
WCET Analysis of the µC/OS-II Real-Time Kernel∗

Mingsong Lv1, Nan Guan1, Yi Zhang1, Rui Chen1, Qingxu Deng1, Ge Yu1 and Wang Yi1,2

1 Northeastern University, Shenyang, China
2 Uppsala University, Uppsala, Sweden

Abstract

Worst-case execution time (WCET) analysis is one of
the major tasks in timing validation of hard real-time sys-
tems. In complex systems with real-time operating systems
(RTOS), the timing properties of the system are decided by
both the applications and the RTOS. Traditionally, WCET
analysis mainly deals with application programs, while it is
crucial to know whether the RTOS also behaves in a timely
predictable manner. In this paper, we present a case study
where static analysis is used to predict the WCET of the
system calls of the µC/OS-II real-time kernel. To our knowl-
edge, this paper is the first to present quantitative results on
the real-time performance of µC/OS-II. The precision of ap-
plying existing WCET analysis techniques on RTOS code is
evaluated, and the practical difficulties in using static meth-
ods in timing analysis of RTOS are also reported.

1. Introduction

Hard real-time systems are those systems the tasks of
which must meet their deadlines; otherwise, there will be
disastrous consequences. Timing correctness of hard real-
time systems is traditionally guaranteed by a hierarchical
off-line analysis framework. First, WCET analysis is used
to obtain execution times of tasks in the worst case, and then
schedulability analysis uses these results to decide whether
all the tasks are schedulable. There are two important prop-
erties to describe the usefulness of an analysis technique:
safety and accuracy. The results are safe if no actual exe-
cution of the program exceeds the estimated time. And the
estimation is said to be more accurate if it is closer to the
real maximal execution time of the program. Soft real-time

∗This work was partially sponsored by the National High Technology
Research and Development Program of China (863 Program) under Grant
No. 2007AA01Z181, the Cultivation Fund of the Key Scientific and Tech-
nical Innovation Project of Ministry of Education of China under Grant
No. 706016, and the Natural Science Foundation of Liaoning Province
under Grant No. 20082032.

systems do not always have safety requirements, but hard
real-time systems allow no underestimation. The accuracy
of the estimation is also critical, since too pessimistic esti-
mations lead to over-design and low task accept ratio. Using
only toy benchmarks is inadequate to justify the usefulness
of the analysis techniques, so it is important to test the tech-
niques on real-life programs.

Traditionally, WCET analysis is mainly applied on appli-
cation programs and has achieved success in industry (e.g.
aiT [2]). While complex real-time systems are composed
of both applications and RTOS, and the timing properties
of the system are decided by both parts. In order to ob-
tain WCET estimations for a whole system, timing analysis
should be performed not only on application programs, but
also on RTOS services. Although it does not make much
difference between application code and RTOS code when
they are compiled to binaries (the input to static WCET
analysis), analyzing RTOS is generally harder than analyz-
ing applications with no library/system calls, since the be-
haviors of RTOSes are much more complex. Simply apply-
ing static analysis techniques designed for applications may
yield low-quality or even incorrect results.

In this paper, we used Chronos, a static analysis WCET
tool, to obtain the WCETs of the system calls (or APIs)
of the µC/OS-II real-time kernel. The purpose of this re-
search is not only to test the accuracy of the estimation, but
also to investigate the practical difficulties in applying static
analysis techniques to real-life RTOS code. In our exper-
iment, we successfully checked the WCET of 61 (out of
79) µC/OS-II system calls. Compared to simulation-based
timing analysis methods, the quantitative results obtained
by WCET analysis can give a safer picture of the real-time
performance of an RTOS. The difficulties in the analysis
process are also analyzed. In our practice, we found that
some traditional WCET analysis techniques, such as those
adopted in Chronos, are far from adequate in characterizing
the timing properties of an RTOS. Problems found from our
research include a lack of parametric timing analysis tech-
niques in RTOS analysis, incorrect results in the presence
of context switches, etc., which are left to future work.



The rest of the paper is organized as follows. Section
2 presents background information on µC/OS-II. Section 3
elaborates the experiment methodology. Analysis results
are presented and evaluated in Section 4. Section 5 lists
related research, and the paper is concluded in Section 6.

