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ABSTRACT
A Biomedical Sensor Network (BSN) is a small-size sensor
network for medical applications, that may contain tens of
sensor nodes. In this paper, we present a formal model
for BSNs using timed automata, where the sensor nodes
communicate using the Chipcon CC2420 transceiver (devel-
oped by Texas Instruments) according to the IEEE 802.15.4
standard. Based on the model, we have used UPPAAL to
validate and tune the temporal configuration parameters of
a BSN in order to meet desired QoS requirements on net-
work connectivity, packet delivery ratio and end-to-end de-
lay. The network studied allows dynamic reconfigurations
of the network topology due to the temporally switching
of sensor nodes to power-down mode for energy-saving or
their physical movements. Both the simulator and model-
checker of UPPAAL are used to analyze the average-case
and worst-case behaviours. To enhance the scalability of
the tool, we have implemented a (new text-based) version
of the UPPAAL simulator optimized for exploring symbolic
traces of automata containing large data structures such as
matrices. Our experiments show that even though the main
feature of the tool is model checking, it is also a promising
and competitive tool for efficient simulation and parame-
ter tuning. The simulator scales well; it can easily handle
up to 50 nodes in our experiments. The model checker in-
stalled on a notebook can also deal with networks with 5
up to 16 nodes within minutes depending on the proper-
ties checked; these are BSNs of reasonable size for medical
applications. Finally, to study the accuracy of our model
and analysis results, we compare simulation results by UP-
PAAL for two medical scenarios with traditional simulation
techniques. The comparison shows that our analysis results
coincide closely with simulation results by OMNeT++, a
widely used simulation tool for wireless sensor networks.

�The work is supported by EC IST project CREDO.

All models for the experiments of this work can be found at
http://www.it.uu.se/research/group/darts/bsn/ including XML files for the
UPPAAL models of Chipcon CC2240 transceiver and BSNs analyzed, and
aslo source files for OMNeT++ simulation.

1. INTRODUCTION
Wireless Sensor Networks (WSN) [2] contain hundreds or
thousands of sensor nodes equipped with sensing, computing
and communication devices. These sensor nodes may be dis-
tributed in a large area and connected by short-range com-
munication devices over wireless channels. WSNs have a lot
of potential applications, e.g., battlefield surveillance, wild-
life monitoring and medical applications. In these mission-
critical applications, a certain set of QoS requirements on
network performance must be satisfied. This poses a num-
ber of challenges on the design and analysis of WSNs. Due to
the severe constraints on hardware platform, dynamic work-
ing environments, and self-organizing manner, a key design
challenge is to evaluate the network performance without in-
vesting on the hardware platforms and the time-consuming
deployment and measurement.

In this paper, we demonstrate that model-based techniques
can be used as an alternative approach to the design and
analysis of WSNs to complement traditional simulation-based
techniques. We shall study Biomedical Sensor Networks
(BSN), which are small-size WSNs for medical applications.
A BSN may contain tens of sensor nodes with a specified
sink node, distributed over a limited area such as an opera-
tion room or a nursing home. However, due to the hardware
constraints and limited power supply, the range of wireless
communication for each individual node is highly bounded.
Thus a packet often has to be forwarded by a number of
nodes to reach its destination. A concrete application sce-
nario of BSNs is described in [15]. On an accident site diffi-
cult to access, there may be many injured persons and the
available medics are limited. In such a situation a quickly
deployed BSN on the accident victims may be used to collect
and transmit vital sign data to a centralized medical server
for diagnose and analysis so that proper and efficient medical
operations can be carried out. For example, a sensor node
may be used to measure the body temperature of an injured
person with a certain period, and send the measured data
to the sink node immediately or when it reaches a thresh-
old value. Due to the life-critical nature of the application,
certain QoS requirements on, e.g., network connectivity and
packet delivery ratio must be guaranteed.

The difficulty in designing and analyzing a BSN is not in
dealing with an individual sensor node in the network, which



may be running a simple software. But as the network con-
tains a number of nodes, and these nodes must cooperate
to achieve some common goal, the behaviour of such a net-
work is extremely more complicated and difficult to analyze
due to non-determinism. For instance, the network topol-
ogy may be changing dynamically. The sensor nodes may
move, disappear, and new nodes may appear from time to
time. To achieve the common goal, the sensor nodes in a
network need to follow a suitable communication protocol.
The IEEE 802.15.4 [1] standard for wireless communication
is one of such protocols. It offers different modes for com-
munication and algorithms for packet routing if no direct
connection to the sink exists. However, the specification
of the standard covers only the logical behaviour of a sen-
sor node in wireless communication. Temporal configura-
tion parameters, such as the active and standby period, of a
node must be determined according to the application and
the QoS requirements to be satisfied. For example, the ap-
plication defines how often a sensor node should transmit
measured data and the necessary bandwidth. The duration
a node spends in the power down mode or in a mode for
packet forwarding can also be carefully set to reduce energy
consumption.
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Figure 1: Timing parameters and operation states
of Chipcon CC2420 based sensor nodes.

Fig. 1(a) illustrates the main timing parameters associated
with a sensor node. It has a main period covering three main
modes: transmission, reception and power down (sleeping).
The behaviour of a node repeats over the main periods. It
may, for instance, represent the measurement frequency of
the sensor. The second main parameter is the active period.
Within a main period, a node may stay active for some time
and then switch to the power down mode. When it becomes
active again, the node may begin to transmit data imme-
diately or after a short delay. Within the active period, if
a node is not transmitting data, it can receive data. The
received data may need to be forwarded, which brings the
node to the transmission mode again. The technical chal-
lenge here is to tune and validate the timing parameters such
that the desired QoS requirements are satisfied. In a more
complicated scenario, these parameters may be changing in
an adaptive manner at runtime for each individual node. In
this paper, we shall focus on the case of fixed parameters.

