
JOHN WILEY & SONS, LTD., THE ATRIUM, SOUTHERN GATE, CHICHESTER P019 8SQ, UK

*** PROOF OF YOUR ARTICLE ATTACHED, PLEASE READ CAREFULLY ***

After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE NOTE THAT THE PROMPT RETURN OF YOUR PROOF CORRECTIONS WILL
ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF

YOUR ARTICLE

 READ PROOFS CAREFULLY

ONCE PUBLISHED ONLINE OR IN PRINT IT IS NOT POSSIBLE TO MAKE ANY FURTHER
CORRECTIONS TO YOUR ARTICLE

§ This will be your only chance to correct your proof
§ Please note that the volume and page numbers shown on the proofs are for position only

 ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

§ List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail,
or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send
corrections by fax or post

 CHECK FIGURES AND TABLES CAREFULLY

§ Check sizes, numbering, and orientation of figures
§ All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet

delivery. These images will appear at higher resolution and sharpness in the printed article
§ Review figure legends to ensure that they are complete
§ Check all tables. Review layout, titles, and footnotes

 COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

§ Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published
unless we have received the signed CTA

 OFFPRINTS

§ Free access to the final PDF offprint of your article will be available via Author Services only.
Please therefore sign up for Author Services if you would like to access your article PDF offprint and
enjoy the many other benefits the service offers.

Additional reprint and journal issue purchases

§ Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided:
http://offprint.cosprinters.com/cos/bw/

§ Corresponding authors are invited to inform their co-authors of the reprint options available.
 § Please note that regardless of the form in which they are acquired, reprints should not be resold, nor
 further disseminated in electronic or print form, nor deployed in part or in whole in any marketing,
 promotional or educational contexts without authorization from Wiley. Permissions requests should be
 directed to mailto: permissionsuk@wiley.com
 § For information about 'Pay-Per-View and Article Select' click on the following link:
 http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html

 AUTHOR SERVICES

 § If you have registered this article in Wiley-Blackwell Author Services, the article's status will be updated
 shortly after you have returned your proof corrections (you will also receive an e-mail alert if you have opted
 to receive them). You are entitled to free access to the PDF from Author Services when your article
 is published online. This free access is considered your PDF offprint, and you will only have access from within
 Author Services; you will not be sent a PDF. You may also nominate up to 10 colleagues for free access. All accesses
 from Author Services count towards the usage of your article. For options to order print copies or additional electronic
 access, please see below.

UN
CO

RR
EC

TE
D

PR
O

O
F

SPE 1006
pp: 1–10 (col.fig.: Nil)

PROD. TYPE: COM

ED: Arun

PAGN: Sabari -- SCAN:

SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2010)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1006

1

Developing UPPAAL over 15 years

Gerd Behrmann1, Alexandre David2,∗,†, Kim Guldstrand Larsen2, Paul Pettersson33
and Wang Yi4

1NORDUnet A/S, Copenhagen, Denmark5
2Department of Computer Science, Aalborg University, Denmark

3Mälardalen Research and Technology Centre, Mälardalen University, Sweden7
4Department of Information Technology, Uppsala University, Sweden

SUMMARY9

UPPAAL is a tool suitable for model checking real-time systems described as networks of timed automata
communicating by channel synchronizations and extended with integer variables. Its first version was11
released in 1995 and its development is still very active. It now features an advanced modeling language,
a user-friendly graphical interface, and a performant model checker engine. In addition, several flavors13
of the tool have matured in recent years. In this paper, we present how we managed to maintain the tool
during 15 years, its current architecture with its challenges, and we give the future directions of the tool.15
Copyright q 2010 John Wiley & Sons, Ltd.

Received 31 March 2010; Revised 31 May 2010; Accepted 14 July 2010

KEY WORDS: UPPAAL; real-time; model-checker; development17

INTRODUCTION

UPPAAL is first of all a research tool born from the collaboration of Uppsala and Aalborg univer-19
sities [1]. It takes its theoretical roots from Alur and Dill’s pioneer work on timed automata [2].
Its performance originally comes from zones [3] as a representation for states and the efficient21
implementation of operators on its canonical data-structure known as difference-bound matrix
(DBM) [4]. Since then the development has been fueled by scientific results on algorithms or new23
data structures [5–10], academic case-studies [11–15], industrial case-studies [16–20], and also
teaching [21].25

On the other hand, having such a tool helps to develop and test new theories and algorithms,
which has given us synergy during the last decade between tool development and theoretical27
results.

Recently, the tool has blossomed into several domain specific versions, namely, CORA [6, 22]29
(cost-optimal reachability), TRON [23, 24] (online testing), COVER [25, 26] (offline test gener-
ation), TIGA [27] (timed game solver), PORT [28] (component based and partial order), PRO31
(extension with probabilities, in progress), and TIMES [29, 30] (scheduling and analysis). These
extensions are made based on a common code base, re-using basic data structures to represent33
states, store them, and perform common operations such as delay, intersection, or computing
successor states.35

∗Correspondence to: Alexandre David, Department of Computer Science, Aalborg University, Denmark.
†E-mail: adavid@cs.aau.dk

Copyright q 2010 John Wiley & Sons, Ltd.

UN
CO

RR
EC

TE
D

PR
O

O
F

2

SPE 1006

G. BEHRMANN ET AL.

CORA is based on linearly priced timed automata [31]. The model extends timed automata1
with a special cost variable whose rate is specified for every state. The algorithm uses guiding to
solve minimum cost reachability problems.3

TRON is a testing tool suited for black-box conformance testing [32, 33] of timed systems.
It is mainly targeted for embedded software commonly found in various controllers. Testing is5
done online in the sense that that tests are derived, executed, and checked while maintaining the
connection to the system in real-time.7

COVER is a tool for creating test suites from UPPAAL models with coverage specified by
coverage observers a.k.a. observer automata.9

TIGA is an extension for solving reachability and safety problems on timed game automata. Its
algorithm [34] is a symbolic extension of the on-the-fly algorithm suggested by Shann et al. [35]11
for linear-time model-checking of finite-state systems. It is used for controller synthesis [36], it has
application to testing [37], and it has been extended to synthesis under partial observability [38].13

PORT is a version targeted at component-based modeling and verification. Its interface is
developed as an Eclipse plug-in. The tool supports graphical modeling of internal component15
behavior as timed automata and hierarchical composition of components. It is able to exploit the
structure of such systems and apply partial order reduction techniques successfully [39].17

PRO is an extension of timed automata with probabilities [40, 41]. The model is extended with
branching nodes that allow the user to specify weights for every outgoing edge. The engine can19
then compute probability bounds to reach specified states. It is work-in-progress.

