
Improving Scalability of Model-Checking for Minimizing Buffer Requirements of
Synchronous Dataflow Graphs

Abstract— Synchronous Dataflow (SDF) is a well-known
model of computation for dataflow-oriented applications such
as signal processing and multimedia. It is important to minimize
the buffer size requirements of the source code generated from
a given SDF model, since memory space is often a scarce
resource for these applications due to cost or power consumption
constraints. Some authors have proposed using model-checking
for minimizing buffer size requirements. However, scalability
is a key limiting factor in using model-checking due to state
space explosion. In this paper, we present several techniques for
improving scalability of model-checking by exploiting problem-
specific properties of SDF models.

I. INTRODUCTION AND RELATED WORK

Synchronous Dataflow (SDF) is a widely-used model of
computation for signal processing applications that allows for
powerful static analysis and synthesis techniques. Since signal
processing and multimedia applications are often implemented
on resource constrained embedded systems, it is important
to minimize their memory size. The total memory size re-
quirement of an application consists of two parts: code size
and data buffer size. Since effective techniques have been
developed to minimize the code size for any feasible schedule
with acceptable runtime overhead [1], [2], we do not consider
the code size in this paper, but focus on finding the feasible
schedule with minimum the data buffer size.

The data buffer minimization problem of SDF is known to
be NP-complete [3]. Some authors have used model-checking
to obtain the optimal solution [4], [2] by exploring the entire
state space. Geilen et al [4] used the SPIN model-checker
to find the minimum buffer size requirement of a given
SDF graph. Gu et al [2] used the symbolic model-checker
NuSMV [5], which uses Ordered Binary Decision Diagrams
(OBDD) to encode the state space, to solve the buffer size
minimization problem for SDF as well as several variants
of it, including Cyclo-Static Dataflow and Multidimensional
SDF. In addition, [2] presented techniques for synthesizing
efficient dynamic single-appearance code, where each actor
firing appears only once, while minimizing runtime overhead
due to conditional branches. One key limitation of model-
checking is its lack of scalability due to state space explosion.
In this paper, we present several techniques for reducing the
state space and improving scalability of model-checking when
applied to the SDF buffer minimization problem. We focus
on the NuSMV model-checker, but our techniques are at
the application-level, and independent of the specific model-
checker used.

This paper is structured as follows: we present the basic
technique of model-checking for buffer size minimization in
Section II; techniques for obtaining tighter variable upper
bounds in Section III; techniques for graph decomposition in

Section IV; performance evaluation in Section V; conclusions
in Section VI.

II. MODEL-CHECKING FOR BUFFER SIZE MINIMIZATION
OF SDF GRAPHS

A SDF graph is a directed graph G = (V,E), where V is
the set of nodes representing actors and E is the set of edges.
An edge e ∈ E has a source actor src(e) that produces p(e)
tokens on e at each invocation (referred to as an actor firing in
the rest of the paper), and a sink actor snk(e) that consumes
c(e) tokens on e at each firing. d(e) denotes the initial number
of tokens on e, also called the initial delay. The argument (e)
in these definitions can be omitted when there is no ambiguity.

A CBe1 e2
2 13 2

Fig. 1. SDF graph Example 1.

A feasible schedule of a SDF graph is a finite actor firing
sequence, which when executed by the SDF graph, returns
the edge buffer token states to the initial state. The feasible
schedule can be repeatedly executed at run time without any
deadlock or buffer overflow. For example, the balance equation
of the SDF graph in Fig. 1 is:{

rA ∗ 2 = rB ∗ 3
rB ∗ 1 = rC ∗ 2

where rA is the number of firings of actor A. Solving the
balance equation yields the repetition vector (rA, rB , rC) =
(3, 2, 1), which means that any minimum-length feasible
schedule must consist of 6 actor firings in sequence, including
3 firings of actor A, 2 firings of actor B and 1 firing of actor
C. Different feasible schedules may have different data buffer
size requirements. In this paper, we assume that each edge
has its own dedicated buffer space without any buffer sharing.
The buffer size requirements of e1 and e2 for the feasible
schedule AAABBC are 6 and 2, respectively, with total buffer
size requirement of 8; the buffer size requirements of e1 and
e2 for the feasible schedule AABABC are 4 and 2, respectively,
with total buffer size requirement of 6. Our objective in this
paper is to find the minimum total buffer size requirement
for a SDF graph to have at least one feasible schedule. Any
buffer size less than that will cause the SDF graph to run into
a deadlock for any possible schedule.

