
MIMOS∗ : A Deterministic Model
for the Design and Update of Real-Time Systems

Wang Yi†, Morteza Mohaqeqi† and Susane Graf‡
†Uppsala University, Sweden

Email: {wang.yi,morteza.mohaqeqi}@it.uu.se
‡Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France

Email: susanne.graf@imag.fr

Abstract— Inspired by the pioneering work of Gilles Kahn
on concurrent systems, we propose to model timed systems as
a network of software components (implemented as real-time
processes or tasks), each of which is specified to compute a
collection of functions according to given timing constraints.
We present a fixed-point semantics for this model which shows
that each system function of such a network computes for
a given set of (timed) input streams, a deterministic (timed)
output stream. As a desired feature, such a network model
can be modified by integrating new components for adding
new system functions without changing the existing ones.
Additionally, existing components may be replaced also by new
ones fulfilling given requirements. Thanks to the deterministic
semantics, a model-based approach is enabled for not only
building systems but also updating them after deployment,
allowing for efficient analysis techniques such as model-in-the-
loop simulation to verify the complete behaviour of the updated
system.

1. Motivation

Today, a large part of the functionality of technical sys-
tems such as cars, airplanes, and medical devices is imple-
mented by software, as an (embedded) real-time system. The
current trend is that traditionally mostly closed and single-
purpose systems become open platforms. They aim at the
integration of an expanding number of software components
over their life-time, e.g., in order to customize and enhance
their functionality according to varying needs of individual
users. To enable this, we must design and build systems
that allow for updates after deployment. More importantly,
it must be verified in field that the resulting systems not only
preserve the original as well as the extended functionality,
but also stay safe after updates. Clearly, such analysis and
verification processes must be carried out in a model-based
approach. This demands a deterministic model for real-time
systems, that supports for automatic synthesis of software
components, and also ensures that all properties verified
based on a system model (modified) are also true of the
system (updated accordingly).

. ∗ MIMOS stands for Multi-Input Multi-Output Real-Time Systems.

Over the years, there have been a large number of
timed models developed in the literature, notably the the-
ory of timed automata, as well as various task models
[26] developed for real-time systems. These models are
either extremely expressive and highly non-deterministic,
but cannot be analyzed efficiently, or restrictive in terms
of expressive power, and cannot be used to design systems
(e.g., system with complex synchronization structures) with
desired functional behaviours.

In this paper, we propose to model timed systems as
a network of real-time software components connected by
communication channels in the style of Kahn Process Net-
works (KPN) [16], allowing asynchronous data exchange.
We present a simple but expressive description language,
called MIMOS, to formalize such abstract network models.
We want to reduce the analysis complexity of functional and
timing behaviours of our model-based approach to system
design and update. Therefore, we have adopted the following
principles for designing the model and its semantics:

Determinism. The key in a model-based approach is
that the model of a system should be deterministic to ensure
that the system behaves the same way as its model. In our
approach, a model, as well as a system derived from it,
can be viewed as a stream transformer. For a given set
of input streams, the output streams defined by the model
(system) must be unique. This means that, it specifies a set
of functions over streams (we call them system functions)
such that each one defines an output stream from a set of
input streams. Second, the model (system) should be timing
deterministic. This means that at any time point, if the inputs
required for computation are available, the corresponding
output should be delivered at a future time point after a
fixed delay. Timing determinism can be relaxed to ensure
only that the output may be delivered within a given time
bound.

Separation of computation and communication. A
system model should allow to specify the components of the
system for computations and the communication channels
for data exchange separately, as not only independent units
in the architecture but also in the semantics. We assume
non-blocking data exchange, implemented by either asyn-
chronous FIFO channels for buffering system inputs and out-

puts, or registers for storing sampled time-dependent data.
The separation allows the system components to be specified
as independent real-time tasks, whose timing behaviours can
be analyzed efficiently and locally. More importantly, as it is
well-recognized in the theory of real-time scheduling [24],
the underlying schedulability analysis for deployment will
be greatly simplified compared with the case for dependent
real-time tasks.

Updatability (avoidance of interference). The model
of a system should allow for modifications by integrating
new components for new system functions or replacing the
existing components with refined ones, without changing the
existing system functions determined by the original model.
The separation of computation and communication by asyn-
chronous data exchange avoids inter-component interference
when new components are integrated. We require that new
components may read but never write to the existing com-
ponents via FIFOs or registers unless writing operations by
the new components fulfill given requirements (specified
using e.g. contracts [13]), which is essential for future
updates to preserve the original system functionality. Even
though protocols may be needed to coordinate data exchange
among the components (e.g. to avoid race conditions in
register reading and writing), the components may operate
autonomously or independently from each other even when
some of them stopped functioning correctly.

The rest of the paper is organized as follows: Section 2
summarizes our contributions and related work. Section 3
presents the MIMOS model, its informal semantics and the
main theorem of this paper, stating the desired properties
of MIMOS. Section 4 develops a fixed-point semantics for
the model, establishing formal proofs for the main theorem.
Section 5 presents open verification problems on the model,
to be addressed in future work. Section 6 concludes the
paper.

