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Abstract—It is predicted that multicores will be increasingly
used in future embedded real-time systems for high perfor-
mance and low energy consumption. The major obstacle is
that we may not predict and provide any guarantee on real-
time properties of software on such platforms. The shared
memory bus is among the most critical resources, which
severely degrade the timing predictability of multicore software
due to the access contention between cores. In this paper, we
study a multicore architecture where each core has a local L1
cache and all cores use a shared bus to access the off-chip
memory. We use Abstract Interpretation (AI) to analyze the
local cache behavior of a program running on a dedicated
core. Based on the cache analysis, we construct a Timed
Automaton (TA) to model the precise timing information of
the program on when to access the memory bus (i.e. when a
cache miss occurs). Then we model the shared bus also using
timed automata. The TA models for the bus and programs
running on separated cores will be explored using the UPPAAL
model checker to find the WECTs for the respective programs.
Based on the presented techniques, we have developed a tool for
multicore timing analysis, which allows automatic generation
of the TA models from binary code and WCET estimation for
any given TA model of the shared bus. Extensive experiments
have been conducted, showing that the combined approach
can significantly tighten the estimations. As examples, we have
studied the TDMA and FCFS buses. In both cases, the WCET
bounds can be tightened by up to 240% and 82% respectively,
compared with the worst-case bounds estimated based on cache
misses and maximal delays for bus access.
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I. INTRODUCTION

It is predicted that multicores will be increasingly used in
future embedded real-time systems for high performance and
low energy consumption. The major obstacle is that we may
not predict and provide any guarantee on real-time properties
of software on such platforms. The shared memory bus is
among the most critical resources, which severely degrade
the timing predictability of multicore software due to access
contention between cores. In single-core WCET analysis,
it is usually assumed that it takes constant time to access
the main memory (given perfect memory controller). But
for multicores, this assumption never holds, since memory
accesses suffer extra delays as a result of access conflicts
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on the shared memory bus. For example, for a duo-core
processor with first-come-first-serve (FCFS) bus arbitration,
the situation could be any memory access request is delayed
by a request just issued from the other core. In this case, the
worst-case memory access time will be doubled compared to
that without bus contention. Since the number of processor
cores on a chip continues to increase, the amount of traffic
on the shared memory bus increases accordingly, and this
problem is expected to be even worse in the future [1]. Since
the time to access main memory is much larger than either
cache access time or instruction execution time, assuming
worst-case delay will leads to very pessimistic estimations.
So techniques that can precisely bound the delays on shared
buses are very important to obtain useful timing guarantees
for multicore real-time systems.

In this paper, we study a multicore architecture where
each core has a local L1 cache and all cores shared the
memory bus. We intend to find the timing bounds of the
programs considering variable memory access delays due
to both cache misses and memory bus contention. In order
to precisely estimate those delays, one has to analyze how
programs’ behaviors affect the timing of the conflicts, which
is not a trivial task.

We present an approach which combines abstract inter-
pretation and model checking to solve this problem. We use
abstract interpretation to analyze the local cache behavior
of a program running on a dedicated core. Based on the
cache analysis, we construct a timed automaton to model
the precise timing information of the program on when to
access the memory bus. Then we model the shared bus
also using timed automata. The TA models for the bus and
programs running on separated cores will be explored using
the UPPAAL model checker [2] to find the WECTs for the
respective programs.

Based on the presented techniques, we have developed a
tool for multicore timing analysis, which allows automatic
generation of the TA models from binary code and WCET
estimation for any given TA model of the shared bus. Ex-
tensive experiments have been conducted, showing that the
combined approach can significantly tighten the estimations.
In general, we can use this approach to model a broad range
of shared buses. As examples, we have studied the TDMA
and FCFS buses. In both cases, the WCET bounds can be



tightened by up to 240% and 82% compared with the worst-
case bounds estimated based on cache misses and maximal
delays for bus access.

The rest of this paper is organized as follows. In Sec-
tion II, we give an overview of WCET analysis with an
emphasis on bus analysis for multicores. The system model
and the assumptions are detailed in Section III. The overall
analysis framework and its main components are presented
in Section IV. Section V introduces the WCET analysis tool
and presents experimental results and evaluation. The paper
is concluded in Section VI.