As an example, we study the Chipcon CC2420 transceiver
[22] developed by Texas Instruments, which is widely used as
the radio communication unit in sensor nodes. The chip im-
plements wireless communication services for sensor nodes,
following the IEEE 802.15.4 standard [1]. We shall develop
a formal model using timed automata for the transceiver. A
BSN based on such chips is modelled as a network of timed

automata. The network studied allows dynamic reconfigura-
tions of the network topology due to the physical movements
of sensor nodes among fixed positions and also their tempo-
rally switching between active and inactive modes. We have
used UPPAAL [13] to find the timing parameters and to
validate QoS properties of the network. Both the simula-
tor and model-checker of UPPAAL are used to analyze the
average-case and worst-case behaviours. To demonstrate the
usefulness of the technique, we have focused on packet deliv-
ery ratio and network connectivity. Our experiments show
that even though the main feature of UPPAAL is model
checking, it is also a promising and competitive tool for effi-
cient simulation and parameter tuning. The simulator scales
well; it can easily handle up to 50 nodes in our experiments.
We have also shown how to formalize and check QoS re-
quirements on network connectivity, end-to-end delay and
packet delivery ratio using the UPPAAL query language.
Compared with simulations, the model-checker may provide
a guarantee on whether a requirement is satisfied by all pos-
sible behaviours of the network. Our experiments show that
the model checker installed on a notebook with a Celeron
1.73 GHz processor and 1.5GB main memory is able to deal
with BSNs of up to 16 nodes depending on the properties
checked. These are BSNs of reasonable size for medical ap-
plications. Finally, to study the accuracy of our model and
analysis results, we compare the simulation results by UP-
PAAL with traditional simulation techniques. The compar-
ison shows that our analysis results coincide closely with
simulation results by OMNeT++ [24], a widely used simu-
lation tool for wireless sensor networks.

The paper is organized as follows. Section 2 provides a brief
survey on existing validation techniques for WSNs. Section
3 describes briefly the behavior of transceivers in BSNs for
wireless communication. In Section 4, we presents a timed
automaton model for the Chipcon transceiver, and networks
consisting of such transceivers. Section 5 shows how the
model and UPPAAL are used for validation of QoS proper-
ties. Section 6 presents compares with traditional simula-
tion techniques. Section 7 summarizes results and possible
directions for future work.

2. RELATED WORK
Compared with classical simulation-based techniques, for-
mal techniques are much less explored for the analysis of
WSNs. Formal techniques have their limitation with scala-
bility. But they can be used in the early design phase, e.g., to
check the correctness of protocols and to identify worst-case
scenarios for systems of moderate size. In [16], Olveczky and
Thorvaldsen describe the application of Real-Time Maude
for analysis of the OGDC algorithm [25]. The results show
that simulations with Real-Time Maude provide a more ac-
curate performance estimation for OGDC than NS-2. The
paper also shows that all performance metrics of the al-
gorithm can be measured, and the analysis required much
less effort than using a specialized network simulation tool.
Automata-based techniques have also been used recently for
analysis of wireless communication networks and protocols.
In [9], a probabilistic timed automata model of the CSMA-
CA contention resolution protocol according to the IEEE
802.15.4 standard is presented, and the PRISM tool is used
to verify scenarios of data transmission in wireless networks.
The work compares different configurations and abstractions



of the model. In [8], the LMAC protocol is modelled in timed
automata and a number of configurations for networks with
four and five nodes are systematically analyzed using UP-
PAAL. However, to our best knowledge, there are no pub-
lished works on validating the temporal parameters and QoS
properties of WSNs using a model checker and comparing
with existing simulation techniques for WSNs.

The WSN research community has developed numerous em-
ulation tools such as Avrora [23], ATEMU [20], COOJA
[17], EmStar [10] and TOSSIM [14]. An emulator provides
a virtual operating environment to run the program (or with
minor changes) written for a sensor node platform. For in-
stance, Avrora can be used to emulate the execution of ap-
plication program instruction-by-instruction at the level of
clock cycle accuracy for AVR microcontroller based plat-
forms, e.g., Mica2 sensor node. Detailed information about
e.g., timers, radio, sensors and serial ports, and stack usage
can be investigated, and the code can be tested and fine-
tuned to achieve the best performance. Moreover, AEON
[12], a tool built on the top of Avrora, can be used to evalu-
ate the individual sensor node energy consumption and pre-
dict the lifetime of whole sensor networks. Emulators of-
ten focus on evaluating the behaviours of individual nodes.
For the analysis of network level performance of WSNs, cur-
rently the most used validation techniques are based on Dis-
crete Event Simulation. There exist well-developed simula-
tors NS-2 [7], OMNeT++ [24], OPNET [5] and QualNET
[21]. These simulators have been further extended with ac-
curate simulation models for various physical components
and their access interfaces in WSNs, such as sensors and
wireless channels, e.g., Castalia [19] based on OMNeT++
and SensorSim [18] based on NS-2. In these extended simu-
lators, the simulation code (usually written in C or C++),
defining the behaviour of sensor nodes and wireless channel
configurations, can be executed in the simulation environ-
ment. Due to the accurate modelling of physical compo-
nents, these tools can be used to validate distributed algo-
rithms and communication protocols in a realistic setting.

3. BIOMEDICAL SENSOR NETWORKS
The integration of biomedical sensors with wireless networks
has led to the emergence of BSNs [11], which have great
potential applications in medical care. In medical applica-
tions, body temperature, blood pressure, electrocardiogram
(ECG), Pulse Oximeters (SpO2), and heart rate may be
sensed and transmitted to a medical center, where the data
is used for health status monitoring, and medical analysis
and treatment. The main function of BSNs is to ensure that
sensed medical data can be delivered to the medical center
reliably and efficiently without physical wire-connections.
Thus a BSN may contain a number of sensor nodes with
a sink node collecting packets for the medical center.