2. Contributions and Related Work

One of the main challenges in embedded real-time
systems design is to ensure that the resulting system has
deterministic input-output and predictable timing behav-
ior (typically with deterministic input-to-output latency or
known time bounds) even when multiple system functions
are integrated and co-execute on a platform with limited
resources. The deterministic semantics allows model-in-the-
loop simulation using successful tools like Simulink/State-
flow to simulate and verify the complete system behavior.
Over the past decades, numerous approaches to address
this challenge have been devised by research communities
in hardware, software, control, and communication. Sev-
eral, including the synchronous approach, embodied by the
languages Esterel, Lustre, and Signal [14], and the time-
triggered paradigm promoted by Kopetz [18], ensure deter-
ministic behavior by scheduling computation and commu-
nication among components at pre-determined time points.
This results in highly reliable and predictable systems, but
severely restricts the possibility to modify or update systems
after deployment. The reason is that new components must

fit exactly into the already determined time schedules, and
components may perturb each others’ timing via shared
resources. In recent years, dynamic updates of real-time
systems after deployment have attracted increasing interest.
A model-based approach to the design and dynamic updates
for cyber-physical systems is proposed in [27]. The work
of [11] demonstrates that autonomous systems in operation
can be updated through contract negotiation and run-time
enforcement of contracts.

Contributions. We present a semantic model for real-
time systems which on the one hand, ensures the deter-
ministic input-output and predictable timing behaviors of a
system, and on the other hand supports incremental updates
after deployment without re-designing the whole system.
In this model, a real-time system is described as a net-
work of software components connected by communication
channels. We provide a simple but expressive description
language named MIMOSto formalize such networks where
each component is designed to compute a collection of
functions over data streams and the communication channels
can be of two types: FIFO queues for buffering inputs and
outputs, and registers for sampling time-dependent data from
sources such as sensors or streams that are written and
read at different rates. Components are further specified as
real-time tasks to enforce that they read inputs, compute,
and write outputs at time points satisfying certain time
constraints. A fixed-point semantics is developed for the
model, showing that it enjoys two desired properties: (1)
such a network of real-time software components computes
a set of functions, each one defined from a set of (timed)
input streams to a unique (timed) output stream. (2) The
network can be modified by integrating new components for
adding new system functions or replacing existing compo-
nents by refined ones (e.g. for better performance or security
patches) without re-designing the whole system or changing
the original system functions.

Related Work. An example of a time-triggered language
developed for real-time systems is Giotto [15]. A Giotto
program is a set of periodic tasks that communicate through
ports. Giotto implements the synchronous semantics, pre-
serving timing determinism and also value-determinism (but
not determinism over sequences of values i.e., streams as
in our model) by restricting to periodic tasks where read-
ing from and writing to ports is fixed and performed at
deterministic time points. It does not allow asynchronous
communication via FIFO channels as MIMOS. This limits
the possibility of updating a system in operation. A more
recent work addressing the quasi-synchronous semantics of
[8] is presented in [6]. The work also proposes to use
multiple periodic tasks to implement the synchronous se-
mantics on parallel and distributed architectures. It remains
in the category of synchronous approaches to real-time
programming without addressing issues related to dynamic
updates. MIMOS can be viewed as a timed extension of
Kahn Process Networks (KPN) [16]. In the literature, there
have been various extensions to KPN. A special case of
KPNs is dataflow process networks (DPN) [21]. A DPN is

a general dataflow model where each process is specified
as repeated firings of a node. A node becomes enabled for
execution according to a set of firing rules. However, no
time constraints are specified in the firing rules. An imple-
mentation of KPN with bounded-size buffers is proposed
in [10]. In this work, a composition approach preserving
the Kahn semantics is presented for components whose
production and consumption rate are the same in the long
run. The work, however, is confined within the synchronous
programming model. Related to the communication chan-
nels of KPN, a time-aware implementation of C, called
Timed C, has been proposed in [23]. In Timed C, a program
consists of a set of tasks communicating through two types
of channels: FIFO and Latest Value (LV). Analogous to
KPN, reading from FIFO is blocking while writing is non-
blocking. In contrast, reading and writing of LV channels
are non-blocking. This communication model is similar to
MIMOS. However, while Timed C is a general programming
language without guaranteed determinism, we focus on both
functional and timing determinism, and study these prop-
erties in a well-defined formal semantics. A standardized
software architecture for automotive domain is developed by
AUTOSAR [3]. Based on this, an application is organized
as a collection of software components which perform data
communication through a sender/receiver model. Data is
processed by a receiver using a queue or a last-is-best policy.
Our model can be thought of as a specialization of this
approach which has a formal and deterministic semantics.
Due to the known fact that AUTOSAR is only a reference
model for automotive software architecture with various
implementations and without a formal semantics, any formal
proof is impossible.

3. The MIMOS Model

In this section, we present MIMOS based on Kahn
Process Networks (KPN) [16]. A KPN is an abstract model
of a parallel system consisting of a collection of processes
connected by FIFO queues for data exchange. We view real-
time systems as such a network where the computations as
well as the respective input and outputs of the processes
must meet given time constraints. Our model can be viewed
as a timed version of KPN whose nodes are extended with
timing constraints and edges with registers for sampling
time-dependent inputs in addition to FIFO queues.

As KPN, MIMOS is essentially a simple description
language to formalize system models. In this section, we
present the main primitives and informal semantics of
MIMOS. A formal fixed-point semantics is given in Sec-
tion 4.

3.1. Preliminaries on Kahn Process Networks

Here, we recall the notion of KPN and its main proper-
ties. A KPN is a set of stand-alone processes, called nodes,
which communicate through a set of FIFO channels. A node
accesses channels through two operations: read and write.

Definition 1 (KPN). A Kahn Process Network N is a set of
processes, called nodes, and a set of FIFO queues, called
channels. Nodes behave according to the following rules.

• Each node computes a tuple of functions. For a set
of input sequences, each of the functions defines a
unique output sequence. A node may not access the
state/data of the other nodes.

• Channels are of potentially unbounded capacity. At
most one node is allowed to read from / write to
each channel. However, a node may copy an output
to multiple channels read by multiple readers.

