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SUMMARY9

UPPAAL is a tool suitable for model checking real-time systems described as networks of timed automata
communicating by channel synchronizations and extended with integer variables. Its first version was11
released in 1995 and its development is still very active. It now features an advanced modeling language,
a user-friendly graphical interface, and a performant model checker engine. In addition, several flavors13
of the tool have matured in recent years. In this paper, we present how we managed to maintain the tool
during 15 years, its current architecture with its challenges, and we give the future directions of the tool.15
Copyright q 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

UPPAAL is first of all a research tool born from the collaboration of Uppsala and Aalborg univer-19
sities [1]. It takes its theoretical roots from Alur and Dill’s pioneer work on timed automata [2].
Its performance originally comes from zones [3] as a representation for states and the efficient21
implementation of operators on its canonical data-structure known as difference-bound matrix
(DBM) [4]. Since then the development has been fueled by scientific results on algorithms or new23
data structures [5–10], academic case-studies [11–15], industrial case-studies [16–20], and also
teaching [21].25

On the other hand, having such a tool helps to develop and test new theories and algorithms,
which has given us synergy during the last decade between tool development and theoretical27
results.

Recently, the tool has blossomed into several domain specific versions, namely, CORA [6, 22]29
(cost-optimal reachability), TRON [23, 24] (online testing), COVER [25, 26] (offline test gener-
ation), TIGA [27] (timed game solver), PORT [28] (component based and partial order), PRO31
(extension with probabilities, in progress), and TIMES [29, 30] (scheduling and analysis). These
extensions are made based on a common code base, re-using basic data structures to represent33
states, store them, and perform common operations such as delay, intersection, or computing
successor states.35

∗Correspondence to: Alexandre David, Department of Computer Science, Aalborg University, Denmark.
†E-mail: adavid@cs.aau.dk
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CORA is based on linearly priced timed automata [31]. The model extends timed automata1
with a special cost variable whose rate is specified for every state. The algorithm uses guiding to
solve minimum cost reachability problems.3

TRON is a testing tool suited for black-box conformance testing [32, 33] of timed systems.
It is mainly targeted for embedded software commonly found in various controllers. Testing is5
done online in the sense that that tests are derived, executed, and checked while maintaining the
connection to the system in real-time.7

COVER is a tool for creating test suites from UPPAAL models with coverage specified by
coverage observers a.k.a. observer automata.9

TIGA is an extension for solving reachability and safety problems on timed game automata. Its
algorithm [34] is a symbolic extension of the on-the-fly algorithm suggested by Shann et al. [35]11
for linear-time model-checking of finite-state systems. It is used for controller synthesis [36], it has
application to testing [37], and it has been extended to synthesis under partial observability [38].13

PORT is a version targeted at component-based modeling and verification. Its interface is
developed as an Eclipse plug-in. The tool supports graphical modeling of internal component15
behavior as timed automata and hierarchical composition of components. It is able to exploit the
structure of such systems and apply partial order reduction techniques successfully [39].17

PRO is an extension of timed automata with probabilities [40, 41]. The model is extended with
branching nodes that allow the user to specify weights for every outgoing edge. The engine can19
then compute probability bounds to reach specified states. It is work-in-progress.

TIMES TIMES is a tool-set for modeling, schedulability analysis, synthesis of (optimal) sched-21
ules and executable code. Its modeling language is timed automata extended with tasks. It models
systems that can be described as a set of tasks that are triggered periodically or sporadically by23
time or external events. The release pattern is given by a timed automaton and the tool performs
schedulability analysis on it. TIMES works by encoding the problem into timed automata and it25
uses the UPPAAL engine for the checks. It translates back the answer in terms of Gantt chart
to visualize schedules. There are other tools that are using UPPAAL as a back-end verification27
engine, e.g. REX [42].