II. RELATED WORK

To obtain the WCET of a program, one first reconstruct
the control flow graph (CFG) from the program’s binary [3].
The nodes of a CFG are called basic blocks, with each one
containing a number of instructions executed sequentially. In
the second step, the WCET of the basic blocks are estimated
by considering the effects of micro-architecture features,
such as caches [4], pipelines [5], etc. After that, one can use
techniques such as integer linear programming (ILP) [6] or
model checking to find the path that leads to the maximum
execution time. Micro-architecture analysis may have a huge
impact on the analysis precision.

WCET analysis of multicores is challenging due to the
difficulty in bounding interferences on shared resources. Yan
and Zhang analyzed direct-mapped shared instruction caches
in multicores [7]. A first pass applies abstract interpretation
to obtain the cache hit/miss classification (CHMC) assuming
private use of shared cache, and a second pass analyzes
the effects of inter-core cache conflicts. The work was later
improved by discovering the timing order of the potential
inter-core conflicts using Cache Conflict Graphs [8]. Li et al.
proposed a method to estimate the worst case response time
(WCRT) of concurrent programs running on multicores with
shared L2 caches [9]. They proposed an iterative analysis
where the lifetime of the tasks is explored and the BCETs
and WCETs are tightened in each iteration. The work was
later extended by adding an AI-based TMDA bus analysis
technique to bound the memory access delay[10]. Hardy
et al. proposed a method for timing analysis of shared
instruction caches of multi-cores and a selective caching
technique (called bypass) to reduce inter-core interferences
and also to tighten the WCET estimations [11].

Bare analysis of shared caches is very difficult, but this
problem is made easier if the shared cache is intelligently
partitioned among cores [12], [13] (cache partitioning), or
one selectively cache the program and temporarily disable
cache replacement [13] (cache locking). The purpose of
such techniques is to completely avoid conflicts on shared
resources to ensure predictable timing behaviors.

Besides shared caches, bounding the time for shared bus
access is another challenging task. TDMA buses are one
of the focuses. Andrei et al. proposed an approach for

WCET analysis of programs on multiprocessors considering
variable memory access time due to bus contention assuming
TDMA bus arbitration [14]. Their approach explicitly enu-
merates all feasible paths of a task and the WCRT is chosen
as the maximum among the traces’ execution time. Based
on Andrei’s work, Rosén et al. proposed algorithms for
optimization of bus schedules to reduce schedule length [15].
Schranzhofer et al. proposed a method to analyze the worst-
case response time of real-time tasks on systems with shared
resources and TDMA arbitration policies [16]. The analysis
method suffers some very restrictive assumptions: first, the
fully timing compositional architecture where execution time
and communication time can be decoupled is assumed;
second, tasks are specified by superblocks that execute in
some statically pre-defined order. These assumptions make
the technique hard to be applied to COTS architectures and
real-life programs with arbitrary control flows.

Other research focuses on analyzing non-TMDA buses.
Staschulat et al. presented a method to compute the WCET
of tasks under bus contention at the system level [17].
A traditional WCET analysis technique is extended by
considering the latencies due to bus contention for each basic
block. The results are pessimistic since a conservative min-
imum distance of memory accesses is assumed. Andersson
et al. studied the problem of bounding the execution time
due to contention on memory buses [18]. The key point of
their work is finding an upper bound on the number of bus
requests that a task may suffer. The main drawback implied
in their approach is that they assume the worst-case scenario
where one task has to wait for bus transactions from all the
other tasks, which could lead to very pessimistic estimations.
Although they do not restrict to specific arbitration policies,
their work only applies to work-conserving buses.

Related work has also considered variable bus access time
due to peripherals and memory controllers. Pellizzoni et al.
studied the impact of peripherals’ interference on WCET
analysis, and presented a theoretical framework to model
shared resource contention and to compute the bounds on the
delay [19]. Bourgade et al. presented a technique to bound
the memory latencies in WCET estimation [20]. An abstract
interpretation based method is used to estimate hits or misses
in the row buffer given the open page policy.

Our shared bus analysis method differs from existing work
in that we adopt abstract interpretation for cache analysis,
the result of which is utilized in bus analysis by model
checking. By modeling both the programs and buses as
timed automata, precise bus access information is preserved
and the timing of bus conflicts can be precisely explored.
Our framework can model a broad range of bus arbitrations.

III. SYSTEM MODEL

In this paper, we assume a duo-core processor with
private L1 cache for each core and a shared memory bus
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Figure 1. The system architecture

for all cores, as depicted in Figure 1. Some architectural
assumptions made in our analysis are as follows:

• A1: We assume set-associative caches with least-
recently-used (LRU) replacement policy, and the cache
hierarchy is non-inclusive.