In order to use model-checking to find the minimum-
buffer size schedule of a SDF graph, we transform the SDF
graph into a Finite State Machine (FSM) encoding its ex-
ecution semantics, e.g., the FSM in Fig. 2 corresponds to
the SDF graph in Fig. 1. Each FSM transition models an
actor firing and its effects on the input and output buffers

2

s

guard: WAIT(1,3)
update: CONSUME(1,3);
 PRODUCE (2,1);

guard: WAIT(2,1)
update: CONSUME(2,2);

guard:
update: PRODUCE(1,2)

FIRE (A) FIRE (C)

FIRE (B)

Fig. 2. FSM that encodes the execution semantics of the SDF graph in
Figure 1.

of the actor. The macros WAIT(c,n), PRODUCE(c,n) and
CONSUME(c,n) in Fig. 2 are defined as follows:

#define WAIT(c,n) ch[c]>=n
#define PRODUCE(c,n) ch[c] = ch[c] + n; UPDATE(c)
#define CONSUME(c,n) ch[c] = ch[c] - n
#define UPDATE(c) if (ch[c]>sz[c]) then sz[c]=ch[c]

where ch[c] denotes the current number of tokens on edge
c, and sz[c] denotes the buffer size requirement of edge c,
i.e., the maximum number of tokens on edge c throughout
the entire schedule. The guard WAIT(c,n) encodes the
condition that an actor can be invoked only if there are enough
tokens on its input edge(s). The actions PRODUCE(c,n)
(CONSUME(c,n)) encodes the semantics that each actor
firing produces (consumes) a certain number of tokens on
its output (input) edges. Our objective is to find a feasible
schedule with minimum SUM=sz[c1]+sz[c2]+..., i.e.,
the sum of all edge buffer size requirements. To find the
schedule with minimum buffer size requirement, we formulate
and check a series of CTL formulas. There are two different
ways of formulating the CTL formulas:

1) Each CTL formula has the form of SPEC AF
SUM>=BOUND, which means “All possible feasible
schedules will eventually satisfy SUM>=BOUND”. If the
formula is proven true for a certain value of BOUND,
but false for BOUND+1, then we can conclude that the
total buffer size requirement is BOUND, and the model-
checker returns a counter-example trace as the schedule
with buffer size requirement BOUND when proving the
property SPEC AF SUM>=BOUND+1 false.

2) Check for absence of deadlocks under the invariant
constraint that the total buffer size requirement does
not exceed a given bound. Given the invariant INVAR
SUM<=BOUND, if the property SPEC AF EX 1 is
proven true for a certain value of BOUND, but false for
a certain value of BOUND-1, then we can conclude that
the the total buffer size requirement is BOUND. The CTL
formula AF EX 1 means that “for all paths from the
initial state, the system can always make a transition
into the next state”. If this is proven false, then there is
a deadlock.

In both approaches, binary search can be used to narrow down
the range and eventually find the correct BOUND value. Our
experience shows that the 2nd approach exhibits much better

scalability than the 1st approach, perhaps due to more efficient
implementation of deadlock-checking algorithm than general
CTL properties in NuSMV. However, the 2nd approach does
not provide a feasible buffer size requirement along with a
feasible schedule like in the first approach when SPEC AF
SUM>=BOUND is proven false. Since our objective in this
paper is to obtain the buffer size requirement only, this is
not a major shortcoming.

