
then o}*(s,s) does not contain (1, (b1,...,by)), where b; € {0,r}. Therefore,
from Lemma 5 we know that for any factorization function it holds that for all
D there is a k such that pump(re(Ty,), k) - (pump(re(Tw,), k))¥ ¢ LY (A).

21