3.1 The Chipcon CC2420 Transceiver
A sensor node usually consists of five parts: a microcon-
troller for data processing, sensor(s) for data collection, ana-
log-to-digital converter (ADC) for signal conversion, a trans-
ceiver for wireless communication and a power supply unit.
For the interoperability of sensor nodes from different manu-
facturers, IEEE Computer Society proposed the IEEE 802.15.4
standard [1] to define the protocol and compatible intercon-
nection for data communication devices in WSNs.

One of the widely used hardware transceivers for wireless
communication is the Chipcon CC2420 transceiver, devel-
oped by Texas Instruments according to the IEEE 802.15.4
standard. The CC2420 is a single chip designed for low-
power and low-voltage wireless applications. It provides
250 kbps data rate with high receiving sensitivity (-95dBm).
The reference manual of the CC2420 [22] defines the func-
tionality of a CC2420 transceiver by a state machine. Fig. 1
(b) is an abstract version of the state machine with four ab-
stract states. The state machine may be seen as the abstract
behaviour of a sensor node. The state transitions may be
triggered by either command strobes or internal events, e.g.,
a timeout. Each of the abstract states represents a group of
states in the original state machine. The PowerDown state
combines the different energy saving states of a node, which
may be entered from any state after the active period (see
Fig. 1(a)) of the node has ended. The working states of a
node during an active period are abstracted as RX for recep-
tion and TX for transmission. RX covers those states of a
node, where it may be searching for a signal on the channel
and can receive a packet at any time. The abstract state
TX covers those states of a node for transmitter calibration,
preamble, and frame transmission.

The transceivers in a network communicate with each other
according to the protocols specified in the IEEE 802.15.4
standard, including routing, medium access control (MAC),
and physical layer protocols. Routing protocols are used to
define how data packets are delivered to the sink node dur-
ing multi-hop communication. The physical layer is mainly
responsible for data transmission and reception, the clear
channel assessment (CCA) for carrier sense multiple access
and collision avoidance (CSMA-CA), and activation (or de-
activation) of the radio transceiver. The MAC sublayer han-
dles all accesses to the physical layer channel and provides a
reliable link between two peer MAC entities. For detailed in-
formation on these protocols, we refer to the IEEE 802.15.4
standard [1].

3.2 QoS Requirements
In medical applications where data packets usually contain
vital medical information on human health, the network
used for communication should guarantee that these packets
are delivered to the medical center with a certain packet de-
livery ratio for a given time period. This is one of the most
common QoS requirements on BSNs [6]. In this paper, we
will focus on the following QoS requirements:

� Network Connectivity: Each node should have a con-
nection with the sink node within a certain time pe-
riod, either connected directly or through multi-hop
communication. There should not exist isolated nodes.

� Packet Delivery Ratio: Packet loss can be caused by
channel access failure, packet collision, transmission
error caused by thermal noise and external interfer-
ence. The packet delivery ratio for a given node is the
ratio of the number of packets received successfully at
the sink node by the number of packets sent by the
node.

� End-to-End Delay: Data packets must be delivered to
the sink node within a given time delay. The end-to-



end delay is the time difference that a packet is ready
to be sent at a sensor node until it reaches the sink
node through multi-hop communications.

4. MODELLING BSNS WITH TIMED AU-
TOMATA

A timed automaton is a finite state automaton extended
with real-time clocks. UPPAAL [13] is a tool box for timed
automata, which provides a modelling language, a simula-
tor and a model checker. In UPPAAL, timed automata are
further extended with data variables of types such as inte-
ger and array etc., and networks of timed automata, which
are sets of automata communicating with synchronous chan-
nels or shared variables, to ease the modelling tasks. The
modelling language allows to define templates to model com-
ponents that have the same control structure, but different
parameters, which is a perfect feature for modelling of sen-
sor nodes. For a tutorial of UPPAAL and timed automata,
we refer to [4, 3].

In this section, we develop a UPPAAL model for a BSN, as
a network of timed automata where each automaton models
a sensor node. As all sensor nodes are implemented with
the same chip for wireless communication, running the same
protocol, we use a template to model the node behaviour
with open timing parameters to be fixed in the validation
phase. The network topology is modelled using a matrix
declared as an array of integers in UPPAAL. Elements in
the matrix denotes the connectivity between pairs of nodes.

4.1 Modelling the Transceivers
Assume that the Chipcon CC2420 transceiver as described
earlier is used for wireless communication in a sensor node.
To study the network performance, we model the transceiver
as a UPPAAL template based on the radio control state
machine described in the reference manual [22].

The modelled template is shown in Fig. 2. For a detailed de-
scription of data, clock variables, names of states etc. used
in the template, we refer to Appendix A. Most of the states
are of the same name as the radio control states in the orig-
inal state machine for the transceiver. The functionality of
the transceiver is modelled by the state transitions according
to the reference manual. The timing behaviours, as shown
in Fig. 1, are formalized with clock constraints on transi-
tions where the two important timing parameters, the main
period (P_M) and the active period (P_W), are used as clock
bounds.

In the real hardware, the main period will be started by an
external signal from the sensor with a fixed period P_M. The
signal indicates that there is a packet to send. We model this
simply by a transition with a clock constraint enforcing the
periodic behaviour and a buffer assigned with the identity
of the packet to be sent. Furthermore, in the real hardware,
a node may send an acknowledgement after a successful re-
ception of a packet depending on the configuration of the
node. This is implemented implicitly by the dynamic rout-
ing scheme as described in the following subsection. Note
also that we have added two extra states (i.e. PreTX and
Backoff) to the part of the model concerning packet trans-
mission. These states model the CSMA-CA back-off period

in the communication protocol as described earlier.

4.2 Modelling the Network and Packet Trans-
mission

The network topology – the spatial distribution of the sen-
sor nodes – represents the direct connections between the
nodes. It is the task of the routing protocol to find a path
for a packet from one node to the sink. We model the net-
work topology using a matrix (topology) referred as topol-
ogy matrix. The dimensions of this matrix correspond to the
number of nodes in the network. Every element stands for
the connectivity from one node (row index) to another (col-
umn index). If the matrix should map the topology, negative
values can be used, for instance, to represent that a pair of
nodes is not connected and positive values can reflect the dis-
tance or signal strength between the corresponding nodes.
The matrix can also be used to store routing information.
In this case, some values can stand for a connection, where
a node is in range but not on a routing path.