In this paper we focus on the ‘core’ tool UPPAAL and present our experience in developing29
and maintaining it for the last decade. In particular, we present the backbone architecture that has
allowed us to expand the tool on different variants of timed automata. The following sections give31
an overview of the tool architecture, our experience in the process of building the tool, and the
future development directions.33

OVERVIEW OF THE TOOL ARCHITECTURE

Client–server architecture. The tool has two main components: a graphical user interface written35
in Java and a model-checker engine written in C++. The interface runs almost effortlessly on
different platforms and we can exploit the rich functionalities available for programming interfaces37
inherent to the libraries that come with the Java programming language. The C++ language gives
us both advanced object-oriented programming and performance. These two components form a39
basic client–server architecture with the graphical interface (client) communicating with the model
checker (server) via a local pipe‡ or the network§. This separation of concerns makes UPPAAL41
easier to port and maintain on different platforms.

The graphical interface has three ‘tabs’ that correspond to the main tasks a user needs to do:43
to edit a model in the editor, to simulate it in the simulator, and submit verification queries to
the model-checker. Additionally, the user may come back to the simulator to visualize a trace45
generated by the verification. Figure 1 gives a view of the simulator of the tool. The different

F1
variants of the tool have specialized interfaces and the figure shows the simulator used in TIGA.47

‡A common inter-process communication mechanism.
§The verification can be done on a remote server, which is a rarely exploited feature.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe
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Figure 1. View of the ‘concrete’ simulator of TIGA.
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Figure 2. Pipeline architecture for the reachability filter.

On the left is the command part where the user can select transitions, go back in the trace, play1
randomly, or navigate through the current trace (history of states). The list in the middle shows the
values of the variables and clocks. The timed automata are shown on the right and below them a3
Gantt chart and a message sequence chart. The simulator of UPPAAL lacks the Gantt chart and
has other similar components, although instead of navigating with concrete clock valuations, the5
user sees symbolic states. The point here is to stress reuse of components across different tools.
It is important to amortize development costs over time on different specializations of the tool7
without having to rewrite everything from scratch. This is obvious but the insidious consequence
is that it is often difficult in practice to publish on these new additions. This is due to the lack of9
dedicated conferences where tool developments can be reported on.

Pipeline architecture. The model-checker itself (the engine) is designed around a pipeline11
architecture [5] where each block or filter processes states and sends them to the next stage as
shown in Figure 2. The figure shows the configuration for the reachability filter. Other algorithms

F2
13

such as the liveness and the leadsto checkers have their own filters built on the same principle.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe
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In this example, the initial state is pushed to the reachability filter in its delay component to start1
the exploration. Then it runs its main loop that takes states from our (unified passed and) waiting
list structure, explores them, and puts the successors in that structure. This structure (also called3
the PWList) implements one (colored) state set with states marked waiting and passed. It is unified
in the sense that we have one structure instead of the traditional waiting and passed lists that need5
two lookups in hash tables per loop iteration of the reachability algorithm. Only states colored as
waiting are explored and inclusion check between symbolic states is done against all states. The7
main chain for the exploration is Transition (which transitions can be taken)—Successor (execution
of the transitions)—Delay (let time pass)—Extrapolation (apply an appropriate extrapolation to9
ensure finite exploration)—PWList (inclusion check and mark the state to be explored)—Query
(evaluate the formula if the state was not included).11

In fact we inserted a LazyCopy filter to reduce copies of states between the transition and
successor filters. This filter really copies states only when necessary, e.g. computing one successor13
only does not require a copy and two successors require one copy only. It acts as a one-place
buffer. When priorities are used in the model, this filter is swapped by another filter that is going to15
buffer transitions and sort them by priority, without changing the rest of the pipeline. Some filters
are optional, such as Sorter that can sort transitions, Trace that is used to store traces or Symmetry17
that is projecting the states to a representative of its equivalence class (orbit) when symmetry is
used in the model. In addition, different kinds of extrapolations can be used depending on the19
model, which results in different kinds of instances for the Extrapolation filter. We note that it is
simpler to have the logic (in terms of if statements) to instantiate the right type of a component21
once and use the generic design to connect the components and use them transparently. The reader
understands that the combination of these features gives rise to a lot of configurations. The point23
here is to keep orthogonal features separated.