• read from a channel is blocking, that is, the node
is blocked until all data required for the next step
is available, implying that a node cannot examine
the emptiness of the channels; write to a channel is
non-blocking.

A node of a KPN can be implemented by a set of local
variables and a procedure, repeated indefinitely. The pro-
cedure may be specified in any conventional programming
language, e.g., C.

Example 1. An example of a KPN program is shown in List-
ing 1. Nodes are defined by the process keyword. The
procedure executed by a node is written in a Repeat
block. The structure of this program is depicted in Fig. 1,
where arrows represent FIFO channels.

process f(int out V) {
Repeat { write 1 on V; }

}
process g(int in U; int threshold; int out V) {
int count = 0; // local variable
Repeat {
read(U); // read from a channel
count = count + 1;
if count == threshold
write 1 on V; // write to a channel
count = 0;

}
}
int channel X, Y;
f(X) || g(X, 5, Y); // concurrent execution

Listing 1. A sample KPN program.

f gX Y

Figure 1. Structure of the program in Listing 1.

A KPN can be seen as a parallel program computing
a set of functions from a set of input streams to a set of
output streams defined by the least fixed point obtained by
computing node functions in an arbitrary order [16]. Streams
refer to complete histories of elements seen on some FIFO
or output, and they are formally defined in Section 4.

The most important property of KPNs is their determin-
ism. This holds under any sufficiently fair scheduler, i.e.,
schedulers which do not postpone a process indefinitely.

Theorem 1 (Functional Determinism of KPN [16]). Given
a set of input streams, the set of output streams computed
by a KPN is unique.

Theorem 1 indicates that implementation aspects, such
as execution order, scheduling, and platform speed do not
affect the functional behavior of a system implementing a
KPN model.

3.2. Timed KPN (TKPN)

The order- and speed-independent functional determin-
ism of KPN leads to a natural formalization of a timed
version of KPN. Real-time systems are modelled as a KPN
where each node is executed according to a real-time task
model [26], specifying a release pattern which is a sequence
of time points over the time line, and a deadline for each
release.
Definition 2 (TKPN). The timed version denoted NT of

a KPN N is obtained by associating with each node
n of N a release pattern and a positive integer, called
deadline.

The release pattern of a TKPN node can be described
using the well-established real-time task models [26], such
as periodic tasks [22], generalized multiframe [5], DAG [4],
or DRT [25] and timed automata [12] as long as they are
deterministic.

Note that each node of a TKPN computes a tuple of
functions, one for each output channel. If different functions
have different time constraints, different deadlines may be
assigned to the respective output channels.

Note also that in Definition 2, the internal structure and
resource requirement for the nodes of a TKPN and the
scheduling algorithm to be adopted in the implementation
are left open. Only the time constraints (i.e. the release
patterns and deadlines for the executions of nodes) are
specified.

Informally, the operational behavior of a node in NT
is defined as follows. When the node is released, and if
all needed inputs are available, it computes and delivers
the resulting outputs, if any, within the given deadline. To
achieve timing determinism, the inputs of a node are read
at release time, outputs are delivered at the deadline. This
read-execute-write approach is similar to the implicit com-
munication model of AUTOSAR [1]. A formal semantics of
TKPN is presented in Section 4.

Because a TKPN is also a KPN, and the execution
rates assigned to nodes only restrict more explicitly the
computation order of eligible nodes, the behaviour of a
TKPN enjoys the desired functional determinism, which
follows directly from Theorem 1. Furthermore, it enjoys also
the timing determinism as declared later in Theorem 2.

3.3. MIMOS: TKPN with Further Extensions

In this section, we present our complete model. For
this, we first extend TKPN with a new type of channel,
called registers for sampling time-dependent data. Next,

we augment the model with merge nodes for non-blocking
reading of data from different sources.

TKPN with register-channels.. In real-time applica-
tions, inputs may be produced by the physical environment,
and hence, the corresponding value may be time-dependent.
In Cyber-Physical Systems, such inputs come typically from
sensors sensing physical phenomena. The system usually
does not need all data produced by a sensor but only the
latest value. Additionally, the refresh rate of the sensor is not
necessarily compliant with the execution rate of the node(s)
reading the sensor. In this case, using a FIFO may lead
to memory overflow or blocked computation (in case the
FIFO is empty). In such situations, it is useful to have a
communication channel which keeps only the most recently
written value. We extend TKPN with such channels, called
register.

The operations to access registers are syntactically the
same as the ones to access FIFOs. We adopt the “last-is-
best” semantics of [3]. write to a register over-writes the
current value. read from a register is non-blocking. When
both read and write occur at the same time, the current
value is updated by write before it can be read.

Example 2. Listing 2 shows the program in Listing 1 ex-
tended with a register and time constraints. The program
structure is illustrated by Fig. 2, where FIFO channels
are represented by solid-line arrows, and registers by
dashed arrows.

In this example, using a register instead of a FIFO to
carry the threshold values has the advantage to (1) always
use the most recent value available (the currently valid one),
and (2) guarantee absence of buffer over- or underflow
independently of the speed at which threshold values are
produced and read.

process f(int out V) { ... } // unchanged

process h(int out V) {
Repeat { write 6 on V; }

}

process g(int in U; int in C; int out V) {
int count = 0;
int threshold;
Repeat {
read(U); // reading (from FIFO)
count = count + 1;
threshold = read(C); // reading (from register)
if count >= threshold then

write 1 on V;
count = 0;

}
}
// Instantiating and connecting the components.
int channel FIFO X, Y;
int channel register Z = 5; // initial value
f.timings = periodic(10, 10); // period=deadline=10
g.timings = periodic(10, 10);
h.timings = periodic(10, 10);
f(X) || h(Z) || g(X, Z, Y);

Listing 2. A sample program in Extended TKPN.

f

h

g

X

Z

Y

Figure 2. The structure of the program in Listing 2. Dashed arrow indicates
a register.