TIMES TIMES is a tool-set for modeling, schedulability analysis, synthesis of (optimal) sched-21
ules and executable code. Its modeling language is timed automata extended with tasks. It models
systems that can be described as a set of tasks that are triggered periodically or sporadically by23
time or external events. The release pattern is given by a timed automaton and the tool performs
schedulability analysis on it. TIMES works by encoding the problem into timed automata and it25
uses the UPPAAL engine for the checks. It translates back the answer in terms of Gantt chart
to visualize schedules. There are other tools that are using UPPAAL as a back-end verification27
engine, e.g. REX [42].

In this paper we focus on the ‘core’ tool UPPAAL and present our experience in developing29
and maintaining it for the last decade. In particular, we present the backbone architecture that has
allowed us to expand the tool on different variants of timed automata. The following sections give31
an overview of the tool architecture, our experience in the process of building the tool, and the
future development directions.33

OVERVIEW OF THE TOOL ARCHITECTURE

Client–server architecture. The tool has two main components: a graphical user interface written35
in Java and a model-checker engine written in C++. The interface runs almost effortlessly on
different platforms and we can exploit the rich functionalities available for programming interfaces37
inherent to the libraries that come with the Java programming language. The C++ language gives
us both advanced object-oriented programming and performance. These two components form a39
basic client–server architecture with the graphical interface (client) communicating with the model
checker (server) via a local pipe‡ or the network§. This separation of concerns makes UPPAAL41
easier to port and maintain on different platforms.

The graphical interface has three ‘tabs’ that correspond to the main tasks a user needs to do:43
to edit a model in the editor, to simulate it in the simulator, and submit verification queries to
the model-checker. Additionally, the user may come back to the simulator to visualize a trace45
generated by the verification. Figure 1 gives a view of the simulator of the tool. The different

F1
variants of the tool have specialized interfaces and the figure shows the simulator used in TIGA.47

‡A common inter-process communication mechanism.
§The verification can be done on a remote server, which is a rarely exploited feature.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

SPE 1006

DEVELOPING UPPAAL OVER 15 YEARS 3

C
ol
or

O
nl
in
e,

B
&
W

in
Pr
in
t

Figure 1. View of the ‘concrete’ simulator of TIGA.

PWList

TransitionSuccessor

Delay Extrapolation

Initial state

LazyCopy

Sorter

Trace Symmetry

Query

Figure 2. Pipeline architecture for the reachability filter.

On the left is the command part where the user can select transitions, go back in the trace, play1
randomly, or navigate through the current trace (history of states). The list in the middle shows the
values of the variables and clocks. The timed automata are shown on the right and below them a3
Gantt chart and a message sequence chart. The simulator of UPPAAL lacks the Gantt chart and
has other similar components, although instead of navigating with concrete clock valuations, the5
user sees symbolic states. The point here is to stress reuse of components across different tools.
It is important to amortize development costs over time on different specializations of the tool7
without having to rewrite everything from scratch. This is obvious but the insidious consequence
is that it is often difficult in practice to publish on these new additions. This is due to the lack of9
dedicated conferences where tool developments can be reported on.

Pipeline architecture. The model-checker itself (the engine) is designed around a pipeline11
architecture [5] where each block or filter processes states and sends them to the next stage as
shown in Figure 2. The figure shows the configuration for the reachability filter. Other algorithms

F2
13

such as the liveness and the leadsto checkers have their own filters built on the same principle.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

4

SPE 1006

G. BEHRMANN ET AL.

In this example, the initial state is pushed to the reachability filter in its delay component to start1
the exploration. Then it runs its main loop that takes states from our (unified passed and) waiting
list structure, explores them, and puts the successors in that structure. This structure (also called3
the PWList) implements one (colored) state set with states marked waiting and passed. It is unified
in the sense that we have one structure instead of the traditional waiting and passed lists that need5
two lookups in hash tables per loop iteration of the reachability algorithm. Only states colored as
waiting are explored and inclusion check between symbolic states is done against all states. The7
main chain for the exploration is Transition (which transitions can be taken)—Successor (execution
of the transitions)—Delay (let time pass)—Extrapolation (apply an appropriate extrapolation to9
ensure finite exploration)—PWList (inclusion check and mark the state to be explored)—Query
(evaluate the formula if the state was not included).11

In fact we inserted a LazyCopy filter to reduce copies of states between the transition and
successor filters. This filter really copies states only when necessary, e.g. computing one successor13
only does not require a copy and two successors require one copy only. It acts as a one-place
buffer. When priorities are used in the model, this filter is swapped by another filter that is going to15
buffer transitions and sort them by priority, without changing the rest of the pipeline. Some filters
are optional, such as Sorter that can sort transitions, Trace that is used to store traces or Symmetry17
that is projecting the states to a representative of its equivalence class (orbit) when symmetry is
used in the model. In addition, different kinds of extrapolations can be used depending on the19
model, which results in different kinds of instances for the Extrapolation filter. We note that it is
simpler to have the logic (in terms of if statements) to instantiate the right type of a component21
once and use the generic design to connect the components and use them transparently. The reader
understands that the combination of these features gives rise to a lot of configurations. The point23
here is to keep orthogonal features separated.

The overall pipeline architecture allows us to reason about the algorithm in terms of blocks that25
we can change if we need another semantics. Implementing another checker, e.g. a timed game
solver, is relatively easy and consists in adding components that will do the backward propagation,27
changing the first filter to either explore forward or backward, adding a post-processing filter
to detect what is winning or losing in the game after Extrapolation, and changing the graph29
representation. The new pipeline still has the same structure and follows the same design. To change
the semantics of the game, e.g. to implement simulation checking [43], we change Transition that31
implements the transition relation and Delay to allow turn-based delays.

There are two important points that this architecture illustrates: object-oriented programming33
and reuse of components. The filters are in practice abstract classes hence these components are
managed at a high level. Second, we can reuse these filters for different pipeline configurations,35
i.e. for different checkers. We note that the architecture is also fit for functional languages.

