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t. We introdu
e R-automata � �nite state ma
hines whi
h oper-ate on a �nite number of unbounded 
ounters. The values of the 
ounters
an be in
remented, reset to zero, or left un
hanged along the transitions.R-automata 
an be, for example, used to model systems with resour
es(modeled by the 
ounters) whi
h are 
onsumed in small parts but whi
h
an be replenished at on
e. We de�ne the language a

epted by an R-automaton relative to a natural number D as the set of words allowinga run along whi
h no 
ounter value ex
eeds D. As the main result, weshow de
idability of the universality problem, i.e., the problem whetherthere is a number D su
h that the 
orresponding language is universal.We present a proof based on �nite monoids and the fa
torization for-est theorem. This theorem was applied for distan
e automata in [Sim94℄� a spe
ial 
ase of R-automata with one 
ounter whi
h is never reset.As a se
ond te
hni
al 
ontribution, we extend the de
idability result toR-automata with B�
hi a

eptan
e 
onditions.1 Introdu
tionWe 
onsider systems operating on resour
es whi
h are 
onsumed in small partsand whi
h 
an be (or have to be) replenished 
ompletely at on
e. To model su
hsystems, we introdu
e R-automata � �nite state ma
hines extended by a �nitenumber of unbounded 
ounters 
orresponding to the resour
es. The 
ounters
an be in
remented, reset to zero, or left un
hanged along the transitions. Whenthe value of a 
ounter is equal to zero then the sto
k of this resour
e is full.In
rementing a 
ounter means using one unit of the resour
e and resetting a
ounter means the full replenishment of the sto
k.We de�ne the language a

epted by an R-automaton relative to a naturalnumber D as the set of words allowing an a

epting run of the automaton su
hthat no 
ounter value ex
eedsD in any state along the run. We study the problemof whether there is a numberD su
h that the 
orresponding language is universal.This problem 
orresponds to the fa
t that with sto
k size D, the system 
anexhibit all the behaviors without running out of resour
es. We show that thisproblem is de
idable in 2-EXPSPACE. As a se
ond te
hni
al 
ontribution, weextend the de
idability result to R-automata with B�
hi a

eptan
e 
onditions.? This work has been partially supported by the EU CREDO proje
t.



To prove de
idability of the universality problem, we adopt the te
hniquefrom [Sim94℄ and extend it to our setting. The proof reformulates the problemin the language of �nite monoids and solves it using the fa
torization forest the-orem [Sim90℄. In [Sim94℄, this theorem has been used for solving the limitednessproblem for distan
e automata. Distan
e automata are a sub
lass of R-automatawith only one 
ounter whi
h is never reset. In 
ontrast to this model, we handleseveral 
ounters and resets. This extension 
annot be en
oded into the distan
eautomata.The de
ision algorithm deals with abstra
tions of 
olle
tions of runs in orderto �nd and analyze the loops 
reated by these 
olle
tions. The main step inthe 
orre
tness proof is to show that ea
h 
olle
tion of runs along the sameword 
an be split (fa
torized) into short repeated loops, possibly nested. Havingsu
h a fa
torization, one 
an analyze all the loops to 
he
k that none of the
ounters is only in
reased without being reset along them. If none of the 
ountersis in
reased without being reset then we 
an bound the 
ounter values by a
onstant derived from the length of the loops. Sin
e the length of the loops isbounded by a 
onstant derived from the automaton, all words 
an be a

eptedby a run with bounded 
ounters. Otherwise, we show that there is a +-freeregular expression su
h that for any bound there is a word obtained by pumpingthis regular expression whi
h does not belong to the language. Therefore, thelanguage 
annot be universal for any D.Related work. The 
on
ept of distan
e automata and the limitedness problemwere introdu
ed by Hashigu
hi [Has82℄. The limitedness problem is to de
idewhether there is a natural number D su
h that all the a

epted words 
an alsobe a

epted with the 
ounter value smaller than D. Di�erent proofs of the de
id-ability of the limitedness problem are reported in [Has90,Leu91,Sim94℄. The lastof these results [Sim94℄ is based on the fa
torization forest theorem [Sim90,Kl07℄.The model of R-automata, whi
h we 
onsider in this paper, extends that of dis-tan
e automata by introdu
ing resets and by allowing several 
ounters. Further-more, all the works mentioned above only 
onsider the limitedness problem on�nite words, while we here extend the de
idability result of the universality prob-lem to the 
ase of in�nite words. Distan
e automata were extended by [Kir04℄with one additional 
ounter whi
h is either in
remented or reset to zero alongevery transition. R-automata form a super
lass of this extension.The fa
t that R-automata 
an have several 
ounters whi
h 
an be reset al-lows, for instan
e, to 
apture the abstra
tions of the sampled semanti
s of timedautomata [KP05,AKY07℄. A sampled semanti
s given by a sampling rate � = 1=ffor some positive integer f allows time to pass only in steps equal to multiples of�. The number of di�erent 
lo
k valuations within one 
lo
k region (a boundedset of valuations) 
orresponds to a resour
e. It is �nite for any � while in�nite inthe standard (dense time) semanti
s of timed automata. Timed automata 
angenerate runs along whi
h 
lo
ks are for
ed to take di�erent values from thesame 
lo
k region (an in
rement of a 
ounter), take exa
tly the same value (a
ounter is left un
hanged), or forget about the previously taken values (a 
ounterreset). 2



2 PreliminariesFirst, we introdu
e the model of R-automata and its unparameterized semanti
s.Then, we introdu
e the parameterized semanti
s, the languages a

epted by theautomaton, and the universality problem.R-automata. R-automata are �nite state ma
hines extended with 
ounters.A transition may in
rease the value of a 
ounter, leave it un
hanged, or resetit ba
k to zero. The automaton on its own does not have the 
apability oftesting the values of the 
ounters. However, the semanti
s of these automata isparameterized by a natural number D whi
h de�nes an upper bound on 
ountervalues whi
h may appear along the 
omputations of the automaton. Let N denotethe set of non-negative integers.An R-automaton with n 
ounters is a 5-tuple A = hS;�;�; s0; F i where� S is a �nite set of states,� � is a �nite alphabet,� � � S �� � f0; 1; rgn � S is a transition relation,� s0 2 S is an initial state, and� F � S is a set of �nal states.Transitions are labeled (together with a letter) by an e�e
t on the 
ounters.The symbol 0 
orresponds to leaving the 
ounter value un
hanged, the symbol
1 represents an in
rement, and the symbol r represents a reset. We use t; t1; : : :to denote elements of f0; 1; rgn whi
h we 
all e�e
ts. A path is a sequen
es oftransitions (s1; a1; t1; s2),(s2; a2; t2; s3); : : : ; (sm; am; tm; sm+1), su
h that 81 �i � m:(si; ai; ti; si+1) 2 �. An example of an R-automaton is given in Figure 1.

s0 s1s2

a; (1; 0) b; (r; r)a; (0; 1)

b; (0; 1)

a; (0; r)Fig. 1. An R-automaton with two 
ounters.Unparameterized semanti
s. We de�ne an operation � on the 
ountervalues as follows: for any k 2 N, k � 0 = k, k � 1 = k + 1, and k � r = 0.We extend this operation to n-tuples by applying it 
omponentwise. The oper-ational semanti
s of an R-automaton A = hS;�;�; s0; F i is given by a labeledtransition systems (LTS) JAK = hŜ; �; T; ŝ0i, where the set of states Ŝ 
ontainspairs hs; (
1; : : : ; 
n)i, s 2 S; 
i 2 N for all 1 � i � n, with the initial state3