• A2: We do not consider cache and memory access for
data, but our framework can be extended to handle data
caches.

• A3: We assume a perfect in-order pipeline, so the
micro-architecture is assumed to be free of timing
anomalies [21].

• A4: We assume it takes constant time to assert the
address and to deliver data from main memory to the
processor core.

• A5: If multiple programs are allocated on one core, they
are statically scheduled according to some given order,
and the programs do not share code.

In assumption A1, we choose LRU since it’s the most
widely used [4], [22], but other policy like FIFO can
also be handled within our framework [23]. Our study
mainly concentrates on instructions caches, but it can be
extended to handle data caches using AI based techniques
[24]. Assumption A3 is made since pipeline analysis is
out of the scope of this paper. The memory controller is
assumed to be perfect by providing with constant access
time for any memory block. The interplay between shared
buses and memory controllers is left for future work. We
have assumption A5 since we do not intend to discuss
cache related preemption delay (CRPD) in this paper. This
assumption could be removed by integrating CRPD analysis
techniques [25] in our cache analysis.

IV. TIMING ANALYSIS OF CACHES AND BUSES

In this section, we first present the main work flow of our
analysis framework, depicted by Figure 2. First, we con-
duct private L1 cache analysis for the tasks independently
using abstract interpretation to obtain the cache hit/miss
classifications (CHMC). Then a TA to model the precise
timing information of the program on when to access the
memory bus is constructed. Given a bus configuration, we
can also model the bus as a timed automaton. The WCET is
obtained by using the UPPAAL model checker to explore the
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Figure 2. The overall analysis framework

TA models. In the coming sub-sections, we will present in
details how the caches and buses are analyzed, respectively.

A. Private Cache Analysis by Abstract Interpretation

The private cache analysis employs abstract interpretation
presented in [4], which works on abstract cache states
(ACS). Three independent analysis are performed to predict
cache hits or misses.

• Must Analysis: To determine whether a memory block
is definitely in the cache. This analysis maintains in the
ACS the upper bound on the ages of a memory block.

• May Analysis: To determine whether a memory block
is never in the cache. This analysis maintains in the
ACS the lower bound on the ages of a memory block.

• Persistence Analysis1: This analysis predicts whether a
memory block is never evicted from the cache once
loaded into the cache.

By applying the above analysis, each memory block is
classified to exactly one of the following categories:

• Always Hit (AH): Reference to this memory block is
guaranteed to be hit in the cache.

• Always Miss (AM): Reference to this memory block is
guaranteed to be miss in the cache.

• First Miss (FM): the memory block is guaranteed never
to be evicted from the cache once it is loaded, which
means all but the first cache access are hits.

• Not Classified (NC): The memory block cannot be
classified as either AH, AM, or FM.

One can use AI and add the worst case delay by bus to
get a bound on WCET, but this will be very pessimistic for

1In our research, we found that the original persistence analysis
proposed in [4] gives unsafe results. The same problem has been
identified by Cullmann from Saarland University as well, and he
has proposed a correct solution for the problem (http://rw4.cs.uni-
saarland.de/c̃ullmann/persistence talk 200907.pdf). We adopted
Cullmann’s approach in our paper for persistence analysis.
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Figure 3. Modeling instructions

multicores with shared resources. Model checking can be
used to improve the precision not only for the analysis of
shared buses, but also shared caches. In this paper, we focus
on shared bus analysis.

We refer interested readers to [4] for the details on how
AI works. Here we present an example to show the result of
AI analysis. Figure 4 illustrates a program with six basic
blocks, numbered from BB0 to BB5. Each basic block
may have several instructions annotated with cache hit/miss
classifications. For instance, BB3 has two instructions that
are classfied as FM and AH, respectively. We will use
Figure 4 as a motivating example to show how to transform
the program to a timed automaton in the next sub-section.

AM

AM

NC

AH

FM

AH

AH

BB0

BB1

BB2 BB3

BB4

BB5

Figure 4. An exemplary program after AI analysis

B. Shared Bus Analysis By Model Checking

In multicores, memory access time may be very unpre-
dictable due to both cache misses and contention on shared
buses. A bus access is possible only when an instruction
misses in the cache. When a bus request is issued to the
shared bus, it is possible that the system is servicing a
request issued by some other core, so this request has to wait
for the completion of the current service, which results in
additional delay. For TDMA buses, wait delay could happen
when a bus request is issued in the time slot which is not
assigned to it. To precisely estimate the memory access time,
one should know the time at which the cache misses occur

and how conflicts happen on shared buses. In this paper,
we leverage model checking to solve the above problem.
We have modeled (1) the automata for the programs that
preserves exact timing of bus accesses due to cache misses;
(2) the automaton for the shared bus which can help to
explore the timing of contention on the bus.