2. The µC/OS-II Real-Time Kernel

µC/OS-II [1, 7] is an open-source real-time kernel de-
signed by Micriµm, Inc. The µC/OS-II kernel is designed to
be efficient with a small footprint. Although it does not have
as many features as other RTOSes such as RTEMS and Vx-
Works, it has nearly all the standard RTOS capabilities: (1)
Priority-based preemptive scheduling; (2) Inter-task com-
munications via semaphore, mutex, message queue, and
message box; (3) Time management; (4) Simple memory
management.
µC/OS-II is one of the most widely used real-time ker-

nels in industry: it has been licensed by hundreds of real-
time embedded systems companies, and the products span
multiple domains, including network management devices,
handheld devices, and embedded monitor and control sys-
tems. µC/OS-II is also certified in avionics products by
FAA for use in commercial aircrafts. We believe it is mean-
ingful to evaluate the real-time performance of µC/OS-II
quantitatively due to its prevalence in industry.

3. Experiment Methodology

This section gives the detailed experimental settings ap-
plied in our experiments: the configurations of µC/OS-II,
the WCET analysis tool adopted, and basically how the
WCETs of the system calls are obtained.

3.1 µC/OS-II Configurations

The µC/OS-II real-time kernel has a small footprint with
11 C files and 1 header file, which contains 79 system calls
spanning 9,771 lines of code. µC/OS-II allows developers
to customize these features according to their requirements.
In this paper, we exclude some features that are not the core
functions of the system. Excluded features are: name man-
agement, the statistic task, task profiling, and debugging.
Some trivial functions, such as the dummy function, are also
excluded. We refer readers to our technical report [10] for
further details.

In order for µC/OS-II to run on a specific processor,
one must first port the system to the target instruction set.
µC/OS-II requires that functions to do context switch and
disable/enable interrupts should be rewritten for different
architectures. We find that these architecture-specific func-
tions are all single-path functions, and they do not incur ex-
tra difficulty in the analysis. Additionally, Simplescalar (the

adopted simulator in the experiment) does not fully support
full-functional simulation of operating systems. So without
loss of generality, we replace these functions with dummy
functions in our experiments.

Table 1. Chronos Configurations
Features Value
Pipeline Configurations
Superscalarity 1
Instruction Fetch Queue Size 4
Reorder Buffer Size 8
Instruction Cache Configurations
The Number of Cache Sets 64
Cache Block Size 8
Cache Associativity 8
Main Memory Access Latency 30
Branch Prediction Configurations
Branch History Table Size 16
Branch History Register Width 1

3.2 The WCET Analysis Tool

In our research, we use Chronos [9] to analyze the
µC/OS-II kernel. Chronos is open-source, which allows the
users to hack into the tool to locate possible problems. The
underlying abstract processor model in Chronos is a MIPS-
based architecture, and the users can configure the param-
eters for the instruction cache, the pipeline, and the branch
predictor. The power of Chronos is the ability to model
complex micro-architecture features listed above [8], which
is another reason why we choose Chronos. Chronos first
reads in C code and compiles them into PISA binaries; then
the frontend of the tool performs data flow analysis to detect
loop bounds (for the loop bounds that cannot be detected au-
tomatically, user intervention is required to set them). The
core of the analyzer performs WCET analysis. It first dis-
assembles the binary into control flow graphs (CFG); then
performs micro-architecture modeling to decide the execu-
tion time of each basic block in the CFG; at last, an Implicit
Path Enumeration based technique is adopted to calculate
the WCET.

In the experiments, we find that the precision of the anal-
ysis results has very close relationship with the configu-
rations of the target processor in Chronos. Large overes-
timation is detected in presence of large superscalarity of
pipelines, large block size of instruction caches and large
memory access latency. While the size of instruction fetch
queue and reorder buffer of the pipelines, and the number of
sets and associativity of the caches do not contribute much
to the overestimation. Note that one of the objectives of
this research is to investigate whether some characteristics



of an RTOS affect the precision of the analysis. So in order
to make it easy to distinguish the sources of overestima-
tion, we need to minimize the overestimation incurred by
the analysis tool. The configurations listed in Table 1 are
applied to Chronos.