The overall pipeline architecture allows us to reason about the algorithm in terms of blocks that25
we can change if we need another semantics. Implementing another checker, e.g. a timed game
solver, is relatively easy and consists in adding components that will do the backward propagation,27
changing the first filter to either explore forward or backward, adding a post-processing filter
to detect what is winning or losing in the game after Extrapolation, and changing the graph29
representation. The new pipeline still has the same structure and follows the same design. To change
the semantics of the game, e.g. to implement simulation checking [43], we change Transition that31
implements the transition relation and Delay to allow turn-based delays.

There are two important points that this architecture illustrates: object-oriented programming33
and reuse of components. The filters are in practice abstract classes hence these components are
managed at a high level. Second, we can reuse these filters for different pipeline configurations,35
i.e. for different checkers. We note that the architecture is also fit for functional languages.

Additional components. In addition to these components, UPPAAL contains a virtual machine to37
execute the compiled byte-code of our C-like input language supporting user defined functions and
types. This allows the user to write complex and compact models while still limiting the state-space39
explosion—complexity can be concentrated in functions to avoid using intermediate states.

We currently distribute some open source components, such as the parser and the DBM library.41
The DBM library has a Ruby binding, which allows for quick prototyping. The parser under-
stands the XML format we use in UPPAAL, which allows other researchers to use the same43
format. The DBM library handles DBMs and federations (unions of DBMs) used to represent
symbolic states. The DBM library supports a wide range of operations including subtractions and45
merging of DBMs.

TOOL BUILDING PROCESS47

Tools are not prototypes. It is relatively easy to produce prototypes as proofs of concept of some
theory or algorithm to strengthen a paper but it is notoriously more difficult to develop a tool that is49
going to survive the test of time. Unfortunately, prototypes are more common in practice. Building
and maintaining tools take a lot of time and is generally given less academic credit compared51

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe
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Figure 3. Evolution of the code base.

to more theoretical work, which explains the limited number of maintained tools. In the domain1
of formal methods, tools are crucial and they also serve as a dissemination means for theoretical
results. Tools do have a positive impact through the case-studies that they allow other users to do,3
often in collaboration, which is important to amortize the development cost (in terms of time) and
earn publications (otherwise we perish)¶.5

Who develops? The first question in developing tools is who is going to do it? Most of the time
it is done by masters or PhD students, which makes sense economically since professors cannot7
afford writing C++ code. However, when temporary developers who have their own agenda (own
thesis to write) work on the tools, there is the obvious issue that someone needs to take over,9
otherwise the tool will disappear. In addition, temporary developers do not have a long-term vision
and are interested (rightfully so) in their own thesis. Over the years, changing teams without a11
common interest or focus means that the code will degrade if there is no control. What happened
with us was that there were some PhD students who stayed in the team for a long time, long13
enough to lay down a solid architecture and durable design. As a first rule of survival, one should
have a solid design and encourage people to stick to it even if they do not like it. At some point15
in time old design decisions will not make sense any more but that is a different issue.

Code size. When the code grows (see Figure 3) it is increasingly difficult for new people to use
F3

17
the code hence it becomes important to have some permanent staff to take care of it and revise it
so that it can offer a limited and more useful interface. This is a considerable effort that is essential19
for the survival of the tool. In the past we had a few such revisions: the pipeline architecture, the
virtual machine, and handling of federations in the model-checker. The size and complexity of the21
code has now become a barrier for new internal people but it is also a serious problem for external
collaboration. We need a new revision to update the interfaces of the different components and add23
more abstraction to the code. For long-term development, it is important to have some permanent
staff to take care of such revisions and keep a long-term vision. However, it is a trade-off between25
the academic and development work.