1) From CFG with CHMC to Timed Automata:
Programs as shown in Figure 4 is the input to the TA
construction. We first build the sub-model for each basic
block, then generate the TA for the program by connecting
the basic blocks according to the control flow. In building
the model for each basic block, instructions with different
CHMC should be distinguished. Then we propose a method
to group a bunch of instructions, with the objective to reduce
the model size, i.e. reduce the number of locations and edges
in the model and thus the state space.

Modeling AH instructions. An AH instruction is guar-
anteed to hit in the cache, so it never access the shared
bus. For such instructions, we just model their L1 cache
access time and its execution time, as shown in Figure 3(a).
Here “c” is a set of clock variables in UPPAAL, where
“c[0]” is used for the program running on Core-0. On the
incoming edge of Node1, the assignment “c[0]=0” resets
the clock. The invariant “c[0]<=L1Hit+InstTime” on
Node1 and the guard “c[0]==L1Hit+InstTime” on its
outgoing edge guarantee that the automaton will stay exactly
for “L1Hit+InstTime” time units once it enters location
Node1. Here “L1Hit” and “InstTime” refer to the delay
of an L1 cache hit and the execution time of the instruction,
respectively.

Modeling AM instructions. An AM instruction is guar-
anteed to access the shared bus. Figure 3(b) illustrates
the model. Node1 is marked as “committed” meaning the
automaton should leave the location immediately after it
enters the location. On the transition from Node1 to Node2, a
signal is sent to the bus automaton via the accessBus[0]
channel modeling the issuing of a bus access request. The
bus automaton models the time to service this request, which
is detailed in later sections. Once the service is completed,



a signal is sent back to the program automaton, and then
the program automaton can progress. accessBus[0]? on
the outgoing transition of Node2 specifies that the program
automaton will wait in location Node2 until a signal is
received from the accessBus[0] channel. Instruction
execution time is modeled similarly to AH instructions.

Modeling FM instructions. Classification FM means
that, the instruction has cache miss the first time it is
referenced, and all consequent references are cache hits.
So such instructions have two execution scenarios, which
is distinguished by a variable named fmflag assigned to
each FM instruction. As illustrated in Fig. 3(c), the path
“Node1→Node2→Node4” models the first time to refer-
ence an FM instruction; the path “Node1→Node3→Node4”
models all but the first reference to the instruction. Once
the first reference is finished, fmflag is set to “0” and all
consequent executions of this instruction definitely take the
lower path.
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Modeling NC instructions. An instruction is classified
as NC if we cannot guarantee that the instruction is in the
cache each time it is referenced. One reason why NC exists
is that the cache analysis technique is not precise enough to
classify an instruction which is actually AH, AM, or FM.
Another reason could be the following scenario. There are
two branches A and B in a loop, execution of A will evict
some memory blocks of B and vise versa. In this case, the
path leading to WCET takes the two branches alternatively.
Some instructions on the branches may be either hit or miss
in different loop iterations.

NC instructions can be safely treated as AM in WCET
calculation in single-cores, but they have to be handled
carefully in multicores where bus sharing is possible. It
has been proved in [26] that the above assumption is safe
for TDMA buses, but it is unsafe for work-conserving
FCFS buses. Figure 5 illustrates an execution scenario where
treating NC as hit may actually delay the other core’s
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execution. Note that the gap between the end of a bus service
and the next request is constant, for example, it could be
the execution of some AH instructions. So in the analysis
of FCFS buses, we have to consider both possibilities of an
NC instruction, as illustrated in Figure 3(d).

Optimization by grouping. To reduce the model size,
i.e. reduce the number of locations and edges in the model
and thus the state space, we present an optimization tech-
nique called grouping. In a basic block, there may exist
multiple consecutive FM or AH instructions. In this case,
the sequence of instructions can be grouped together. For
instance, we have a sequence of six instructions with the
CHMC pattern < FM,AH,AH,FM,AH,AH >. The
results of grouping is shown in Figure 6. The upper path
models the scenario when the sequence is executed the first
time. Node3 and Node5 model the bus access delay of the
two FM instructions. Node4 and Node6 model the time delay
of the execution time of the FM instruction itself and the two
consequent AH instructions. The lower path models all but
the first iterations of the sequence, where all instructions are
hits in the cache. Only 7 locations are needed to model the
six instructions compared to 12 locations without grouping.