3.3 How to Obtain the WCETs of System
Calls

When trying to use Chronos to obtain the WCET of
each individual system call, we encountered some prob-
lems. Chronos requires that any program to be analyzed
should have a main() function, so that the program can
be properly compiled and simulated. This means it is not
possible to analyze a standalone system call. So we have
to wrap each system call in a main() function to make it
analyzable, as illustrated in Figure 1-a.

Figure 1. A wrapper program for system calls

But this trick is also problematic. Even if nothing but the
system call is wrapped in the main() function, the com-
piler automatically adds additional instructions both before
and after the instructions of the system call (see Figure 1-
b), which increases the obtained WCET value. To min-
imize this imprecision, we have to subtract the execution
cycles of the pre- and post-instructions from the estimated
WCET. Since the additional instructions have no loop or
branch, they execute exactly once. So the additional cycles
are composed of the cache misses of these instructions and
their execution times. Note that in the processor configu-
ration above, the superscalarity of the pipeline is set to 1,
which means at most one instruction is committed in each

cycle, and the minimum execution time of any instruction
is one cycle. So it is safe to subtract one cache miss penalty
and one cycle for each pre- and post-instruction from the es-
timated WCET. The final WCET is calculated according to
Equation 1, where Npre and Npost represents the number
of pre- and post-instructions. We may also manually add
some instructions before the system call to prepare a proper
running context, so these instructions are treated similarly.

Calculated WCET = Estimated WCET −
(Cache miss penalty + 1)× (Npre + Npost)

(1)

4. Analysis Results and Evaluation

In this section, we first give an overview of the estimated
results obtained in our experiments. Then the major prob-
lems found in our experiments are detailed. Note that some
of the detailed problems will not necessarily occur if differ-
ent WCET tools are applied.

4.1 An Evaluation of the Estimated Re-
sults

The µC/OS-II kernel has 79 system calls in all, and we
have successfully obtained the WCET of 61 system calls.
We failed to analyze the 8 system calls of the timer man-
agement module, because there are dynamic function calls
in the APIs, and Chronos is not able to decide the jump tar-
gets of dynamic function calls statically. The analysis of the
OSTaskCreateExt() API also failed because it cannot
pass simprofile (Simprofile [3] is a module of Sim-
pleScalar to generate detailed profiles for the program, and
it is one of the mandatory steps of the analysis process of
Chronos).

All the analysis results are listed in Appendix A. An av-
erage of 17.57% overestimation is reported. All the WCET
values in Table 2, 3 and Appendix A are measured in terms
of processor cycles. We will give a detailed evaluation of
this result. First, nearly half of the µC/OS-II system calls
are implemented with very simple program structures, and
such programs do not pose any difficulty for the analysis
tool, so the overestimation is generally under 5%.

The second type of system calls are those that try
to acquire a shared resource, such as OSFlagPend(),
OSSemPend(), etc. There are two main sources of the
overestimation. First, these system calls share similar con-
trol flows with lots of “if-then-else” branches and function
calls, and in such cases, we were not able to guide the simu-
lation to the worst-case execution path. Second, the estima-
tion reports more cache misses than the simulation, so the
analysis tool also partly contributes to the overestimation.

The overestimation of the OSTimeDlyHMSM() system
call is 248.94%, which is far more pessimistic than all other



…

…

Figure 2. A chunk of OSTimeDly()

system calls. The problem comes from a piece of code
depicted in Figure 2. We found that, in the simulated re-
sults, the execution of OSTimeDly() at line 2 reports
cache misses, and all the other subsequent executions of
OSTimeDly() within the while loop (line 4 and 5) report
cache hits; while in the results estimated by Chronos, the
executions of OSTimeDly() at line 2, 4 and 5 are all eval-
uated to have cache misses, and cache hits are only identi-
fied from the second iteration of the while loop. We believe
this reflects a defect in the analysis techniques of Chronos.