ŝ0 = hs0; (0; : : : ; 0)i. The transition relation is de�ned by (hs; (
1; : : : ; 
n)i; a, hs,
(
01; : : : ; 
0n)i) 2 T if and only if hs; a; t; s0i 2 � and (
01; : : : ; 
0n) = (
1; : : : ; 
n)� t.We shall 
all the states of the LTS 
on�gurations.We write hs; (
1; : : : ; 
n)i a�! hs; (
01; : : : ; 
0n)i if (hs; (
1; : : : ; 
n)i; a; hs; (
01,: : : , 
0n)i) 2 T . We extend this notation also for words, hs; (
1; : : : ; 
n)i w�!hs; (
01; : : : ; 
0n)i, where w 2 �+.Paths in an LTS are 
alled runs to distinguish them from paths in the un-derlying R-automaton. Observe that the LTS 
ontains in�nitely many states,but the 
ounter values do not in�uen
e the 
omputations, sin
e they are nottested anywhere. In fa
t, for any R-automaton A, JAK is bisimilar to A 
onsid-ered as a �nite automaton (without 
ounters and e�e
ts). The LTS indu
ed bythe R-automaton from Figure 1 is in Figure 2.s0; (0; 0) s1; (1; 0)

a s1; (1; 1)
b s1; (1; 2)

b s1; (1; 3)
bs2; (0; 1) s2; (0; 0)aa b b b baFig. 2. The unparameterized semanti
s of the R-automaton in Figure 1.Parameterized Semanti
s.Next, we de�ne theD-semanti
s of R-automata.We assume that the resour
es asso
iated to the 
ounters are not in�nite and we
an use them only for a bounded number of times before they are replenishedagain. If a ma
hine tries to use a resour
e whi
h is already 
ompletely used up,it is blo
ked and 
annot 
ontinue its 
omputation.For a givenD 2 N, let ŜD be the set of 
on�gurations restri
ted to the 
on�g-urations whi
h do not 
ontain a 
ounter ex
eedingD, i.e., ŜD = fhs; (
1; : : : ; 
n)ijhs; (
1; : : : ; 
n)i 2 Ŝ and (
1; : : : ; 
n) � (D; : : : ;D)g (� is applied 
omponent-wise). For an R-automaton A, the D-semanti
s of A, denoted by JAKD , is JAKrestri
ted to ŜD. We write hs; (
1; : : : ; 
n)i a�!D hs; (
01; : : : ; 
0n)i to denote thetransition relation of JAKD . We extend this notation for words, hs; (
1; : : : ; 
n)i w�!Dhs; (
01; : : : ; 
0n)i where w 2 �+.The 2-semanti
s of the R-automaton from Figure 1 is in Figure 3.It is easy to see that for ea
h D1 < D2, JAKD2 simulates JAKD1 and JAKsimulates JAKD2 .We abuse the notation to avoid stating the 
ounter values expli
itly when itis not ne
essary. We de�ne the rea
hability relations �! and �!D over pairsof states and words as follows. For s; s0 2 S and w 2 �+, s w�! s0 if and onlyif there is a path (s; a1; t1; s1), (s1; a2; t2; s2), : : : , (sjwj�1; ajwj; tjwj; s0) su
h thatw = a1 � a2 � � � ajwj. For ea
h D 2 N, s w�!D s0 if also for all 1 � i � jwj,t1 � t2 � � � � � ti � (D; : : : ;D). 4



s0; (0; 0) s1; (1; 0)
a s1; (1; 1)

b s1; (1; 2)
bs2; (0; 1) s2; (0; 0)aa b b baFig. 3. The 2-semanti
s of the R-automaton in Figure 1.It also holds that s w�!D s0 if and only if there is a run hs; (0; : : : ; 0)i w�!Dhs0; (
1; : : : ; 
n)i.Language. The (unparameterized or D-) language of an R-automaton isthe set of words whi
h 
an be read along the runs in the 
orresponding LTSending in an a

epting state (in a 
on�guration whose �rst 
omponent is ana

epting state). The unparameterized language a

epted by an R-automaton Ais L(A) = fwjs0

w�! sf ; sf 2 Fg. For a givenD 2 N, theD-language a

epted byan R-automaton A is LD(A) = fwjs0
w�!D sf ; sf 2 Fg. The unparameterizedlanguage of the R-automaton from Figure 1 is ab�a�. The 2-language of thisautomaton is a(� + b + bb+ bbb)a�.ProblemDe�nition.Now we 
an ask questions about language non-emptinessor universality of an R-automaton A parameterized by D, i.e., is there a naturalnumberD su
h that LD(A) 6= ; or LD(A) = ��. Figure 4 shows an R-automatonA su
h that L2(A) = ��.

s0 s1s2

a; ra; 1 a; 1b; 0 b; 0
b; 0Fig. 4. A 2-universal R-automaton.The language de�nitions and the questions 
an also be formulated for in�nitewords with Bü
hi a

eptan
e 
onditions. The unparameterized !-language of theautomaton from Figure 1 is ab! + ab�a!. The 2-!-language of this automaton isa(� + b + bb + bbb)a!. 5



3 UniversalityThe main result of the paper is the de
idability of the universality problem forR-automata formulated in the following theorem.Theorem 1. For a given R-automaton A, the question whether there is D 2 Nsu
h that LD(A) = �� is de
idable in 2-EXPSPACE.First, we introdu
e and also formally de�ne the ne
essary 
on
epts (pat-terns, fa
torization, and redu
tion) together with an overview of the whole proof.Then we show the 
onstru
tion of the redu
ed fa
torization trees and state the
orre
tness of this 
onstru
tion. Finally, we present an algorithm for de
idinguniversality.3.1 Con
epts and Proof OverviewWhen an R-automaton A is not universal for all D 2 N then there is an in�niteset X of words su
h that for ea
h D 2 N there is wD 2 X and wD =2 LD(A). Wesay then that X is a 
ounterexample. The main step of the proof is to show thatthere is an X whi
h 
an be 
hara
terized by a +-free regular expression. In fa
t,we show that X also satis�es a number of additional properties whi
h enableus to de
ide for every su
h a +-free regular expression, whether it 
orrespondsto a 
ounterexample or not. Another step of the proof is to show that we needto 
he
k only �nitely many su
h +-free regular expressions in order to de
idewhether there is a 
ounterexample at all.Patterns. The standard pro
edure for 
he
king universality in the 
ase of�nite automata is subset 
onstru
tion. Whenever there are non-deterministi
transitions s a�! s1 and s a�! s2 then we build a �summary� transition fsg a�!fs1; s2g. This summary transition says that from the set of states fsg we get tothe set of states fs1; s2g after reading the letter a. In the 
ase of R-automata,subset 
onstru
tion is in general not guaranteed to terminate sin
e the valuesof the 
ounters might grow unboundedly. To deal with this problem, we exploitthe fa
t that the values of the 
ounters do not in�uen
e the 
omputations of theautomaton. Therefore, we perform an abstra
tion whi
h hides the a
tual valuesof the 
ounters and 
onsiders only the e�e
ts along the transitions instead. Theabstra
tion leads to a more 
ompli
ated variant of summary transitions namelyso 
alled patterns.We de�ne a 
ommutative, asso
iative, and idempotent operation Æ on the setf0; 1; rg: 0 Æ 0 = 0, 0 Æ 1 = 1, 0 Æ r = r, 1 Æ 1 = 1, 1 Æ r = r, and r Æ r = r. In fa
t,if we de�ne an order 0 < 1 < r then Æ is the operation of taking the maximum.We extend this operation to e�e
ts, i.e., n-tuples, by applying it 
omponentwise(this preserves all the properties of Æ). An e�e
t obtained by adding several othere�e
ts through the appli
ation of the operator Æ summarizes the manner in whi
hthe 
ounters are 
hanged. More pre
isely, it des
ribes whether a 
ounter is resetor whether it is in
reased but not reset or whether it is only left untou
hed.A pattern � : (S � S) �! 2f0;1;rgn is a fun
tion from pairs of automatonstates to sets of e�e
ts. Let us denote patterns by �; �1; �0; : : : . As an example,6