Following the above techniques, we can obtain the TA of
the example of Figure 4, which is illustrated in Figure 8.
Then we will present the modeling of the shared buses.

2) Shared Bus Analysis by Model Checking:
In our approach, we adopt model checking for bus analysis.
In general, we can use this approach to model a broad range
of shared buses, but here we take TDMA and FCFS buses
as examples.

Time

Core 0 Core 1 Core 0 Core 1

segment 0 segment 1

slot 0 slot 0slot 1 slot 1

...

Figure 7. The TDMA bus schedule

The TDMA bus schedule defines how different processing
units use the bus in a time sharing manner. A TDMA bus
is composed of consecutive segments, which is further
divided into slots with each slot assigned to some processing
unit. Figure 7 shows the TDMA bus schedule assumed in
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this paper, in which all the segments have the same size,
and each segment are evenly divided into N slots (N is the
number of cores). So no two cores can shared one slot.

Figure 9 is the TA for the TDMA bus. Note that since
each core will be assigned a different slot, interference on
the bus is isolated. In this case, the bus delay of one program
only depends on itself. Given assumption A3, we can also
guarantee that the bus accesses from one program will
come sequentially. So the TDMA bus model only needs to
incorporate the behaviors related to the program to analyze.

When the system starts, the bus automaton will enter
location NewSlot. If there is no pending request or the
current slot is not assigned to the program, the automaton
goes to location WaitReq where the automaton waits for
new requests to come. When a new request is issued, a
transition from WaitReq to CheckReq is taken, and the
request is recorded by setting the variable req to 1. The

request can be served if both the following two conditions
are satisfied: (1) the current slot is assigned to the core
where the request comes from; (2) there is enough remaining
time in the slot to service a request. If the conditions hold,
the automaton goes to location ServReq, where the time
to service a request is modeled using clock c. When the
service is completed, the automaton goes back to WaitReq.
If the condition is not satisfied, the automaton will directly
go to WaitReq. Since the request has been recorded, it will
be serviced in the next slot assigned to it. We use another
clock cs to guarantee fixed slot size. When the time of a slot
runs up, the automaton will go from WaitReq to NewSlot,
and the variable slotid is adjusted by calling function
adjust_slot() to represent a different slot. Note that
we can reuse the clock used by the program instead of
introducing clock cs, since at this time, the program is
guaranteed not using its clock (it is waiting for the request
completion signal). Reducing the number of clocks is very
important to reduce the state space in model checking with
time automata.

We also modeled a work-conserving non-preemptive
FCFS bus, which is illustrated in Figure 10. If a bus request
arrives when another request is being serviced, this request
will be buffered in a queue. Note that for each core, a bus
request is issued only after the previous one is serviced, so
there is at most one request from each core at any time. If
there are N cores in the system, it suffices to design a queue
with size N . We use an array queue[] to model the queue,
where value i ranging from 0 to N −1 represents a pending
request from core-i, and value N is used to represent an
empty position in the queue.

c[queue[0]]==MemTime

C

Init

C

C

initQueue()

RecvReq

CheckReq

BusDelay

deQueue()

accessBus[0]? accessBus[1]?

enQueue(0) enQueue(1)

c[queue[0]]<=MemTime

c[queue[0]]=0

queue[0]<N

accessBus[queue[0]]!

queue[0]==N
accessBus[0]?

enQueue(0)

accessBus[1]?

enQueue(1)

Figure 10. Modeling the FCFS bus

In the FCFS model, each transition from location
RecvReq to location CheckReq enables the bus automaton to
receive bus requests from one core, and the requests trigger
the automaton to progress from RecvReq to CheckReq. Once
a request is received, it is put in the queue immediately by
executing the enQueue() function. Then the automaton
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checks whether there are pending requests in the queue: If
there are one or more requests in the queue, the first request
is serviced, and the automaton goes to location BusDelay to
model the time to access the bus; otherwise, the automaton
goes back to RecvReq to wait for future requests. These
conditions are checked by evaluating queue[0]<N and
queue[0]==N on the outgoing edges of CheckReq.

