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With the fast growth of civil drones, their security problems meet significant challenges. A commercial drone
may be hijacked by a GPS-spoofing attack for illegal activities, such as terrorist attacks. The target of this
article is to develop a technique that only uses onboard gyroscopes to determine whether a drone has been
hijacked.

Ideally, GPS data and the angular velocities measured by gyroscopes can be used to estimate the accel-
eration of a drone, which can be further compared with the measurement of the accelerometer to detect
whether a drone has been hijacked. However, the detection results may not always be accurate due to some
calculation and measurement errors, especially when no hijacking occurs in curve trajectory situations. To
overcome this, in this article, we propose a novel and simple method to detect hijacking only based on gy-
roscopes’ measurements and GPS data, without using any accelerometer in the detection procedure. The
computational complexity of our method is very low, which is suitable to be implemented in the drones with
micro-controllers. On the other hand, the proposed method does not rely on any accelerometer to detect
attacks, which means it receives less information in the detection procedure and may reduce the results ac-
curacy in some special situations. While the previous method can compensate for this flaw, the high detection
results also can be guaranteed by using the above two methods. Experiments with a quad-rotor drone are
conducted to show the effectiveness of the proposed method and the combination method.
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1 INTRODUCTION

A drone, also called an Unmanned Aerial Vehicle (UAV), is one of the developing directions
of Cyber Physical Systems. Compared with manned aircrafts, drones were originally used for
missions too “dull, dirty, or dangerous” for humans [21], while in recent years, their use is rapidly
expanding to commercial, scientific, recreational, agricultural, and other applications, such as
policing, peacekeeping and surveillance, product deliveries, aerial photography, agriculture,
smuggling, and drone racing. The drone industry has experienced an exponential growth in the
last decade, like Parrot, 3D Robotics, and DJI. And the global sales of DJI has increased 80 times
in the last 3 years [4].

The rapid growth of drones has raised significant security challenges, e.g., security and privacy
[1]. Civilian drones can be easily equipped with weapons or explosives to operate terrorist attacks.
At present, many countries are working on laws to control the entire life cycle of drones, including
production, sales, and use. However, even under such strict policies, drones still have many chal-
lenges that are difficult to solve. One of the main problems is that legitimate drones can possibly
be hijacked and launch malicious purposes.

Drone Hijacking by GPS Spoofing. Drones rely on Global Positioning System (GPS) naviga-
tion in medium- and long-range flights. The attackers can use the devices to fake GPS satellites
broadcasting signals to deceive GPS receivers (known as GPS spoofing), and navigate the drone
based on the attacker’s intention. The interest in GPS spoofing attacks has been raised greatly
after Ref. [22] showed any number of GPS receiver can easily be spoofed to one arbitrary loca-
tion and presents how to successfully implement the GPS spoofing attacks. Although researchers
have proposed several methods to detect or prevent GPS spoofing (see Section 2), these methods
all require extra hardware devices or expensive signal processing algorithms, which considerably
increase both the cost and the weight of drones and thus may not be acceptable to the market of
lightweight civil drones.

Onboard Motion Sensors. In this work, we develop a lightweight approach to let a drone
detect whether it has been hijacked. Our approach does not require any extra device, but only
uses the onboard motion sensors such as gyroscopes and/or accelerometers. The motion sensors
can be used as INS (Inertial Navigation System). As suggested by the name, the linear acceleration
and angular velocity measured by the motion sensors can be integrated over time to calculate the
position of the drone. Ideally, we can detect drone hijacking by comparing the position computed
according to the motion sensors and the position reported by GPS: we can judge that the drone
is hijacked if the distance between these two positions is sufficiently large. Unfortunately, the
above approach does not work in practice due to the significant error accumulation over time [7].
Another method uses gyroscopes and GPS data to estimate the accelerations and compares with
the output of accelerometers [7]. However, it doesn’t work well when no hijacking occurs in curve
trajectory situations, and in Section 5, we will discuss in details.