onsider a pattern � involving states s and s0 and two 
ounters. Let �(s; s) =f(0; 0); (1; 1)g, �(s0; s0) = f(1; 1); (1; 0)g, �(s; s0) = f(1; 1)g and �(s0; s) = f(1; 1)g.This pattern is depi
ted in Figure 5a.Clearly, for a given R-automaton there are only �nitely many patterns; let usdenote this �nite set of all patterns by P. We de�ne an operation � on P as follows.Let (�1��2)(s; s0) = ftj9s00; t1; t2: t1 2 �1(s; s00); t2 2 �2(s00; s0); t = t1Æt2g. Note,that � is asso
iative and it has a unit �e, where �e(s; s0) = f(0; : : : ; 0)g if s = s0and �e(s; s0) = ; otherwise. Therefore, (P; �) is a �nite monoid.For ea
h word we obtain a pattern by running the R-automaton along thisword. Formally, let Run : �+ �! P be a homomorphism de�ned by Run(a) = �,where t 2 �(s; s0) if and only if (s; a; t; s0) 2 �.Loops. In the 
ase of �nite automata, a set of states L and a word w 
on-stitute a loop in the subset 
onstru
tion if L w�! L, i.e., starting from L andreading w, we end up in L again. The intuition behind the 
on
ept of a loopis that several iterations of the loop have the same e�e
t as a single iteration.In our abstra
tion using patterns, loops are words w su
h that w yields thesame pattern as w2; w3; : : : . We 
an skip the starting set of states, be
ause thefun
tion Run starts impli
itly from the whole set of states S (if there are noruns between some states then the 
orresponding set of e�e
ts is empty). Morepre
isely, a word w is a loop if Run(w) is an idempotent element of the patternmonoid. Two loops are identi
al if they produ
e the same pattern. Observe thatthe pattern in Figure 5a is idempotent.Fa
torization. We show that ea
h word 
an be split into short identi
alloops repeated many times. The loops 
an possibly be nested, so that this split(fa
torization) de�nes a fa
torization tree. The idea is that sin
e we have su
h afa
torization for ea
h word, it is su�
ient to analyze only the (short) loops andeither �nd a run with bounded maximal value of the 
ounters or use the loopstru
ture to 
onstru
t a 
ounterexample regular expression.On a higher level we 
an see a fa
torization of words as a fun
tion whi
h forevery word w = a1a2 � � � al returns its fa
torization tree, i.e., a �nite tree withbran
hing degree at least 2 (ex
ept for the leaves) and with nodes labeled bysubwords v of w su
h that the labeling fun
tion satis�es the following 
onditions:� if a node labeled by v has 
hildren labeled by w1; w2; : : : ; wm then v =w1 � w2 � � �wm,� if m � 3 then � = Run(v) = Run(wi) for all 1 � i � m and � is idempotent,� the leaves are labeled by a1; a2; : : : ; al from left to right.An example of su
h a tree is in Figure 5b. It follows from the fa
torizationforest theorem [Sim90,Kl07℄ that there is su
h a (total) fun
tion whi
h returnstrees whose height is bounded by 3 � jPj where jPj is the size of the monoid.We de�ne the length of a loop as the length of the word (or a pattern se-quen
e) provided that only the two longest iterations of the nested loops are
ounted. This 
on
ept is de�ned formally in Subse
tion 3.3. We say that theloops are short if there is a bound given by the automaton so that the lengthof all the loops is shorter than this bound. A 
onsequen
e of the fa
torizationforest theorem is that there is a fa
torization su
h that all loops are short.7



(a) (b)
s ss0 s0

(0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

a
abba
a
 abba
a 
 ab b a
a b a 
Fig. 5. A pattern involving two states and two 
ounters (a) and a fa
torization tree(b). Run(abba
) = Run(ab) = Run(b) = Run(a
) and it is idempotent.Redu
tion. We have de�ned the loops so that the iterations of a loop havethe same e�e
t as the loop itself. Therefore, it is enough to analyze a singleiteration to tell how the 
omputations look when the loop is iterated an arbitrarynumber of times. By a part in an idempotent pattern �, we mean an element (ane�e
t) in the set �(s; s0) for some states s and s0. We will distinguish betweentwo types of parts, namely bad and good parts. A bad part 
orresponds only toruns along whi
h the in
rease of some 
ounter is at least as big as the numberof the iterations of the loop. A part is good if there is a run along whi
h thein
rease is bounded by the maximal in
rease indu
ed by two iterations of theloop. Formally, we de�ne a fun
tion reduce whi
h for ea
h pattern returns apattern 
ontaining all good parts of the original pattern, but no bad part. Thenwe illustrate it on a number of examples.For a pattern �, core(�) is de�ned as follows:
core(�)(s; s0) =

��(s; s0) \ f0; rgn if s = s0; otherwiseLet reduce(�) = � � core(�) � �.For an automaton with one state s, one 
ounter, and a loop w with pattern �,if �(s; s) = f(1)g then the whole pattern is bad, i.e., reduce(�)(s; s) = ;. Noti
ethat any run over wk in
reases the 
ounter by k. On the other hand, if �(s; s) =f(0)g or �(s; s) = f(r)g then the whole pattern is good, i.e., reduce(�) = �.With more 
ompli
ated patterns we need a more 
areful analysis. Let us 
on-sider a loop w with pattern � where �(s; s) = f(0)g, �(s0; s0) = f(1)g, �(s; s0) =f(1)g, and �(s0; s) = f(1)g. We will motivate why the part (1) 2 �(s0; s0) is good.For any k, we 
an take the run over wk whi
h starts from s0, moves to s after the�rst iteration, stays in s for k � 2 iterations, and �nally moves ba
k to s0 afterthe kth iteration. Then, the e�e
t of the run is (1). Furthermore, the 
ounterin
rease along the run is bounded by twi
e the maximal 
ounter in
rease whilereading w. In fa
t, using a similar reasoning, we 
an show that all parts of � aregood (whi
h is 
onsistent with the fa
t that reduce(�) = �).As the last example, let us 
onsider the pattern from Figure 5a. First, weshow that the part (1; 0) 2 �(s0; s0) is bad. The only run over wk with e�e
t8



(1; 0) is the one whi
h 
omes ba
k to s0 after ea
h iteration. However, this runin
reases the �rst 
ounter by k. On the other hand, the part (1; 1) 2 �(s0; s0) isgood by a similar reasoning to the previous example. In fa
t, we 
an show thatall other parts of the pattern are good (whi
h is 
onsistent with the value of
reduce(�) in Figure 6).ss0 ss0 ss0 ss0 =

ss0 ss0(0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

(0; 0) (0; 0) ; (1; 1)

(1; 0) ; (1; 1)

(1; 1)

(1; 1)

(0; 0) ; (1; 1)

(1; 1)

(1; 1)

(1; 1)Fig. 6. � � core(�) � � = reduce(�) where � is the pattern from Figure 5aRedu
ed Fa
torization Trees. For a fa
torization of a word w, we needto 
he
k whether there is a run whi
h goes through a good part in every loop.In order to do that, we enri
h the tree stru
ture, so that ea
h node will now belabeled, in addition to a word, also by a pattern. The patterns are added by thefollowing fun
tion: given an input sequen
e of patterns, the leaves are labeledby the elements of the sequen
e, nodes with bran
hing degree 2 are labeled bythe 
omposition of the 
hildren labels, and we label ea
h node with bran
hingdegree at least 3 by �, where � is the idempotent label of all its 
hildren. Now,we build a redu
ed fa
torization tree for w in several steps (formally des
ribedin Subse
tion 3.2).We start with the sequen
e of patterns obtained by Run from the letters ofthe word. In ea
h step, we take the resulting sequen
e from the previous stepand build a fa
torization tree from it. Then we take the lowest nodes su
h thatthey have at least 3 
hildren and they are labeled by a pattern � su
h that
reduce(�) 6= �. We 
hange the labels of these nodes to reduce(�). We pa
k thesubtrees whi
h have these nodes as roots into elements of the new sequen
e andwe leave other elements of the sequen
e unmodi�ed. This pro
edure eventuallyterminates and returns one tree with the following properties (the importantinvariant is shown in Lemma 1):� if a node labeled by � has two 
hildren labeled by �1; �2 then � = �1 � �2,� if a node labeled by � has m 
hildren labeled by �1; : : : ; �m, m � 3, then�i = �j for all 1 � i; j � m, �1 is idempotent, and � = reduce(�1).An example of a redu
ed fa
torization tree is in Figure 7. We show that thereis a fa
torization fun
tion su
h that the height of all redu
ed fa
torization treesprodu
ed by it is bounded by 3 � jPj2 (Lemma 2) using the fa
torization foresttheorem and a property of the redu
tion fun
tion that reduce(�) <J �, where<J is the usual ordering of the J -
lasses on P, J is a standard Green's relation;� �J �0 if and only if there are �1; �2 su
h that � = �1 � �0 � �2; � <J �0 if andonly if � �J �0 and �0 �J � (Lemma 6 in Appendix).9



