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To prove deidability of the universality problem, we adopt the tehniquefrom [Sim94℄ and extend it to our setting. The proof reformulates the problemin the language of �nite monoids and solves it using the fatorization forest the-orem [Sim90℄. In [Sim94℄, this theorem has been used for solving the limitednessproblem for distane automata. Distane automata are a sublass of R-automatawith only one ounter whih is never reset. In ontrast to this model, we handleseveral ounters and resets. This extension annot be enoded into the distaneautomata.The deision algorithm deals with abstrations of olletions of runs in orderto �nd and analyze the loops reated by these olletions. The main step inthe orretness proof is to show that eah olletion of runs along the sameword an be split (fatorized) into short repeated loops, possibly nested. Havingsuh a fatorization, one an analyze all the loops to hek that none of theounters is only inreased without being reset along them. If none of the ountersis inreased without being reset then we an bound the ounter values by aonstant derived from the length of the loops. Sine the length of the loops isbounded by a onstant derived from the automaton, all words an be aeptedby a run with bounded ounters. Otherwise, we show that there is a +-freeregular expression suh that for any bound there is a word obtained by pumpingthis regular expression whih does not belong to the language. Therefore, thelanguage annot be universal for any D.Related work. The onept of distane automata and the limitedness problemwere introdued by Hashiguhi [Has82℄. The limitedness problem is to deidewhether there is a natural number D suh that all the aepted words an alsobe aepted with the ounter value smaller than D. Di�erent proofs of the deid-ability of the limitedness problem are reported in [Has90,Leu91,Sim94℄. The lastof these results [Sim94℄ is based on the fatorization forest theorem [Sim90,Kl07℄.The model of R-automata, whih we onsider in this paper, extends that of dis-tane automata by introduing resets and by allowing several ounters. Further-more, all the works mentioned above only onsider the limitedness problem on�nite words, while we here extend the deidability result of the universality prob-lem to the ase of in�nite words. Distane automata were extended by [Kir04℄with one additional ounter whih is either inremented or reset to zero alongevery transition. R-automata form a superlass of this extension.The fat that R-automata an have several ounters whih an be reset al-lows, for instane, to apture the abstrations of the sampled semantis of timedautomata [KP05,AKY07℄. A sampled semantis given by a sampling rate � = 1=ffor some positive integer f allows time to pass only in steps equal to multiples of�. The number of di�erent lok valuations within one lok region (a boundedset of valuations) orresponds to a resoure. It is �nite for any � while in�nite inthe standard (dense time) semantis of timed automata. Timed automata angenerate runs along whih loks are fored to take di�erent values from thesame lok region (an inrement of a ounter), take exatly the same value (aounter is left unhanged), or forget about the previously taken values (a ounterreset). 2



2 PreliminariesFirst, we introdue the model of R-automata and its unparameterized semantis.Then, we introdue the parameterized semantis, the languages aepted by theautomaton, and the universality problem.R-automata. R-automata are �nite state mahines extended with ounters.A transition may inrease the value of a ounter, leave it unhanged, or resetit bak to zero. The automaton on its own does not have the apability oftesting the values of the ounters. However, the semantis of these automata isparameterized by a natural number D whih de�nes an upper bound on ountervalues whih may appear along the omputations of the automaton. Let N denotethe set of non-negative integers.An R-automaton with n ounters is a 5-tuple A = hS;�;�; s0; F i where� S is a �nite set of states,� � is a �nite alphabet,� � � S �� � f0; 1; rgn � S is a transition relation,� s0 2 S is an initial state, and� F � S is a set of �nal states.Transitions are labeled (together with a letter) by an e�et on the ounters.The symbol 0 orresponds to leaving the ounter value unhanged, the symbol
1 represents an inrement, and the symbol r represents a reset. We use t; t1; : : :to denote elements of f0; 1; rgn whih we all e�ets. A path is a sequenes oftransitions (s1; a1; t1; s2),(s2; a2; t2; s3); : : : ; (sm; am; tm; sm+1), suh that 81 �i � m:(si; ai; ti; si+1) 2 �. An example of an R-automaton is given in Figure 1.

s0 s1s2

a; (1; 0) b; (r; r)a; (0; 1)

b; (0; 1)

a; (0; r)Fig. 1. An R-automaton with two ounters.Unparameterized semantis. We de�ne an operation � on the ountervalues as follows: for any k 2 N, k � 0 = k, k � 1 = k + 1, and k � r = 0.We extend this operation to n-tuples by applying it omponentwise. The oper-ational semantis of an R-automaton A = hS;�;�; s0; F i is given by a labeledtransition systems (LTS) JAK = hŜ; �; T; ŝ0i, where the set of states Ŝ ontainspairs hs; (1; : : : ; n)i, s 2 S; i 2 N for all 1 � i � n, with the initial state3



ŝ0 = hs0; (0; : : : ; 0)i. The transition relation is de�ned by (hs; (1; : : : ; n)i; a, hs,
(01; : : : ; 0n)i) 2 T if and only if hs; a; t; s0i 2 � and (01; : : : ; 0n) = (1; : : : ; n)� t.We shall all the states of the LTS on�gurations.We write hs; (1; : : : ; n)i a�! hs; (01; : : : ; 0n)i if (hs; (1; : : : ; n)i; a; hs; (01,: : : , 0n)i) 2 T . We extend this notation also for words, hs; (1; : : : ; n)i w�!hs; (01; : : : ; 0n)i, where w 2 �+.Paths in an LTS are alled runs to distinguish them from paths in the un-derlying R-automaton. Observe that the LTS ontains in�nitely many states,but the ounter values do not in�uene the omputations, sine they are nottested anywhere. In fat, for any R-automaton A, JAK is bisimilar to A onsid-ered as a �nite automaton (without ounters and e�ets). The LTS indued bythe R-automaton from Figure 1 is in Figure 2.s0; (0; 0) s1; (1; 0)

a s1; (1; 1)
b s1; (1; 2)

b s1; (1; 3)
bs2; (0; 1) s2; (0; 0)aa b b b baFig. 2. The unparameterized semantis of the R-automaton in Figure 1.Parameterized Semantis.Next, we de�ne theD-semantis of R-automata.We assume that the resoures assoiated to the ounters are not in�nite and wean use them only for a bounded number of times before they are replenishedagain. If a mahine tries to use a resoure whih is already ompletely used up,it is bloked and annot ontinue its omputation.For a givenD 2 N, let ŜD be the set of on�gurations restrited to the on�g-urations whih do not ontain a ounter exeedingD, i.e., ŜD = fhs; (1; : : : ; n)ijhs; (1; : : : ; n)i 2 Ŝ and (1; : : : ; n) � (D; : : : ;D)g (� is applied omponent-wise). For an R-automaton A, the D-semantis of A, denoted by JAKD , is JAKrestrited to ŜD. We write hs; (1; : : : ; n)i a�!D hs; (01; : : : ; 0n)i to denote thetransition relation of JAKD . We extend this notation for words, hs; (1; : : : ; n)i w�!Dhs; (01; : : : ; 0n)i where w 2 �+.The 2-semantis of the R-automaton from Figure 1 is in Figure 3.It is easy to see that for eah D1 < D2, JAKD2 simulates JAKD1 and JAKsimulates JAKD2 .We abuse the notation to avoid stating the ounter values expliitly when itis not neessary. We de�ne the reahability relations �! and �!D over pairsof states and words as follows. For s; s0 2 S and w 2 �+, s w�! s0 if and onlyif there is a path (s; a1; t1; s1), (s1; a2; t2; s2), : : : , (sjwj�1; ajwj; tjwj; s0) suh thatw = a1 � a2 � � � ajwj. For eah D 2 N, s w�!D s0 if also for all 1 � i � jwj,t1 � t2 � � � � � ti � (D; : : : ;D). 4