Contributions of This Article. This article presents a novel hijacking detection method
based on gyroscopes and GPS, and can much better overcome the error problem compared
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with the method proposed in Ref. [7] (called the DATE method for short). Instead of comparing
accelerations in a body-fixed coordinate, the main idea is to compare the trajectory variation trends

between (1) yaw calculated by the angular velocity, and (2) the angle enclosed by its GPS trajec-
tory and the line in the direction of the geographical North Pole; more details will be discussed in
Section 4. In this way, the hijacking detection accuracy, especially when no hijacking occurs in
curve trajectory situations, could be improved by avoiding some calculation errors due to fewer,
simpler calculation procedures and some measurement errors brought from the accelerations mea-
surement procedures compared with the DATE method. Although we generate more complex
flight curves compared with Ref. [7], experiments show that our method is still very effective to
precisely detect hijacking. While, in general, this method may just work ordinarily in the case that
the drone flies in a straight line, because of lesser information, that proposed method is considered,
i.e., not using any accelerometer in the detection method. However, the DATE method does it well
in such situations. Therefore, in order to compensate both disadvantages, we decided to run both
methods on the drone to guarantee the high accuracy results. This is another contribution in
this article. On the other hand, the most complex calculation procedures, i.e., integrations in both
the proposed method and the DATE method, are reused from INS in autopilots, so the complexity
of our method is very low, and it is suitable to be implemented on the micro-controllers of common
civil drones.

The rest of this article is organized as follows. In the next section, a brief overview of related
works is given. The background of the INS and DATE methods is introduced in Section 3. Sec-
tion 4 presents the proposed method in detail. Section 5 evaluates the effectiveness of the proposed
method, and finally, we conclude the article in Section 6.

2 RELATED WORKS

Spoofing attacks are extremely destructive and deceitful for GPS receivers. They can make GPS
receivers generate misleading position information while it is very difficult to be detected [10, 22,
24]. Therefore, reliable spoofing detection techniques become more and more important, especially
for some critical GPS applications and services. Several GPS anti-spoofing techniques have been
proposed in the past few years.

Khanafseh et al. [8] developed an INS batch receiver autonomous integrity monitor to detect
GPS spoofing attacks. It allowed to evaluate the integrity risk of the position solution and proba-
bility of missed detection. Broumandan et al. [2] introduced a spoofing-aware receiver architecture
that is able to detect attacks, classify the spoofing and authentic signals, and mitigate the harmful
effect of counterfeit spoofing signals. It also showed that the spoofing signals generated from a
single-point source can be effectively detected using different metrics. Myrick et al. [14] devel-
oped a single antenna anti-jam/anti-spoofing method. It applied a reduced-rank Multiple-Access
Minimum Mean Squared Error based Coarse/Acquisition (C/A) code correlator for single antenna
GPS receivers that replaces a standard C/A code correlator for enhanced antijam/antispoofing ca-
pability. J. Mead et al. [13] explored a hardware named sandboxing to provide runtime monitoring
of GPS boundary signals and isolation. It can detect and isolate unwanted behavior. Ranganathan
et al. [19] proposed a detection technique that enables detection of a strong attacker capable of
executing the seamless GPS-spoofing attack. The common drawback of the above methods is that
they require special hardware devices, which significantly increase the weight and cost of the
drone. Therefore, these methods are not applicable to lightweight civil drones.

According to the Doppler effect, researchers develop techniques to monitor the behavior and
integrity of the GPS signals to detect GPS spoofing, such as those found in Refs [23] and [25]. Yuan
et al. [26] proposed a spoofing detection at the acquisition stage based on the sequential probability
ratio test. It also can report the relationship of the average spoofing detection time, probabilities of

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 6, Article 96. Publication date: December 2018.



96:4 Z. Feng et al.

Fig. 1. An example of drone hijacking by GPS spoofing attacks.

detecting the spoofing, and genuine signals. Another method was developed that processed GPS
beat carrier phase measurements from the single moving antenna to determine whether the GPS
signals are being spoofed in Ref. [17]. Chen et al. developed a novel trust framework based on
subjective logic to evaluate the integrity of received GPS signals. They also characterized spoofing
detection methods and extracted the causal relation between the measurement validity and signal
integrity in Ref. [3]. An approach utilizing an antenna array was proposed in order to suppress
spoofing attacks in Ref. [6]. It was based on the assumption that all spoofing signals are transmitted
from a single point source. All the above techniques involve computationally expensive signal
processing algorithms, and thus are not suitable for lightweight civil drones, which use micro-
controllers with limited computation capacity.

There are still some works that mentioned onboard sensors, such as in Ref. [20]. However, com-
paring them with the proposed method, our methods have simpler computational procedures, i.e.,
using simple operations instead of much more integrations, to achieve high accuracy results. On
the other hand, their experiments are based on simulation, while this article uses the real sensor
data from a quad-rotor drone flying in an open space.