�1; ab
de

�2; ab reduce(�5); 
de

�3; a �4; b �5; 
 �5; de �5; 
 �5; 
�6; d �7; eFig. 7. An example redu
ed fa
torization tree. �1 = �2 � reduce(�5); �2 = �3 � �4, and�5 = �6 � �7. For all leaves labeled by �̂; â, �̂ = Run(â).Corre
tness. Let � be the label of the root of a redu
ed fa
torization treefor a word w and let pump(r; k) for a +-free regular expression and for a k 2 Nbe the word obtained by repeating ea
h r1, where r�1 is a subexpression of r,k-times. Then� if �(s0; sf ) 6= ; for some sf 2 F then there is a run from s0 to s over w in
8jPj2-semanti
s,� otherwise, there is a +-free regular expression r su
h that for all D there isa k su
h that there is a 
ounter whi
h ex
eeds D along all runs from s0 tosf , sf 2 F , over pump(r; k).The previous items are formulated in Subse
tion 3.3, in Lemma 4 and Lemma 5.Relation to Simon's Approa
h. There are several important di�eren
esbetween the method presented in this paper and that of Simon [Sim94℄. Ournotion of pattern is a fun
tion to a set of e�e
ts, while in Simon's 
ase it is afun
tion to the set f0; 1; !g. Be
ause of the resets and the fa
t that there areseveral 
ounters, it is not possible to linearly order the e�e
ts. Thus, a 
olle
tionof automaton runs 
an be abstra
ted into several in
omparable e�e
ts. The setsare ne
essary in order to remember all of them. Furthermore, the di�erent no-tion of pattern requires a new notion of redu
tion whi
h does not remove loopslabeled also by resets. We need to show then that appli
ation of this notion ofredu
tion during the 
onstru
tion of the redu
ed fa
torization trees preservesthe 
orre
tness.3.2 Constru
tion of the Redu
ed Fa
torization TreeWe de�ne labeled �nite trees to 
apture the looping stru
ture of the sequen
es ofpatterns. Let � be a set of �nite trees with two labeling fun
tions Pat and Word,whi
h for ea
h node return a pattern and a word, respe
tively. We will abusethe notation and, for a tree T , we use Pat(T ) or Word(T ) to denote Pat(N) or

Word(N), respe
tively, where N is the root of T . We also identify nodes with thesubtrees in whi
h they are roots. We 
an then say that a node T has 
hildren10



T1; : : : ; Tm and then use Ti's as trees. For a tree T , we de�ne its height h(T )as h(T ) = 1 if T is a leaf, h(T ) = 1 + maxfh(T1); : : : ; h(Tm)g if T1; : : : ; Tm are
hildren of the root of T .By �+ we mean the set of nonempty sequen
es of elements of � . By (�+)+ wemean the set of nonempty sequen
es of elements of �+. Let us denote elementsof �+ by 
; 
1; 
0; : : : . For 
 2 �+, let j
j denote the length of 
.Let f : �+ ! P be a homomorphism with respe
t to � de�ned by f(T ) =
Pat(T ). We 
all a fun
tion d : �+ ! (�+)+ a fa
torization fun
tion if it satis�esthe following 
onditions. If d(
) = (
1; 
2; : : : ; 
m) then 
 = 
1 � 
2 � � � 
m, ifm = 1 then j
j = 1, and if m � 3 then f(
) = f(
i) for all 1 � i � m and f(
)is an idempotent element.For a fa
torization fun
tion d we de�ne two fun
tions tree : �+ ! � and
cons : �+ ! �+ indu
tively as follows. Let h�;wi denote a tree with 
onsists ofonly the root labeled by � and w.
tree(
) =

8>>>>>><>>>>>>:
 if j
j = 1;h�1 � �2; w1 � w2i with 
hildren tree(
1); tree(
2); if d(
) = (
1; 
2);�i = Pat(tree(
i)); wi = Word(tree(
i)) for i 2 f1; 2g;hreduce(�); w1 � w2 � � �wmi with 
hildren tree(
1); : : : ; tree(
m); ifm � 3; d(
) = (
1; 
2; : : : ; 
m); � = Pat(tree(
1));and wi = Word(tree(
i)) for all 1 � i � m:The fun
tion tree builds a redu
ed fa
torization tree (or a fa
torization tree)from the sequen
e of trees a

ording to the fun
tion d. The only di�eren
e fromstraightforward following the fun
tion d is that the labeling fun
tion Pat mightbe 
hanged by the fun
tion reduce. Let us 
olor the trees in the fun
tion conseither green or red during the indu
tive 
onstru
tion of a new sequen
e.
cons(
) =

8>>>>>>>>>><>>>>>>>>>>:

 if j
j = 1: Mark 
 green.
cons(
1) � cons(
2) � � � cons(
m)if d(
) = (
1; 
2; : : : ; 
m) and either m = 2 orthere is 1 � i � m su
h that cons(
i) 
ontainsa red tree or reduce(f(
1)) = f(
1):
tree(
) if d(
) = (
1; 
2; : : : ; 
m);m � 3; no cons(
i)
ontains a red tree and reduce(f(
1)) 6= f(
1):Mark the tree red.The fun
tion cons updates the sequen
e of trees trying to leave as mu
h aspossible untou
hed, but whenever Pat would be 
hanged by the reduce fun
tionfor the �rst time (on the lowest level), it pa
ks the whole sequen
e into a singletree with 
hanged Pat label of the root using the fun
tion tree.The important property of the 
onstru
tion is that for ea
h tree in the newsequen
e it holds that whenever a node has more than two 
hildren, they are alllabeled by identi
al idempotent patterns. Let us 
all a tree balan
ed if whenevera node T has 
hildren T1; T2; : : : ; Tm, where m � 3, then Pat(T1) = Pat(T2) =� � � = Pat(Tm), it is an idempotent element in P, and Pat(T ) = reduce(Pat(T1)).11



TBTAT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15Fig. 8. Appli
ation of cons to T1 � � �T15. The bla
k nodes represent the nodes for whi
h
reduce(�) 6= �. The resulting sequen
e is T1T2T3T4TAT8T9TBT15.Lemma 1. For a 
 2 �+, if all trees in 
 are balan
ed then all trees in cons(
)are balan
ed.Now we show how to get a sequen
e of trees from runs of the automaton. Let
treeRun : �+ �! �+ be a homomorphism with respe
t to the word 
ompositionde�ned by treeRun(a) = hRun(a); ai.Assume that there is a fa
torization fun
tion d �xed. Let for a word w 2 �+,
w be de�ned as consn(treeRun(w)), where n 2 N is su
h that consn(treeRun(w)) =
consn+1(treeRun(w)). Note that 
w is always de�ned, be
ause for all 
 2 �+,jcons(
)j � j
j and if jcons(
)j = j
j then cons(
) = 
. Let Tw = tree(
w). FromLemma 1 it follows that Tw is balan
ed (note that if consn(
) = consn+1(
) then
consn(
) 
ontains only green trees).Remark. Noti
e that we do not expli
itly mention the fa
torization fun
tiond in the de�nition of a redu
ed fa
torization tree Tw 
onstru
ted by d from aword w. It is always 
lear from the 
ontext whi
h fa
torization fun
tion we mean.We show that for ea
h R-automaton there is a fa
torization fun
tion su
hthat for any w the height of the tree Tw is bounded by a 
onstant 
omputedfrom the parameters of the automaton. The proof of this lemma is based on thefa
t that reduce(�) <J �.Lemma 2. Given an R-automaton A, there is a fa
torization fun
tion d su
hthat for all words w 2 �+, h(Tw) � 3 � jPj2.3.3 Corre
tnessTo formulate the �rst 
orre
tness lemma, we de�ne the following 
on
ept of alength fun
tion l : � ! N indu
tively byl(T ) =