Table 2. Underestimations found in Chronos
Tests Est. Sim.
OSSemDel() + features off 329 419
OSSemDel() + features on 6487 8029
simple code + features off 187 186
simple code + features on 1373 1463

The analysis process also helps us to identify some crit-
ical bugs in Chronos. In the analysis of the OSSemDel()
system call, the estimated WCET is smaller than the sim-
ulated WCET: this means that the analysis techniques can-
not guarantee safety. The problem comes from the program
structure: if a while loop appears in the first line of a
switch branch, the underestimation occurs. We also tried
to estimate this system call with different processor config-
urations, and found that even if all the processor features
are turned off, the underestimation still exists. Then we
wrote a very simple program with this problematic program
structure, and the results are different: when all features are
turned off, there is no underestimation; but when all fea-
tures are turned on, the underestimation comes. The results
are listed in Table 2. This should be a bug in Chronos. In
this paper, we had to manually modify the source code of
µC/OS-II to avoid this problem.

Now we make a summarization of the obtained results.
In the general case, an average of 17.57% overestimation
is an acceptable result of WCET analysis. This shows that
existing static WCET analysis techniques can be used for
RTOS as long as the objective is a single WCET value for
each RTOS system call. But the results are obtained with
lots of manual efforts, and the human analyzer should be ex-
perienced in both the WCET tool and the analyzed RTOS.

For example, some loop bounds of the system calls depend
on the run-time values of system states. In our practice,
we had to manually go through the µC/OS-II source code
to identify all the variables that affect the loop bound, and
carefully set them in the WCET analysis tool. Similar prob-
lems are also reported in related work [6]. The degree of
automation is far from acceptable in the timing analysis of
RTOS using existing WCET tools.

4.2 Incapabilities of Single-Value WCET
Analysis

In order to justify whether the WCET analysis tech-
niques adopted can yield good results in static timing anal-
ysis of RTOS, we need to exclude all other sources of over-
estimations. For example, in one pass of the analysis, if
the simulator takes a shorter path and the analyzer takes the
worst-case path, then the gap between the estimated result
and the simulated result does not reflect the real overestima-
tions introduced by the analysis techniques. In this case, the
simulator must be guided to the worst-case execution path
by setting the values of the variables that affect the program
control flow. The biggest difficulty we encountered in our
practice is preparing the correct settings that can guide the
simulator to the worst-case execution path.

Preparing the settings led us to conduct a more intensive
study of the characteristics of the control flows in RTOS
APIs. Actually, the code of the µC/OS-II kernel has been
well tuned for performance, e.g., the number of loops in
the system calls is minimized. But a great number of
conditional branches are inevitable since the system calls
should provide different services according to different sys-
tem states. The execution time of the same system call in
different execution scenarios may vary a lot. We will show
it in a series of examples listed in Table 3.

The system call OSMutexPend() is invoked if a task
tries to obtain a mutex. The execution time changes due to
the availability of the resouce. If the task finds that the mu-
tex is available, it immediately takes the mutex by marking
itself as the owner; otherwise, the current task checks if the
owner of the resource is ready; if ready, the owner’s priority
is promoted according to the Priority Inheritance Protocol;
then the task puts itself in the waiting list of the mutex and
invokes the scheduler to perform context switch. The exe-
cution time of the system call in the former scenario is much
smaller than the latter. According to the results depicted in
Table 3, using the estimated WCET value as the execution
time in the former scenario, we get a large overestimation of
413%. The characteristics of OSMboxPost() is similar.

The parameters passed to the system calls also affect the
execution time. The system call OSSemDel() is an exam-
ple. OSSemDel() requires the caller to pass a parameter
to the function indicating whether to delete the semaphore



Table 3. Execution times in different scenarios
System Calls Sensitivity Est. WCET Sim. S-1 Est./Sim. Sim. S-2 Est./Sim.
OSMutexPend() Availability of resources 12,461 2,428 5.13 9,251 1.35
OSMboxPost() Waiting tasks 7,440 1,560 4.77 6,347 1.17
OSSemDel() Calling parameters 8,548 1,963 4.35 7,437 1.15

if there are tasks waiting for it. If the parameter indicates an
unconditional deletion, all the waiting tasks are readied it-
eratively, which takes a long execution time; otherwise, the
execution time is much smaller.