s0; (0; 0) s1; (1; 0)
a s1; (1; 1)

b s1; (1; 2)
bs2; (0; 1) s2; (0; 0)aa b b baFig. 3. The 2-semantis of the R-automaton in Figure 1.It also holds that s w�!D s0 if and only if there is a run hs; (0; : : : ; 0)i w�!Dhs0; (1; : : : ; n)i.Language. The (unparameterized or D-) language of an R-automaton isthe set of words whih an be read along the runs in the orresponding LTSending in an aepting state (in a on�guration whose �rst omponent is anaepting state). The unparameterized language aepted by an R-automaton Ais L(A) = fwjs0

w�! sf ; sf 2 Fg. For a givenD 2 N, theD-language aepted byan R-automaton A is LD(A) = fwjs0
w�!D sf ; sf 2 Fg. The unparameterizedlanguage of the R-automaton from Figure 1 is ab�a�. The 2-language of thisautomaton is a(� + b + bb+ bbb)a�.ProblemDe�nition.Now we an ask questions about language non-emptinessor universality of an R-automaton A parameterized by D, i.e., is there a naturalnumberD suh that LD(A) 6= ; or LD(A) = ��. Figure 4 shows an R-automatonA suh that L2(A) = ��.

s0 s1s2

a; ra; 1 a; 1b; 0 b; 0
b; 0Fig. 4. A 2-universal R-automaton.The language de�nitions and the questions an also be formulated for in�nitewords with Bühi aeptane onditions. The unparameterized !-language of theautomaton from Figure 1 is ab! + ab�a!. The 2-!-language of this automaton isa(� + b + bb + bbb)a!. 5



3 UniversalityThe main result of the paper is the deidability of the universality problem forR-automata formulated in the following theorem.Theorem 1. For a given R-automaton A, the question whether there is D 2 Nsuh that LD(A) = �� is deidable in 2-EXPSPACE.First, we introdue and also formally de�ne the neessary onepts (pat-terns, fatorization, and redution) together with an overview of the whole proof.Then we show the onstrution of the redued fatorization trees and state theorretness of this onstrution. Finally, we present an algorithm for deidinguniversality.3.1 Conepts and Proof OverviewWhen an R-automaton A is not universal for all D 2 N then there is an in�niteset X of words suh that for eah D 2 N there is wD 2 X and wD =2 LD(A). Wesay then that X is a ounterexample. The main step of the proof is to show thatthere is an X whih an be haraterized by a +-free regular expression. In fat,we show that X also satis�es a number of additional properties whih enableus to deide for every suh a +-free regular expression, whether it orrespondsto a ounterexample or not. Another step of the proof is to show that we needto hek only �nitely many suh +-free regular expressions in order to deidewhether there is a ounterexample at all.Patterns. The standard proedure for heking universality in the ase of�nite automata is subset onstrution. Whenever there are non-deterministitransitions s a�! s1 and s a�! s2 then we build a �summary� transition fsg a�!fs1; s2g. This summary transition says that from the set of states fsg we get tothe set of states fs1; s2g after reading the letter a. In the ase of R-automata,subset onstrution is in general not guaranteed to terminate sine the valuesof the ounters might grow unboundedly. To deal with this problem, we exploitthe fat that the values of the ounters do not in�uene the omputations of theautomaton. Therefore, we perform an abstration whih hides the atual valuesof the ounters and onsiders only the e�ets along the transitions instead. Theabstration leads to a more ompliated variant of summary transitions namelyso alled patterns.We de�ne a ommutative, assoiative, and idempotent operation Æ on the setf0; 1; rg: 0 Æ 0 = 0, 0 Æ 1 = 1, 0 Æ r = r, 1 Æ 1 = 1, 1 Æ r = r, and r Æ r = r. In fat,if we de�ne an order 0 < 1 < r then Æ is the operation of taking the maximum.We extend this operation to e�ets, i.e., n-tuples, by applying it omponentwise(this preserves all the properties of Æ). An e�et obtained by adding several othere�ets through the appliation of the operator Æ summarizes the manner in whihthe ounters are hanged. More preisely, it desribes whether a ounter is resetor whether it is inreased but not reset or whether it is only left untouhed.A pattern � : (S � S) �! 2f0;1;rgn is a funtion from pairs of automatonstates to sets of e�ets. Let us denote patterns by �; �1; �0; : : : . As an example,6



onsider a pattern � involving states s and s0 and two ounters. Let �(s; s) =f(0; 0); (1; 1)g, �(s0; s0) = f(1; 1); (1; 0)g, �(s; s0) = f(1; 1)g and �(s0; s) = f(1; 1)g.This pattern is depited in Figure 5a.Clearly, for a given R-automaton there are only �nitely many patterns; let usdenote this �nite set of all patterns by P. We de�ne an operation � on P as follows.Let (�1��2)(s; s0) = ftj9s00; t1; t2: t1 2 �1(s; s00); t2 2 �2(s00; s0); t = t1Æt2g. Note,that � is assoiative and it has a unit �e, where �e(s; s0) = f(0; : : : ; 0)g if s = s0and �e(s; s0) = ; otherwise. Therefore, (P; �) is a �nite monoid.For eah word we obtain a pattern by running the R-automaton along thisword. Formally, let Run : �+ �! P be a homomorphism de�ned by Run(a) = �,where t 2 �(s; s0) if and only if (s; a; t; s0) 2 �.Loops. In the ase of �nite automata, a set of states L and a word w on-stitute a loop in the subset onstrution if L w�! L, i.e., starting from L andreading w, we end up in L again. The intuition behind the onept of a loopis that several iterations of the loop have the same e�et as a single iteration.In our abstration using patterns, loops are words w suh that w yields thesame pattern as w2; w3; : : : . We an skip the starting set of states, beause thefuntion Run starts impliitly from the whole set of states S (if there are noruns between some states then the orresponding set of e�ets is empty). Morepreisely, a word w is a loop if Run(w) is an idempotent element of the patternmonoid. Two loops are idential if they produe the same pattern. Observe thatthe pattern in Figure 5a is idempotent.Fatorization. We show that eah word an be split into short identialloops repeated many times. The loops an possibly be nested, so that this split(fatorization) de�nes a fatorization tree. The idea is that sine we have suh afatorization for eah word, it is su�ient to analyze only the (short) loops andeither �nd a run with bounded maximal value of the ounters or use the loopstruture to onstrut a ounterexample regular expression.On a higher level we an see a fatorization of words as a funtion whih forevery word w = a1a2 � � � al returns its fatorization tree, i.e., a �nite tree withbranhing degree at least 2 (exept for the leaves) and with nodes labeled bysubwords v of w suh that the labeling funtion satis�es the following onditions:� if a node labeled by v has hildren labeled by w1; w2; : : : ; wm then v =w1 � w2 � � �wm,� if m � 3 then � = Run(v) = Run(wi) for all 1 � i � m and � is idempotent,� the leaves are labeled by a1; a2; : : : ; al from left to right.An example of suh a tree is in Figure 5b. It follows from the fatorizationforest theorem [Sim90,Kl07℄ that there is suh a (total) funtion whih returnstrees whose height is bounded by 3 � jPj where jPj is the size of the monoid.We de�ne the length of a loop as the length of the word (or a pattern se-quene) provided that only the two longest iterations of the nested loops areounted. This onept is de�ned formally in Subsetion 3.3. We say that theloops are short if there is a bound given by the automaton so that the lengthof all the loops is shorter than this bound. A onsequene of the fatorizationforest theorem is that there is a fatorization suh that all loops are short.7