8<:1 if T is a leafl(T1) + l(T2) if T has two 
hildren T1; T2

2 �maxfl(T1); : : : ; l(Tm)g if T has 
hildren T1; : : : ; Tm;m � 3By indu
tion on h(Tw) and using the bound derived in Lemma 2, one 
anshow the following 
laim. 12



Lemma 3. Given an R-automaton A, there is a fa
torization fun
tion d su
hthat for all words w 2 �+, l(Tw) � 8jPj2.We say that s w�! s0 or s w�!D s0 realizes t if there is a witnessing path
(s; a1; t1; s1), (s1; a2; t2; s2), : : : , (sjwj�1; ajwj; tjwj; s0) su
h that t = t1Æt2Æ� � �Ætjwj.Let us de�ne RunD(w) to be the pattern obtained by running the automatonover w in the D-semanti
s. Formally, RunD(w)(s; s0) 
ontains t if and only ifs w�!D s0 realizes t. Note that the fun
tion RunD is not a homomorphism withrespe
t to the word 
omposition. We also de�ne a relation v on patterns by� v �0 if and only if for all s; s0, �(s; s0) � �0(s; s0).From Lemma 3 we show that there is a fa
torization fun
tion su
h that forevery w, Pat(Tw) 
orresponds to the runs of the R-automaton whi
h 
an beperformed in the D-semanti
s for any big enough D. This is formulated in thefollowing lemma.Lemma 4. Given an R-automaton, there is a fa
torization fun
tion su
h thatfor all w 2 �+ and for all D 2 N; D � 8jPj2, Pat(Tw) v RunD(w).Of parti
ular interest are runs starting in the initial state.Corollary 1. Given an R-automaton A, there is a fa
torization fun
tion su
hthat for all words w, if Pat(Tw)(s0; s) 6= ; then there is a run hs0; (0; : : : ; 0)iw�!D hs; (
1; : : : ; 
n)i where D = l(Tw).It remains to show that if the relation between the patterns in the previouslemma is stri
t then there is a word for ea
h D whi
h is a witness for thestri
tness, i.e., the runs over this word in the D-semanti
s generate a smallerpattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r1 for all subexpressions r�1 of r. Letus de�ne a fun
tion re whi
h for a redu
ed fa
torization tree returns a +-freeregular expression indu
tively by

re(T ) =

8<:Word(T ) if T is a leaf
re(T1) � re(T2) if T has two 
hildren T1; T2

(re(T1))� if T has 
hildren T1; T2; : : : ; Tm;m � 3For a +-free regular expression r and a natural number k > 0, let the fun
tion
pump(r; k) be de�ned indu
tively as follows: pump(a; k) = a, pump(r1 � r2; k) =
pump(r1; k) � pump(r2; k), and pump(r�; k) = pump(r; k)k.For example, pump(a(b
�d)�aa�; 2) = ab

db

daaa.Lemma 5. Given an R-automaton and a fa
torization fun
tion, for all w 2 �+and all D 2 N there is a k 2 N su
h that RunD(pump(re(Tw); k)) v Pat(Tw).A spe
ial 
ase are runs starting from the initial state.Corollary 2. Given an R-automaton, for any w 2 �+, if Pat(Tw)(s0; s) = ;then 8D9k su
h that there is no run hs0; (0; : : : ; 0)i v�!D hs; (
1; : : : ; 
n)i wherev = pump(re(Tw); k). 13



3.4 AlgorithmTo 
he
k the universality of an R-automaton A, we have to 
he
k all patterns �su
h that � = Pat(Tw) for some w 2 �+ and some fa
torization fun
tion. If thereis a � su
h that for all sf 2 F , �(s0; sf ) = ; then for all D 2 N, LD(A) 6= ��.This gives us the following algorithm. Re
all that �e denotes the unit of (P; �).The algorithm uses a set of patterns P as the data stru
ture. Given an R-automaton A = hS;�;�; s0; F i on the input, it answers 'YES' or 'NO'. The setP is initialized by P = f�j� = Run(a); a 2 �g [ f�eg.While jP j in
reases the algorithm performs the following operations:� pi
k �1; �2 2 P and add �1 � �2 ba
k to P .� pi
k a � 2 P su
h that � is idempotent and add reduce(�) ba
k to P .If there is � 2 P su
h that for all sf 2 F , �(s0; sf ) = ;, answer 'NO',otherwise, answer 'YES'.The 
orre
tness proof is given in the following theorem. See Appendix forthe full proof.Theorem 2. The algorithm is 
orre
t and runs in 2-EXPSPACE.Proof. The algorithm terminates be
ause P is �nite. Its 
orre
tness follows fromthe previous two 
orollaries. The algorithm needs spa
e jPj (the number of dif-ferent patterns). The size of P is 2(3n)�jSj2 (jSj2 di�erent pairs of states, 2(3n)di�erent sets of e�e
ts). Therefore, the algorithm needs double exponential spa
e.ut4 Bü
hi UniversalityThe universality problem is also de
idable for R-automata with Bü
hi a

eptan
e
onditions.Theorem 3. For a given R-automaton A, the question whether there is D 2 Nsu
h that L!D(A) = �! is de
idable in 2-EXPSPACE.To show this result, we need to extend patterns by a

epting state infor-mation. A pattern is now a fun
tion � : S � S �! 2f0;1g�f0;1;rgn, wherefor s; s0 and ha; ti 2 �(s; s0), the value of a en
odes whether there is a pathfrom s to s0 realizing t whi
h meets an a

epting state. For instan
e, �(s; s0) =fh0; (0; r)i; h1; (1; 1)ig means that there are two di�erent types of paths betweens and s0: they either realize (0; r) but do not visit an a

epting state, or realize
(1; 1) and visit an a

epting state. We de�ne the 
omposition � by de�ning the
omposition on the a

epting state: 0 Æ 0 = 0; 0 Æ 1 = 1 Æ 0 = 1 Æ 1 = 1. Theset of patterns (denote again P) with � is a �nite monoid. We de�ne the fun
-tion reduce in the same way as before, i.e., the a

epting state information doesnot play any role there. Clearly, reduce(�) <J �, so the redu
ed fa
torizationtrees produ
ed by reduce have bounded height. Lemma 4 and Lemma 5 also14



hold, be
ause (non)visiting an a

epting state does not in�uen
e the runs in theD-semanti
s.This allows us to use the same algorithm as for the �nite word universalityproblem, ex
ept for the 
ondition for 
on
luding non-universality. The 
onditionis whether there are �1; �2 2 P su
h that �2 is idempotent and for all s su
hthat �1(s0; s) 6= ; the following holds. If ha; ti 2 �2(s; s) then either a = 0 ort =2 f0; rgn.5 Con
lusionsWe have de�ned R-automata � �nite automata extended with unbounded 
oun-ters whi
h 
an be left un
hanged, in
remented, or reset along the transitions.As the main result, we have shown that the following problem is de
idable in2-EXPSPACE. Given an R-automaton, is there a bound su
h that all words area