Code aging. Curiously code ages. This is due to the fact that developers forget old code27
and new methods or libraries appear over the years, which makes the code become older or
deprecated. In addition, progress in compilers also means that special efforts in the past to make29
some algorithms efficient are now obsolete, e.g. we can commonly address iteratively elements
in matrices by expressions like dbm[i ∗dim+ j ] with confidence that the compiler will not use31
relatively expensive multiplications for element accesses. To counter code aging, documentation

¶The well-known motto publish or perish emphasized by a system holding that name is a testament of the tool
development dilemma in academia.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
DOI: 10.1002/spe
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is vital. Our experience has been to ‘document’ the code using doxygen formatted comments.1
There is no real documentation apart from these comments, although some efforts have been made
to describe the overall design decisions and the communication protocol. We have crash courses3
to inform new programmers, which is a limited solution. As for the comments, they are extensive
and they keep the memory of former developers. It is a weakness in the development process to5
lack stand-alone white papers that give technical details of the code but this has not been our
priority.7

Life cycles. The tool has gone over different life cycles over the years. A life cycle can be defined
by major changes in architecture that are needed to accommodate new developments. It happens9
when old designs become too obsolete for new additions that were not foreseen in the past. The
first cycle was with the original ATG graph editor‖ and an early custom simulator. The second11
cycle introduced an integrated graphical editor, the client–server architecture still in use today,
and an improved engine. The third cycle is the current one with a modular pipeline architecture.13
This pipeline architecture is probably the determinant factor for keeping additions of new features
without breaking the tool. In terms of features it is interesting to note that early development efforts15
were focused on performance improvements and then later on interface and language features. The
later developments of the tool introduced new algorithms to handle different problems rather than17
improvements in the current algorithms.

During a cycle, the development is incremental, following the current design and making changes19
until the amount of desired new features and algorithms conflicts too much with the design. At this
point there is a major effort to redesign (or re-factor) the code. The current architecture has21
lived up to its expectations for the approximately 8 years, during which we could re-use existing
components and create new ones that we could literally plug together. However, the plethora of23
new variants of the tool hides the current internal issues with the architecture and now is the time
for a major update.25

Distributed development. We use a centralized version management system (CVS and later
subversion), which allows distributed teams to work on the same code. This is common for27
distributed projects. A given checkout of the repository contains all variants of the tool but each
of them is located in its own separated module. Developers are responsible for few modules (their29
own) and modify other modules only occasionally. The key here is to have responsibility for the
different parts for maintenance. In addition, we have the simple rules committed code must compile31
and any distributed code must pass the regression test. As breaking these rules produces heated
reactions, they tend to be observed. The goal here is to keep discipline.33

Testing. For a tool in the field of formal methods we would expect to apply formal verification
techniques to it to ensure its correctness. Let us say research is not there yet. The code base has35
currently 200+KLoC in C++ which implement algorithms that are themselves notoriously diffi-
cult to prove. There are tools we have used to assist us, such as gcov, purify, and valgrind.37
However, what we routinely do is to test. We use regression testing on a battery of known examples
and results. When a bug is discovered, we insert that the new example in the test suite and make39
sure new versions pass the new tests. This is an automatic process handled by a script.

Bug management. Another well-known tool we are using is the bug management system bugzilla.41
Bugs are not only program errors but also requested features. They are sorted by priorities that
developers can set. Errors usually come with examples to reproduce them. They are added to the43
regression tests when the errors are corrected. Sometimes a change in the code triggers a new error
that was not present in the past. We use binary search on the revision number (in our subversion45
repository) to find which revision introduced the changes that triggered that error. This is a simple
and very effective technique.47

Cross-platform. An integral part of the development process is to take care of cross-platform
development. Early on we decided to stick with one compiler, gcc/g++. We can use the same49
code and change a few headers only and compile for Windows, Linux, and MacOS. By doing so
we can also take advantage of some useful gnu extensions. We dropped support for SunOS due to51

‖This is an editor tool used by UPPAAL from 1995 to 1999.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
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the absence of users and also machines installed with SunOS. All three supported platforms are1
actively used with an increase for MacOS in the recent years. What we do to manage this is to
keep third-party libraries at a minimum. Currently, we need libxml2 compiled for all platforms3
and we use boost headers only. The rest is generated code by tools such as bison and flex.
Compilation is done under Linux for Linux and Windows, MacOS binaries are compiled on a5
Mac. We foresee problems in the future when supporting multi-threads since we will have to use
additional libraries such as Win32-pthread to support POSIX threads (to begin with, the library7
needs to be patched for Win64).