(a) (b)
s ss0 s0

(0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

aabbaa abbaa  ab b aa b a Fig. 5. A pattern involving two states and two ounters (a) and a fatorization tree(b). Run(abba) = Run(ab) = Run(b) = Run(a) and it is idempotent.Redution. We have de�ned the loops so that the iterations of a loop havethe same e�et as the loop itself. Therefore, it is enough to analyze a singleiteration to tell how the omputations look when the loop is iterated an arbitrarynumber of times. By a part in an idempotent pattern �, we mean an element (ane�et) in the set �(s; s0) for some states s and s0. We will distinguish betweentwo types of parts, namely bad and good parts. A bad part orresponds only toruns along whih the inrease of some ounter is at least as big as the numberof the iterations of the loop. A part is good if there is a run along whih theinrease is bounded by the maximal inrease indued by two iterations of theloop. Formally, we de�ne a funtion reduce whih for eah pattern returns apattern ontaining all good parts of the original pattern, but no bad part. Thenwe illustrate it on a number of examples.For a pattern �, core(�) is de�ned as follows:
core(�)(s; s0) =

��(s; s0) \ f0; rgn if s = s0; otherwiseLet reduce(�) = � � core(�) � �.For an automaton with one state s, one ounter, and a loop w with pattern �,if �(s; s) = f(1)g then the whole pattern is bad, i.e., reduce(�)(s; s) = ;. Notiethat any run over wk inreases the ounter by k. On the other hand, if �(s; s) =f(0)g or �(s; s) = f(r)g then the whole pattern is good, i.e., reduce(�) = �.With more ompliated patterns we need a more areful analysis. Let us on-sider a loop w with pattern � where �(s; s) = f(0)g, �(s0; s0) = f(1)g, �(s; s0) =f(1)g, and �(s0; s) = f(1)g. We will motivate why the part (1) 2 �(s0; s0) is good.For any k, we an take the run over wk whih starts from s0, moves to s after the�rst iteration, stays in s for k � 2 iterations, and �nally moves bak to s0 afterthe kth iteration. Then, the e�et of the run is (1). Furthermore, the ounterinrease along the run is bounded by twie the maximal ounter inrease whilereading w. In fat, using a similar reasoning, we an show that all parts of � aregood (whih is onsistent with the fat that reduce(�) = �).As the last example, let us onsider the pattern from Figure 5a. First, weshow that the part (1; 0) 2 �(s0; s0) is bad. The only run over wk with e�et8



(1; 0) is the one whih omes bak to s0 after eah iteration. However, this runinreases the �rst ounter by k. On the other hand, the part (1; 1) 2 �(s0; s0) isgood by a similar reasoning to the previous example. In fat, we an show thatall other parts of the pattern are good (whih is onsistent with the value of
reduce(�) in Figure 6).ss0 ss0 ss0 ss0 =

ss0 ss0(0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

(0; 0) (0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

(0; 0) ; (1; 1)

(1; 1)

(1; 1)

(1; 1)Fig. 6. � � core(�) � � = reduce(�) where � is the pattern from Figure 5aRedued Fatorization Trees. For a fatorization of a word w, we needto hek whether there is a run whih goes through a good part in every loop.In order to do that, we enrih the tree struture, so that eah node will now belabeled, in addition to a word, also by a pattern. The patterns are added by thefollowing funtion: given an input sequene of patterns, the leaves are labeledby the elements of the sequene, nodes with branhing degree 2 are labeled bythe omposition of the hildren labels, and we label eah node with branhingdegree at least 3 by �, where � is the idempotent label of all its hildren. Now,we build a redued fatorization tree for w in several steps (formally desribedin Subsetion 3.2).We start with the sequene of patterns obtained by Run from the letters ofthe word. In eah step, we take the resulting sequene from the previous stepand build a fatorization tree from it. Then we take the lowest nodes suh thatthey have at least 3 hildren and they are labeled by a pattern � suh that
reduce(�) 6= �. We hange the labels of these nodes to reduce(�). We pak thesubtrees whih have these nodes as roots into elements of the new sequene andwe leave other elements of the sequene unmodi�ed. This proedure eventuallyterminates and returns one tree with the following properties (the importantinvariant is shown in Lemma 1):� if a node labeled by � has two hildren labeled by �1; �2 then � = �1 � �2,� if a node labeled by � has m hildren labeled by �1; : : : ; �m, m � 3, then�i = �j for all 1 � i; j � m, �1 is idempotent, and � = reduce(�1).An example of a redued fatorization tree is in Figure 7. We show that thereis a fatorization funtion suh that the height of all redued fatorization treesprodued by it is bounded by 3 � jPj2 (Lemma 2) using the fatorization foresttheorem and a property of the redution funtion that reduce(�) <J �, where<J is the usual ordering of the J -lasses on P, J is a standard Green's relation;� �J �0 if and only if there are �1; �2 suh that � = �1 � �0 � �2; � <J �0 if andonly if � �J �0 and �0 �J � (Lemma 6 in Appendix).9