epted by runs along whi
h the 
ounters do not ex
eed this bound? We havealso extended this result to R-automata with Bü
hi a

eptan
e 
onditions.As a future work, one 
an 
onsider the (bounded) universality or limitednessquestion to ve
tor addition systems (VASS) or reset ve
tor addition systems(R-VASS), where the latter form a super
lass of R-automata. The limitednessproblem 
an be shown unde
idable for R-VASS for both �nite word and !-word
ase, while it is an open question for VASS. The universality problem 
an beshown to be unde
idable for R-VASS for !-word 
ase, in other 
ases it is open.Referen
es[AKY07℄ Parosh Abdulla, Pavel Kr
al, and Wang Yi. Sampled universality of timedautomata. In Pro
. of FOSSACS'07, volume 4423 of LNCS, pages 2�16.Springer-Verlag, 2007.[Has82℄ Kosaburo Hashigu
hi. Limitedness theorem on �nite automata with distan
efun
tions. Journal of Computer and System S
ien
es, 24(2):233�244, 1982.[Has90℄ Kosaburo Hashigu
hi. Improved limitedness theorems on �nite automata withdistan
e fun
tions. Theoreti
al Computer S
ien
e, 72(1):27�38, 1990.[Kir04℄ Daniel Kirsten. Distan
e desert automata and the star height one problem.In Igor Walukiewi
z, editor, FoSSaCS, volume 2987 of Le
ture Notes in Com-puter S
ien
e, pages 257�272. Springer, 2004.[Kl07℄ Manfred Kufleitner. A proof of the fa
torization forest theorem. Te
hni
alreport Nr. 2007/05, Formale Methoden der Informatik, Universität Stuttgart,Germany, O
tober 2007.[KP05℄ Pavel Kr
al and Radek Pelanek. On sampled semanti
s of timed systems. InPro
. of FSTTCS'05, volume 3821 of LNCS, pages 310�321. Springer-Verlag,2005.[Leu91℄ Hing Leung. Limitedness theorem on �nite automata with distan
e fun
tions:an algebrai
 proof. Theoreti
al Computer S
ien
e, 81(1):137�145, 1991.[Sim90℄ Imre Simon. Fa
torization forests of �nite height. Theoreti
al ComputerS
ien
e, 72(1):65�94, 1990.[Sim94℄ Imre Simon. On semigroups of matri
es over the tropi
al semiring. Informa-tique Theorique et Appli
ations, 28(3-4):277�294, 1994.15



A AppendixProof (Lemma 1). The only possibility where a new tree 
an o

ur in cons(
)is as a result of tree(
0) for some 
0. The 
onditions on 
0 are that d(
) =
(
1; : : : ; 
m) and for all 1 � i � m, cons(
i) does not 
ontain a red tree. Then weprove that Pat(tree(
)) = f(
) for any 
 2 �+ su
h that cons(
) 
ontains onlygreen trees by indu
tion on h(tree(
)). If h(tree(
)) = 1 then it follows dire
tlyfrom the de�nition of f . If h(tree(
)) > 1 and d(
) = (
1; 
2) then the 
laimfollows from the indu
tion hypothesis and the fa
t that f is a homomorphism. Ifh(tree(
)) > 1 and d(
) = (
1; : : : ; 
m), m � 3, then the 
laim follows from theindu
tion hypothesis and the fa
t that cons(
) 
ontains only red trees, 
on
retely,
tree(
) is green, from whi
h it follows that reduce(f(
1)) = f(
1).The fa
t that tree(
0) is balan
ed follows dire
tly from the previous propertyand the 
ondition on the fun
tion d that Pat(
1) = f(
1) = f(
i) = Pat(
i) forall 1 � i � m. utTo prove Lemma 2, we need to show a te
hni
al property of the redu
tionfun
tion, namely that redu
tion stri
tly redu
es the J level of the pattern (Jis a standard Green's relation; � �J �0 if and only if there are �1; �2 su
h that� = �1 � �0 � �2; � <J �0 if and only if � �J �0 and �0 �J �).Lemma 6. For any idempotent pattern �, either reduce(�) = � or reduce(�) <J�.Proof. From the idempoten
e of � it follows that reduce(�) = � � reduce(�) � �.This property is su�
ient for the proof of Lemma 3 from [Sim94℄ whi
h appliesto our 
ase. This proof uses Green's relations.We present also an alternative proof without using Green's relations here.First we show that if reduce(�) 6= � then there are t and s su
h that t 2 �(s; s)but t =2 reduce(�)(s; s). Assume that it is not the 
ase. Be
ause � is idempotentand the fun
tion reduce does not add anything to the pattern, there are s; s0; tsu
h that t 2 �(s; s0), t =2 reduce(�)(s; s0). Be
ause � is idempotent, there ares00; t1; t2; t3 su
h that t1 2 �(s; s00); t2 2 �(s00; s00); t3 2 �(s00; s0); t = t1 Æ t2 Æ t3.From the assumption, t2 2 reduce(�)(s00; s00), i.e., there are ŝ; t0; t00; t000 su
h thatt0 2 �(s00; ŝ); t00 2 core(�)(ŝ; ŝ); t000 2 �(ŝ; s00); t2 = t0 Æ t00 Æ t000. But be
ause � isidempotent, t1 Æ t0 2 �(s; ŝ) and t000 Æ t3 2 �(ŝ; s0), so t 2 reduce(�)(s; s0), whi
his a 
ontradi
tion with the assumption.Let us say that s and s0 are merged by t in � if t 2 �(s; s); t 2 �(s0; s0); t 2�(s; s0); t 2 �(s0; s). We write it (s; t) �m (s0; t). In fa
t, for an idempotent pat-tern �, the relation �m is an equivalen
e relation on the set of pairs (s; t). Notethat if s; s0 are merged by t in � and t =2 reduce(�)(s; s) then t =2 reduce(�)(s0; s0).Therefore, the number of �m equivalen
e 
lasses of reduce(�) is stri
tly smallerthan that of � (unless they are equal).Let 0 < 1 < r. Let t = (b1; : : : ; bn) < t0 = (b01; : : : ; b0n) if bi < b0i for all
1 � i � n. The set of e�e
ts together with this order is a �nite latti
e. Let # tdenote a prin
ipal ideal in this latti
e generated by t. We try to 
onstru
t �1; �216



so that �0 = �, where �0 = �1 � reduce(�) � �2, and we show that if we do notwant to fail then reduce(�) = �.Let us say that s; t where t 2 �0(s; s) goes through s0; t0 if there are t1; t2; t3; t4; t5su
h that t1 2 �1(s; s1); t2 2 �(s1; s0); t3 2 core(�)(s0; s0); t4 2 �(s0; s2); t5 2�2(s2; s), t3 < t0, and t0 2 �(s0; s0). The main idea of the rest of this proof is thatto be able to 
onstru
t i di�erent equivalen
e 
lasses wrt. �m, we need i di�erentequivalen
e 
lasses in reduce(�). We will be interested only in the e�e
ts on theloops, i.e., only in t 2 �0(s; s0) where s = s0.Note that if �0 is idempotent (and we want this, be
ause � is idempotent)then if s1; t1, s2; t2 go through s3; t0, s4; t0, respe
tively, and (s3; t0) �m (s4; t0)in � then (s1; t1_ t2) �m (s2; t1_ t2) in �0. This follows from the idempoten
y of�0 and the de�nition of the relation merged; the reasoning is similar to the onein the �rst paragraph of this proof.We show by indu
tion on the size of # t that if t 2 �(s; s) for some s thenwe need as many equivalen
e 
lasses whi
h 
ontain a t0 2# t in their se
ond
omponent in reduce(�) as in � to not to introdu
e any t 2 �(s; s0) su
h that t =2�(s; s0). The basi
 step is 
lear from the previous paragraph. For the indu
tionstep, if s; t goes through some s0; t0 su
h that t0 < t then t 2 reduce(�)(s0; s0)must hold and thus it also goes through s0; t. Also, ea
h s; t, s0; t whi
h are notmerged in � have to go through s1; t, s2; t whi
h are not merged in �. Therefore,there are needed as many equivalen
e 
lasses whi
h 
ontain t in their se
ond
omponent as there are in �. utWe state the fa
torization forest theorem. It was formulated and proved bySimon [Sim90℄, the best known bound is shown in [Kl07℄.Theorem 4 (Fa
torization Forest Theorem). For a �nite monoid P and ahomomorphism f : �+ �! P, there is a fa
torization fun
tion d su
h that forall 
 2 �+, h(tree(
)) � 3jPj.Now we 
an 
ontinue with the proofs of Lemmata from the paper.Proof (Lemma 2). Let us �rst de�ne the nesting depth fun
tion nd : �+ ! Nby
nd(
) =