A CBe1 e2
2 13 2

62 3 21 2

Fig. 3. The SDF graph Example 1 in Fig. 1 with back edges to encode
buffer size upper bound on each edge.

The Buffer Size Lower Bound (BSLB) of a directed edge
e connecting from actor A to actor B is the minimum buffer
size requirement of edge e in any feasible schedule. It can be
obtained from the following equation [3]:

BSLB(e) =
{

p + c− g + d mod g if 0 ≤ d ≤ p + c− g
d if d > p + c− g

(1)
where g = gcd(p, c) (gcd stands for greatest common divisor);
each of p, c, d has an argument (e) that is omitted for text
formatting reasons.

A safe but pessimistic value for the Buffer Size Upper
Bound (BSUB) of an edge can be obtained from the repetition
vector, which is in turn obtained from solving the balance
equation of the SDF graph. For example, the SDF graph in
Fig. 1 has the repetition vector (3,2,1), hence BSUB(e1) =
3 ∗ 2 = 6, BSUB(e2) = 2 ∗ 1 = 2. However, BSUB values
determined this way are typically very pessimistic and grossly
overestimate the actual buffer size needed. It is desirable to
obtain correct and tight BSUB value for each edge for a
number of reasons:
• The starting point of the binary search for the correct total

buffer size requirement (BOUND) is the maximum and
minimum total buffer size requirements obtained from
summing up the Buffer Size Upper Bound (BSUB) and
Buffer Size Lower Bound (BSLB) values of all edges.
Therefore, tight BSUB values helps reduce the number
of iterations in the binary search by setting a good starting
point.

• BSUB on each edge is reflected as additional back-edges
to the original SDF graph to encode the buffer size
constraints, as shown in Fig. 3. Therefore, tight BSUB
values help reduce the system state space.

• NuSMV is a symbolic model-checker, which uses Or-
dered Binary Decision Diagrams (OBDD) to encode the
state space. Integer variables are encoded in their binary
representation, i.e., i bits are needed to encode any integer
0 ≤ n ≤ 2i. As a result, the state space is very sensitive
to variable sizes, and it is desirable to set the maximum
sizes of variables to be as small as possible. In our case,
the relevant variables are those that encode the number of
tokens on each edge. Therefore, tight BSUB values help

3

further reduce the system state space for the symbolic
model-checker NuSMV.

• Incorrect BSUB values can cause the model-checker to
arrive at an incorrect buffer size requirement. Gu et al [2]
first uses BSUB values obtained from solving the balance
equation in the NuSMV model. If the state space is too
large for NuSMV to handle, then the BSUB values are set
to the BSLB values obtained from Equation (1), which is
not safe and may cause a deadlock. If a feasible schedule
is found, then finish. If a deadlock occurs, then the BSUB
values are gradually increased until no deadlock occurs.

A C

e1

5 4

11
e2

B

e3

4 5

11
6

18 16

Fig. 4. SDF Graph Example 2.

We use the SDF graph in Fig. 4 as an example to show
that the technique in [2] is not guaranteed to find the
minimum buffer size requirement. The BSLB values of
e1, e2 and e3 obtained from Equation (1) are (18, 16, 8),
respectively. Setting the BSUB values equal to the BSLB
values in the NuSMV model results in a deadlock, but it
is unclear as to BSUB of which edge should be increased.
If we choose to always increase BSUB of edge e1, then
we will obtain the minimum buffer size requirement of
56 when BSUB of e1 is increased to 32. However, if
we adopt the safe but pessimistic BSUB values obtained
from solving the balance equation (62, 71, 26), then we
can obtain the true minimum buffer size requirement of
49.

In the next section, we discuss techniques for setting correct
yet tight BSUB values.