Additional components. In addition to these components, UPPAAL contains a virtual machine to37
execute the compiled byte-code of our C-like input language supporting user defined functions and
types. This allows the user to write complex and compact models while still limiting the state-space39
explosion—complexity can be concentrated in functions to avoid using intermediate states.

We currently distribute some open source components, such as the parser and the DBM library.41
The DBM library has a Ruby binding, which allows for quick prototyping. The parser under-
stands the XML format we use in UPPAAL, which allows other researchers to use the same43
format. The DBM library handles DBMs and federations (unions of DBMs) used to represent
symbolic states. The DBM library supports a wide range of operations including subtractions and45
merging of DBMs.

TOOL BUILDING PROCESS47

Tools are not prototypes. It is relatively easy to produce prototypes as proofs of concept of some
theory or algorithm to strengthen a paper but it is notoriously more difficult to develop a tool that is49
going to survive the test of time. Unfortunately, prototypes are more common in practice. Building
and maintaining tools take a lot of time and is generally given less academic credit compared51

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

SPE 1006

DEVELOPING UPPAAL OVER 15 YEARS 5

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50 60 70 80

kL
oC

Months from 2004

kLOC over the years

Figure 3. Evolution of the code base.

to more theoretical work, which explains the limited number of maintained tools. In the domain1
of formal methods, tools are crucial and they also serve as a dissemination means for theoretical
results. Tools do have a positive impact through the case-studies that they allow other users to do,3
often in collaboration, which is important to amortize the development cost (in terms of time) and
earn publications (otherwise we perish)¶.5

Who develops? The first question in developing tools is who is going to do it? Most of the time
it is done by masters or PhD students, which makes sense economically since professors cannot7
afford writing C++ code. However, when temporary developers who have their own agenda (own
thesis to write) work on the tools, there is the obvious issue that someone needs to take over,9
otherwise the tool will disappear. In addition, temporary developers do not have a long-term vision
and are interested (rightfully so) in their own thesis. Over the years, changing teams without a11
common interest or focus means that the code will degrade if there is no control. What happened
with us was that there were some PhD students who stayed in the team for a long time, long13
enough to lay down a solid architecture and durable design. As a first rule of survival, one should
have a solid design and encourage people to stick to it even if they do not like it. At some point15
in time old design decisions will not make sense any more but that is a different issue.

Code size. When the code grows (see Figure 3) it is increasingly difficult for new people to use
F3

17
the code hence it becomes important to have some permanent staff to take care of it and revise it
so that it can offer a limited and more useful interface. This is a considerable effort that is essential19
for the survival of the tool. In the past we had a few such revisions: the pipeline architecture, the
virtual machine, and handling of federations in the model-checker. The size and complexity of the21
code has now become a barrier for new internal people but it is also a serious problem for external
collaboration. We need a new revision to update the interfaces of the different components and add23
more abstraction to the code. For long-term development, it is important to have some permanent
staff to take care of such revisions and keep a long-term vision. However, it is a trade-off between25
the academic and development work.

Code aging. Curiously code ages. This is due to the fact that developers forget old code27
and new methods or libraries appear over the years, which makes the code become older or
deprecated. In addition, progress in compilers also means that special efforts in the past to make29
some algorithms efficient are now obsolete, e.g. we can commonly address iteratively elements
in matrices by expressions like dbm[i ∗dim+ j] with confidence that the compiler will not use31
relatively expensive multiplications for element accesses. To counter code aging, documentation

¶The well-known motto publish or perish emphasized by a system holding that name is a testament of the tool
development dilemma in academia.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

6

SPE 1006

G. BEHRMANN ET AL.

is vital. Our experience has been to ‘document’ the code using doxygen formatted comments.1
There is no real documentation apart from these comments, although some efforts have been made
to describe the overall design decisions and the communication protocol. We have crash courses3
to inform new programmers, which is a limited solution. As for the comments, they are extensive
and they keep the memory of former developers. It is a weakness in the development process to5
lack stand-alone white papers that give technical details of the code but this has not been our
priority.7

Life cycles. The tool has gone over different life cycles over the years. A life cycle can be defined
by major changes in architecture that are needed to accommodate new developments. It happens9
when old designs become too obsolete for new additions that were not foreseen in the past. The
first cycle was with the original ATG graph editor‖ and an early custom simulator. The second11
cycle introduced an integrated graphical editor, the client–server architecture still in use today,
and an improved engine. The third cycle is the current one with a modular pipeline architecture.13
This pipeline architecture is probably the determinant factor for keeping additions of new features
without breaking the tool. In terms of features it is interesting to note that early development efforts15
were focused on performance improvements and then later on interface and language features. The
later developments of the tool introduced new algorithms to handle different problems rather than17
improvements in the current algorithms.

During a cycle, the development is incremental, following the current design and making changes19
until the amount of desired new features and algorithms conflicts too much with the design. At this
point there is a major effort to redesign (or re-factor) the code. The current architecture has21
lived up to its expectations for the approximately 8 years, during which we could re-use existing
components and create new ones that we could literally plug together. However, the plethora of23
new variants of the tool hides the current internal issues with the architecture and now is the time
for a major update.25

Distributed development. We use a centralized version management system (CVS and later
subversion), which allows distributed teams to work on the same code. This is common for27
distributed projects. A given checkout of the repository contains all variants of the tool but each
of them is located in its own separated module. Developers are responsible for few modules (their29
own) and modify other modules only occasionally. The key here is to have responsibility for the
different parts for maintenance. In addition, we have the simple rules committed code must compile31
and any distributed code must pass the regression test. As breaking these rules produces heated
reactions, they tend to be observed. The goal here is to keep discipline.33

Testing. For a tool in the field of formal methods we would expect to apply formal verification
techniques to it to ensure its correctness. Let us say research is not there yet. The code base has35
currently 200+KLoC in C++ which implement algorithms that are themselves notoriously diffi-
cult to prove. There are tools we have used to assist us, such as gcov, purify, and valgrind.37
However, what we routinely do is to test. We use regression testing on a battery of known examples
and results. When a bug is discovered, we insert that the new example in the test suite and make39
sure new versions pass the new tests. This is an automatic process handled by a script.