8>>>><>>>>:1 if 
 = h�; ai
1 + nd(
0) if j
j = 1;
 6= h�; ai;
 = tree(
0)
maxfnd(Ti); : : : ; nd(Tk)g if 
 = T1 � � �TkNote that for any w 2 �+ and for any tree in 
w, either the tree 
onsists ofonly a root (it is equal to h�; ai for some � and a) or it has been obtained as

tree(
0) for some 
0 2 �+. Note also, that for ea
h su
h tree, there is exa
tly onesu
h 
0 (for a �xed d). Therefore, the nesting depth fun
tion nd is well-de�nedfor all 
w.From Lemma 6 it follows that whenever nd is applied to a 
 su
h that j
j = 1,
 6= h�; ai, 
 = tree(
0), 
0 = T1 � � �Tk then for all 1 � i � k, Pat(
) <J Pat(Ti).Thus, for any w 2 �, nd(
w) � jPj. 17



From fa
torization forest theorem, we know that there is d su
h that h(tree(
)) �
maxfh(T1); : : : ; h(Tk)g+3�jPj for all sequen
es 
 = T1 � � �Tk. Therefore, h(Tw) =h(tree((
w)) � 3 � jPj � nd(
w) � 3 � jPj2 for this d. utBefore showing the two following proofs, let us 
onsider the following prop-erty. If s w�!D s0 (or s w�! s0) realizes t = (b1; : : : ; bn), the 
ounter valuesalong a run hs; (
1; : : : ; 
n)i w�! hs0; (
01; : : : ; 
0n)i produ
ed by this path satisfythe following 
onditions:� if bi = 0 then 
i = 
00i for all states hs00; (
001 ; : : : ; 
00n)i along the run,� if bi = r then 
00i = 0 (sin
e it is reset) in some state hs00; (
001 ; : : : ; 
00n)i alongthe run, and� if bi = 1 then 
i < 
0i (and it is not reset along the run).Proof (Lemma 4). Let us �x a fa
torization fun
tion d satisfying Lemma 3. Weshow this lemma by proving the following 
laim by indu
tion on h(Tw). For anyw 2 �+, if t 2 Pat(Tw)(s; s0) then s w�!D s0 realizing t for D = l(Tw). FromLemma 3 we have that su
h a run exists also in any D-semanti
s for D � 8jPj2.The basi
 step follows dire
tly from the de�nition of the fun
tion treeRun.Assume that the tree has the root h�1 � �2; w1 � w2i with 
hildren Tw1 andTw2 (note that for ea
h subtree T , T = TWord(T )), where �1 = Pat(Tw1), �2 =
Pat(Tw2). Then there are s00; t1; t2 su
h that t1 2 �1(s; s00); t2 2 �2(s00; s0), andt = t1Æt2. From the indu
tion hypothesis, s w1�!D1 s00 realizes t1 and s00 w2�!D2 s0realizes t2, where D1 = l(Tw1); D2 = l(Tw2). Clearly, if we 
on
atenate any twopaths given by these relations, we get s w�!D1+D2 s0 realizing t1 Æ t2. From thede�nition of the length fun
tion, l(Tw) = l(Tw1) + l(Tw2) = D1 + D2.Assume that the tree has the root hreduce(�); w1 � � �wmi with 
hildren Tw1 ; : : : ; Twm ,where m � 3; � = Pat(Tw1 ). Then there are s00; t1; t2; t3 su
h that t1 2 �(s; s00),t2 2 �(s00; s00), t3 2 �(s00; s0), t = t1 Æ t2 Æ t3, and t2 2 f0; rgn (this followsdire
tly from the de�nition of the fun
tion reduce). Sin
e Pat(Twi) = � for all
1 � i � m ((whi
h we have from Lemma 1) then from the indu
tion hypothesiss w1�!l(Tw1 ) s00 realizes t1, s00 wi�!l(Twi ) s00 realizes t2 for all 2 � i � m � 1, ands00 wm�!l(Twm ) s0 realizes t3.Let us analyze the length of the 
on
atenation of the paths given by theserelations. For ea
h 
ounter, if its 
orresponding e�e
t in t2 is 0 then the bound onthis 
ounter during the whole path is l(Tw1)+l(Twm), be
ause it is left un
hangedduring the path part over w2 � w3 : : : wm�1. If the 
orresponding e�e
t in t2 ofthe 
ounter is r then the 
ounter is reset at least on
e in ea
h path part overw2; w3; � � � ; wm�1. Therefore, it is bounded by the maximal length between tworesets, whi
h is bounded by maxfl(Tw1)+ l(Tw2 ); l(Tw2)+ l(Tw3); : : : ; l(Twm�1)+l(Twm)g. Then, s w�!D s0 realizes t, where D = 2 � maxfl(Tw1); : : : ; l(Twm)g. utProof (Lemma 5). We show this lemma by proving the following 
laim by indu
-tion on h(Tw). For all D 2 N there is k 2 N su
h that for v = pump(re(Tw); k),18