III. TIGHT EDGE BUFFER SIZE UPPER BOUNDS

Theorem 1. For a given SDF graph G = (V,E), let s denote
any feasible schedule s with buffer size requirement R(s); let
R(s, ei) denote the buffer requirement of edge ei for schedule
s; let sopt denote an optimal schedule with minimum buffer
size requirement R(sopt). Then for each edge ei ∈ E, we
have:

R(sopt, ei) ≤ R(s)−
∑

ej∈E−ei

BSLB(ej) (2)

where BSLB(ej) is the BSLB of edge ej obtained from
Equation (1).

Proof: Since values of BSLB are valid lower bounds for
any feasible schedule, we have:

R(sopt, ei)+
∑

ej∈E−ei

BSLB(ej) ≤ R(sopt) =
∑
ej∈E

R(sopt, ej)

(3)
We also know that R(sopt) ≤ R(s), so Equation (2) follows.

A C

e1

4 4

3
e2

B

e3

2 2

36

4

Fig. 5. SDF graph Example 3.

Theorem 2 allows us to set BSUB(ei) to be equal to
R(S) −

∑
ej∈E−ei

BSLB(ej) without losing optimality. We
use the well-known heuristic algorithm in [6] for finding a
feasible schedule s with close-to-minimum buffer size require-
ment R(s). This algorithm is optimal for acyclic, delayless
SDF graphs, but not for general SDF graphs with cycles and/or
initial delays. It works by firing each actor in a demand-
driven manner, and when multiple choices of actor firings
exist, always choosing the one that results in the smallest
increase in the number of tokens. Our experience shows that
this approach gives us much tighter BSUB values than the
BSUB values obtained from solving the balance equation. The
maximum and minimum total buffer size requirements are set
to be R(s) and sum of the BSLB values from Equation 1,
respectively. Subsequently, we use binary search to narrow
down the range of the buffer size requirement while keeping
all the BSUB values fixed in the NuSMV model.

Next, we present another technique for setting the BSUB
of so-called Heavy Edges. At first we introduce the definition
of Forward Heavy Edge and Backward Heavy Edge.

Definition 1 (Forward Heavy Edge). An edge ef is a Forward
Heavy Edge (FHE) if it is the only input edge to its sink actor
snk(ef), and

c(ef) >
∑

src(ej)=snk(ef)

p(ej) (4)

Definition 2 (Backward Heavy Edge). An edge eb is a
Backward Heavy Edge (BHE) if it is the only output edge
from its source actor src(eb), and

p(eb) >
∑

snk(ej)=src(eb)

c(ej) (5)

If the sink actor of a FHE is fired, then the number of
produced tokens is smaller than the number of consumed
tokens, hence we should try to avoid accumulating tokens
on a FHE by transferring tokens on a FHE forward to its
downstream edges. On the other hand, if the source actor of a
BHE is fired, then the number of produced tokens is greater
than the number of consumed tokens, hence we should try to
avoid accumulating tokens on a BHE by transferring tokens on
a BHE backward to its upstream edges. However, one should
not simply fire the sink actor of a FHE as soon as possible (or
the source actor of a BHE as late as possible), which may lead
to higher buffer size requirement. For example, the edge e3
is both a FHE and a BHE, if we simply fire actor A as soon
as possible, and fire actor C as late as possible, we may get
a feasible schedule AABBBCC with buffer size requirement of
20, while the optimal buffer requirement is 16.

4

We can get upper bounds for the heavy edges as shown in
the following theorem:

Theorem 2. In any optimal feasible schedule sopt of a SDF
graph, any FHE ef must satisfy

R(sopt, ef) < max(p(ef) + c(ef), d(ef)) + c(ef) (6)

and any BHE eb must satisfy

R(sopt, eb) < max(p(eb) + c(eb), d(eb)) + p(eb) (7)

We will prove Theorem 2 by Lemma 1 and Lemma 2 shown
as follows:

Lemma 1. For a SDF graph G, if there exists a feasible
schedule s, where an FHE ef satisfying

R(s, ef) ≥ max(p(ef) + c(ef), d(ef)) + c(ef) (8)

then there must exist a feasible schedule s′ satisfying:

R(s′, ef) = R(s, ef)− c(ef) ∧ R(s′, G) < R(s, G) (9)

Similarly, we can prove the following lemma for BHE:

Lemma 2. For a SDF graph G, if there exists a feasible
schedule s, in which a BHE e has buffer requirement

R(s, eb) ≥ max(p(eb) + c(eb), d(eb)) + p(eb) (10)

then there must exist a feasible schedule s′ satisfying:

R(s′, eb) = R(s, eb)− p(eb) ∧ R(s′, G) < R(s, G) (11)

Theorem 2 can be proved by iteratively applying Lemma 1
and Lemma 2.

We can further bound the buffer requirement of a special
kind of heavy edges.

Definition 3 (Regular Heavy Edge). An edge er is called a
Regular Heavy Edge (RHE) if

1) er is an FHE, p(e) = k1 ∗ c(e), d(e) = k2 ∗ c(e), or
2) er is a BHE, c(e) = k1 ∗ p(e), d(e) = k2 ∗ p(e)

where k1 is any positive integer and k2 is any non-negative
integer.

Theorem 3. The buffer requirement of a RHE er must be
BSLB(er) in any optimal feasible schedule.

The proof of Theorem 3 is similar to that of Theorem 2.

A C6 B

D

5 2
2

2
1

12
10

12
12

eA B eBC
eBD eC E

eD A
E55

eED

6

Fig. 6. SDF graph Example 4.

For SDF graph Example 4 in Fig. 6, the BSUB values
obtained from the balance equation are:

BSUB(eAB)=30, BSUB(eBC)=12, BSUB(eCE)=6
BSUB(eBD)=12, BSUB(eED)=30, BSUB(eDA)=60

A

C

B

2
2

1
2

1
1

1
D

E

F
1

3
3

1
1

1
1 3

1 2

G 1 G 2

Fig. 7. Example to illustrate Lemma 3.

Since eAB is an FHE; eBC is a RHE; eED is a RHE; eDA is
both an FHE and a BHE, we can obtain tighter upper bounds
as follows:

BSUB(eAB)=16, BSUB(eBC)=2, BSUB(eCE)=6
BSUB(eBD)=12, BSUB(eED)=5, BSUB(eDA)=32

IV. GRAPH DECOMPOSITION

In this section, we will show that we can decompose
the SDF graph into several subgraphs connected by bridges,
analyze each subgraph separately, and then obtain the buffer
size requirement of the whole SDF graph from that of each
subgraph.

We first present some basic definitions. Suppose s(G) is
a feasible schedule of SDF graph G = (V,E), and Gi =
(Vi, Ei) is a subgraph of G. The projection of s(G) on Gi

is the schedule sequence denoted by s(Gi), in which the
firings of actors that do not belong to Gi are removed, and the
remaining firing sequence is kept with the same order as in
s(G). A bridge (also known as a cut-edge in graph theory) e
is special edge s.t. if e is deleted, the SDF graph will become
two separated subgraphs.

Next, we introduce a schedule composition algorithm called
CA. For any SDF graph consisting of subgraphs connected
with a bridge, (CA) can be used to compose the valid
schedules of its two subgraphs to obtain a valid schedule of
the overall SDF graph. Suppose the SDF graph G = (V,E)
consists of two subgraphs G1 = (V1, E1) and G2 = (V2, E2)
connected with a bridge eb, as shown in Fig. 7.

CA consists of the following steps to obtain a schedule for
G:

1) Fire each actor in s1 in sequence repeatedly. If actor
src(eσ) is fired, then goto (2), otherwise

2) If there are enough tokens on eσ for snk(eσ) to fire,
then fire snk(eσ) and goto (3); otherwise go to (1).

3) Fire each actor in s2 in sequence repeatedly. If there are
not enough tokens on eσ for snk(eσ) to fire, then goto
(1); otherwise repeat (3).