System calls similar to those listed in Table 3 are very
common in µC/OS-II, and so do other RTOSes. Different
from application code, RTOS code are intrinsically control
intensive with the objective to provide different services ac-
cording to different system states or user requests, so they
exhibit high run-time dynamicity. Although static WCET
analysis can guarantee safe estimations, the analysis goal
limits its expressiveness to characterize the timing proper-
ties of RTOSes. It is no longer sensible to simply apply a
single WCET value to each system call (doing this implies a
very pessimistic overestimation in some system states), and
new techniques should be developed for better characteriza-
tion of the timing properties of RTOSes.

This can be achieved in a step-by-step manner. We can
first apply Best-Case Execution Time (BCET) analysis on
RTOSes. A pair of BCET and WCET values can serve
as a rough picture of the real-time performance and tim-
ing dynamicity of a system call. Then, parametric WCET
analysis can be developed to give more detailed character-
ization. Bygde recently proposed a framework to do para-
metric WCET analysis [4], the idea of which is to obtain
a set of formulas representing the WCET in terms of input
variables of the program. Bygde’s work established a good
foundation for parametric WCET analysis, but there is still
a gap when applying their theories. We may need to de-
velop methods to model “system states” of an RTOS, then
build proper mappings between system states and related
variables. Powerful data flow analysis should be accom-
panied to explore how the “states” affect the control flows.
Putting them all together, we may have a comprehensive
framework to do parametric timing analysis of RTOSes.

4.3 Imprecision Due to Context Switches

In many system calls of µC/OS-II, the scheduler
OS Sched() may be called, possibly causing context
switches. For example in Figure 3, task T1 wants to
release a semaphore during execution, then it calls the
OSSemPost() system call. It is possible that there are
tasks blocked on this semaphore, so the task with highest
priority is readied. Then OSSemPost() explicitly calls
OS Sched() to invoke the scheduler. The scheduler may

find that currently task T2 is ready and its priority is higher
than task T1, then the scheduler performs a context switch
to T2. After T2 finishes, T1 is the ready task with highest
priority, then it resumes execution.

T1_1

M1_1

S1_1 S1_2

M1_2

T1_2

T2

Task T1

OSSemPost()

OSSched()

Task T2 Context before 
task switching

Context changed due to
the execution of T2

Call a function Function return

Figure 3. An example of context switch in
µC/OS-II

In this case, the execution of T1, OSSemPost(), and
OS Sched() are split into two parts. Since T2 may modify
the contents in the pipelines and caches, the execution times
of S1 2, M1 2, and T1 2 are different from those when no
context switch is performed. For example, if some data that
T1 2 uses is replace by T2, then the execution time of T1 2
will be larger since it has to reload the data from main mem-
ory. But the WCET analysis tool is not aware of the se-
mantics of OS Sched(), and just treats it as an ordinary
function in the analysis. The effects of prolonged execution
time due to context switches are neglected in this way, and
the execution time may be underestimated.

In our research, the imprecision due to context switches
has not been successfully removed yet. A simplest way
is to assume worst-case processor states (basically empty
pipeline and cache, were there no timing anomaly) at the
context switch boundary. But this is too pessimistic: first,
context switch may not necessarily occur in OS Sched()
if the task is the highest priority task at that time, and to
accurately predict the occurrence of context switches re-
quires runtime information; second, assuming worst-case
processor states is too pessimistic. Note that interrupts
may also pose similar problems since they introduce con-
text switches, too. Here we omit the detailed discussion on
interrupts. To handle context switches is hard, but impor-
tant in analyzing multi-tasking systems. This will be one of
the focuses in our future work.



5. Related Work

Research on static timing analysis of RTOS have been
conducted by several groups. Colin and Puaut are the first
to conduct research on static WCET analysis of RTOS [6].
The RTEMS real-time kernel was analyzed using the HEP-
TANE tool. Only 12 out of 85 system calls were analyzed.
Experiments showed that it is not easy to apply static tim-
ing analysis on RTOS. Problems existed in bounding loops,
handling irreducible program structures, handling dynamic
function calls, and analyzing blocking system calls.