Community. Finally, to survive, a tool needs its community. We have a discussion forum∗∗ that9
our user community uses to ask or answer questions and maintain an active discussion on the
tool. In fact, this helps us tremendously because we cannot handle all newcomers to the tool11
individually and we are grateful to users who help each other. The community also provides us
with new problems and case-studies, which in turn instill progress in algorithms and theory.13

CHALLENGES

The first challenge is to manage the complexity and size of the project. Implementing advanced15
algorithms is tricky, specially when it is in a formal tool which is used for verification. As shown
in Figure 3 the code (in kilo lines of code of C/C++) has been steadily growing. This growth17
comes from new variants and algorithms that are added to the repository. The count includes all
code (used or not) for all variants of UPPAAL for the model-checker engine only. The graphical19
interface adds 40+ kLoC in Java.

The second challenge is to keep improving the performance and features of the tool despite21
the growing algorithm complexity. Table I shows the evolution of the performance of the tool.

T1
Experiments have been performed on a Pentium D 2.80GHz with 1GB RAM. We use memtime23
that measures time and polls memory (not reliable below 0.1 s). Entries marked ‘—’ denote veri-
fications that were stopped after 2 h or 900M. The models are available on www.uppaal.org under25
Examples/benchmarks. Apart from the performance improvements, the recent versions support
user-defined functions and symmetry reduction. These features are not used in the experiments but27
they would further improve the performance.

The third challenge is to cope with new extensions of the tool to explore different theoretical29
paths. The current architecture has been pushed to implement the different known flavors of
UPPAAL but also to extend every checker. Recent extensions to UPPAAL include priorities and31
stop-watches. TIGA was recently extended with a simulation checker. It is being extended with
a new timed interface checker. Although the overall pipeline architecture accommodates these33
extensions, we have reached the limit of some ‘implementation details’. These are: (1) there can
only be one global system, (2) long-wished features, such as clock constraints on receiving edges35
of broadcast synchronizations, are now needed, (3) the engine is designed for 32-bit architectures,
(4) there is no multi-core support, (5) there is only one kind of symbolic state, and the list goes37
on. These are obstacles for doing compositional model-checking where we would need to handle
several systems and combine results. In addition, it is difficult to adapt the engine to different39
kinds of systems without changing core structures such as the states. Currently, when compiling
CORA, one C macro is changed to swap to a different type of DBM supporting costs. This works41
because we made sure that the commonly needed interface was exactly the same. This is a very
limited solution.43

Another challenge is to use modern technology to its full potential. Updating to 64-bit is mainly
technical. Taking real advantage of 64-bit is challenging. Modern compilers have the ability to45
vectorize code†† but this is still limited to simple algorithms and not to the critical O(n3) algorithms
that we have. Going for multi-core support (multi-threaded UPPAAL) is more difficult. There have47

∗∗http://tech.groups.yahoo.com/group/uppaal/.
††This in essence allows the use of SIMD instructions (single instruction, multiple data) on streams of data.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
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Table I. Evolution of performance in terms of time (s) and memory consumption (MB).

Version CSMA5 CSMA7 CSMA12 Fischer5 Fischer7 Fischer12 HDDI7 HDDI12

3.0.39 8.4 s — — 4.2 s — — 36.3 s —
7.2MB — — 10.6MB — — 20.1MB —

3.2.12 0.3 s 417 s — 1.6 s — — 7.2 s —
3.8MB 145MB — 6.8MB — — 11.9MB —

3.3.25 0.2 s 198 s — 1.1 s — — 3.2 s —
3.4MB 113MB — 6MB — — 8.4MB —

3.4.6 <0.1 s 40.7 s — 0.3 s 4706 s — 0.1 s 5.3 s
3.1MB 34.5MB — 4.9MB 267MB — 1.6MB 14.1MB

4.0.11 <0.1 s 0.2 s 33.8 s <0.1 s 0.4 s 418 s <0.1 s 0.4 s
1.6MB 38MB 115MB 1.6MB 38.1MB 300MB 1.6MB 38MB