Bug management. Another well-known tool we are using is the bug management system bugzilla.41
Bugs are not only program errors but also requested features. They are sorted by priorities that
developers can set. Errors usually come with examples to reproduce them. They are added to the43
regression tests when the errors are corrected. Sometimes a change in the code triggers a new error
that was not present in the past. We use binary search on the revision number (in our subversion45
repository) to find which revision introduced the changes that triggered that error. This is a simple
and very effective technique.47

Cross-platform. An integral part of the development process is to take care of cross-platform
development. Early on we decided to stick with one compiler, gcc/g++. We can use the same49
code and change a few headers only and compile for Windows, Linux, and MacOS. By doing so
we can also take advantage of some useful gnu extensions. We dropped support for SunOS due to51

‖This is an editor tool used by UPPAAL from 1995 to 1999.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

SPE 1006

DEVELOPING UPPAAL OVER 15 YEARS 7

the absence of users and also machines installed with SunOS. All three supported platforms are1
actively used with an increase for MacOS in the recent years. What we do to manage this is to
keep third-party libraries at a minimum. Currently, we need libxml2 compiled for all platforms3
and we use boost headers only. The rest is generated code by tools such as bison and flex.
Compilation is done under Linux for Linux and Windows, MacOS binaries are compiled on a5
Mac. We foresee problems in the future when supporting multi-threads since we will have to use
additional libraries such as Win32-pthread to support POSIX threads (to begin with, the library7
needs to be patched for Win64).

Community. Finally, to survive, a tool needs its community. We have a discussion forum∗∗ that9
our user community uses to ask or answer questions and maintain an active discussion on the
tool. In fact, this helps us tremendously because we cannot handle all newcomers to the tool11
individually and we are grateful to users who help each other. The community also provides us
with new problems and case-studies, which in turn instill progress in algorithms and theory.13

CHALLENGES

The first challenge is to manage the complexity and size of the project. Implementing advanced15
algorithms is tricky, specially when it is in a formal tool which is used for verification. As shown
in Figure 3 the code (in kilo lines of code of C/C++) has been steadily growing. This growth17
comes from new variants and algorithms that are added to the repository. The count includes all
code (used or not) for all variants of UPPAAL for the model-checker engine only. The graphical19
interface adds 40+ kLoC in Java.

The second challenge is to keep improving the performance and features of the tool despite21
the growing algorithm complexity. Table I shows the evolution of the performance of the tool.

T1
Experiments have been performed on a Pentium D 2.80GHz with 1GB RAM. We use memtime23
that measures time and polls memory (not reliable below 0.1 s). Entries marked ‘—’ denote veri-
fications that were stopped after 2 h or 900M. The models are available on www.uppaal.org under25
Examples/benchmarks. Apart from the performance improvements, the recent versions support
user-defined functions and symmetry reduction. These features are not used in the experiments but27
they would further improve the performance.

The third challenge is to cope with new extensions of the tool to explore different theoretical29
paths. The current architecture has been pushed to implement the different known flavors of
UPPAAL but also to extend every checker. Recent extensions to UPPAAL include priorities and31
stop-watches. TIGA was recently extended with a simulation checker. It is being extended with
a new timed interface checker. Although the overall pipeline architecture accommodates these33
extensions, we have reached the limit of some ‘implementation details’. These are: (1) there can
only be one global system, (2) long-wished features, such as clock constraints on receiving edges35
of broadcast synchronizations, are now needed, (3) the engine is designed for 32-bit architectures,
(4) there is no multi-core support, (5) there is only one kind of symbolic state, and the list goes37
on. These are obstacles for doing compositional model-checking where we would need to handle
several systems and combine results. In addition, it is difficult to adapt the engine to different39
kinds of systems without changing core structures such as the states. Currently, when compiling
CORA, one C macro is changed to swap to a different type of DBM supporting costs. This works41
because we made sure that the commonly needed interface was exactly the same. This is a very
limited solution.43

Another challenge is to use modern technology to its full potential. Updating to 64-bit is mainly
technical. Taking real advantage of 64-bit is challenging. Modern compilers have the ability to45
vectorize code†† but this is still limited to simple algorithms and not to the critical O(n3) algorithms
that we have. Going for multi-core support (multi-threaded UPPAAL) is more difficult. There have47

∗∗http://tech.groups.yahoo.com/group/uppaal/.
††This in essence allows the use of SIMD instructions (single instruction, multiple data) on streams of data.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

8

SPE 1006

G. BEHRMANN ET AL.

Table I. Evolution of performance in terms of time (s) and memory consumption (MB).

Version CSMA5 CSMA7 CSMA12 Fischer5 Fischer7 Fischer12 HDDI7 HDDI12

3.0.39 8.4 s — — 4.2 s — — 36.3 s —
7.2MB — — 10.6MB — — 20.1MB —

3.2.12 0.3 s 417 s — 1.6 s — — 7.2 s —
3.8MB 145MB — 6.8MB — — 11.9MB —

3.3.25 0.2 s 198 s — 1.1 s — — 3.2 s —
3.4MB 113MB — 6MB — — 8.4MB —

3.4.6 <0.1 s 40.7 s — 0.3 s 4706 s — 0.1 s 5.3 s
3.1MB 34.5MB — 4.9MB 267MB — 1.6MB 14.1MB

4.0.11 <0.1 s 0.2 s 33.8 s <0.1 s 0.4 s 418 s <0.1 s 0.4 s
1.6MB 38MB 115MB 1.6MB 38.1MB 300MB 1.6MB 38MB

4.1.2 <0.1 s 0.2 s 41.9 s <0.1 s 0.3 s 341 s 0.05 s 0.2 s
1.6MB 21.6MB 99MB 21MB 21.6MB 248MB 1.6MB 22.9MB

been experiments in the past in this direction and we know that the current architecture could be1
adapted by having one thread per pipeline copy. This fits memory locality but we also know that
it did not work so well because blocking data-structures (access protected by mutex) were major3
bottlenecks. It is crucial to have non-blocking structures such as [44] if we want to use multi-cores
efficiently, although this is a temporary solution that will last at most 10 years‡‡. In addition, we5
want to make the components extendable more easily in particular to allow more people to work
on UPPAAL without having to know what most of the code is doing. The bottom line is that there7
are research opportunities but not all issues are research related.