The BusDelay location mainly models the time to service
a bus request. The cyclic transitions on location BusDe-
lay enables receiving new requests during bus service and
putting them in the queue. Once a request service is finished,
the bus automaton send a signal to the requesting program to
notify service completion, and then the request is removed
from the queue by executing the deQueue() function.
After that, the bus automaton goes back to CheckReq to
service other pending requests. Since we assume perfect
memory controller, each bus service has a constant delay
of “MemAccessTime”.

3) Putting All Together: Now we have presented how to
model the programs and the buses. The model for the pro-
grams communicate with the bus model via the accessBus
channel. Let’s assume program PA and PB are assigned to
core-0 and core-1. For TDMA bus, if we want to calculate
the WCET of PA, we only put the TA for PA and the TA
for TDMA bus into one UPPAAL model and let the model
checker find the bound. But for FCFS bus, we have to put
the TA for PA, PB and the FCFS bus into one UPPAAL
model, since the WCET of PA depends on the behavior of
PB as well.

V. IMPLEMENTATION AND EVALUATION

In this section, we first describe the WCET analysis tool
developed in this paper; and then give the results and eval-
uation for the TDMA bus and the FCFS bus, respectively.

A. A WCET Tool for Analysis of Multicore Software

Based on the techniques presented in previous sections,
we have developed a WCET tool for analysis of multicore
software. The work flow of the tool is illustrated within
the dotted box of Figure 11. The major input to the tool is
programs allocated to a multicore processor. The programs
are compiled to executable binaries before analysis. The
first step in to reconstruct the CFGs of the programs. Then
cache analysis using abstract interpretation is conducted on
the programs, and the result is CFGs with cache hit/miss
classifications. After that, the tool automatically constructs
the TA of the programs out of the results of AI analysis,
which preserves exact bus access behaviors. For a given bus
configuration, we also model them as a timed automaton.
Then UPPAAL is invoked to explore the TA models, and the
WCET of a program is extracted from the clock constraints
within the UPPAAL model checker as in the TIMES tool
[27]. Our analysis tool allows for modeling a broad range
of bus arbitration policies, although we only use TDMA and
FCFS buses as exmaples in this paper.

B. Experimental Settings

We take six benchmark programs from the Mälardalen
benchmark suite2. Table I lists the name, description, code
size (in terms of the number of instructions) of each pro-
gram. Loop bounds are set manually.

Table I
BENCHMARK PROGRAMS

Name Description #inst.
bs Binary search algorithm for an array 78
edn Finite Impulse Response (FIR) filter calculations 896
fdct Fast Discrete Cosine Transform 647
insertsort Insertion sort on a reversed array 106
jfdctint Discrete Cosine Transformation on a pixel block 691
matmult Matrix multiplication 287

C. Results for the TDMA bus

Since programs are statically scheduled and there is no
code sharing, the WCET of the programs can be calculated
independently for the TDMA bus. We conduct experiments
for a duo-core system with a private L1 cache for each core.
The configuration for the L1 cache is: cache size = 2KB,
cache associativity = 4, cache line size = 8 bytes. L1 cache
hit latency is 1 cycle, and transferring a cache line on the
bus takes 40 cycles. It takes 1 cycle for each instruction
to execute. We performed experiments on two different slot
sizes for the TDMA bus: 100 and 200 cycles.

2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html



Table II
RESULTS FOR A DUO-CORE SYSTEM WITH SLOT SIZE 100

Programs WCET Improvement
AI+MC AI+Worst-Case

bs 8,282 14,644 77%
edn 9,219,082 16,565,100 80%
fdct 268,882 479,946 78%
insertsort 21,041 29,702 41%
jfdctint 315,882 563,936 79%
matmult 151,241 174,390 15%

Average 62%

Table III
RESULTS FOR A DUO-CORE SYSTEM WITH SLOT SIZE 200

Programs WCET Improvement
AI+MC AI+Worst-Case

bs 8,482 22,444 165%
edn 9,207,282 25,756,000 180%
fdct 267,282 742,646 178%
insertsort 21,282 40,302 89%
jfdctint 314,564 873,336 178%
matmult 150,841 203,090 35%

Average 138%

For slot size 100, the worst-case bus delay happens when
a bus request arrives in the slot assigned to it, but finds that
there are only 39 cycles left, which is just not enough to
service the request. In this case, the request has to wait for
the corresponding slot in the next segment. The total delay
on the bus including service time is: 39 + 100 + 40 = 179.
The worst-case delay for slot size 200 is 279 accordingly.
Table II and Table III list the results for the TDMA bus with
slot size 100 and 200, respectively. All the WCET values are
clock cycles, which applies throughout this paper. We define
improvement as (WCETAI+WC/WCETAI+MC − 1),
which describes how much our approach can tighten com-
pared to assuming worst-case bus delay.