TKPN with merge-nodes.. We further extend the
model with a special type of nodes called merge. A merge
node has at least two FIFO inputs. At each activation, the
node reads all data available in its input FIFOs. The output,
which is written to a FIFO, is all the data read from the
first input FIFO, followed by the ones from the second input
FIFO, and so on. That is, a prioritized timed merge where
all data items arriving during a release period are considered
to ”have arrived at the same time”.

The motivation for defining this type is that in reactive
systems, there are (external) events, e.g., requests for the
same services from different sources, to which the system
must react. No input event is allowed to be missed. Sup-
pose now that events come from distinct producers so that
distinct FIFO’s are needed. Assume that the node should
do a computation whenever there is some data in any input
FIFO. This is beyond the expressiveness of KPN. Our time-
dependent merge-function solves this very typical problem,
common in real-time applications.
Definition 3 (MIMOS: Extended TKPN). TKPN extended

with registers and merge is TKPN where some channels
can be a register instead of a FIFO and some nodes may
be a merge-function. We call this extension of TKPN
MIMOS.

The formal semantics for MIMOS developed in Section 4
shows that determinism is preserved if we see them as
functions of the input data streams and their arrival times.
Theorem 2 (Functional and Timing Determinism of

MIMOS). Given a set of input data streams and the
arrival times of data items in the FIFO’s (or registers),
the set of output data streams computed and the time
points at which the data items are inserted into the output
FIFO’s (or registers) by an extended TKPN is unique.

The result follows from Proposition 2 of Section 4.

3.4. Design and Update with MIMOS

A model-based approach can be sketched as follows1.
First, to build a new system, a set of system functions to
be implemented must be specified in terms of functional
and timing requirements on their inputs and outputs as
well as the respective end-to-end latency (see Section 5).
A MIMOS model may be constructed, verified to satisfy the
given requirements and compiled into code executable on

1. Addressing the different steps in details, including specification, mod-
elling, verification and compilation is not in the scope of this paper.

the target platform to compute these functions. Prior to any
update over the life cycle of the system, its original MIMOS
model may be extended (i.e., updated) by connecting the
outputs of the existing components (KPN nodes) to the new
ones. Additionally, existing components may be replaced
also by new ones fulfilling given requirements. Thanks to the
independence of reading from/writing to channels, the added
(or updated) system functions will not interfere with the
existing ones. Thanks also to the deterministic semantics, it
can be verified based on the updated model that the resulting
system will satisfy the functional and timing requirements.
Further, it must be verified that the platform is able to pro-
vide enough resources to meet the resource requirements of
the new components by schedulability analysis and analysis
of memory usage (see Section 5). If all verification steps
are successful, the new components can be deployed (or
installed). Otherwise, the update is rejected.

4. Fixed-Point Semantics

Here, we present a formal semantics for MIMOS. We
first recall definitions used in [16] to prove the order and
time independent determinism of KPNs of Definition 1. We
introduce a notion of timed stream to define the semantics
of extended TKPNs of Definition 3 and to prove the main
theorem of Section 3.3.

4.1. Preliminaries on the Semantics of KPN

First, we recall some basic notations from [16]. The
function F associated with a node of a KPN is represented
as a function from a set of input streams to a set of output
streams. More precisely, F represents a tuple of functions,
one for each output.

We now formally define streams and functions. We
consider streams on a generic domain D which may be
instantiated by any data domain. To ensure generality, we
consider the time domain to be reals R.
Definition 4 (Streams, time streams and timed streams). Let

the stream domain S be the set of infinite sequences in
D∞. The domain of time streams T is the set of infinite
sequences of time points in R∞ with (not necessarily
strictly) increasing time points which diverge2.
The domain of timed streams S × T are infinite se-
quences in (D×R)∞ such that every timed stream can
be denoted as S× T for two appropriate streams.
We use v to stand for the standard prefix order on
sequences, λ for the empty sequence, and ” · ” for con-
catenation.

Note that a time stream may be regarded as a particular
case of a data stream. As in [16], functions F are built from
the following basic functions on streams.
Definition 5 (Functions on streams). Consider the follow-

ing functions from Sk to S:

2. That is, we assume time streams to be non Zeno.

1) Data transformations: lift any k-ary data transfor-
mation function f : Dk 7→ D to a stream trans-
formation function Sk 7→ S, with the same name:
f(a1 ·S1, ... ak ·Sk) = f(a1, ... ak) · f(S1, ... Sk).

2) Standard order preserving stream manipulating
functions ”first”, ”remainder” and ”append” (which
we rarely use explicitly): First(a · S) = a; R(a ·
S) = S (skips the first element of a stream);
app(S, i0 · init) = i0 ·S (adds an initial element to
the left by pushing the input stream to the right).

Example 3 (Illustrating Example). Consider node g of
Fig. 1 with input X and output Y . We give the equations
for all output streams using functions of Definition 5.
Node g has a local variable count which gives rise to 2
streams: cM , the stored values used as input of g, and
c, the values produced by g. threshold is a constant
parameter thsh. Note that g is independent of the actual
data read, it just consumes a data item at each iteration.
We obtain the following fixed-point equations:
• Y = gY (X, cM , thsh)
• c = gc(X, cM , thsh)
• cM = app(0, c) where
• gc(x ·X, c · cM) = [if (c+ 1 < thsh) then (c+ 1)

else 0] · gc(X, cM)
• gY (x ·X, c · cM) = [if (c+ 1 < thsh) then λ else

1] · gY (X, cM)

A typical function applies some transformation to the first
elements of the input streams, produces an output (or al-
ternatively produces nothing), and is applied recursively to
proceed with the remainder of the streams. But a function
may in each recursion step read zero or more elements from
some input streams, and write zero or more elements to
its output, as long as inputs are read in a FIFO order, the
number of elements to be read is deterministically defined,
and there is some ”progress”.