�1; abde�2; ab reduce(�5); de�3; a �4; b �5;  �5; de �5;  �5; �6; d �7; eFig. 7. An example redued fatorization tree. �1 = �2 � reduce(�5); �2 = �3 � �4, and�5 = �6 � �7. For all leaves labeled by �̂; â, �̂ = Run(â).Corretness. Let � be the label of the root of a redued fatorization treefor a word w and let pump(r; k) for a +-free regular expression and for a k 2 Nbe the word obtained by repeating eah r1, where r�1 is a subexpression of r,k-times. Then� if �(s0; sf ) 6= ; for some sf 2 F then there is a run from s0 to s over w in
8jPj2-semantis,� otherwise, there is a +-free regular expression r suh that for all D there isa k suh that there is a ounter whih exeeds D along all runs from s0 tosf , sf 2 F , over pump(r; k).The previous items are formulated in Subsetion 3.3, in Lemma 4 and Lemma 5.Relation to Simon's Approah. There are several important di�erenesbetween the method presented in this paper and that of Simon [Sim94℄. Ournotion of pattern is a funtion to a set of e�ets, while in Simon's ase it is afuntion to the set f0; 1; !g. Beause of the resets and the fat that there areseveral ounters, it is not possible to linearly order the e�ets. Thus, a olletionof automaton runs an be abstrated into several inomparable e�ets. The setsare neessary in order to remember all of them. Furthermore, the di�erent no-tion of pattern requires a new notion of redution whih does not remove loopslabeled also by resets. We need to show then that appliation of this notion ofredution during the onstrution of the redued fatorization trees preservesthe orretness.3.2 Constrution of the Redued Fatorization TreeWe de�ne labeled �nite trees to apture the looping struture of the sequenes ofpatterns. Let � be a set of �nite trees with two labeling funtions Pat and Word,whih for eah node return a pattern and a word, respetively. We will abusethe notation and, for a tree T , we use Pat(T ) or Word(T ) to denote Pat(N) or

Word(N), respetively, where N is the root of T . We also identify nodes with thesubtrees in whih they are roots. We an then say that a node T has hildren10



T1; : : : ; Tm and then use Ti's as trees. For a tree T , we de�ne its height h(T )as h(T ) = 1 if T is a leaf, h(T ) = 1 + maxfh(T1); : : : ; h(Tm)g if T1; : : : ; Tm arehildren of the root of T .By �+ we mean the set of nonempty sequenes of elements of � . By (�+)+ wemean the set of nonempty sequenes of elements of �+. Let us denote elementsof �+ by ; 1; 0; : : : . For  2 �+, let jj denote the length of .Let f : �+ ! P be a homomorphism with respet to � de�ned by f(T ) =
Pat(T ). We all a funtion d : �+ ! (�+)+ a fatorization funtion if it satis�esthe following onditions. If d() = (1; 2; : : : ; m) then  = 1 � 2 � � � m, ifm = 1 then jj = 1, and if m � 3 then f() = f(i) for all 1 � i � m and f()is an idempotent element.For a fatorization funtion d we de�ne two funtions tree : �+ ! � and
cons : �+ ! �+ indutively as follows. Let h�;wi denote a tree with onsists ofonly the root labeled by � and w.
tree() =

8>>>>>><>>>>>>: if jj = 1;h�1 � �2; w1 � w2i with hildren tree(1); tree(2); if d() = (1; 2);�i = Pat(tree(i)); wi = Word(tree(i)) for i 2 f1; 2g;hreduce(�); w1 � w2 � � �wmi with hildren tree(1); : : : ; tree(m); ifm � 3; d() = (1; 2; : : : ; m); � = Pat(tree(1));and wi = Word(tree(i)) for all 1 � i � m:The funtion tree builds a redued fatorization tree (or a fatorization tree)from the sequene of trees aording to the funtion d. The only di�erene fromstraightforward following the funtion d is that the labeling funtion Pat mightbe hanged by the funtion reduce. Let us olor the trees in the funtion conseither green or red during the indutive onstrution of a new sequene.
cons() =

8>>>>>>>>>><>>>>>>>>>>:
 if jj = 1: Mark  green.
cons(1) � cons(2) � � � cons(m)if d() = (1; 2; : : : ; m) and either m = 2 orthere is 1 � i � m suh that cons(i) ontainsa red tree or reduce(f(1)) = f(1):
tree() if d() = (1; 2; : : : ; m);m � 3; no cons(i)ontains a red tree and reduce(f(1)) 6= f(1):Mark the tree red.The funtion cons updates the sequene of trees trying to leave as muh aspossible untouhed, but whenever Pat would be hanged by the reduce funtionfor the �rst time (on the lowest level), it paks the whole sequene into a singletree with hanged Pat label of the root using the funtion tree.The important property of the onstrution is that for eah tree in the newsequene it holds that whenever a node has more than two hildren, they are alllabeled by idential idempotent patterns. Let us all a tree balaned if whenevera node T has hildren T1; T2; : : : ; Tm, where m � 3, then Pat(T1) = Pat(T2) =� � � = Pat(Tm), it is an idempotent element in P, and Pat(T ) = reduce(Pat(T1)).11



TBTAT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15Fig. 8. Appliation of cons to T1 � � �T15. The blak nodes represent the nodes for whih
reduce(�) 6= �. The resulting sequene is T1T2T3T4TAT8T9TBT15.Lemma 1. For a  2 �+, if all trees in  are balaned then all trees in cons()are balaned.Now we show how to get a sequene of trees from runs of the automaton. Let
treeRun : �+ �! �+ be a homomorphism with respet to the word ompositionde�ned by treeRun(a) = hRun(a); ai.Assume that there is a fatorization funtion d �xed. Let for a word w 2 �+,w be de�ned as consn(treeRun(w)), where n 2 N is suh that consn(treeRun(w)) =
consn+1(treeRun(w)). Note that w is always de�ned, beause for all  2 �+,jcons()j � jj and if jcons()j = jj then cons() = . Let Tw = tree(w). FromLemma 1 it follows that Tw is balaned (note that if consn() = consn+1() then
consn() ontains only green trees).Remark. Notie that we do not expliitly mention the fatorization funtiond in the de�nition of a redued fatorization tree Tw onstruted by d from aword w. It is always lear from the ontext whih fatorization funtion we mean.We show that for eah R-automaton there is a fatorization funtion suhthat for any w the height of the tree Tw is bounded by a onstant omputedfrom the parameters of the automaton. The proof of this lemma is based on thefat that reduce(�) <J �.Lemma 2. Given an R-automaton A, there is a fatorization funtion d suhthat for all words w 2 �+, h(Tw) � 3 � jPj2.3.3 CorretnessTo formulate the �rst orretness lemma, we de�ne the following onept of alength funtion l : � ! N indutively byl(T ) =

8<:1 if T is a leafl(T1) + l(T2) if T has two hildren T1; T2

2 �maxfl(T1); : : : ; l(Tm)g if T has hildren T1; : : : ; Tm;m � 3By indution on h(Tw) and using the bound derived in Lemma 2, one anshow the following laim. 12