The WCET analysis of the Enea OSE kernel was con-
ducted by Carlsson [5] and Sandell [13] conjunctively.
Carlsson’s work centered on timing analysis of the Disable
Interrupt regions of the OSE kernel. Sandell used the aiT
tool to analyze the entire OSE kernel with the objectives
of finding out how hard it is to analyze operating systems
code and how compiler optimizations affect the manual la-
bor needed to perform an accurate WCET analysis.

Singal and Petters performed WCET analysis of the L4
real-time kernel with the objective of exploring the degree
of automation in WCET analysis of RTOS [16]. The analy-
sis tool uses a hybrid design with a tree representation of the
CFG and the execution time of each basic block obtained
by measurement. Efforts were made to analyze the whole
L4 kernel and some obstacles were reported in their paper,
including irregular code structures, irregular loops, inlined
asembly, dynamic function calls, context switches, etc.

Schneider in [14] pointed out that pessimistic estima-
tions in WCET analysis of RTOS mainly come from the
lack of application information, and the analysis precision
can be improved by considering the applications, and vise
versa. Later in [15], Schneider proposed a framework for
combined WCET and schedulability analysis. It is the first
research to consider the interdependence between WCET
analysis and schedulability analysis. But the framework
was not completely implemented, and no evaluation on its
utility in real-life systems was given.

Related work in [17, 12] conducted research on system
level timing analysis by considering cache related preemp-
tion delays, which are possible solutions to deal with the
effects of context switches.

We refer interested readers to [11] for a survey of re-
search on WCET analysis of RTOS and [18] for a survey of
general WCET research problems and related tools.

6. Conclusion

In this paper, we presented a case study where static anal-
ysis is used to obtain the WCET of the system calls of the
µC/OS-II real-time kernel. We gave a quantitative evalua-
tion of the real-time performance of µC/OS-II by analyzing
61 out of 79 system calls. Applying static analysis on code

from real-life systems helps us to find some defects in the
analysis tool. We found that traditional WCET analysis can-
not properly characterize RTOSes and parametric WCET
analysis is highly desirable. Existing techniques may also
yield incorrect results in presence of context switches. Our
future work will focus on (1) enforcing data flow analysis
in Chronos to identify RTOS system states; (2) developing
BCET and parametric WCET analysis techniques to better
characterize RTOSes, (3) finding methods to safely and pre-
cisely bound the effect of context switches.

References

[1] http://www.micrium.com. 2009.
[2] AbsInt. The absint page. http://www.absint.com, 2009.
[3] D. Burger and T. M. Austin. The simplescalar tool set, ver-

sion 2.0. SIGARCH Comput. Archit. News, 1997.
[4] S. Bygde and B. Lisper. Towards an automatic parametric

wcet analysis. In WCET 2008.
[5] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and

B. Lisper. Worst-case execution time analysis of disable in-
terrupt regions in a commercial real-time operating system.
In 2nd International Workshop on Real-Time Tools, 2002.

[6] A. Colin and I. Puaut. Worst-case execution time analysis of
the rtems real-time operating system. ECRTS, 2001.

[7] J. J. Labrosse. MicroC/OS-II The Real-Time Kernel, Second
Edition. CMP Books, 2002.

[8] X. Li. Microarchitecture modeling for timing analysis of
embedded software. Ph.D. Thesis of NUS, 2005.

[9] X. Li, Y. Liang, T. Mitra, and A. Roychoudury. Chronos:
A timing analyzer for embedded software. Science of Com-
puter Programming, 69(1-3):56–67.

[10] M. Lv, N. Guan, Y. Zhang, and R. Chen. Detailed re-
sults of WCET analysis of µC/OS-II. http://www.neu-
rtes.org/techreport.html, 2009.

[11] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. A
survey of WCET analysis of real-time operating systems. In
ICESS 2009.

[12] F. Nemer, H. Casse, P. Sainrat, and J. Bahsoun. Inter-task
wcet computation for a-way instruction caches. In SIES
2008.

[13] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper.
Static timing analysis of real-time operating system code.
In ISoLA, 2004.

[14] J. Schneider. Why you can’t analyze RTOSs without con-
sidering applications and vice versa. WCET 2002.

[15] J. Schneider. Combined schedulability and WCET analysis
for real-time operating systems. Ph.D. thesis of Saarland
University, Germany, 2002.