FUTURE9

We have shown in this paper the main challenges that we faced in building UPPAAL over the years
along with our own solutions. The conclusion is to get the synergy theory—implementation—case-11
studies that in turn provides the publications. There is no bullet-proof solution and we consider
ourselves to have been lucky to have started at the right time and got such a good response from13
the community to get this synergy.

UPPAAL has already spawned one company, UP4ALL§§, that sells a version of the tool for15
commercial uses. Another market we intend to target is testing. Research tools really have a future
if they can be applied and used outside academia, as witnessed by Lustre/SCADE. However, their17
future as a free academic tool is uncertain as discussed in this paper in relation with the dilemmas.
The situation is that tool paper tracks exist and show the interest in academic tool development19
but they are often on the side of main conferences and they usually accept short papers with short
talks. This could be improved to stimulate tool development in the community.21

To continue the development on the academic path, we are exploring different domains as the
different flavors of UPPAAL show. This also means that a new life cycle with another architectural23
revision is now needed to cope with more extensions of UPPAAL. This will enable us to let other
researchers experiment with the internals of UPPAAL while still maintaining our core engine.25

ACKNOWLEDGEMENTS

It is important to remember that UPPAAL is the result of the cumulative efforts of many collaborators.
Among them we would like to thank early pioneers Johan Bengtsson and Fredrik Larsen, former contrib-
utor of the graphical interface Carsten Weise, and active contributor and maintainer Marius Mikučionis
(UPPAAL and TRON). We also thank contributors of different extensions of UPPAAL, among them

‡‡Shared memory architectures do not scale and message passing-based architectures will take over.
§§To contact UP4ALL email sales@uppaal.com.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

SPE 1006

DEVELOPING UPPAAL OVER 15 YEARS 9

Didier Lime (TIGA), John Håkansson (PORT), Anders Hessel (COVER), Leonid Mokrushin (TIMES),
Jakob Illum (CORA), Arild Haugstad (PRO). Last but not least we thank our supporting user community.

REFERENCES1

1. Yi W, Pettersson P, Daniels M. Automatic verification of real-time communicating systems by constraint-solving.
Proceedings of FORTE’94, Hogrefe D, Leue S (eds.), North-Holland, 1994; 223–238. Q13

2. Alur R, Dill DL. Automata for modeling real-time systems. Proceedings of ICALP (Lecture Notes in Computer
Science, vol. 443). Springer: Berlin, 1990; 322–335.5

3. Larsen KG, Pettersson P, Yi W. Model-checking for real-time systems. Proceedings of Fundamentals of
Computation Theory (Lecture Notes in Computer Science, vol. 965). Springer: Berlin, August 1995; 62–88.7

4. Bengtsson J, Yi W. Timed Automata: Semantics, Algorithms and Tools. Lectures on Concurrency and Petri Nets
(Lecture Notes in Computer Science, vol. 3098). Springer: Berlin, 2003; 87–124.9

5. Behrmann G, David A, Larsen KG, Yi W. Unification and sharing in timed automata verification. SPIN Workshop
03 (Lecture Notes in Computer Science, vol. 2648). Springer: Berlin, 225–229.11

6. Behrmann G, Fehnker A, Hune T, Larsen KG, Pettersson P, Romijn J. Efficient guiding towards cost-optimality
in UPPAAL. Proceedings of the 7th International Conference on TACAS (Lecture Notes in Computer Science,13
vol. 2301). Margaria T, Yi W (eds.). Springer: Berlin, 2001; 174–188.

7. Behrmann G, Larsen KG, Pearson J, Weise C, Yi W. Efficient timed reachability analysis using clock difference15
diagrams. Proceedings of the 12th International Conference on CAV (Lecture Notes in Computer Science, vol.
1633). Springer: Berlin, 1999. Q217

8. David A, Håkansson J, Larsen KG, Pettersson P. Model checking timed automata with priorities using DBM
subtraction. Proceedings of the 4th International Conference on FORMATS (Lecture Notes in Computer Science,19
vol. 4202). Springer: Berlin, 2006; 128–142.

9. Larsson F, Larsen KG, Pettersson P, Yi W. Efficient verification of real-time systems: Compact data structures21
and state-space reduction. Proceedings of the 18th IEEE RTSS. IEEE Computer Society Press: Silver Spring,
MD, 1997; 14–24.23

10. Larsson F, Pettersson P, Yi W. On memory-block traversal problems in model checking timed systems. Proceedings
of the 6th Conference on TACAS (Lecture Notes in Computer Science), vol. 1785, Graf S, Schwartzbach M25
(eds.). Springer: Berlin, 2000; 127–141.

11. Lönn H, Pettersson P. Formal verification of a TDMA protocol startup mechanism. Proceedings of the Pacific27
Rim International Symposium on Fault-tolerant Systems, December 1997; 235–242. Q3

12. D’Argenio P, Katoen J-P, Ruys T, Tretmans J. The bounded retransmission protocol must be on time! Proceedings29
of the Third Workshop on Tools and Algorithms for the Construction and Analysis of Systems (Lecture Notes in
Computer Science, vol. 1217), Brinksma E (ed.)., Springer: Enschede, The Netherlands, 1997; 416–431.31

13. Gebremichael B, Vaandrager F, Zhang M. Analysis of the zeroconf protocol using uppaal. Proceedings of the
6th ACM and IEEE International Conference on Embedded Software. ACM: New York, 2006; 242–251.33

14. Heidarian F, Schmaltz J, Vaandrager F. Analysis of a clock synchronization protocol for wireless sensor networks.
Proceedings of FM 2009: Formal Methods (Lecture Notes in Computer Science, vol. 5850), Cavalcanti A, Dams D35
(eds.). Springer: Berlin, 2009; 516–531.