Lemma 3. Given an R-automaton A, there is a fatorization funtion d suhthat for all words w 2 �+, l(Tw) � 8jPj2.We say that s w�! s0 or s w�!D s0 realizes t if there is a witnessing path
(s; a1; t1; s1), (s1; a2; t2; s2), : : : , (sjwj�1; ajwj; tjwj; s0) suh that t = t1Æt2Æ� � �Ætjwj.Let us de�ne RunD(w) to be the pattern obtained by running the automatonover w in the D-semantis. Formally, RunD(w)(s; s0) ontains t if and only ifs w�!D s0 realizes t. Note that the funtion RunD is not a homomorphism withrespet to the word omposition. We also de�ne a relation v on patterns by� v �0 if and only if for all s; s0, �(s; s0) � �0(s; s0).From Lemma 3 we show that there is a fatorization funtion suh that forevery w, Pat(Tw) orresponds to the runs of the R-automaton whih an beperformed in the D-semantis for any big enough D. This is formulated in thefollowing lemma.Lemma 4. Given an R-automaton, there is a fatorization funtion suh thatfor all w 2 �+ and for all D 2 N; D � 8jPj2, Pat(Tw) v RunD(w).Of partiular interest are runs starting in the initial state.Corollary 1. Given an R-automaton A, there is a fatorization funtion suhthat for all words w, if Pat(Tw)(s0; s) 6= ; then there is a run hs0; (0; : : : ; 0)iw�!D hs; (1; : : : ; n)i where D = l(Tw).It remains to show that if the relation between the patterns in the previouslemma is strit then there is a word for eah D whih is a witness for thestritness, i.e., the runs over this word in the D-semantis generate a smallerpattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r1 for all subexpressions r�1 of r. Letus de�ne a funtion re whih for a redued fatorization tree returns a +-freeregular expression indutively by

re(T ) =

8<:Word(T ) if T is a leaf
re(T1) � re(T2) if T has two hildren T1; T2

(re(T1))� if T has hildren T1; T2; : : : ; Tm;m � 3For a +-free regular expression r and a natural number k > 0, let the funtion
pump(r; k) be de�ned indutively as follows: pump(a; k) = a, pump(r1 � r2; k) =
pump(r1; k) � pump(r2; k), and pump(r�; k) = pump(r; k)k.For example, pump(a(b�d)�aa�; 2) = abdbdaaa.Lemma 5. Given an R-automaton and a fatorization funtion, for all w 2 �+and all D 2 N there is a k 2 N suh that RunD(pump(re(Tw); k)) v Pat(Tw).A speial ase are runs starting from the initial state.Corollary 2. Given an R-automaton, for any w 2 �+, if Pat(Tw)(s0; s) = ;then 8D9k suh that there is no run hs0; (0; : : : ; 0)i v�!D hs; (1; : : : ; n)i wherev = pump(re(Tw); k). 13



3.4 AlgorithmTo hek the universality of an R-automaton A, we have to hek all patterns �suh that � = Pat(Tw) for some w 2 �+ and some fatorization funtion. If thereis a � suh that for all sf 2 F , �(s0; sf ) = ; then for all D 2 N, LD(A) 6= ��.This gives us the following algorithm. Reall that �e denotes the unit of (P; �).The algorithm uses a set of patterns P as the data struture. Given an R-automaton A = hS;�;�; s0; F i on the input, it answers 'YES' or 'NO'. The setP is initialized by P = f�j� = Run(a); a 2 �g [ f�eg.While jP j inreases the algorithm performs the following operations:� pik �1; �2 2 P and add �1 � �2 bak to P .� pik a � 2 P suh that � is idempotent and add reduce(�) bak to P .If there is � 2 P suh that for all sf 2 F , �(s0; sf ) = ;, answer 'NO',otherwise, answer 'YES'.The orretness proof is given in the following theorem. See Appendix forthe full proof.Theorem 2. The algorithm is orret and runs in 2-EXPSPACE.Proof. The algorithm terminates beause P is �nite. Its orretness follows fromthe previous two orollaries. The algorithm needs spae jPj (the number of dif-ferent patterns). The size of P is 2(3n)�jSj2 (jSj2 di�erent pairs of states, 2(3n)di�erent sets of e�ets). Therefore, the algorithm needs double exponential spae.ut4 Bühi UniversalityThe universality problem is also deidable for R-automata with Bühi aeptaneonditions.Theorem 3. For a given R-automaton A, the question whether there is D 2 Nsuh that L!D(A) = �! is deidable in 2-EXPSPACE.To show this result, we need to extend patterns by aepting state infor-mation. A pattern is now a funtion � : S � S �! 2f0;1g�f0;1;rgn, wherefor s; s0 and ha; ti 2 �(s; s0), the value of a enodes whether there is a pathfrom s to s0 realizing t whih meets an aepting state. For instane, �(s; s0) =fh0; (0; r)i; h1; (1; 1)ig means that there are two di�erent types of paths betweens and s0: they either realize (0; r) but do not visit an aepting state, or realize
(1; 1) and visit an aepting state. We de�ne the omposition � by de�ning theomposition on the aepting state: 0 Æ 0 = 0; 0 Æ 1 = 1 Æ 0 = 1 Æ 1 = 1. Theset of patterns (denote again P) with � is a �nite monoid. We de�ne the fun-tion reduce in the same way as before, i.e., the aepting state information doesnot play any role there. Clearly, reduce(�) <J �, so the redued fatorizationtrees produed by reduce have bounded height. Lemma 4 and Lemma 5 also14



hold, beause (non)visiting an aepting state does not in�uene the runs in theD-semantis.This allows us to use the same algorithm as for the �nite word universalityproblem, exept for the ondition for onluding non-universality. The onditionis whether there are �1; �2 2 P suh that �2 is idempotent and for all s suhthat �1(s0; s) 6= ; the following holds. If ha; ti 2 �2(s; s) then either a = 0 ort =2 f0; rgn.5 ConlusionsWe have de�ned R-automata � �nite automata extended with unbounded oun-ters whih an be left unhanged, inremented, or reset along the transitions.As the main result, we have shown that the following problem is deidable in2-EXPSPACE. Given an R-automaton, is there a bound suh that all words areaepted by runs along whih the ounters do not exeed this bound? We havealso extended this result to R-automata with Bühi aeptane onditions.As a future work, one an onsider the (bounded) universality or limitednessquestion to vetor addition systems (VASS) or reset vetor addition systems(R-VASS), where the latter form a superlass of R-automata. The limitednessproblem an be shown undeidable for R-VASS for both �nite word and !-wordase, while it is an open question for VASS. The universality problem an beshown to be undeidable for R-VASS for !-word ase, in other ases it is open.Referenes[AKY07℄ Parosh Abdulla, Pavel Kral, and Wang Yi. Sampled universality of timedautomata. In Pro. of FOSSACS'07, volume 4423 of LNCS, pages 2�16.Springer-Verlag, 2007.[Has82℄ Kosaburo Hashiguhi. Limitedness theorem on �nite automata with distanefuntions. Journal of Computer and System Sienes, 24(2):233�244, 1982.[Has90℄ Kosaburo Hashiguhi. Improved limitedness theorems on �nite automata withdistane funtions. Theoretial Computer Siene, 72(1):27�38, 1990.[Kir04℄ Daniel Kirsten. Distane desert automata and the star height one problem.In Igor Walukiewiz, editor, FoSSaCS, volume 2987 of Leture Notes in Com-puter Siene, pages 257�272. Springer, 2004.[Kl07℄ Manfred Kufleitner. A proof of the fatorization forest theorem. Tehnialreport Nr. 2007/05, Formale Methoden der Informatik, Universität Stuttgart,Germany, Otober 2007.[KP05℄ Pavel Kral and Radek Pelanek. On sampled semantis of timed systems. InPro. of FSTTCS'05, volume 3821 of LNCS, pages 310�321. Springer-Verlag,2005.[Leu91℄ Hing Leung. Limitedness theorem on �nite automata with distane funtions:an algebrai proof. Theoretial Computer Siene, 81(1):137�145, 1991.[Sim90℄ Imre Simon. Fatorization forests of �nite height. Theoretial ComputerSiene, 72(1):65�94, 1990.[Sim94℄ Imre Simon. On semigroups of matries over the tropial semiring. Informa-tique Theorique et Appliations, 28(3-4):277�294, 1994.15