Experimental results show that the WCET bounds can be
tightened by 62% and 138% in average for slot size 100
and 200 using our approach. It is can be seen that WCETs
obtained by our approach for different slot sizes do not make
much difference for most of the programs. If we look at
the behaviors of the programs, we can find that: there is
a burst of cache misses (bus accesses) when a program is
being loaded into the cache; and then the program spends
most of the remaining time within the loops where a large
portion of cache accesses are hits. We call the time for
loading a program the burst period. During burst periods,
bus accesses come continuously, so the bus slots are busy
servicing requests, leaving little time for the bus to idle.
In the long run, each core are utilizing nearly half of the
bus service time, and the slot size has little effect on the
resulting WCET. But slot size makes great difference in the
calculated worst-case bus delay. As we have shown before,
the worst-case bus delay for slot size 100 is 179, the figure
goes up to 279 for slot size 200, which results in very large

Table IV
RESULTS FOR A 4-CORE SYSTEM WITH SLOT SIZE 100

Programs WCET Improvement
AI+MC AI+Worst-Case

bs 16,082 30,244 88%
edn 18,428,441 34,946,900 90%
fdct 529,682 1,005,350 90%
insertsort 31,641 50,902 61%
jfdctint 624,482 1,182,740 89%
matmult 179,241 231,790 29%

Average 75%

Table V
RESULTS FOR A 4-CORE SYSTEM WITH SLOT SIZE 200

Programs WCET Improvement
AI+MC AI+Worst-Case

bs 16,082 53,644 234%
edn 18,404,164 62,519,600 240%
fdct 529,682 1,793,450 239%
insertsort 32,082 82,702 158%
jfdctint 628,164 2,110,940 236%
matmult 179,241 317,890 77%

Average 197%

WCET estimations. This explains why our approach has
bigger improvement for larger slot size. In real systems, it is
not common to configure small slot sizes, since it results in
frequent slot switching and consequently more overhead. So
assuming worst-case bus delay will lead to too pessimistic
or even useless estimations in practice. In our approach, the
UPPAAL model checker can explore the timed automata
for the programs and the buses and precisely capture their
behaviors, so tighter estimations are produced.

We have also conducted experiments for a 4-core system
with the same cache and slot configurations as that of the
duo-core system. The results are listed in Table IV and
Table V. In average the WCET bounds by our approach is
tighten by 75% and 197%, which is better compared to the
duo-core system. The maximal observed improvement 240%
comes from edn in the slot size 200 experiment. For the 4-
core system, if a bus request misses its slot, it generally
has to wait more slots. The effect is almost equivalent to
configuring a large slot size for the duo-core system, the
consequence of which has been explained before. So bigger
improvements are observed.

Our analysis method is efficient with respect to analysis
time and memory usage. Most experiments for TDMA return
results within several seconds. The maximum analysis time
is 738 second, which is witnessed in the experiment for
edn. Maximum observed memory usage is 110MB. As we
have discussed before, we can analyze the programs inde-
pendently when analyzing the TDMA bus. So our method
can scale well with the number of cores. This has been
demonstrated in the experiments.



Table VI
RESULTS FOR THE FCFS BUS

Programs WCET (AI+MC) WCET Max. Impr. Avg. Impr.
S1 S2 S3 S4 S5 S6 S7 S8 AI+Worst-Case

bs 3,802 6,815 3,802 3,802 4,921 3,802 3,802 3,802 6922 82% 67%
edn 246,313 240,345 240,267 262,376 244,400 240,345 255,790 245,925 276,068 15% 12%
fdct 37,573 41,278 44,486 37,573 56,996 44,486 37,573 56,996 63,453 69% 46%
insertsort 14,968 14,968 14,968 18,238 14,968 14,968 18,055 14,968 19,208 28% 23%
jfdctint 40,153 40,153 40,153 55,161 60,025 40,153 48,758 59,892 67,793 69% 45%
matmult 140,504 141,348 141,360 138,406 139,561 141,469 138,406 139,881 145,977 5% 4%

Average improvement for all programs 33%

D. Results for the FCFS bus

To evaluate the results of the FCFS bus, we group the six
benchmark programs into two task sets – {bs, edn, fdct}
and {insertsort, jfdctint,matmult}, each of which is
allocated on a different core. Table VII lists the schedules
used in our experiments. The tasks within the same task
set execute sequentially according to the given order. We
calculate the WCET of each task. The cache configurations
are: cache size = 8KB, cache line size = 8 bytes, cache
associativity = 4. Instruction execution time, L1 cache hit
delay and transferring a cache line on the bus takes 1 cycle,
1 cycle and 40 cycles, respectively.