Using the topology matrix, it is easy to model a fixed rout-
ing scheme. The matrix also allows us to model dynamic
reconfigurations of the network topology due to the move-
ment of a node or the change of routing information at run-
time. To study dynamic reconfigurations, we have modelled
controlled flooding which is a dynamic routing scheme. A
node broadcasts a packet to all its neighbours and remem-
bers every received packet to control this flooding. If a node
receives a packet that has been forwarded earlier, it will be
ignored, which avoids cyclic forwarding. The model con-
tains a matrix (ignore) with which every node remembers
the packets it has received so far. The same matrix is used
to remember if an acknowledgement is expected or received.
In addition to dynamic routing, the flooding scheme offers
the opportunity for an implicit acknowledgement: when a
node has transmitted a packet, it will most likely receive it
again after a short while, because the receiver(s) will broad-
cast it again. When a defined time after transmission has
passed, a node will call a function (ack) to check if a packet
has to be retransmitted.

To model packet transmission and transmission errors, we
model only the transmission time given by the length of the
packets, but abstract away from their contents. Every node
has an unique identifier and if a node emits a packet, it is
named by the identifier of the node. The identifier is also
used to determine the length of the packet (P_S[ID]). To
transmit a packet, a node uses a function named send. The
function walks through the topology matrix and updates the
incoming signal of every node in range, where the incoming
signals are modelled by an array named signal. Packet
collisions that lead to packet losses are modelled with help
of the signal array. If a node starts a transmission while
another node in range is receiving a signal, the corresponding
element in the signal array will be set to a negative value
meaning that the packet is corrupted.

5. VALIDATION USING UPPAAL
We consider a BSN as shown in Fig. 3, where the S-node
is the sink node and the other nodes are modelled by the
UPPAAL template presented above, with randomly chosen
initial values for the timing parameters as listed in Table 1.



TX_PREAMBLE

Backoff
y<=BACK[bo_cnt]
and x<=P_W

TX_CALIBRATE
y<=1

Initial_delay

x<=D

PreRX

PreTX

RX_FRAME
x<=P_W and
y<=P_S[tmp_sig]

RX_SFD_SEARCH
x<=P_W && 
y<=bound

TX_FRAME y<=P_S[buffer[ID]]

PowerDown
x<=P_M

y>=bound
bound:=ack(ID), 
y:=0

signal[ID]>0 and
ignore[ID][signal[ID]]==1
go?
ignore[ID][signal[ID]]:=2

y>=1
send(ID)

x>=P_W bo_cnt:=0,y:=0

signal[ID]!=0 and
bo_cnt >= MAX_BO

buffer[ID]:=0,
bo_cnt:=0, y:=0

signal[ID]!=0 and
bo_cnt < MAX_BO
bo_cnt++, y:=0

signal[ID]==0
bo_cnt:=0,y:=0

x>=D
buffer[ID]:=ID,
x:=0, y:=0

topology[tmp][ID]<=0

topology[tmp][ID]>0
tmp_sig:=signal[ID]

x>=P_W
buffer[ID]:=0

start[ID]!
y:=0

signal[ID]>=0
stop[tmp]?

received[tmp_sig]++,
buffer[ID]:=tmp_sig

signal[ID]<0
go?
buffer[ID]:=0

buffer[ID]>0
go?

y:=0

i : int[0,N-1]

buffer[ID]==0 and
signal[ID]>0 and
ignore[ID][signal[ID]]==0

start[i]?
tmp:=i,
y:=0

x>=P_W and y>=P_S[buffer[ID]]
stop[ID]!
y:=0,
reset_signal(ID)

x>=P_M
buffer[ID]:=ID,
ignore[ID][ID]:=0,
x:=0, y:=0

x>=P_W

y>=P_S[buffer[ID]] and x<P_W
stop[ID]!

reset_signal(ID)

Figure 2: A UPPAAL template for wireless sensor nodes based on the Chipcon CC2420 Transceiver

The sink node is modelled as a simple automaton. It is not
shown in the presentation as its essential behaviour is only
to accept packets from the other nodes and keep track of
the number of packets received for each node. The network
topology is chosen randomly. We shall study the network
performance and show how to tune the timing parameters
such that certain QoS requirements are satisfied.

5.1 Symbolic Simulation
Our goal is to use UPPAAL to simulate the behaviour of
the network based on the timed automaton model. For a
detailed description of the UPPAAL simulator, we refer to
[4, 3]. To enhance the scalability of the simulator, we have
implemented a new version of the simulator optimized for
exploring symbolic traces of models containing large data
structures such as matrices. We have observed that the sim-
ulator scales well; for example we can easily handle networks
with 50 nodes (and more), which is a big enough number for
BSNs applications. However, for the presentation, we con-
sider only the network shown in Fig. 3.

The simulator may be used to explore symbolic traces of a
model. A symbolic trace is a sequence of transitions between

symbolic states, corresponding to a collection of possible ex-
ecutions of the system modelled. A symbolic state contains
the current control state, current values of data variables
and possible clock values represented as clock constraints.
As the symbolic states record all the changes of variables and
clocks, they can be used to calculate performance metrics to
validate all the QoS requirements summarized in section 3.
For example to calculate the end-to-end delay for a packet,
one may reset a clock in the original model to remember
the time point when it is sent. When a symbolic state is
found where the packet is delivered successfully, the bounds
of the same clock in the found state represent the best- and
worst-case delays for the packet.