A AppendixProof (Lemma 1). The only possibility where a new tree an our in cons()is as a result of tree(0) for some 0. The onditions on 0 are that d() =
(1; : : : ; m) and for all 1 � i � m, cons(i) does not ontain a red tree. Then weprove that Pat(tree()) = f() for any  2 �+ suh that cons() ontains onlygreen trees by indution on h(tree()). If h(tree()) = 1 then it follows diretlyfrom the de�nition of f . If h(tree()) > 1 and d() = (1; 2) then the laimfollows from the indution hypothesis and the fat that f is a homomorphism. Ifh(tree()) > 1 and d() = (1; : : : ; m), m � 3, then the laim follows from theindution hypothesis and the fat that cons() ontains only red trees, onretely,
tree() is green, from whih it follows that reduce(f(1)) = f(1).The fat that tree(0) is balaned follows diretly from the previous propertyand the ondition on the funtion d that Pat(1) = f(1) = f(i) = Pat(i) forall 1 � i � m. utTo prove Lemma 2, we need to show a tehnial property of the redutionfuntion, namely that redution stritly redues the J level of the pattern (Jis a standard Green's relation; � �J �0 if and only if there are �1; �2 suh that� = �1 � �0 � �2; � <J �0 if and only if � �J �0 and �0 �J �).Lemma 6. For any idempotent pattern �, either reduce(�) = � or reduce(�) <J�.Proof. From the idempotene of � it follows that reduce(�) = � � reduce(�) � �.This property is su�ient for the proof of Lemma 3 from [Sim94℄ whih appliesto our ase. This proof uses Green's relations.We present also an alternative proof without using Green's relations here.First we show that if reduce(�) 6= � then there are t and s suh that t 2 �(s; s)but t =2 reduce(�)(s; s). Assume that it is not the ase. Beause � is idempotentand the funtion reduce does not add anything to the pattern, there are s; s0; tsuh that t 2 �(s; s0), t =2 reduce(�)(s; s0). Beause � is idempotent, there ares00; t1; t2; t3 suh that t1 2 �(s; s00); t2 2 �(s00; s00); t3 2 �(s00; s0); t = t1 Æ t2 Æ t3.From the assumption, t2 2 reduce(�)(s00; s00), i.e., there are ŝ; t0; t00; t000 suh thatt0 2 �(s00; ŝ); t00 2 core(�)(ŝ; ŝ); t000 2 �(ŝ; s00); t2 = t0 Æ t00 Æ t000. But beause � isidempotent, t1 Æ t0 2 �(s; ŝ) and t000 Æ t3 2 �(ŝ; s0), so t 2 reduce(�)(s; s0), whihis a ontradition with the assumption.Let us say that s and s0 are merged by t in � if t 2 �(s; s); t 2 �(s0; s0); t 2�(s; s0); t 2 �(s0; s). We write it (s; t) �m (s0; t). In fat, for an idempotent pat-tern �, the relation �m is an equivalene relation on the set of pairs (s; t). Notethat if s; s0 are merged by t in � and t =2 reduce(�)(s; s) then t =2 reduce(�)(s0; s0).Therefore, the number of �m equivalene lasses of reduce(�) is stritly smallerthan that of � (unless they are equal).Let 0 < 1 < r. Let t = (b1; : : : ; bn) < t0 = (b01; : : : ; b0n) if bi < b0i for all
1 � i � n. The set of e�ets together with this order is a �nite lattie. Let # tdenote a prinipal ideal in this lattie generated by t. We try to onstrut �1; �216



so that �0 = �, where �0 = �1 � reduce(�) � �2, and we show that if we do notwant to fail then reduce(�) = �.Let us say that s; t where t 2 �0(s; s) goes through s0; t0 if there are t1; t2; t3; t4; t5suh that t1 2 �1(s; s1); t2 2 �(s1; s0); t3 2 core(�)(s0; s0); t4 2 �(s0; s2); t5 2�2(s2; s), t3 < t0, and t0 2 �(s0; s0). The main idea of the rest of this proof is thatto be able to onstrut i di�erent equivalene lasses wrt. �m, we need i di�erentequivalene lasses in reduce(�). We will be interested only in the e�ets on theloops, i.e., only in t 2 �0(s; s0) where s = s0.Note that if �0 is idempotent (and we want this, beause � is idempotent)then if s1; t1, s2; t2 go through s3; t0, s4; t0, respetively, and (s3; t0) �m (s4; t0)in � then (s1; t1_ t2) �m (s2; t1_ t2) in �0. This follows from the idempoteny of�0 and the de�nition of the relation merged; the reasoning is similar to the onein the �rst paragraph of this proof.We show by indution on the size of # t that if t 2 �(s; s) for some s thenwe need as many equivalene lasses whih ontain a t0 2# t in their seondomponent in reduce(�) as in � to not to introdue any t 2 �(s; s0) suh that t =2�(s; s0). The basi step is lear from the previous paragraph. For the indutionstep, if s; t goes through some s0; t0 suh that t0 < t then t 2 reduce(�)(s0; s0)must hold and thus it also goes through s0; t. Also, eah s; t, s0; t whih are notmerged in � have to go through s1; t, s2; t whih are not merged in �. Therefore,there are needed as many equivalene lasses whih ontain t in their seondomponent as there are in �. utWe state the fatorization forest theorem. It was formulated and proved bySimon [Sim90℄, the best known bound is shown in [Kl07℄.Theorem 4 (Fatorization Forest Theorem). For a �nite monoid P and ahomomorphism f : �+ �! P, there is a fatorization funtion d suh that forall  2 �+, h(tree()) � 3jPj.Now we an ontinue with the proofs of Lemmata from the paper.Proof (Lemma 2). Let us �rst de�ne the nesting depth funtion nd : �+ ! Nby
nd() =