4.2. Semantics of Timed KPN

We define the semantics of a timed node with a release
pattern and a deadline. In order to do so, we show that we
can extend each function F on data streams (the semantic
function for one of the functions of a KPN) to a function Fδ
on timed streams, such that (1) Fδ defines a pair of streams
consisting of the data stream defined by F, and the stream of
time points at which data elements are written. (2) Fδ is an
ordinary Kahn function if time streams are just considered as
particular data streams. (3) the time extension corresponds
to the intuition of release pattern P and the output delay δ of
Definition 2. We now state the proposition, the remainder
of the subsection is dedicated to its proof.
Proposition 1. The semantics of a TKPN is a determinis-

tic mapping from timed input streams to timed output
streams defined by a set of functions Fδ .

We prove this proposition by constructing a function Fδ
for any data stream transformation F. Fig. 3 illustrates Fδ

t1.t2.T1

t3.T2

T3

p2
delayδ

p2 + δmax{t1, t2, t3}
d ready

(2, 1, 0)

readF

p1.p2.P
′ w timeδ

x1.x2.W1

x3.W2

W3

oD
F

1

outp

OD

OT

Fδ

writeF

ready

Figure 3. Graphical representation of Fδ

for a function F with 3 input streams. The data output is
the one produced by F. The time points associated with data
elements are meant to represent the time point at which the
data is inserted into the FIFO. Suppose that it holds for
the input streams. This motivates our method for computing
the time stamps of output data. It works as follows: (1)
calculate the maximal time point associated with the data
elements read by F (the time when all required data are in
the FIFO), (2) calculate the actual ”release” or ”ready” time
which is the release point of P just after data is ready. (3)
the output writing time point is obtained by adding δ and
(4) this time point is output if and only if F outputs a data
item at this step. First, we introduce the necessary auxiliary
functions:

1) “data-ready” function d ready: takes as input k
time streams Ti, one for each input data stream
of F, and for each stream the number of elements
to be read, and outputs the time when all data is
ready: d ready((t11...t1`1 ·T1, ... tk1...tk`k ·Tk),
(`1 · L1, ... `k · Lk)) = max{t1`1 , ... tk`k} ·
d ready((T1, ... Tk), (L1, ... Lk)).
In each time stream, ti`i is the time stamp of the
most recent data, hence max{t1`1 , ... tk`k} is the
global ready time of the input. Some `i may be
zero, meaning that no data is read from the corre-
sponding stream, and there is no ti`i contributing
to the maximum.

2) “ready” function ready: given time streams P and
R (representing respectively a ”release pattern” and
”data ready times”), the stream of “ready times”
for computation, the time points from which the
deadline runs, is obtained by eliminating elements
of P at which no data is ready: ready(p · P ′, r ·
R′) = if (p ≥ r) then p · ready(P ′, R′) else
ready(P ′, r ·R′).

3) “delay” function delay: increases all time points of
a time stream by a ”delay” δ. For a stream δ ≥ 0 (i.
e. element wise ≥ 0), delay(T, δ) = T+ δ. If δ is
a constant, we note delayδ(T) the corresponding
function with a single argument.

4) Given a k-ary function F(XD
1 , ... X

D
k) on data

streams, we denote
readF(X

D
1 , ... X

D
k) and writeF(X

D
1 , ... X

D
k)

two functions which read the same inputs as F.
readF outputs a k-tuple of integers indicating the
number of elements that F reads at each com-
putation step, and writeF outputs the number of
elements that F outputs at each computation step.
For any function F, these functions can be obtained
by “code analysis”3.

5) outp: given a time stream and a stream of numbers
in [0...1], it outputs the time point if the number is
1: outp(t·T, c·C) = if (c == 1) then t·outp(T,C)
else outp(T,C). It is easy to extend to the case c >
1, where the time point is written more than once.
We use this function in a context where c represents
the number of elements written by a function F,
meaning that outp guarantees that the number of
time points written matches the number of elements
written by F.

Now we can define Fδ by composing the previously
defined functions as suggested by Fig. 3, where function
w timeδ is represented by a blue dashed box.

6. Fδ((X1, ... Xk), P) = (F(XD
1 , ... XD

k),
outp(w timeδ((X

T
1 , ... XT

k), readF(X
D
1 ,

...XD
k), P), writeF(X

D
1 , ...X

D
k)) where

7. w timeδ((X
T
1 , ... X

T
k), (`1, ... `k), P) = delayδ

(ready(P, d ready((XT
1 , ... X

T
k), (`1, ... `k)))).

To sum up, Fδ has the promised characteristics: (1)
it defines a pair of streams consisting of the data stream
defined by F, and a stream of time points at which data
elements are written. This proofs that F is preserved. (2)
It is an an ordinary Kahn function if time streams are
considered as particular data streams. This proves timing
determinism based on [16]. (3) It produces time streams
according to the intuition of Definition 2. This completes
the proof.

Section 3.2 makes the choice that deadlines run from
the first release point after all data is ready. The definitions
here correspond to this choice. But the definition of Fδ can
easily be adapted to alternative choices.