To show the usefulness of the technique, we focus on simu-
lations for packet delivery ratios. We simulate the network
for 20.000 time units in which the nodes will complete be-
tween 65 and 110 main periods. The simulation takes about
four minutes. The results are shown as diagrams in Fig. 4,
where each curve illustrates the packet delivery ratio of a
node, which is changing with time.

From the diagrams, we note that after a startup period, the
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Figure 3: A random topology of a BSN with 15 sen-
sor nodes.

Table 1: Timing parameters of the sensor nodes in
Fig. 3.

Initial Parameters Improved Parameters
Node Main Pe-

riod
Active
Period

Main Pe-
riod

Active
Period

1 180 120 180 120
2 240 160 240 160
3 240 160 240 235
4 300 200 300 200
5 300 200 300 290
6 200 100 200 100
7 200 100 200 100
8 240 160 240 160
9 300 200 300 200
10 300 200 300 200
11 180 120 180 120
12 200 100 200 100
13 240 160 240 160
14 300 200 300 200
15 300 200 300 200

packet delivery ratios for all nodes are stabilizing above a
certain value, which indicates that the network performance
is stable. For example, the packet delivery ratio stays above
80% for node 5, and 7 to 15, above 60% for node 6, above
50% for node 2 to 4, and under 40% for node 1, which is the
worst of all.

Now if some or all the packet delivery ratios are not satis-
factory according to the desired QoS requirements, we may
tune the timing parameters of the nodes to influence or im-
prove the network performance. Consider, for example, the
QoS requirement: “the delivery ratio for all nodes should be
above 60%”. If we compare the curves with the positions of
the nodes on Fig. 3, we see that node 3 and 5 are bottle-
necks for the connection of node 1,2, and 4 to the sink. So
we may increase the duration of the active period of node
3 and 5, and hopefully these nodes will be able to forward
packets most of the time.

The two new parameters for node 3 and 5 are given in Table
1 where the new ones are in boxes with the rest unchanged.
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Figure 4: Simulation results for the network in Fig.
3 with initial timing parameters given in Table 1.
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Figure 5: Simulation results for the network in Fig.
3 with improved parameters in Table 1.



With the new set of parameters, the packet delivery ratios
from simulation are shown in Fig. 5. We notice an increase
of about 10 up to 40 percentage points for the delivery ratio
of node 1 to 4, and the delivery ratios for all nodes are sta-
bilizing above 60% satisfying the above requirement. How-
ever, we should be aware that the increased active periods
may lead to a higher energy consumption; one needs to find
the right trade-off. In this paper, we will not consider QoS
requirements on energy consumption.

Note that the above simulations are dealing with dynamic
network topology in the sense that, at any time point, some
of the nodes may switch to the power-down state and discon-
nect some of the connections such that the network topology
changes. The network topology may also change because of
the movements of sensor nodes. To study the influence of
this type of changes, we may use a timed automaton to ma-
nipulates the topology matrix to model the movement of
mobile nodes.

5.2 Verification of QoS Properties
The networks we are dealing with are extremely nondeter-
ministic; any node can communicate with any other node
directly or indirectly at any time. With a simulator, we can
explore only possible behaviours to study the average-case
performance of a network. To reveal the worst-case scenarios
and to check that some requirements are guaranteed by all
possible behaviours of a network, we use the model checker of
UPPAAL. However the goal here is not to show how power-
ful the tool is, rather to show that model checking is a useful
technique to complement simulations. We shall use the UP-
PAAL query language [4, 3] to formalize QoS requirements
concerning network connectivity and packet delivery ratio.

We have used UPPAAL installed on a notebook (with a
Celeron 1.73 GHz processor and 1.5GB main memory) to
check the formalized requirements. The model checker can
handle networks with 5 up to 16 nodes depending on the
properties to be checked. The verification results are sum-
marized in Table 2. More examples of QoS requirements ver-
ified can be found in Table 6 in the Appendix. We note that
for most of the requirements listed, the verification times are
within minutes.

Absence of Deadlocks
In general a deadlock means the situation when different
processes block each other. In a wireless network this could
be caused, for instance, when a node is waiting for an ac-
knowledgement. We should also mention that the deadlock
check is very useful for validating the model itself. For ex-
ample, timing errors in a model may result in deadlocked
states. If a clock guard or an invariant of an automaton is
violated, the automaton may reach a state where time can
not pass, and there are no enabled transitions either. The
query for checking deadlock-freeness is: A[]!deadlock.

Network Connectivity
As described in Section 3, for BSNs, we are interested in
network connectivity to guarantee that each node is con-
nected with the sink node. For this purpose, in the model,
we have used an array received. Each element of the array
(initialized with 0) is a counter associated with a node and

incremented whenever the sink receives a packet emitted by
the according node. For a node with identity X, we use
the query A<>received[X]>0 to prove or disprove, whether
X can eventually establish a connection to the sink. This
allows us to find improper timing parameters which result
in that some nodes are isolated. As an experiment to dis-
cover disconnected nodes, we change the topology matrix
such that node 4 is disconnected; the verification results are
shown in Table 6.

Note that A<>received[X]>0 states that there will be a con-
nection eventually without a time bound. To estimate the
maximal delay, we use the number of main periods of node
X. We modify the model such that the counter periods[X]
is reset whenever the sink receives a message from node X.
Then we can use the query A[]periods[X]<Y to prove that
node X is connected to the sink at least within Y periods.
The array for the number of received packets has no impact
on the properties verified here and thus it can be declared
as a meta variable.