8>>>><>>>>:1 if  = h�; ai
1 + nd(0) if jj = 1; 6= h�; ai; = tree(0)
maxfnd(Ti); : : : ; nd(Tk)g if  = T1 � � �TkNote that for any w 2 �+ and for any tree in w, either the tree onsists ofonly a root (it is equal to h�; ai for some � and a) or it has been obtained as

tree(0) for some 0 2 �+. Note also, that for eah suh tree, there is exatly onesuh 0 (for a �xed d). Therefore, the nesting depth funtion nd is well-de�nedfor all w.From Lemma 6 it follows that whenever nd is applied to a  suh that jj = 1, 6= h�; ai,  = tree(0), 0 = T1 � � �Tk then for all 1 � i � k, Pat() <J Pat(Ti).Thus, for any w 2 �, nd(w) � jPj. 17



From fatorization forest theorem, we know that there is d suh that h(tree()) �
maxfh(T1); : : : ; h(Tk)g+3�jPj for all sequenes  = T1 � � �Tk. Therefore, h(Tw) =h(tree((w)) � 3 � jPj � nd(w) � 3 � jPj2 for this d. utBefore showing the two following proofs, let us onsider the following prop-erty. If s w�!D s0 (or s w�! s0) realizes t = (b1; : : : ; bn), the ounter valuesalong a run hs; (1; : : : ; n)i w�! hs0; (01; : : : ; 0n)i produed by this path satisfythe following onditions:� if bi = 0 then i = 00i for all states hs00; (001 ; : : : ; 00n)i along the run,� if bi = r then 00i = 0 (sine it is reset) in some state hs00; (001 ; : : : ; 00n)i alongthe run, and� if bi = 1 then i < 0i (and it is not reset along the run).Proof (Lemma 4). Let us �x a fatorization funtion d satisfying Lemma 3. Weshow this lemma by proving the following laim by indution on h(Tw). For anyw 2 �+, if t 2 Pat(Tw)(s; s0) then s w�!D s0 realizing t for D = l(Tw). FromLemma 3 we have that suh a run exists also in any D-semantis for D � 8jPj2.The basi step follows diretly from the de�nition of the funtion treeRun.Assume that the tree has the root h�1 � �2; w1 � w2i with hildren Tw1 andTw2 (note that for eah subtree T , T = TWord(T )), where �1 = Pat(Tw1), �2 =
Pat(Tw2). Then there are s00; t1; t2 suh that t1 2 �1(s; s00); t2 2 �2(s00; s0), andt = t1Æt2. From the indution hypothesis, s w1�!D1 s00 realizes t1 and s00 w2�!D2 s0realizes t2, where D1 = l(Tw1); D2 = l(Tw2). Clearly, if we onatenate any twopaths given by these relations, we get s w�!D1+D2 s0 realizing t1 Æ t2. From thede�nition of the length funtion, l(Tw) = l(Tw1) + l(Tw2) = D1 + D2.Assume that the tree has the root hreduce(�); w1 � � �wmi with hildren Tw1 ; : : : ; Twm ,where m � 3; � = Pat(Tw1 ). Then there are s00; t1; t2; t3 suh that t1 2 �(s; s00),t2 2 �(s00; s00), t3 2 �(s00; s0), t = t1 Æ t2 Æ t3, and t2 2 f0; rgn (this followsdiretly from the de�nition of the funtion reduce). Sine Pat(Twi) = � for all
1 � i � m ((whih we have from Lemma 1) then from the indution hypothesiss w1�!l(Tw1 ) s00 realizes t1, s00 wi�!l(Twi ) s00 realizes t2 for all 2 � i � m � 1, ands00 wm�!l(Twm ) s0 realizes t3.Let us analyze the length of the onatenation of the paths given by theserelations. For eah ounter, if its orresponding e�et in t2 is 0 then the bound onthis ounter during the whole path is l(Tw1)+l(Twm), beause it is left unhangedduring the path part over w2 � w3 : : : wm�1. If the orresponding e�et in t2 ofthe ounter is r then the ounter is reset at least one in eah path part overw2; w3; � � � ; wm�1. Therefore, it is bounded by the maximal length between tworesets, whih is bounded by maxfl(Tw1)+ l(Tw2 ); l(Tw2)+ l(Tw3); : : : ; l(Twm�1)+l(Twm)g. Then, s w�!D s0 realizes t, where D = 2 � maxfl(Tw1); : : : ; l(Twm)g. utProof (Lemma 5). We show this lemma by proving the following laim by indu-tion on h(Tw). For all D 2 N there is k 2 N suh that for v = pump(re(Tw); k),18



if s v�!D s00 realizes t then t 2 Pat(Tw)(s; s0) (note that this holds also for allk0 > k).The basi step follows diretly from the de�nition of the funtion treeRun(with any k).Assume that the tree has the root h�1 � �2; w1 � w2i with hildren Tw1 andTw2 , where �1 = Pat(Tw1 ), �2 = Pat(Tw2). Let k1; k2 be the onstants from theindution hypothesis applied to Tw1 and Tw2 . Let k = maxfk1; k2g. Let us denotev1 = pump(re(Tw1 ); k); v2 = pump(re(Tw2 ); k); v = v1 � v2 = pump(re(Tw); k).Assume that s v�!D s00 realizes t. Then there must be an s00 suh that s v1�!D s00,s00 v2�!D s0 realize t1; t2, respetively, suh that t = t1 Æ t2. From the indutionhypothesis, t1 2 Pat(Tw1 )(s; s00) and t2 2 Pat(Tw2)(s00; s0). Beause Pat(Tw) =�1 � �2 = Pat(Tw1 ) � Pat(Tw2), we have that t = t1 Æ t2 2 Pat(Tw)(s; s0).Assume that the tree has the root hreduce(�); w1 � � �wmi with hildren Tw1 ; : : : ; Twm ,where m � 3; � = Pat(Tw1). Let k1 be the onstant from the indution hypoth-esis applied to Tw1 and k2 = (D + 1)n � jSj. Let k = maxfk1; k2g. Let us denotev1 = pump(re(Tw1 ); k); v = vk1 = pump(re(Tw); k).Assume that s v�!D s0 realizes t. Then there must be a sequene of statessi for 1 � i � k + 1 suh that si v1�!D si+1 realizes ti, s1 = s; sk+1 = s0, andt = t1 Æ t2 Æ � � � Æ tk. First, we show by ontradition that there are indies i; jsuh that i < j; si = sj and ti Æ � � � Æ tj�1 2 f0; rgn. Let us assume that for alli < j suh that si = sj , ti Æ � � � Æ tj�1 =2 f0; rgn. Let us pik an ŝ suh thatG = jfijsi = ŝ; 1 � i � k + 1gj is maximal. From the hoie of k we have thatG > Dn. We show that there is a ounter exeeding D along all paths witnessings v�! s0 realizing t. We know from our assumption (ti Æ � � � Æ tj�1 =2 f0; rgn) andfrom the de�nition of realizing that for all i; j suh that si = sj = ŝ, the ountervalues in any run over v annot be idential in si and sj . There are Dn di�erenton�gurations with all ounters smaller than or equal to D. Sine G > D, someounter has to exeed D. This ontradits that s v�!D s0 realizes t.From the indution hypothesis we have that for all 1 � i � k, ti 2 Pat(Tw1 ).Let i and j satisfy the ondition from the previous paragraph, i.e., i < j; si =sj and ti Æ � � � Æ tj�1 2 f0; rgn. Beause Pat(Tw1) is idempotent (follows fromLemma 1), we have that ti Æ � � � Æ tj�1 2 Pat(Tw1)(si; sj) and thus ti Æ � � � Æ tj�1 2
core(Pat(Tw1 ))(si; sj). Also, t1 Æ � � � Æ ti�1 2 Pat(Tw1)(s; si) and tj Æ � � � Æ tk 2
Pat(Tw1)(sj ; s0). From the de�nition of the funtion reduce, we an onludethat t 2 reduce(Pat(Tw1))(s; s0). utLemma 7. For any � 2 P obtained by the algorithm there is a fatorizationfuntion and a word w suh that � = Pat(Tw).Proof. Consider the tree labeled by the patterns de�ned indutively as follows.The root is labeled by �. If a node is labeled by �0 whih was reated (for the �rsttime) by omposing �1 � �2 then this node has two hildren labeled by �1 and�2. If a node is labeled by �0 whih was reated (for the �rst time) by reduing�1 then this node has one hild labeled by �1. The leaf labels have been addedin the initialization step. Clearly, is �1 = �2 are labels of two nodes in the treethen their subtrees are idential. 19