15. David A, Möller MO, Yi W. Formal verification of UML statecharts with real-time extensions. FASE, The 5th37
International Conference 2002 (Lecture Notes in Computer Science, vol. 2306). Kutsche R-D, Weber H (eds.).
Springer: Berlin, 2002; 218–232.39

16. Lindahl M, Pettersson P, Yi W. Formal design and analysis of a gear-box controller. Proceedings of the 4th
Workshop on TACAS (Lecture Notes in Computer Science, vol. 1384). Springer: Berlin, March 1998, 281–297.41

17. David A, Yi W. Modelling and analysis of a commercial field bus protocol. Proceedings of Euromicro—RTS’00.
IEEE Computer Society: Silver Spring, MD, 2000; 165–172.43

18. Bengtsson J, Griffioen WD, Kristoffersen KJ, Larsen KG, Larsson F, Pettersson P, Yi W. Automated verification of
an audio-control protocol using UPPAAL. Journal of Logic and Algebraic Programming 2002; 52–53:163–181.45

19. AlAttili I, Houben F, Igna G, Michels S, Zhu F, Vaandrager F. Adaptive scheduling of data paths using uppaal
tiga. Proceedings First Workshop on Quantitative Formal Methods: Theory and Applications (QFM’09), S. A.,47
et al. (eds.), vol. 13, Electronic Proceedings in Theoretical Computer Science, 2009; 1–12. Q4

20. Arnaud Y, Boimond J-L, Cury JE, Loiseau JJ, Martinez C. Using uppaal for the secure and optimal control of agv49
fleets. The 7th Workshop on Advanced Control and Diagnosis ACD 2009, 2009. Available at: http://hal.archives-
ouvertes.fr/hal-00463480. Q551

21. Hamberg R, Vaandrager F. Using model checkers in an introductory course on operating systems. Operating
Systems Review 2008; 42(6):101–111.53

22. Behrmann G, Fehnker A, Hune T, Larsen KG, Pettersson P, Romijn J, Vaandrager FW. Minimum-cost reachability
for priced timed automata. HSCC 2001; 147–161.55

23. Larsen K, Mikučionis M, Nielsen B. Online testing of real-time systems using UPPAAL. FATES’04 (Lecture
Notes in Computer Science). Springer: Berlin, Linz, Austria, September 2004.57

24. Larsen KG, Mikucionis M, Nielsen B. Testing real-time embedded software using uppaal-tron: An industrial
case study. The 5th ACM International Conference on Embedded Software. ACM Press: New York, NY, U.S.A.,59
2005; 299–306.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

UN
CO

RR
EC

TE
D

PR
O

O
F

10

SPE 1006

G. BEHRMANN ET AL.

25. Hessel A, Pettersson P. A test case generation algorithm for real-time systems. Proceedings of the Fourth ICQS,1
Ehrich H-D, Schewe K-D (eds.). IEEE Computer Society: Silver Spring, MD, 2004; 268–273.

26. Hessel A, Pettersson P. Cover—A test-case generation tool for timed systems. Testing of Software and3
Communicating Systems: Work-in-Progress and Position Papers, Tool Demonstrations, and Tutorial Abstracts of
TestCom/FATES, Petrenko A, Veanes M, Tretmans J, Grieskamp W (eds.)., 2007; 31–34. Q65

27. Behrmann G, Cougnard A, David A, Fleury E, Larsen KG, Lime D. UPPAAL-TIGA: Time for playing games!
CAV’07 (Lecture Notes in Computer Science, vol. 4590). Springer: Berlin, 2007; 121–125.7

28. Håkansson J, Carlson J, Monot A, Pettersson P, Slutej D. Component-based design and analysis of embedded
systems with UPPAAL PORT. ATVA (Lecture Notes in Computer Science, vol. 5311), Cha SD, Choi J-Y, Kim M,9
Lee I, Viswanathan M (eds.). Springer: Berlin, 2008; 252–257.

29. Fersman E, Pettersson P, Yi W. Timed automata with asynchronous processes: Schedulability and decidability.11
Proceedings of the 8th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (Lecture Notes in Computer Science, vol. 2280), Katoen J-P, Stevens P (eds.). Springer: Berlin, 2002;13
67–82.

30. Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W. Times: A tool for modelling and implementation of15
embedded systems. Proceedings of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Lecture Notes in Computer Science), vol. 2280), Katoen J-P, Stevens P (eds.). Springer:17
Berlin, 2002; 460–464.

31. Behrmann G, Larsen KG, Rasmussen JI. Priced timed automata: Algorithms and applications. FMCO 2004;19
162–182.

32. Tretmans J. A formal approach to conformance testing. PhD Thesis, University of Twente, 1992.21
33. Krichen M, Tripakis S. Black-box conformance testing for real-time systems. Model Checking Software (Lecture

Notes in Computer Science, vol. 2989). Springer: Berlin, 2004; 109–126.23
34. Cassez F, David A, Fleury E, Larsen KG, Lime D. Efficient on-the-fly algorithms for the analysis of timed

games. CONCUR’05 (Lecture Notes in Computer Science, vol. 3653). Springer: Berlin, 2005, 66–80.25
35. Liu X, Smolka S. Simple linear-time algorithm for minimal fixed points. Proceedings of 26th Conference on

Automata, Languages and Programming (ICALP’98) (Lecture Notes in Computer Science, vol. 1443). Springer:27
Berlin, 1998; 53–66.

36. Jessen JJ, Rasmussen JI, Larsen KG, David A. Guided controller synthesis for climate controller using UPPAAL-29
TIGA. Proceedings of the 19th International Conference on Formal Modeling and Analysis of Timed Systems
(Lecture Notes in Computer Science, vol. 4763). Springer: Berlin, 2007; 227–240.31

37. David A, Larsen KG, Li S, Nielsen B. Cooperative testing of uncontrollable real-time systems. The 4th Workshop
of Model-based Testing (MBT’08), 2008.33

38. Cassez F, David A, Larsen KG, Lime D, Raskin J-F. Timed control with observation based and stuttering
invariant strategies. Proceedings of the 5th International Symposium on Automated Technology for Verification35
and Analysis (Lecture Notes in Computer Science, vol. 4762). Springer: Berlin, 2007; 192–206.

39. Håkansson J, Pettersson P. Partial order reduction for verification of real-time components. Proceedings of the37
5th International Conference on FORMATS (Lecture Notes in Computer Science). Springer: Berlin, 2007.

40. Beauquier D. On probabilistic timed automata. Theoretical Computer Science 2003; 292:65–84.39
41. Kwiatkowska M, Norman G, Sproston J, Wang F. Symbolic model checking for probabilistic timed automata.

Formal Techniques, Modelling and Analysis of Timed and Fault-tolerant Systems (Lecture Notes in Computer41
Science, vol. 3253. Springer: Berlin, 2004; 293–308.