Table 2: Example verification results.
Property Network

Size
CPU Time
(Sec)

Memory
(MB)

Deadlock-freeness 6 Nodes 2740.44 1620.5
Connectivity 11 Nodes 315.67 73.45
Bounded Connec-
tivity

6 Nodes 157.71 36.7

Packet Delivery
Ratio

6 Nodes 252.80 38.6

Packet Delivery Ratio
Recall that the packet delivery ratio of a node is the ra-
tio of the number of packets delivered to the sink by the
number of packets sent from the node, and the later is the
number of main periods. These numbers are denoted by the
counters received[X] and periods[X] in the model. Ide-
ally we may want to check that over time, the packet de-
livery ratio of certain packets is over 90%. Unfortunately,
in UPPAAL we can not use the query language to specify
such properties concerning mean values or duration prop-
erties. However, we may run a number of checks to ap-
proximate the packet delivery ratio. We may check at least
N out of M packets sent will be delivered successfully us-
ing the query, A[]periods[X]>=M imply received[X]>=N.
For instance, for ten packets sent, we may check whether
a packet delivery ratio of at least 90% is reached using
the query A[]periods[X]>=10 imply received[X]>=9. We
reset periods[X] and received[X] when the bounds are
reached to assure that the property is not only satisfied af-
ter the first ten periods, but whenever ten periods have been
completed. We may change the bounds on the numbers of
packets sent and received to achieve better approximations.

End-to-End Delay
For each packet, we may associate a clock which is reset
when the packet is sent and then check the lower and upper
bounds of the clock when the packet is delivered. We may
get a lower bound in this way, but as the packet may be lost
the upper bound will be infinity in general.

However, we can indeed induce an upper bound from the



analysis result on packet delivery ratio. For example, if one
out of two packets sent will be delivered successfully, the
worst case delay is bounded by the length of two main pe-
riods. Note that it is assumed that every main period, a
sensor node will send one packet. Thus if some important
data is twice in two packets, the data will be delivered for
sure within two main periods.

6. COMPARISON WITH DISCRETE EVENT
SIMULATION

One of the main concerns in applying model-based tech-
niques is to develop faithful models of systems to obtain
faithful analysis results. To study the accuracy of our model,
we compare simulation results by UPPAAL with the tradi-
tional discrete event simulator OMNeT++, which is widely
accepted in the WSN community. We shall see that for two
typical application scenarios of BSNs, the UPPAAL simu-
lation results for packet delivery ratio using our model co-
incide closely with simulation results by OMNeT++. How-
ever, we have also observed some minor differences due to
the simplifications in the modelling of packet transmissions
and collisions.

6.1 Simulation Settings
To ease the comparison, we study two fixed network topolo-
gies as shown in Fig. 6.2(a) and 6.2(b), corresponding to
two typical application scenarios of BSNs in medical care.
The first topology for networks with one-hop communica-
tion is usually used for in-field patient monitoring where the
sensor nodes are deployed in a small area, while the second
for multi-hop communication is often used in a large area,
where data packets cannot be transmitted to the medical
server directly.

In the study with OMNeT++, we use the Castalia WSN
simulator [19]. The WSN simulator is configured to follow
the physical layer and MAC sublayer protocols as defined
in the IEEE 802.15.4 standard. For sensor nodes, we adopt
two types of sensors, ECG and temperature sensors with
fixed sampling rate and packet size, which are often used in
medical care. The ECG sensors emit 5 packets with a size
of 100 bytes every second, and the temperature sensors emit
1 packet with a size of 2 bytes every second.

In the study with UPPAAL, the timing parameters includ-
ing the main periods and transmission delays of our model
for the Chipcon CC2420 transceiver are initialized according
to the sampling rate and packet size of ECG and tempera-
ture sensors. The topology matrix is fixed according to the
network topologies shown in Fig. 6.2(a) and 6.2(b).

Table 3 lists all necessary parameters for simulating sensor
networks that are IEEE 802.15.4 compliant. These parame-
ters are used in the configuration of the WSN simulator for
OMNeT++, and our transceiver model for UPPAAL simu-
lation. In particular, macMinBE is the initial value of backoff
exponent, aMaxBE is the maximum number of backoff expo-
nent, and macMaxCSMABackoffs is the maximum number of
backoffs that the CSMA-CA algorithm will attempt before
declaring a channel access failure. Note that for simplicity,
we have used a fixed packet overhead for all packets on physi-
cal, MAC and application layer. Note also that for UPPAAL

simulation, we have used a simplified collision model – listed
as simplified in the table – meaning that if more than one
sensor nodes within communication range transmit simulta-
neously, collision happens and all the packets are corrupted.

Table 3: Simulation parameters
Parameters OMNeT++ UPPAAL
channel model log shadowing

wireless
fixed bit error
rate

path loss exponent 2.4 N/A
collision model additive inter-

ference
simplified

data transmission rate 250 kbps 250 kbps
simulation time 300 s 300 s
packet overhead 32 bytes 32 bytes
macMinBE 3 3
aMaxBE 5 5
macMaxCSMABackoffs 4 4

6.2 Experiment 1: one-hop Communication
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Figure 6: The different topologies that were used to
compare simulation results obtained by OMNeT++
and UPPAAL.

We fix a one-hop communication network with the topology
shown in Fig. 6.2(a). In the network, all nodes including
the sink node are one-hop neighbours to each other, which
means that each node is connected directly to the sink node
and all nodes can communicate with each other with one-
hop communication. Node 1, 3, 5, 7 are ECG sensors and
node 2, 4, 6, 8 are temperature sensors. Node S is the sink
node to collect data packets sent by the sensors at fixed rate
as described above.

Table 4 lists the Packet Delivery Ratio for each node accord-
ing to OMNeT++ and UPPAAL simulations, respectively.

6.3 Experiment 2: Multi-hop Communication
Fig. 6.2(b) shows a multi-hop communication network. Node
S is the sink node, node 1 and 2 are ECG sensors, node 3,
4 and 5 are temperature sensors, respectively. Data pack-
ets are routed to the sink from node to node by multi-hop
transmission.

Table 5 lists the packet delivery ratio for each node according
to simulations by OMNeT++ and UPPAAL respectively.

6.4 Comparison and Discussion



Table 4: Packet Delivery Ratios from Simulations
with OMNeT++ and UPPAAL for the one-hop
communication network shown in Fig. 6.2(a).