4.1.2 <0.1 s 0.2 s 41.9 s <0.1 s 0.3 s 341 s 0.05 s 0.2 s
1.6MB 21.6MB 99MB 21MB 21.6MB 248MB 1.6MB 22.9MB

been experiments in the past in this direction and we know that the current architecture could be1
adapted by having one thread per pipeline copy. This fits memory locality but we also know that
it did not work so well because blocking data-structures (access protected by mutex) were major3
bottlenecks. It is crucial to have non-blocking structures such as [44] if we want to use multi-cores
efficiently, although this is a temporary solution that will last at most 10 years‡‡. In addition, we5
want to make the components extendable more easily in particular to allow more people to work
on UPPAAL without having to know what most of the code is doing. The bottom line is that there7
are research opportunities but not all issues are research related.

FUTURE9

We have shown in this paper the main challenges that we faced in building UPPAAL over the years
along with our own solutions. The conclusion is to get the synergy theory—implementation—case-11
studies that in turn provides the publications. There is no bullet-proof solution and we consider
ourselves to have been lucky to have started at the right time and got such a good response from13
the community to get this synergy.

UPPAAL has already spawned one company, UP4ALL§§, that sells a version of the tool for15
commercial uses. Another market we intend to target is testing. Research tools really have a future
if they can be applied and used outside academia, as witnessed by Lustre/SCADE. However, their17
future as a free academic tool is uncertain as discussed in this paper in relation with the dilemmas.
The situation is that tool paper tracks exist and show the interest in academic tool development19
but they are often on the side of main conferences and they usually accept short papers with short
talks. This could be improved to stimulate tool development in the community.21

To continue the development on the academic path, we are exploring different domains as the
different flavors of UPPAAL show. This also means that a new life cycle with another architectural23
revision is now needed to cope with more extensions of UPPAAL. This will enable us to let other
researchers experiment with the internals of UPPAAL while still maintaining our core engine.25
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Didier Lime (TIGA), John Håkansson (PORT), Anders Hessel (COVER), Leonid Mokrushin (TIMES),
Jakob Illum (CORA), Arild Haugstad (PRO). Last but not least we thank our supporting user community.

REFERENCES1

1. Yi W, Pettersson P, Daniels M. Automatic verification of real-time communicating systems by constraint-solving.
Proceedings of FORTE’94, Hogrefe D, Leue S (eds.), North-Holland, 1994; 223–238. Q13

2. Alur R, Dill DL. Automata for modeling real-time systems. Proceedings of ICALP (Lecture Notes in Computer
Science, vol. 443). Springer: Berlin, 1990; 322–335.5

3. Larsen KG, Pettersson P, Yi W. Model-checking for real-time systems. Proceedings of Fundamentals of
Computation Theory (Lecture Notes in Computer Science, vol. 965). Springer: Berlin, August 1995; 62–88.7

4. Bengtsson J, Yi W. Timed Automata: Semantics, Algorithms and Tools. Lectures on Concurrency and Petri Nets
(Lecture Notes in Computer Science, vol. 3098). Springer: Berlin, 2003; 87–124.9

5. Behrmann G, David A, Larsen KG, Yi W. Unification and sharing in timed automata verification. SPIN Workshop
03 (Lecture Notes in Computer Science, vol. 2648). Springer: Berlin, 225–229.11

6. Behrmann G, Fehnker A, Hune T, Larsen KG, Pettersson P, Romijn J. Efficient guiding towards cost-optimality
in UPPAAL. Proceedings of the 7th International Conference on TACAS (Lecture Notes in Computer Science,13
vol. 2301). Margaria T, Yi W (eds.). Springer: Berlin, 2001; 174–188.

7. Behrmann G, Larsen KG, Pearson J, Weise C, Yi W. Efficient timed reachability analysis using clock difference15
diagrams. Proceedings of the 12th International Conference on CAV (Lecture Notes in Computer Science, vol.
1633). Springer: Berlin, 1999. Q217
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