if s v�!D s00 realizes t then t 2 Pat(Tw)(s; s0) (note that this holds also for allk0 > k).The basi
 step follows dire
tly from the de�nition of the fun
tion treeRun(with any k).Assume that the tree has the root h�1 � �2; w1 � w2i with 
hildren Tw1 andTw2 , where �1 = Pat(Tw1 ), �2 = Pat(Tw2). Let k1; k2 be the 
onstants from theindu
tion hypothesis applied to Tw1 and Tw2 . Let k = maxfk1; k2g. Let us denotev1 = pump(re(Tw1 ); k); v2 = pump(re(Tw2 ); k); v = v1 � v2 = pump(re(Tw); k).Assume that s v�!D s00 realizes t. Then there must be an s00 su
h that s v1�!D s00,s00 v2�!D s0 realize t1; t2, respe
tively, su
h that t = t1 Æ t2. From the indu
tionhypothesis, t1 2 Pat(Tw1 )(s; s00) and t2 2 Pat(Tw2)(s00; s0). Be
ause Pat(Tw) =�1 � �2 = Pat(Tw1 ) � Pat(Tw2), we have that t = t1 Æ t2 2 Pat(Tw)(s; s0).Assume that the tree has the root hreduce(�); w1 � � �wmi with 
hildren Tw1 ; : : : ; Twm ,where m � 3; � = Pat(Tw1). Let k1 be the 
onstant from the indu
tion hypoth-esis applied to Tw1 and k2 = (D + 1)n � jSj. Let k = maxfk1; k2g. Let us denotev1 = pump(re(Tw1 ); k); v = vk1 = pump(re(Tw); k).Assume that s v�!D s0 realizes t. Then there must be a sequen
e of statessi for 1 � i � k + 1 su
h that si v1�!D si+1 realizes ti, s1 = s; sk+1 = s0, andt = t1 Æ t2 Æ � � � Æ tk. First, we show by 
ontradi
tion that there are indi
es i; jsu
h that i < j; si = sj and ti Æ � � � Æ tj�1 2 f0; rgn. Let us assume that for alli < j su
h that si = sj , ti Æ � � � Æ tj�1 =2 f0; rgn. Let us pi
k an ŝ su
h thatG = jfijsi = ŝ; 1 � i � k + 1gj is maximal. From the 
hoi
e of k we have thatG > Dn. We show that there is a 
ounter ex
eeding D along all paths witnessings v�! s0 realizing t. We know from our assumption (ti Æ � � � Æ tj�1 =2 f0; rgn) andfrom the de�nition of realizing that for all i; j su
h that si = sj = ŝ, the 
ountervalues in any run over v 
annot be identi
al in si and sj . There are Dn di�erent
on�gurations with all 
ounters smaller than or equal to D. Sin
e G > D, some
ounter has to ex
eed D. This 
ontradi
ts that s v�!D s0 realizes t.From the indu
tion hypothesis we have that for all 1 � i � k, ti 2 Pat(Tw1 ).Let i and j satisfy the 
ondition from the previous paragraph, i.e., i < j; si =sj and ti Æ � � � Æ tj�1 2 f0; rgn. Be
ause Pat(Tw1) is idempotent (follows fromLemma 1), we have that ti Æ � � � Æ tj�1 2 Pat(Tw1)(si; sj) and thus ti Æ � � � Æ tj�1 2
core(Pat(Tw1 ))(si; sj). Also, t1 Æ � � � Æ ti�1 2 Pat(Tw1)(s; si) and tj Æ � � � Æ tk 2
Pat(Tw1)(sj ; s0). From the de�nition of the fun
tion reduce, we 
an 
on
ludethat t 2 reduce(Pat(Tw1))(s; s0). utLemma 7. For any � 2 P obtained by the algorithm there is a fa
torizationfun
tion and a word w su
h that � = Pat(Tw).Proof. Consider the tree labeled by the patterns de�ned indu
tively as follows.The root is labeled by �. If a node is labeled by �0 whi
h was 
reated (for the �rsttime) by 
omposing �1 � �2 then this node has two 
hildren labeled by �1 and�2. If a node is labeled by �0 whi
h was 
reated (for the �rst time) by redu
ing�1 then this node has one 
hild labeled by �1. The leaf labels have been addedin the initialization step. Clearly, is �1 = �2 are labels of two nodes in the treethen their subtrees are identi
al. 19



Now we de�ne a partial fun
tion w : P �! �+ whi
h for ea
h pattern in thetree returns a word and if �1 6= �2 then w(�1) 6= w(�2). Su
h a labeling alsode�nes a fa
torization fun
tion whi
h for w = w(�) yields the tree Tw su
h that� = Pat(Tw).We start from the leaves and move indu
tively up. During the whole 
onstru
-tion, we maintain a 
ounter 
, whi
h is initially set to 
 = 1. For ea
h � in a leaf,w(�) = a su
h that Run(a) = � (if there are several, we assume some orderingand pi
k the least one). If a node is labeled by �0 and it has two 
hildren labeledby �1 and �2 then w(�0) = w(�1) � w(�2). If a node is labeled by �0 and it hasone 
hild labeled by �1 then w(�0) = (w(�1))k su
h that jPj
 < jw(�0)j � 2 � jPj
and we in
rement 
.For two di�erent patterns su
h that at least one of them has a redu
tion inits subtree, the words have to have a di�erent length . For two di�erent patternssu
h that there is no redu
tion in their subtrees, the words have to be di�erentbe
ause of the de�nition of Run and � (and all su
h words are shorter than jPj).utProof (Theorem 2). Clearly, the algorithm "
he
ks" all possible �'s su
h thatthere is a fa
torization fun
tion and a word w su
h that � = Pat(Tw). Also, forany � obtained by the algorithm there is a fa
torization fun
tion and a word wsu
h that � = Pat(Tw) (Lemma 7 in Appendix), with the ex
eption of �e whi
h
orresponds to w = � (for whi
h is the 
orre
tness 
lear).If the algorithm obtains a � su
h that �(s0; sf ) = ; for all sf 2 F then let us�x a fa
torization fun
tion and a word w su
h that � = Pat(Tw). Let r = re(Tw).From Corollary 2, for all D there is a k su
h that there is no a

epting run over
pump(r; k) in D-semanti
s.If for all patterns �, �(s0; sf ) 6= ; for some sf 2 F then we 
an �x a fa
tor-ization fun
tion satisfying Lemma 3. For all words, there is an a

epting run in
8jPj2-semanti
s given by Corollary 1.The 
omplexity follows from the size of the monoid P. utProof (Sket
h, Theorem 3). Let us denote the new pattern fun
tion by Pat

Band the new fun
tion whi
h extra
ts a pattern from the runs in the D-semanti
sby Run
BD.Let for an R-automaton, C = 8jPj2 and for an !-word w, w = w1 �w2 �w3 � � �be a split of this word su
h that all wi are �nite. For ea
h wi we de�ne apattern �w1 whi
h 
aptures the e�e
ts of the 
orresponding fragments of allin�nite runs over w in 2 � C-semanti
s. The 
hoi
e of 2 � C is motivated bythe reasons explained below. Let for all 1 � i, �wi be a pattern de�ned byha; ti 2 �wi(s; s0) if and only if there is an in�nite run in 2 � C-semanti
shs0; (0; : : : ; 0)i w1���wi�1�! 2�C hs; (
1; : : : ; 
n)i wi�!2�C hs0; (
01; : : : ; 
0n)i wi+1����! 2�C su
hthat the fragment hs; (
1; : : : ; 
n)i wi�! hs0; (
01; : : : ; 
0n)i realizes t and a = 1 ifand only if this fragment 
ontains an a

epting state.Assume that for all D, the R-automaton is not Bü
hi universal in the D-semanti
s. Let w be a 
ounterexample for D = 2 � jPj � C, i.e., w =2 L!D(A). Let20



us split w = w1 � w2 � w3 � � � so that all wi are �nite and �wi = �wj for all
2 � i; j. Let us denote �1 = �w1 and �2 = �w2 .Let l 2 N be su
h that �l2 is an idempotent (l � jPk). For all s, �l2(s; s)does not 
ontain h1; (b1; : : : ; bn)i, where bi 2 f0; rg. Otherwise, i.e., if there wass; t 2 f0; rgn su
h that h1; ti 2 �l2(s; s), there would be an a

epting in�nite runover w in the D-semanti
s, whi
h would 
ontradi
t the fa
t that w =2 L!D(A).This follows from the fa
t that all patterns were obtained in the 2 �C-semanti
sand l � jPj.It is not ne
essary that Run

BC(w2) v �2, be
ause the set of starting statesfor Run
BC is S. Even if we restri
t the set of starting states to L(�2), denoted

Run
BC (w2)0, the relation Run

BC(w2)0 v �2 does not have to hold. This is be
ausea fragment of a run over w2 in 2 � C-semanti
s 
ould have started from a statewith high 
ounter values and Run
BC starts from zeros. However, if we restri
tthe set of starting states to the states whi
h are in 2 � C-semanti
s rea
hableafter reading w1 with 
ounter values smaller than C, denote ˆRun

BC (w2), then
ˆRun

BC (w2) v �2 holds, be
ause now Run
BC starts from zeros and is limited by C,whereas �2 
ontains all runs whi
h start from 
ounter values smaller than C andthey are limited by 2 � C.From Lemma 4 we know that there is a fa
torization fun
tion su
h that�3 = Pat

B(Tw1 ) v Run
BC(w1) and �4 = Pat

B(Tw2 ) v Run
BC (w2). Let m be su
hthat �m4 is idempotent. Note that �m4 v �l2. We know that if �3 � �m4 (s0; s) 6= ;then �m4 (s; s) does not 
ontain h1; (b1; : : : ; bn)i, where bi 2 f0; rg. Therefore,from Lemma 5 we know that for any fa
torization fun
tion it holds that for allD there is a k su
h that pump(re(Tw1 ); k) � (pump(re(Tw2); k))! =2 L!D(A).
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