4) Whenever src(eσ) or snk(eσ) is fired, check to see if
the number of tokens on eσ has returned to its initial
value, all firings of src(eσ) in the current iteration of
s1 have been finished, and all firings of snk(eσ) of the
current iteration of s2 have been finished. If all three
conditions are satisfied, then the remaining actor firings
in the current iteration of s1 and s2 are performed, and
the algorithm terminates afterwards.

5

As an example, in Fig. 7, s1=ABCBC is a feasible schedule
for G1 and s2=DDFDEFF is a feasible schedule for G2. Now
we apply CA:

1) Fire A and B in schedule s1.
2) Number of tokens on eσ is 1, which is not enough for

D to fire. Continue to fire C and B in schedule s1.
3) Number of tokens on eσ is now 2. Fire D.
4) Number of tokens on eσ has returned to its initial state

of 0, but there are still two firings of D remaining in s2.
So we continue to fire the next actor in s2, F .

5) Since the next actor firing in s2, D, is not enabled, we
return to schedule s1.

6) The process continues until the final schedule of ABCB
D CABCB DF CABCB DEFF C is obtained.

CA always tries to fire the sink actor of the bridge as soon
as possible, in order to minimize the buffer requirement of the
bridge. The benefit of CA is that, for any SDF graph consisting
of two subgraphs connected by a bridge, we can get its optimal
feasible schedule with minimum buffer size by composing the
optimal feasible schedules of its two subgraphs with CA.

Lemma 3. Suppose a SDF graph G = (V,E) consists of two
subgraphs G1 and G2 connected by a bridge eσ . We have:

R(sopt, G) = R(s1
opt, G1) + R(s2

opt, G2) + BSLB(eσ) (12)

where sopt, s1
opt and s2

opt is an optimal schedule of G, G1 and
G2 respectively.

Proof: We can compose s1
opt and s2

opt with CA to obtain
a valid schedule s for G. s1

opt and s2
opt is the projection

of s on G1 and G2 respectively. We observe that if we
schedule G by s, the buffer requirement on G1, G2 and eσ is
R(s1

opt, G1), R(s2
opt, G2) and BSLB(eσ) respectively. At the

same time, R(s1
opt, G1), R(s2

opt, G2) and BSLB(eσ) is the
lower bound of the buffer requirement of the corresponding
part respectively, which means the buffer requirement of G can
not be smaller than R(s1

opt, G1) + R(s2
opt, G2) + BSLB(eσ).

So the minimal buffer requirement of G is R(s1
opt, G1) +

R(s2
opt, G2) + BSLB(eσ).

For the example in Fig. 7, ABCBC is an optimal feasible
schedule of G1 and BSLB(G1) = 2 + 2 + 1 = 5. DDFDEFF
is an optimal feasible schedule of G2 and BSLB(G2) = 3 +
3 + 3 = 9. BSLB(eBD) = 2. So by Lemma 1, we have
BSLB(G) = 5 + 9 + 2 = 16

We can generalize the conclusion of Lemma 3 to SDF
graphs with more complex topology.

Theorem 4. If G = (V,E) is a SDF graph consisting of the
set C of the minimal subgraphs connected by the set of bridges
B.

R(sopt, G) =
∑
Gi∈C

R(siopt, Gi) +
∑
ei∈B

BSLB(ei) (13)

in which sopt is an optimal schedule of G, and siopt is an
optimal schedule of Gi.

Theorem 4 can be easily proved by Lemma 3 recursively.
To use Theorem 4 to improve the efficiency of model-

checking for the buffer requirement optimization of SDF G,

we should find all subgraphs and bridges of the graph G,
and compute the minimal buffer requirement of each subgraph
separately, then compute the buffer requirement of S with
Theorem 4. If a subgraph is cyclic, or it is acyclic with non-
zero delay tokens, then we can use model-checking to derive
its minimal buffer requirement and schedule. For acyclic and
delayless subgraphs, we can use the algorithm in [7] to derive
them analytically. Finding bridges of a graph can be done by
the depth-first search with a complexity of O(m+n) [8], where
m is the number of actors and n is the number of edges.