42. Ericsson A, Berndtsson M, Pettersson P, Pettersson L. Verification of an industrial rule-based manufacturing43
system using rex. The 1st International Workshop on Complex Event Processing for Future Internet, September
2008.45

43. Bulychev P, Chatain T, David A, Larsen KG. Efficient on-the-fly algorithm for checking alternating timed
simulation, FORMATS’09 (Lecture Notes in Computer Science, vol. 5813). Springer: Berlin, 2009; 73–87.47

44. Shann C-H, Huang T-L, Chen C. A practical nonblocking queue algorithm using compare-and-swap. The 7th
International Conference on Parallel and Distributed Systems 2000; 470–475.49

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

Author Queries Form

John Wiley

JOURNAL TITLE: SPE 2/8/2010

ARTICLE NO: 1006

Queries and / or remarks

Query No. Details required Author’s response

Q1 Please provide publisher name for Ref. [1].

Q2 Please provide page range for Refs. [7,23,39].

Q3 Please provide place of proceeding for Refs. [11,42].

Q4 Please provide editor names and publisher details for Ref. [19].

Q5 Please provide place of proceeding and access date for Ref. [20].

Q6 Please provide publisher name and location for Ref. [26].

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copy-
right and any extensions or renewals, all copyright in and to the Contribution,
and all rights therein, including but not limited to the right to publish, repub-
lish, transmit, sell, distribute and otherwise use the Contribution in whole or in
part in electronic and print editions of the Journal and in derivative works
throughout the world, in all languages and in all media of expression now
known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final
Contribution in whole or in part in any medium by the Contributor as permit-
ted by this Agreement requires a citation to the Journal and an appropriate
credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable
in form and content as follows: (Title of Article, Author, Journal Title and
Volume/Issue, Copyright © [year], copyright owner as specified in the Journal).
Links to the final article on Wiley-Blackwell’s website are encouraged where
appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor’s
Employer, retains all proprietary rights other than copyright, such as patent
rights, in any process, procedure or article of manufacture described in the
Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back the following rights to
the Contributor in the version of the Contribution as originally submitted for
publication:

a. After publication of the final article, the right to self-archive on the Con-
tributor’s personal website or in the Contributor’s institution’s/employer’s
institutional repository or archive. This right extends to both intranets and
the Internet. The Contributor may not update the submission version or
replace it with the published Contribution. The version posted must contain
a legend as follows: This is the pre-peer reviewed version of the following
article: FULL CITE, which has been published in final form at [Link to final
article].

b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not
final) version of the Contribution shall be by separate agreement with Wiley-
Blackwell. Wiley-Blackwell has agreements with certain funding agencies
governing reuse of this version. The details of those relationships, and other
offerings allowing open web use, are set forth at the following website:
http://www.wiley.com/go/funderstatement. NIH grantees should check the
box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the
Contributor the following rights with respect to the final published version of
the Contribution:

a. Copies for colleagues. The personal right of the Contributor only to send
or transmit individual copies of the final published version in any format to
colleagues upon their specific request provided no fee is charged, and
further-provided that there is no systematic distribution of the Contribu-
tion, e.g. posting on a listserve, website or automated delivery.

b. Re-use in other publications. The right to re-use the final Contribution or
parts thereof for any publication authored or edited by the Contributor
(excluding journal articles) where such re-used material constitutes less
than half of the total material in such publication. In such case, any modifi-
cations should be accurately noted.

c. Teaching duties. The right to include the Contribution in teaching or
training duties at the Contributor’s institution/place of employment includ-
ing in course packs, e-reserves, presentation at professional conferences,
in-house training, or distance learning. The Contribution may not be used
in seminars outside of normal teaching obligations (e.g. commercial semi-
nars). Electronic posting of the final published version in connection with
teaching/training at the Contributor’s institution/place of employment is
permitted subject to the implementation of reasonable access control
mechanisms, such as user name and password. Posting the final published
version on the open Internet is not permitted.

d. Oral presentations. The right to make oral presentations based on the
Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected
Text (up to 250 words).

a. Contributors may re-use unmodified abstracts for any non-commercial
purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but
does not require linking back to the final published versions.

b. Contributors may re-use figures, tables, data sets, artwork, and selected
text up to 250 words from their Contributions, provided the following
conditions are met:

(i) Full and accurate credit must be given to the Contribution.
(ii) Modifications to the figures, tables and data must be noted.

Otherwise, no changes may be made.
(iii) The reuse may not be made for direct commercial purposes, or for

financial consideration to the Contributor.
(iv) Nothing herein shall permit dual publication in violation of journal

ethical practices.

COPYRIGHT TRANSFER AGREEMENT

Date: Contributor name:

Contributor address:

Manuscript number (Editorial office only):

Re: Manuscript entitled

(the “Contribution”)

for publication in (the “Journal”)

published by (“Wiley-Blackwell”).

Dear Contributor(s):
Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to
disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal’s
instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this
Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

CTA-A

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the
Contributor’s employment (as a “work-made-for-hire” in the course of
employment), the Contribution is owned by the company/employer which
must sign this Agreement (in addition to the Contributor’s signature) in the
space provided below. In such case, the company/employer hereby assigns to
Wiley-Blackwell, during the full term of copyright, all copyright in and to the
Contribution for the full term of copyright throughout the world as specified in
paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the
rights granted back to the Contributor pursuant to paragraph C above, Wiley-
Blackwell hereby grants back, without charge, to such company/employer, its
subsidiaries and divisions, the right to make copies of and distribute the final
published Contribution internally in print format or electronically on the Com-
pany’s internal network. Copies so used may not be resold or distributed externally.
However the company/employer may include information and text from the
Contribution as part of an information package included with software or
other products offered for sale or license or included in patent applications.
Posting of the final published Contribution by the institution on a public access
website may only be done with Wiley-Blackwell’s written permission, and payment
of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee,
the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or
grant, the U.S. Government may reproduce, without charge, all or portions of
the Contribution and may authorize others to do so, for official U.S. Govern-

ment purposes only, if the U.S. Government contract or grant so requires. (U.S.
Government, U.K. Government, and other government employees: see notes
at end)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of
the final published version of the Contribution or any part thereof distributed
or posted by them in print or electronic format as permitted herein will include
the notice of copyright as stipulated in the Journal and a full citation to the
Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR’S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor’s original
work, all individuals identified as Contributors actually contributed to the Con-
tribution, and all individuals who contributed are included. If the Contribution
was prepared jointly, the Contributor agrees to inform the co-Contributors of
the terms of this Agreement and to obtain their signature to this Agreement or
their written permission to sign on their behalf. The Contribution is submitted
only to this Journal and has not been published before. (If excerpts from copy-
righted works owned by third parties are included, the Contributor will obtain
written permission from the copyright owners for all uses as set forth in Wiley-
Blackwell’s permissions form or in the Journal’s Instructions for Contributors,
and show credit to the sources in the Contribution.) The Contributor also
warrants that the Contribution contains no libelous or unlawful statements,
does not infringe upon the rights (including without limitation the copyright,
patent or trademark rights) or the privacy of others, or contain material or
instructions that might cause harm or injury.