Now we de�ne a partial funtion w : P �! �+ whih for eah pattern in thetree returns a word and if �1 6= �2 then w(�1) 6= w(�2). Suh a labeling alsode�nes a fatorization funtion whih for w = w(�) yields the tree Tw suh that� = Pat(Tw).We start from the leaves and move indutively up. During the whole onstru-tion, we maintain a ounter , whih is initially set to  = 1. For eah � in a leaf,w(�) = a suh that Run(a) = � (if there are several, we assume some orderingand pik the least one). If a node is labeled by �0 and it has two hildren labeledby �1 and �2 then w(�0) = w(�1) � w(�2). If a node is labeled by �0 and it hasone hild labeled by �1 then w(�0) = (w(�1))k suh that jPj < jw(�0)j � 2 � jPjand we inrement .For two di�erent patterns suh that at least one of them has a redution inits subtree, the words have to have a di�erent length . For two di�erent patternssuh that there is no redution in their subtrees, the words have to be di�erentbeause of the de�nition of Run and � (and all suh words are shorter than jPj).utProof (Theorem 2). Clearly, the algorithm "heks" all possible �'s suh thatthere is a fatorization funtion and a word w suh that � = Pat(Tw). Also, forany � obtained by the algorithm there is a fatorization funtion and a word wsuh that � = Pat(Tw) (Lemma 7 in Appendix), with the exeption of �e whihorresponds to w = � (for whih is the orretness lear).If the algorithm obtains a � suh that �(s0; sf ) = ; for all sf 2 F then let us�x a fatorization funtion and a word w suh that � = Pat(Tw). Let r = re(Tw).From Corollary 2, for all D there is a k suh that there is no aepting run over
pump(r; k) in D-semantis.If for all patterns �, �(s0; sf ) 6= ; for some sf 2 F then we an �x a fator-ization funtion satisfying Lemma 3. For all words, there is an aepting run in
8jPj2-semantis given by Corollary 1.The omplexity follows from the size of the monoid P. utProof (Sketh, Theorem 3). Let us denote the new pattern funtion by Pat

Band the new funtion whih extrats a pattern from the runs in the D-semantisby Run
BD.Let for an R-automaton, C = 8jPj2 and for an !-word w, w = w1 �w2 �w3 � � �be a split of this word suh that all wi are �nite. For eah wi we de�ne apattern �w1 whih aptures the e�ets of the orresponding fragments of allin�nite runs over w in 2 � C-semantis. The hoie of 2 � C is motivated bythe reasons explained below. Let for all 1 � i, �wi be a pattern de�ned byha; ti 2 �wi(s; s0) if and only if there is an in�nite run in 2 � C-semantishs0; (0; : : : ; 0)i w1���wi�1�! 2�C hs; (1; : : : ; n)i wi�!2�C hs0; (01; : : : ; 0n)i wi+1����! 2�C suhthat the fragment hs; (1; : : : ; n)i wi�! hs0; (01; : : : ; 0n)i realizes t and a = 1 ifand only if this fragment ontains an aepting state.Assume that for all D, the R-automaton is not Bühi universal in the D-semantis. Let w be a ounterexample for D = 2 � jPj � C, i.e., w =2 L!D(A). Let20



us split w = w1 � w2 � w3 � � � so that all wi are �nite and �wi = �wj for all
2 � i; j. Let us denote �1 = �w1 and �2 = �w2 .Let l 2 N be suh that �l2 is an idempotent (l � jPk). For all s, �l2(s; s)does not ontain h1; (b1; : : : ; bn)i, where bi 2 f0; rg. Otherwise, i.e., if there wass; t 2 f0; rgn suh that h1; ti 2 �l2(s; s), there would be an aepting in�nite runover w in the D-semantis, whih would ontradit the fat that w =2 L!D(A).This follows from the fat that all patterns were obtained in the 2 �C-semantisand l � jPj.It is not neessary that Run

BC(w2) v �2, beause the set of starting statesfor Run
BC is S. Even if we restrit the set of starting states to L(�2), denoted

Run
BC (w2)0, the relation Run

BC(w2)0 v �2 does not have to hold. This is beausea fragment of a run over w2 in 2 � C-semantis ould have started from a statewith high ounter values and Run
BC starts from zeros. However, if we restritthe set of starting states to the states whih are in 2 � C-semantis reahableafter reading w1 with ounter values smaller than C, denote ˆRun

BC (w2), then
ˆRun

BC (w2) v �2 holds, beause now Run
BC starts from zeros and is limited by C,whereas �2 ontains all runs whih start from ounter values smaller than C andthey are limited by 2 � C.From Lemma 4 we know that there is a fatorization funtion suh that�3 = Pat

B(Tw1 ) v Run
BC(w1) and �4 = Pat

B(Tw2 ) v Run
BC (w2). Let m be suhthat �m4 is idempotent. Note that �m4 v �l2. We know that if �3 � �m4 (s0; s) 6= ;then �m4 (s; s) does not ontain h1; (b1; : : : ; bn)i, where bi 2 f0; rg. Therefore,from Lemma 5 we know that for any fatorization funtion it holds that for allD there is a k suh that pump(re(Tw1 ); k) � (pump(re(Tw2); k))! =2 L!D(A).
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