According to Definition 3, δ represents an exact output
write delay, that is, the data is actually written into its FIFO
at the time point defined by Fδ . Note that exactly the same
definition may be used to represent a best or worst case
execution time or a ”latest due time”, for example.

Example 4 (Illustrating example, continued). Consider
again function g of Fig. 1. Now, g is executed periodi-
cally with period period (noted p), and has a output
delay deadline (noted dl). As functions on data re-
main untouched, we only need to add equations defining
the time streams associated with Y , c and cM using
the previous definitions. As we know that at each step
exactly one data is read from each input, the definition of
timed streams is slightly simplified. Note that function

3. By “code”, we mean the definition of F in terms of the basic functions
of Definition 5.

gY may or may not produce output, whereas gc always
produces output:
• Y T = outp(w timedl((X

T , cTM), (1, 1), p),
writegY (X

D, cDM)),
• cT = outp(w timedl((X

T , cTM), (1, 1), p), 1), and
• cTM = cT .

For function M representing the variable count, we con-
sider that once the variable is written (defined by time
stream cT), it is available immediately for the next step,
and no additional delay is added.

4.3. Semantics of MIMOS

We now provide the semantic underpinning for the full
model MIMOS (Extended TKPN) by defining also ”register”
and ”merge” as transformers of timed streams. As motivated
in Section 3.3, such functions depend on the data that is put
in the FIFO (or a register) at the release time points of the
function. At the semantic level, this means that they read all
the (not yet treated) data items with time stamp up to some
time point – the release time of the function – and compute
some output depending on these data items.

As motivated in Section 3, a merge-node is a timed
stream transformer merging incoming timed streams into a
timed stream – a total order – according to the time points at
which data items inserted in the respective FIFO’s. We view
registers also as a timed stream transformer transforming the
incoming timed stream to a timed stream containing data
items (and also their arrival times) according to the register-
reading ratio, i.e., the release pattern of the target node.

We define the semantics of Extended TKPN and prove
its determinism. In order to do so, we show that we can
define k-ary functions rreg and merge from timed streams
to timed streams (1) which correspond to the intuition of the
concepts ”register” and ”merge” introduced in Section 3.3,
and (2) which are ordinary Kahn functions if time streams
are considered as ordinary data streams

We first state the proposition that, together with Propo-
sition 1, guarantees Theorem 2, and the remainder of the
subsection is dedicated to its proof.
Proposition 2 (Extended TKPN). The semantics of an

Extended TKPN is a deterministic mapping from timed
input streams to timed output streams.

We prove this proposition by constructing the above
mentioned functions rreg and merge which together with
the previously defined functions Fδ define the semantics of
Extended TKPN.

rreg has two arguments, the timed data stream (S,T)
written to the register, and a time stream TS representing
the time points up to which the data are to be read at every
activation. The output is a timed data stream representing
the (timed) data actually read. For the sake of simplicity,
suppose that T starts at time 0 and TS at a time ≥ 0.

1. Define rreg((S,T), TS) inductively:
rreg((s1, t1) · (s2, t2) · (S,T), t · TS) = if t2 < t
then rreg((s2, t2) · (S,T), t · TS) else (s1, t1) ·

rreg((s1, t1) · (s2, t2) · (S,T),TS).
We may denote rreg as a pair of functions
(rregD, rregT).

The if-clause represents the case where the first element
(s1, t1) is an ”overwritten data” to be skipped, and the else-
clause the case where (s1, t1) is the newest data with a time
stamp prior to t. Note that in this second case, (s1, t1) is
not “consumed” but reread at the next iteration, so as to
guarantee that for any time point t′ of the remaining TS ,
there is at least one data older than t′. Elements that are
written into the ”register” but ”overwritten” before the next
time point of reading are filtered out, and elements that are
to be read more than once are written several times. This
represents the functionality of a “register” read at the time
points TS .

merge has as arguments (at least) three arguments,
timed data streams (Si,Ti) representing the FIFOs to be
merged, and a time stream TS representing the time points
up to which the data are to be read and merged at each
activation. The output is a timed data stream representing
the merged FIFO and their data arrival times.

2. Define merge((S1,T1), (S2,T2), TS) inductively:
merge((d1, t1) · (S1,T1), (d2, t2) · (S2,T2), t ·TS)
=
if t1 < t then (d1, t) ·merge((S1,T1), (d2, t2) ·
(S2,T2), t · TS)
else if t2 < t then (d2, t) · merge((d1, t1) ·
(S1,T1), (S2,T2), t · TS)
else4 merge((d1, t1) · (S1,T1), (d2, t2) ·
(S2,T2), TS)

That is, data with time stamps inferior to t are taken from
the two input streams by first moving the data items from the
left queue, and then those from the right. This corresponds
to the informal definition which does not order elements
of one reading interval according to their arrival times but
only according to the priority, and their time stamps are the
”sample time points”. Proceeding to the next time point of
time stream TS (if no relevant data item is left) corresponds
to a new activation of the merge function.

To sum up, the functions rreg and merge have the
required characteristics: (1) they produce the intuition of
the concepts ”register” and ”merge” introduced in Sec-
tion 3.3, and (2) they are Kahn functions. All functions
of an Extended TKPN can be composed from functions of
the form Fδ , by rreg or by merge. This guarantees their
determinism. This completes the proof.

Function merge can be implemented if the data items
present in the FIFO at the activation time points can be
deterministically defined. If data items can be written at
sufficiently precisely defined time points, this is the case.
The guarantee that data items must be present at a certain
time point, also allows to detect when there is ”no data
item available in a given interval”, which may be either
just normal or mean that a run-time error has occurred and
trigger some exception handler.