Table VII
STATIC SCHEDULES EXPERIMENTED

Schedules Core-0 Core-1
S1 edn, bs, fdct matmult, insertsort, jfdctint
S2 bs, fdct, edn matmult, insertsort, jfdctint
S3 fdct, edn, bs matmult, insertsort, jfdctint
S4 edn, bs, fdct insrtosrt, jfdctint, matmult
S5 fdct, bs, edn jfdctint, matmult, insertsort
S6 fdct, bs, edn matmult, insertosrt, jfdctint
S7 edn, bs, fdct jfdctint, insersort, matmult
S8 fdct, edn, bs jfdctint, matmult, insertsort

Table VI shows the results for experiments on the FCFS
bus. We list the WCET for each program in every schedule.
For FCFS buses, the worst-case bus delay happens when a
request reqi arrives when the bus is servicing a request from
the other core which is issued immediately before reqi. The
delay is 80 given the above system configuration. The last
row in Table VI gives the average estimation improvement
for all the programs.

the WCET bounds by our approach is tightened by 33%
in average, and the maximum is 82%, which is observed
from bs in schedule S1 for example. WCET with maximal
improvement for each program is shown in bold numbers.
Experiment results also show that the WCETs of the pro-
grams vary a lot if the tasks are scheduled differently. The
reason lies in the overlapping of the burst periods of the
programs. Figure 12 shows an example in which shaded
areas represent the burst periods. In schedule S2, the burst
period of bs is completely covered by that of matmult. In
this case, the conflicts from the other program reaches the

maximum, and the resulting WCET is very close to the
worst-case. But in S6, when bs starts, matmult is running
concurrently but not in its burst period. In this schedule,
bs suffers no conflicts at all, and the WCET corresponds
the best case. We can see that the overlapping of the burst
periods greatly affects the WCET of the programs. Note that
the lengths of the blocks in Figure 12 do not represent real
execution time, and they are only used to show the over-
lapping of burst periods. Since our approach can precisely
explore the overlapping, it produces tight estimations for all
execution scenarios. Assuming worst-case bus delay could
be too pessimistic for some execution scenarios.

bs bs edn

matmult matmult

edn fdct fdct

ins. ins. jfdc. jfdc.

mat. matmult

bs bs edn ednfdct fdct

ins. ins. jfdc. jfdc.

Core-0

Core-1

Core-0

Core-1

Schedule  S2

Schedule  S6

Figure 12. Different overlapping of burst periods in S2 and S6

Note that the improvement for matmult is very small. This
is because matmult spends a lot of time in small loops, so
cache hits dominate the execution time, and there is not a
big gap between the best-case and the worst-case.

For the analysis performance, the longest experiment runs
3,362 seconds, and the maximum memory usage is 477MB.
Although not so efficient as the TDMA bus, analyzing the
FCFS bus still scales well and can handle real-life programs.

VI. CONCLUSION

Bounding the execution time of programs on multicores
with shared buses is a challenging task. We solved this
problem by presenting an approach that combines abstract
interpretation with model checking to estimate the WCET
of multicore software considering variable memory access
time. We analyze the memory access behavior of programs
running on dedicated cores with local caches using abstract
interpretation techniques to generate timed automata captur-
ing the precise timing information of the programs on when
to access the memory bus. Based on the techniques presented



in this paper, we have developed a tool for multicore
timing analysis, which allows automatic generation of the
TA models from binary code and WCET estimation for
any given TA model of the shared bus. Experimental results
show that our combined approach can significantly improve
the analysis precision. The WCET bounds by our approach
are tightened by up to 240% and 82% for the TDMA and
FCFS bus respectively, compared with the worst-case bounds
estimated based on cache misses and maximal bus access
delay. Our technique may deal with a broad range of shared
buses, that can be modeled using timed automata, other than
TDMA and FCFS used as examples in this paper.
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