[16] M. Singal and S. M. Petters. Issues in analysing L4 for its
WCET. in MIKES 2007.

[17] J. Staschulat and R. Ernst. Multiple process execution in
cache related preemption delay analysis. In EMSOFT ’04.

[18] R. Wilhelm, J. Engblom, A. Ermedahl, and et al. The
worst-case execution-time problem—overview of methods
and survey of tools. Transaction on Embedded Computing
Systems, 2008.



Appendices
A. The Results of WCET Analysis of µC/OS-II

System Call Est. Sim. Overest. System Call Est. Sim. Overest.
Task Management (9)

OSTaskChangePrio 8,134 6,847 18.80% OSTaskCreate 15,813 13,724 15.22%
OSTaskCreateExt Cannot pass simprofile OSTaskDel 10,198 8,476 20.32%
OSTaskDelReq 1,975 1,868 5.73% OSTaskResume 5,146 4,053 26.97%
OSTaskStkChk 3,201 3,014 6.20% OSTaskSuspend 5,558 4,367 27.27%
OSTaskQuery 4,265 4,035 5.70%

Memory Mangement (4)
OSMemCreate 3,423 3,335 2.64% OSMemGet 1,749 1,740 0.52%
OSMemPut 1,780 1,773 0.39% OSMemQuery 1,994 1,988 0.30%

Event Flags Management (7)
OSFlagCreate 2,183 2,174 0.53% OSFlagDel 7,836 6,638 18.05%
OSFlagPend 9,758 7,453 30.93% OSFlagPendGetFlagsRdy 1,056 1,052 0.38%
OSFlagPost 8,865 7,236 22.51% OSFlagQuery 1,439 1,432 0.49%
OSFlagAccept 2,601 2,550 2.00%

Mutual Exclusion Semaphore Management (6)
OSMutexAccept 2,409 2,393 0.67% OSMutexCreate 3,503 3,490 0.37%
OSMutexDel 12,029 11,499 4.61% OSMutexPend 12,461 9,251 34.7%
OSMutexQuery 2,907 2,798 3.90% OSMutexPost 11,575 11,092 4.35%

Semaphore Management (7)
OSSemAccept 1,594 1,585 5.68% OSSemCreate 2,728 2,651 2.9%
OSSemDel 8,548 7,437 14.94% OSSemPend 8,472 5,467 55.00%
OSSemPost 7,344 6,252 17.47% OSSemQuery 2,461 2,450 0.45%
OSSemSet 1,724 1,711 0.76%

Message Mailbox Management (7)
OSMboxAccept 1,343 1,337 0.45% OSMboxCreate 2,635 2,558 3.01%
OSMboxDel 8,548 7,435 14.97% OSMboxPend 8,565 5,808 47.47%
OSMboxPost 7,440 6,347 17.22% OSMboxPostOpt 11,428 6,721 70.03%
OSMboxQuery 2,461 2,450 0.45%

Message Queue Management (9)
OSQAccept 2,251 2,116 6.38% OSQCreate 4,188 3,658 14.49%
OSQDel 8,796 7,685 14.46% OSQFlush 1,591 1,585 0.38%
OSQPend 8,658 5,903 46.67% OSQPost 7,375 6,283 17.38%
OSQPostFront 7,375 6,283 17.38% OSQPostOpt 11,363 6,816 66.71%
OSQQuery 2,960 2,946 4.75%

Time Management (5)
OSTimeDly 4,378 3,303 32.55% OSTimeDlyHMSM 16,199 6,507 248.94%
OSTimeDlyResume 5,363 4,272 25.54% OSTimeGet 1,027 1,023 0.39%
OSTimeSet 996 992 0.40%

Miscellaneous (8)
OSInit 29,086 25,758 12.92% OSIntEnter 286 279 2.51%
OSIntExit 1,619 1,490 8.66% OSSchedLock 627 618 1.46%
OSSchedUnlock 2,115 1,740 21.55% OSStart 999 992 0.71%
OSTimeTick 4,253 3,496 21.65% OSVersion 283 279 1.43%

*For more details on the results, please refer to [10].