4. that is, t1, t2 ≥ t meaning no data to be merged up to t is left

Note also that the condition on deterministic writing
times cannot be relaxed without losing the guarantee of
determinism if rreg is implemented by a simple register
(that is memory). If time points associated with data streams
represent ”latest” writing times for example, determinism
can nevertheless be preserved by using more than just one
memory: one for the data to be ready at the next release time,
and one or more memories for release time points further
in the future. Similarly, to achieve the timed merge function
one would need to group data according to the activation
period of their ”latest writing times”. This is an adaptation
of Caspi’s protocol defined in [9] to our framework. Note
however, that in both cases it requires to time stamp data
explicitly at implementation level.
Example 5 (Illustrating example, continued). Again, con-

sider function g (now Fig. 2 of Example 2). Now,
threshold is defined by an input Z, a register. This
may an important effect, on both time and data.
• As a register holds a valid data at any time, ZT does

not influence d ready, and time streams do again
not depend on ZT .

• The data streams of Y and c have now 3 input
streams and are computed by replacing parameter
thsh by rregD(Z, ready(p,d ready(XT , cTM))).

5. Analysis Problems

To update a system by adding a new system function,
its model (in MIMOS) should be modified to integrate the
new function. To enable that the modified model can be
compiled into a program executable on a platform with
limited resources, it must be verified to meet given timing
and resource constraints. Thanks to the deterministic seman-
tics of MIMOS, properties verified on a MIMOS model will
be preserved by the execution of the compiled code on a
platform satisfying the resource assumptions adopted in the
verification process.

There are two principle timing and resource constraints:
(1) the memory requirements must be bounded and (2)
system functions including the new one must satisfy the
end-to-end latency constraints [2]. In general, these veri-
fication problems are undecidable. However, with proper
assumptions and restrictions, there are efficient solutions for
practical purposes [19], [2]. First, the required memory of a
system in operation depends on the buffer size required by
the FIFOs, which can be specified as follows.
Definition 6 (Required buffer size (RBS)). Assume that the

data written to and read from a FIFO buffer are speci-
fied, respectively, by timed streams (a1, t1)(a2, t2)... and
(a1, t

′
1)(a2, t

′
2).... Also, let ω(t) = max{i|ti ≤ t} and

γ(t) = max{i|t′i < t}. The FIFO’s required buffer size
(RBS) is defined as max{ω(t)− γ(t)|t ≥ 0}.

In words, ω(t) is the total number of items written to a FIFO
up to (including) time t, and γ(t) is the total number of items
read from the FIFO strictly before t. Based on this, the RBS

of a FIFO denotes the maximum number of items which
may simultaneously exist in the queue. Indeed, computing
RBS in a process network has been shown undecidable in the
general case [7]. Despite this, the measure is computable for
special settings. For instance, if for each node, the number
of produced and consumed items is fixed in all firings,
as is the case in synchronous data flow (SDF) [20], the
problem has efficient solutions [20]. Further, for those KPNs
in which data producing/consuming pattern of the nodes is
periodic (except for a bounded initial time), it is shown that
the required capacity for a FIFO is bounded if and only if
writing and reading rates are asymptotically the same [10].

The RBS of a MIMOS model depends on the release
pattern of the nodes, the pattern by which input data arrives,
and also the data consumption pattern. According to these
factors, a variety of instances of the problem of computing
(a bound on) RBS can be defined, which we leave for future
work. Here, we just provide some initial observations.

A fairly direct consequence of Definition 6 is that the
RBS of a FIFO in a MIMOS model is bounded if and only if
a constant c exists for which: ∀t ≥ 0 : ω(t)−γ(t) ≤ c. Based
on this, we conjecture that: The RBS of a FIFO is bounded
if and only if reading and writing rates are asymptotically
the same, i.e., limt→∞{ω(t)/γ(t)} = 1.

The other measure to be analyzed is end-to-end latency,
which essentially reflects the responsiveness of a system.
It is important that when the input changes, or for an
event arriving in the input queue, the system provides a
response (or react) within a bounded delay. As an essential
requirement in a real-time system [2], we define the end-
to-end latency for each output channel of the system with
respect to an input on which it depends.
Definition 7 (Worst-case end-to-end latency, e2e(i)). Con-

sider a system function specified by a k-ary func-
tion Fs on streams. Let (I1, . . . Ik) be a set of input
timed streams for which Fs(I1, ...Ik) = (Y D, Y T).
Consider now, for some i, 1 ≤ i ≤ k, a modi-
fied version of Ii, called I ′i , which is obtained by
changing the j-th entry of Ii from (a, t) to (b, t). As-
sume Fs(I1, . . . , I

′
i, . . . Ik) = (Y ′D, Y ′T). Let j′ =

min{m|Y ′Dm 6= Y Dm or Y ′Tm 6= Y Tm}, where Xm de-
notes the m-th element of a stream X . We define
delay(I1, ...Ik, i, j, b) = Y ′Tj′ −t. Accordingly, we define
delay(I1, ...Ik, i) = max{delay(I1, ...Ik, i, j, b)|∀j, b}.
The worst-case end-to-end latency for the i-th input line
is then

e2e(i) = max{delay(I1, ...Ik, i)|∀(I1, ...Ik)}

Computing end-to-end latency can be studied in terms
of the release patterns of the nodes in a MIMOS model. For
instance, for a set of periodic tasks communicating through
a set of registers, which can be viewed as a special case
of Extended TKPN, the problem has been explored in [17]
which presents a worst-case analysis method with exponen-
tial time complexity. Also, a polynomial-time approach is
provided for computing an upper bound. Both methods are
limited to task sets scheduled with a fixed-priority policy on

a single processor. Investigating the problem in MIMOS for
different release patterns and target platforms such as multi-
core and distributed architectures is left to future work.