Sensor OMNeT++ (in %) UPPAAL (in %)
Node 1 96.1 99.6
Node 2 96 95.7
Node 3 96.2 99.7
Node 4 95 99.0
Node 5 95.7 99.6
Node 6 96.3 97.3
Node 7 95.9 99.7
Node 8 96.7 97.7

Table 5: Packet Delivery Ratios from Simulation
with OMNeT++ and UPPAAL for the multi-hop
communication network shown in Fig. 6.2(b).

Sensor OMNeT++ (in %) UPPAAL (in %)
Node 1 75.2 97.5
Node 2 84.4 97.7
Node 3 91 97.7
Node 4 95 100
Node 5 86 92.8

In the first experiment, the results of delivery ratio for each
node from UPPAAL and OMNeT++ are similar, indicating
that the UPPAAL model is faithful in capturing the behav-
ior of the CC2420 transceiver compared with OMNeT++
simulations. In the second experiment, for both OMNeT++
and UPPAAL, the delivery ratios for node 4 (one hop to
sink) are 95% and 100% respectively. Other nodes through
multi-hop communication perform worse than node 4 with
only one hop. The main difference is that in OMNeT++
the performance of node 1 is the worst, while in UPPAAL
the performance of node 5 is the worst. Again the main
reason is that the simplified model of wireless channels in
UPPAAL, makes the delivery ratio of a node depend less on
the number of hops to the sink; whereas the wireless channel
is modelled in a more realistic way in OMNeT++. This is
explained as follows.

In a WSN, whether a packet can be received successfully by a
receiver depends on the Signal to Noise Ratio (SNR), which
depends dynamically on the transmitting power, receiving
sensitivity, thermal noise, propagation loss, and interfer-
ences. For multiple concurrent transmissions, even nodes
that are not in the same communication ranges may inter-
fere each other by increasing the background noise level.
That is, there are still interferences even though no collision
occurs.

For OMNeT++, the results are quite reasonable. Node 1
needs four hops to the sink, during the relaying procedure,
packet loss can be caused by channel access failure, colli-
sion, and interference from multiple concurrent transmis-
sions. Multi-hop has significant impact on the performance
of packet delivery ratio. This explains why the delivery ratio
for node 1 with four hops to the sink is not as good as node
5 with one hop less.

For UPPAAL, we observe that the delivery ratio for node

1 is better than for node 5. The reason is as follows: As
the model for wireless channels considers only collision and
fixed transmission bit error, propagation loss and interfer-
ences due to concurrent transmissions are abstracted away,
the channel appears to be perfect if there is no collision.
Thus, multi-hop communication has less impact on network
performance than it should be. However, the possibilities of
collision are modelled close to reality and thus have a rela-
tively higher impact on the packet delivery ratio. From the
network topology, we see that collision occurs most likely be-
cause node 5 sends a packet to node 3 simultaneously with
node 2, which is either transmitting its own packet or for-
warding a packet of node 1. Because this collision can only
happen, when node 5 is transmitting a packet, node 5 will
lose the same number of packets as node 1 and 2 together.
Due to the different frequencies for packet emissions of node
1, 2, and 5, within the same time period, node 1 and 2 emit
considerably more packets than node 5, thus the number of
lost packets of node 5 has a higher impact on the accord-
ing packet delivery ratio than the number of lost packets for
node 1 and 2.

From the simulation results, we may conclude that our model
for the CC2420 transceiver is reasonably accurate compared
with the WSN simulator of OMNeT++. While the wireless
channel model should be improved in UPPAAL – especially
for networks with multi-hop communication. However, since
the simulation requirements and applied situations are dif-
ferent, certain abstraction must be made to achieve the
trade-off between accuracy and verification capabilities.

7. CONCLUSIONS AND FUTURE WORK
The main contributions of this paper include: (1) We have
developed a formal model using timed automata for the
Chipcon CC2420 transceiver, which is one of the most used
hardware chips for wireless communication in sensor net-
works. To our best knowledge, this is the first model for
such transceivers. We believe that the model can be ex-
tended easily to model and validate other transceivers (or
wireless communication devices), and communication pro-
tocols, that are not necessarily limited to be IEEE 802.15.4
compliant. (2) We have shown how to use the UPPAAL
tools to tune and validate the timing parameters of the sen-
sor nodes such that the desired QoS requirements are satis-
fied. (3) To study the accuracy of our model and analysis
results, we have compared the simulation results by UP-
PAAL with traditional simulation techniques. The compar-
ison shows that our analysis results coincide closely with
simulation results by OMNeT++, a widely used simulation
tool for wireless sensor networks. We also observed that
using OMNeT++, it is very time-consuming to implement
the simulation code in C++, which has the advantage to be
more precise for simulating low-level implementation details;
whereas with UPPAAL simulations, one can easily tune the
model to study network-level performance in the early de-
sign phase.

As future work, we shall study the other types of QoS re-
quirements on energy-consumption and bandwidth as well
as Jitter i.e., the variation of delay experienced by the sink
node. We shall also investigate the mobility degree of a BSN
and its impact on QoS properties. Another interesting di-
rection for future work is to develop a logic and extend the



UPPAAL model checker to fully capture QoS requirements
studied in this paper and the other requirements on energy
consumption and network throughput for medical applica-
tions [6]. The challenge is to deal with properties concern-
ing mean values such as “over the life time of a network, the
energy-consumption per time unit is within a given bound”.
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APPENDIX
A. FURTHER DESCRIPTION OF THE

TRANSCEIVER MODEL
A.1 States

� Initial_delay: In a real system not all nodes are
turned on at the same time; thus we have randomly
chosen an initial delay for every node before the first
active period. This is to model the initialization of a
sensor node.

� RX_SFD_SEARCH: In this state, the transceiver is listen-
ing to incoming signals.

� PreRX: A node that starts packet transmission uses a
broadcasting channel provided by UPPAAL to inform
nodes in state RX_SFD_SEARCH of a beginning trans-
mission. UPPAAL does not allow to broadcast only
to a limited number of nodes, thus the PreRX-state is
needed. If the notification (i.e. the broadcast) comes
from a node out of range, it will be ignored.