V. PERFORMANCE EVALUATION

We used the software tool SDF3 [9] to generate random
SDF graphs. Since there exists fast and optimal algorithms [6]
for deriving minimum buffer size requirements for acyclic and
delayless SDF graphs, which makes it unnecessary to apply
model-checking for these types of graphs, we ensured that any
generated SDF graph contains cycles or initial delay tokens, or
both. In our experiments, the minimum, maximum and average
total input-output degree of each actor in the SDF graph are
1, 3 and 2, respectively. The experiments are run on a Linux
PC with an Intel dual-core 2.83GHz 64-bit processor and 2GB
of main memory. We use a utility program Memtime from the
UPPAAL group to measure the running time and peak memory
usage. Table I shows the performance evaluation results. We
only record the running time and peak memory usage of the
final step of the binary search process. If the optimal buffer
size requirement is BOUND, then for the optimized approach,
then we record the peak memory size and running time
of two model-checking sessions given the invariant INVAR
SUM<=BOUND, which should not lead to a deadlock, and the
invariant INVAR SUM<=BOUND-1, which should lead to a
deadlock; for the original approach in [2], we record the peak
memory size and running time of two model-checking sessions
for the CTL properties SUM>=BOUND, which should be proven
true, and SUM>=BOUND+1, which should be proven false. For
a SDF graph that is decomposed into several subgraphs using
the approach in Section IV, we take the maximum model-
checker peak memory size and running time among all its
decomposed subgraphs as the memory size and running time
for the overall SDF graph.

We set a timeout limit of 2 hours. If a model-checking
session did not finish within 2 hours, then we denote it
with “-” in the table. As shown in Table I, the optimization
techniques presented in this paper can result in significant
reduction in both the memory size and running time of model-
checking.

VI. CONCLUSIONS

In this paper, we have presented several optimization
techniques for reducing the state space and improving effi-
ciency/scalability of model-checking for finding the minimum
buffer size requirement of SDF graphs. Performance evalu-
ation demonstrates the effectiveness of these techniques in
reducing the peak memory size and running time of model-
checking compared to the original approach without these
optimizations.

6

TABLE I
PERFORMANCE EVALUATION.

No. Actors 4 6 8 10 12 14 16 18 20 22
Buff. Size. 32 36 56 64 188 168 222 430 324 471

Peak memory of NuSMV with the original approach in [2]
BOUND (MB) 19.6 96.6 22.4 62.1 156.7 – – – – –
BOUND+1 (MB) 19.6 86.9 22.5 62.9 223.6 – – – – –

Running Time of NuSMV with the original approach in [2]
BOUND (s) 0.6 11.2 1.2 15.2 327.3 – – – – –
BOUND+1 (s) 0.1 21.2 1.2 26.5 562.5 – – – – –

Peak memory of NuSMV with the optimized approach in this paper
BOUND (MB) 2.5 26.1 13.6 25.8 36.6 17.2 21.3 12.6 16.7 56.8
BOUND-1 (MB) 2.5 2.5 2.5 2.5 26.7 2.5 2.5 2.5 2.5 22.4

Running Time of NuSMV with the optimized approach in this paper
BOUND (s) 0.1 0.1 0.2 0.1 0.6 0.3 0.4 0.2 0.3 2.2
BOUND-1 (s) 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.4

REFERENCES

[1] H. Oh, N. Dutt, and S. Ha, “Memory optimal single appearance schedule
with dynamic loop count for synchronous dataflow graphs,” in ASP-DAC,
F. Hirose, Ed. IEEE, 2006, pp. 497–502.

[2] Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, , and G. Yu, “Static
scheduling and software synthesis for dataflow graphs with symbolic
model-checking,” in Proc. IEEE Real-Time Systems Symposium (RTSS),
2007.