CHECK ONE BOX:

Contributor-owned work

Contributor’s signature Date

Type or print name and title

Co-contributor’s signature Date

Type or print name and title

Company/Institution-owned work

Company or Institution (Employer-for-Hire) Date

Authorized signature of Employer Date

U.S. Government work Note to U.S. Government Employees
A contribution prepared by a U.S. federal government employee as part of the employee’s official duties, or
which is an official U.S. Government publication, is called a “U.S. Government work,” and is in the public
domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the
Contributor’s signature line) and return this Agreement. If the Contribution was not prepared as part of the
employee’s duties or is not an official U.S. Government publication, it is not a U.S. Government work.

U.K. Government work Note to U.K. Government Employees
(Crown Copyright) The rights in a Contribution prepared by an employee of a U.K. government department, agency or other

Crown body as part of his/her official duties, or which is an official government publication, belong to the
Crown. U.K. government authors should submit a signed declaration form together with this Agreement.
The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/
publication-of-articles-written-by-ministers-and-civil-servants.htm

Other Government work Note to Non-U.S., Non-U.K. Government Employees
If your status as a government employee legally prevents you from signing this Agreement, please contact
the editorial office.

NIH Grantees Note to NIH Grantees
Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH
grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available
12 months after publication. For further information, see www.wiley.com/go/nihmandate.

ATTACH ADDITIONAL SIGNATURE

PAGES AS NECESSARY

(made-for-hire in the
course of employment)

CTA-A

WILEY AUTHOR DISCOUNT CARD

As a highly valued contributor to Wiley�s publications, we would like to show our
appreciation to you by offering a unique 25% discount off the published price of any of
our books*.

To take advantage of this offer, all you need to do is apply for the Wiley Author
Discount Card by completing the attached form and returning it to us at the following
address:

The Database Group
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
West Sussex PO19 8SQ
UK

In the meantime, whenever you order books direct from us, simply quote promotional
code S001W to take advantage of the 25% discount.

The newest and quickest way to order your books from us is via our new European website
at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:
• Real-time SECURE on-line ordering
• The most up-to-date search functionality to make browsing the catalogue easier
• Dedicated Author resource centre
• E-mail a friend
• Easy to use navigation
• Regular special offers
• Sign up for subject orientated e-mail alerts

So take advantage of this great offer, return your completed form today to receive your
discount card.

Yours sincerely,

Verity Leaver
E-marketing and Database Manager

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias
and major reference works) for their personal use. There must be no resale through any channel. The offer is subject to stock
availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley
reserves the right to amend the terms of the offer at any time.

To enjoy your special discount, tell us your areas of interest and you will receive relevant catalogues or leaflets
from which to select your books. Please indicate your specific subject areas below.

Accounting
• Public
• Corporate

[]
[]
[]

Architecture

Business/Management

[]

[]

Chemistry
• Analytical
• Industrial/Safety
• Organic
• Inorganic
• Polymer
• Spectroscopy

[]
[]
[]
[]
[]
[]
[]

Computer Science
• Database/Data Warehouse
• Internet Business
• Networking
• Programming/Software

Development
• Object Technology

[]
[]
[]
[]
[]
[]
[]

Encyclopedia/Reference
• Business/Finance
• Life Sciences
• Medical Sciences
• Physical Sciences
• Technology

[]
[]
[]
[]
[]
[]

Engineering
• Civil
• Communications Technology
• Electronic
• Environmental
• Industrial
• Mechanical

[]
[]
[]
[]
[]
[]
[]

Earth & Environmental Science

Hospitality

[]

[]

Finance/Investing
• Economics
• Institutional
• Personal Finance

[]
[]
[]
[]

Genetics
• Bioinformatics/Computational

Biology
• Proteomics
• Genomics
• Gene Mapping
• Clinical Genetics

[]
[]
[]
[]
[]
[]
[]

Life Science

Landscape Architecture

Mathematics/Statistics

Manufacturing

Material Science

[]

[]

[]

[]

[]

Medical Science
• Cardiovascular
• Diabetes
• Endocrinology
• Imaging
• Obstetrics/Gynaecology
• Oncology
• Pharmacology
• Psychiatry

[]
[]
[]
[]
[]
[]
[]
[]
[]

Psychology
• Clinical
• Forensic
• Social & Personality
• Health & Sport
• Cognitive
• Organizational
• Developmental and Special Ed
• Child Welfare
• Self-Help

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

Non-Profit [] Physics/Physical Science []

REGISTRATION FORM
FOR 25% BOOK DISCOUNT CARD

 [] I confirm that I am a Wiley Author/Editor/Contributor/Editorial Board Member of the following
publications:

SIGNATURE: ���

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE AND NAME: (e.g. Mr, Mrs, Dr) ��

JOB TITLE: ��

DEPARTMENT: ���..

COMPANY/INSTITUTION: ���

ADDRESS: ��.

���

���

���

TOWN/CITY: ���

COUNTY/STATE: ��.

COUNTRY: ��

POSTCODE/ZIP CODE: ���

DAYTIME TEL: ��

FAX: ��

E-MAIL: ��

YOUR PERSONAL DATA
We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post, e-mail or telephone of titles and offers of interest to you and available from us or
other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

 [] Please tick the box if you do not wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post, fax or e-mail with details of titles
and offers that may be of interest to you.

 [] Please tick the box if you do not wish to receive this information.

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, UK.

E-MAIL ALERTING SERVICE
We offer an information service on our product ranges via e-mail. If you do not wish to receive information and offers from John Wiley companies
worldwide via e-mail, please tick the box [].

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major
reference works) for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be
applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of
the offer at any time.

Ref: S001W