� RX_FRAME: A node will enter this state when it receives
a valid signal, and then it will leave the state if the
whole packet is successfully transmitted or corrupted.

� PowerDown: This state represents the power saving mode
of the transceiver.

� Backoff: In this state, a node waits for a random back-
off concerning the IEEE 802.15.4 CSMA-CA.

� PreTX: This state is to model that the transceiver is
performing the clear channel assessment.

� TX_CALIBRATE: This state models the delay that occurs
in the real hardware to set up a transmission.

� TX_PREAMBLE: The frame preamble is transmitted dur-
ing this state. It is modelled by the broadcast channel
mentioned above.

� TX_FRAME: In this state, the transceiver is transmitting
the payload of a packet.

A.2 Constants and Parameters
� ID: Each node has a unique ID. This ID is used to

identify messages progressing through the network.
� P_M: It denotes the main period of a sensor node.
� P_W: It denotes the active period of a sensor node.
� D: In a BSN, nodes are usually not activated at exactly

the same time. This is modelled using an initial delay
D.

� P_S[]: This array contains the duration of a transmis-
sion for every packet type. It can be derived from the
packet size.

� BACK[]: The bounds for the length of a backoff period
depend on the number of re-transmissions, according
to the IEEE 802.15.4 standard.

� MAX_BO: The maximum number of backoff periods be-
fore declaring a channel access failure.

A.3 Global Variables
� buffer[]: This is the buffer for outgoing packets of a

node. It is globally accessible for statistical purposes.

� signal[]: This array models the incoming signal of a
node. It is set by the sending nodes in range. If it is
0, it indicates that no node in range is transmitting.
If two nodes in range are transmitting, the value for
the corresponding receiving node is set to be negative.
Otherwise it is set to the packet that is being transmit-
ted.

� topology[][]: This is the topology matrix.

� ignore[X][Y]: This is to model the controlled dynamic
routing scheme with acknowledgement. Each element
may have three values: 0; 1 and 2 denoting the three
situations respectively: node X has not received packet
Y , node X has received Y for forwarding, and node X
has forwarded Y and it has been acknowledged.

� meta periods[]: This array contains a counter for the
number of main periods of each sensor node. In general,
its value is equivalent to the number of packets emitted
by a node.

� meta received[]: This array contains counters for the
number of different packets received by the sink.

A.4 Local Variables and Clocks
� Clock X: It is used to model the main period of a sensor

node.

� Clock Y: It is used to model the transmission times for
packets, the back-off period, and the timeout period for
acknowledgements.

� bound: If a node waits for an acknowledgement, this
variable is set to the period for the timeout. Otherwise
it is set to be the main period of a sensor node.

� tmp: This variable is used to store the ID of the sending
node during packet reception.

� tmp_sig: This variable is used to store the incomming
signal during packet reception.

� bo_cnt: This is a counter for the number of passed
backoff periods, i.e. the number of failed transmission
attempts.

A.5 Channels
� start[]: This is a broadcast channel to model the be-

ginning of a packet transmission.

� stop[]: This is a broadcast channel to model the end
of a packet transmission.

� go: This is an urgent channel to model urgent transi-
tions.

A.6 Functions
� send: This function is called, when a node wants to

start a packet transmission. It check through the topol-
ogy matrix and updates the incoming signals of all
nodes in transmission range. In addition the func-
tion implements the functionality needed to model col-
lisions.

� reset_signal: This function is the complement to the
send-function. It sets back the value of the incoming
signal for each node in transmission range.



Table 6: Example QoS Properties Verified.
Property Scenario Satisfied CPU Time (Sec) Memory (MB)
A[]!deadlock 5 Nodes Yes 0.33 36.66
A[]!deadlock 6 Nodes Yes 2740.44 1620.5
A<>received[4] > 0 11 Nodes with Yes 315.67 73.45

node 4 connected
A<>received[4] > 0 16 Nodes with No 56.52 111.1

node 4 disconnected
A[] periods[2] < 4 6 Nodes No 157.71 167.61
A[] periods[5] < 2 6 Nodes No 5.59 40.14
A[] periods[5] < 3 5 Nodes Yes 0.23 36.66
A[] periods[5] < 2 5 Nodes No 0.12 36.53
A[] periods[3] < 3 5 Nodes Yes 0.24 36.54
A[] periods[3] < 2 5 Nodes No 0.11 36.53
A[] periods[1] < 6 5 Nodes Yes 0.26 36.66
A[] periods[1] < 5 5 Nodes No 0.24 36.66
A[]periods[5]>=10 imply received[5]>=8 5 Nodes Yes 2.28 38.59
A[]periods[5]>=10 imply received[5]>=9 5 Nodes No 0.28 36.66
A[]periods[5]>=10 imply received[5]>=9 6 Nodes No 252.80 285.98
A[]periods[4]>=10 imply received[4]>=8 5 Nodes Yes 2.26 38.60
A[]periods[4]>=10 imply received[4]>=9 5 Nodes No 0.28 36.66
A[]periods[1]>=10 imply received[1]>=4 5 Nodes Yes 2.27 38.59
A[]periods[1]>=10 imply received[1]>=5 5 Nodes No 0.21 36.66

� ack: This function manages the implicit acknowledge-
ment as mentioned in Section 4.2. First, the function
checks for a node if its own packet has been acknowl-
edged. If it is not, the packet will be retransmitted.
Otherwise it checks if there is any other packet which
has not been acknowledged and puts it for retransmis-
sion.

B. EXAMPLE QOS PROPERTIES
Table 6 shows a list of example QoS properties with a more
detailed view on the scenarios checked, CPU time and mem-
ory requirements for the verifications. The memory con-
sumption is measured by polling the process statistics pro-
vided by the Linux operating system. Thus they are only
an approximation.