[3] P. K. Murthy and S. S. Bhattacharyya, Memory Management for Synthesis
of DSP Software. CRC Press, 2006.

[4] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of
synchronous dataflow graphs with model checking.” in DAC, 2005, pp.
819–824.

[5] A. Cimatti and et al, “NuSMV 2: An OpenSource Tool for Symbolic
Model Checking,” in International Conference on Computer-Aided Veri-
fication (CAV), 2002.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[7] M. Cubric and P. Panangaden, “Minimal memory schedules for dataflow
networks.” in CONCUR, ser. Lecture Notes in Computer Science, E. Best,
Ed., vol. 715. Springer, 1993, pp. 368–383.

[8] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal
of Computer, 1972.

[9] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,”
in Application of Concurrency to System Design, 6th International
Conference, ACSD 2006, Proceedings. IEEE Computer Society Press,
Los Alamitos, CA, USA, June 2006, pp. 276–278. [Online]. Available:
http://www.es.ele.tue.nl/sdf3

APPENDIX

Proof of Lemma 1.
Proof: We first consider the case of p(ef) + c(ef) ≥

d(ef).
We visit each actor firing in s in order starting from its

beginning, to find the step at which the buffer requirement
becomes larger than R(s, ef)−c(ef) for the first time. Suppose
it is at the step j, and we know it must be a firing of node
src(ef). Then we look for the the first firing of snk(ef) after
step j, and suppose it is at step k. Note that there is no firing
of src(ef) during step j +1 ... k, otherwise the buffer size of
ef will exceed R(s, ef).

We move the firing of snk(ef) at step k to j, and move
every step between j and k−1 in s to its next step respectively.
Now we will show that this moving action won’t lead to
negative token number on ef :

Since p(ef) + c(ef) ≥ d(ef), by Equation 8 we have
R(s, ef)− c(ef) > d(ef), so the initial buffer size is smaller
than R(s, ef)− c(ef). Suppose the buffer size at step j (after
the firing of src(e) at step j) is x, then the buffer size at step

j − 1 is x − p(ef). After we move the firing of snk(ef) to
step j, the buffer size at step j is x−p(ef)− c(ef), and since
x > R(s, ef) − c(ef) and R(s, ef) > p(ef) + 2 ∗ c(ef), we
know x−p(ef)−c(ef) > 0, at step j the token number on ef
is positive. Since after the moving actions during step j+1...k,
there is no firing of snk(e), and after step k the token number
on ef is the same as s, it will not lead to a negative number
of tokens on ef .

After the moving actions, for the schedule sequence between
step j and step k, the buffer requirement of ef becomes smaller
than R(s, ef)−c(ef). At the same time, the buffer requirement
of each edge ei whose source node is snk(ef) is increased by
at most p(ei).

Then from the step k+1 (there is no other firing of src(ef)
before k + 1, as mentioned above), we start to look for the
next firing of src(ef) at which the buffer requirement exceeds
R(s, ef)− c(ef), and repeat the process above, until the end
of schedule sequence is reached.

Now, we have transformed the schedule s to another feasible
schedule s′, in which the buffer size requirement of ef is
R(s, ef)− c(ef); the buffer size requirement of any ei whose
source ode is the sink node of ef is R(s, ei) + p(ei); the
buffer size requirement of all other edges are unchanged. Since
ef is a FHE, we have c(ef) >

∑
ej∈E′ p(ej), so we know

R(s′, G) < R(s, G).
Now, consider the case of d(ef) > p(ef) + c(ef). The

only difference from the case discussed above is that, when
d(ef) > p(ef) + c(ef), the condition to guarantee that the
initial buffer size of ef before is smaller than R(s, ef)−c(ef),
otherwise, after we change s to s′ by the method introduced
above, the buffer requirement of ef may be reduced by a
value smaller than c(ef), therefore it is not guaranteed that
R(s′, G) < R(s, G).

Since the proof of Lemma 2 is very similar to that of Lemma
1, it is omitted due to space limitations.