6. Conclusions

This paper presents a deterministic timed model
(MIMOS) to enable a model-based approach allowing for
not only building deterministic real-time systems, but also
verifying and updating them after deployment. MIMOS is a
timed extension of Kahn’s Process Network with (1) timing
constraints on the execution of KPN nodes and (2) register-
channel and merge-node to deal with time-dependent data
and functions. MIMOS is proven to preserve functional and
timing determinism. More precisely, given a set of input data
streams and the corresponding arrival times of data items in
the input channels of a MIMOS model, the set of output data
streams computed by its network nodes, and the time points
at which the data items are inserted into its output channels
is unique.

To further develop a programming (or coordination) lan-
guage based on MIMOS, and a compiler for such a language,
several challenging verification problems (see Section 5)
must be solved. First, a program (or a MIMOS model)
must be analyzed to ensure that its memory requirement is
bounded and meet the platform limitations. Second, the end-
to-end latency for system functions computed must satisfy
given timing requirements. Future work includes also a
symbolic semantics for the model allowing uncertainty in
the implementation e.g. when data exchange through reading
from and writing to channels may occur over time intervals.

References

[1] AUTOSAR - Specification of RTE Software (2019)

[2] Abdullah, J., Dai, G., Yi, W.: Worst-case cause-effect reaction latency
in systems with non-blocking communication. In: DATE. pp. 1625–
1630 (2019)

[3] AUTOSAR: AUTomotive Open System ARchitecture,
https://www.autosar.org, https://www.autosar.org

[4] Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L.,
Wiese, A.: A generalized parallel task model for recurrent real-time
processes. In: IEEE 33rd Real-Time Systems Symposium. pp. 63–72.
IEEE (2012)

[5] Baruah, S., Chen, D., Gorinsky, S., Mok, A.: Generalized multiframe
tasks. Real-Time Systems 17(1), 5–22 (1999)

[6] Baudart, G.: A synchronous approach to quasi-periodic sys-
tems. Theses, PSL Research University (Mar 2017), https://tel.
archives-ouvertes.fr/tel-01507595

[7] Buck, J.T., Lee, E.A.: Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model. Ph.D. thesis, Uni-
versity of California, Berkeley (1993), aAI9431898

[8] Caspi, P.: The quasi-synchronous approach to distributed control sys-
tems. Tech. rep., CMA/009931, Verimag, CrysisProject “The Cooking
Book” (2000)

[9] Caspi, P., Mazuet, C., Reynaud Paligot, N.: About the design of
distributed control systems: The quasi-synchronous approach. In:
SAFECOMP 2001, Budapest, Proceedings. LNCS, vol. 2187, pp.
215–226 (2001)

[10] Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F.,
Pouzet, M.: N-synchronous Kahn networks: a relaxed model of
synchrony for real-time systems. ACM SIGPLAN Notices 41(1),
180–193 (2006)

[11] Dörflinger, A., Albers, M., Fiethe, B., Michalik, H., Möstl, M., Schla-
tow, J., Ernst, R.: Demonstrating controlled change for autonomous
space vehicles. In: NASA/ESA Conf. on Adaptive Hardware and
Systems, Colchester UK. pp. 95–102. IEEE (2019)

[12] Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedu-
lability, decidability and undecidability. Information and Computation
205(8), 1149–1172 (2007)

[13] Graf, S., Quinton, S., Girault, A., Gößler, G.: Building correct cyber-
physical systems: Why we need a multiview contract theory. In: 23rd
Int. Conf., FMICS 2018, Maynooth, Ireland. LNCS, vol. 11119, pp.
19–31 (2018)

[14] Halbwachs, N.: Synchronous Programming of Reactive Systems.
Springer US (2013)

[15] Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE 91(1),
84–99 (2003)

[16] Kahn, G.: The semantics of a simple language for parallel program-
ming. Information processing 74, 471–475 (1974)

[17] Kloda, T., Bertout, A., Sorel, Y.: Latency upper bound for data chains
of real-time periodic tasks. Journal of Systems Architecture p. 101824
(2020)

[18] Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. of the
IEEE 91(1), 112–126 (2003)

[19] Krcál, P., Yi, W.: Communicating timed automata: the more syn-
chronous, the more difficult to verify. In: Int. Conf. on Computer
Aided Verification. pp. 249–262. LNCS (2006)

[20] Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings
of the IEEE 75(9), 1235–1245 (1987)

[21] Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of
the IEEE 83(5), 773–801 (1995)

[22] Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM)
20(1), 46–61 (1973)

[23] Natarajan, S., Broman, D.: Timed C: An extension to the C pro-
gramming language for real-time systems. In: 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). pp.
227–239. IEEE (2018)

[24] Stigge, M.: Real-time workload models: Expressiveness vs. analysis
efficiency. Ph.D. thesis, Acta Universitatis Upsaliensis (2014)

[25] Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task
model. In: 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. pp. 71–80. IEEE (2011)

[26] Stigge, M., Yi, W.: Graph-based models for real-time workload: a
survey. Real-time systems 51(5), 602–636 (2015)

[27] Yi, W.: Towards customizable CPS: composability, efficiency and
predictability. In: Duan, Z., Ong, L. (eds.) Formal Methods and Soft-
ware Engineering - 19th Int. Conf. on Formal Engineering Methods,
ICFEM 2017, Xi’an, China, Nov. 13-17, 2017. LNCS, vol. 10610,
pp. 3–15 (2017)