3 PRELIMINARY

3.1 GPS Spoofing Attack

The GPS is a space-based navigation system that provides position information to any GPS receiver
on or near the earth that has an unobstructed line of sight to four or more GPS satellites.

GPS spoofing attacks try to deceive GPS receivers by broadcasting fake GPS signals, structured
to resemble a set of normal GPS signals, or by rebroadcasting genuine signals captured elsewhere
or at a different time. In such a way, these signals may be modified as to cause the receiver to esti-
mate its position to be somewhere rather than where it actually is, as determined by the attacker.

Figure 1 shows the illustration of GPS-spoofing-based hijacking. The drone originally plans to
fly from the starting point to the planned destination. When the drone flies at p0, GPS spoofing
starts, and the fake GPS signal reports along the red line of the fake positions, and the drone
deviates from its planned trace. For example, when a drone is at p2, the faked GPS signal reports
position p1, and the drone will fly in the same direction as p1 to the planned destination.

3.2 INS

The motion sensor (accelerometer and gyroscopes) can be used as an INS, which uses these sensors
to calculate positions and navigates the drone [5]. Unlike GPS, INS does not rely on any external
signal. The left part (in the dashed box) of the diagram in Figure 2 illustrates the basic principles of
INS. The accelerometer measures the linear acceleration Aacc in different directions in the body-
fixed coordinates. The gyroscope measures the angular velocity ω of the drone (in the yaw, pitch,
and roll axis, respectively). The integration of angular velocity gives the absolute angle of the drone
over time and it is used to export the transformation matrix M . Using M , the accelerations in the
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Fig. 2. Detection by comparing the positions reported by GPS and INS.

Fig. 3. The estimated positions using INS are far away from the GPS’s.

body-fixed coordinate are converted into the linear acceleration of the geographic coordinates A∗.
The linear accelerationA∗ are integrated over time once to get the linear speedsV ∗, then to get the
estimated position P∗. Note that since the drones fly in low speed, the influence of earth’s rotation
is neglected.

3.3 Hijacking Detection by Comparing INS and GPS

The simple way to detect whether a drone has been hijacked is to compare the two positions of
GPS and INS, as shown in Figure 2. However, due to the poor accuracy of the position calculated
by INS, this method does not work in practice. Accelerometers and gyroscopes may introduce
errors in their instantaneous measurement results. Although the instantaneous error is usually
very small, the accumulative error could be very large over time, so the INS estimation positions
may significantly deviate from the real ones. Figure 3 shows the experimental results of a drone
(the hardware platform of the drone will be introduced in Section 5), and the estimated trajectory
does seriously deviate from the real trajectory.

3.4 DATE Method

The main idea of Ref. [7] is shown in Figure 4. It uses the position information reported by the
GPS to estimate the speeds V and then estimate the accelerations A in the geographic coordinate.
The angular velocity ω measured by the gyroscopes will be used to compute the transform matrix
M , by which the accelerations A in the geographic coordinate are transformed to A∗ accelerations
in the body-fixed coordinate. Then, it can detect drone hijacking if the differences between A∗ and
the measured accelerations Aacc by the accelerometers exceed certain thresholds.
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Fig. 4. The block diagram of the DATE method.

Fig. 5. Example 1: Δax and Δay of the DATE method in a non-hijacked case.

Fig. 6. Example 2: Δax and Δay of the DATE method in a hijacked case.

In the experiment of Figure 5, the drone flies normally along a straight line, where Δax (t ) and
Δay (t ) are continuously closed to 0. In Figure 6, the drone is hijacked, where Δax (t ) and Δay (t )
significantly deviate from 0.

Compared with the method introduced in Section 3.3, this method avoids the accumulated errors
caused by the two integration operations in each iteration with the accelerations measurements,
which is the main reason why the INS-estimated position is significantly inaccurate. Therefore,
this method can achieve a much higher detection precision.
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3.5 Extended Kalman Filter

The gyroscope has the bias, in which the initial zero reading of the gyroscope will cause drift over
time. All the autopilots, such as PX4 and Pixhawk, use Extended Kalman Filter (EKF) to estimate
this bias over time to reduce the gyroscopes noises. In this section, a brief description of the simple
EKF will be introduced. The details can be seen in Ref. [5].

There are 15 states in the EKF:

x = [Px Py Pz︸����︷︷����︸
Position

VNorth VEast VDown︸����������������︷︷����������������︸
Groundspeed

θ β γ︸︷︷︸
Attitude

bax bay baz︸��������︷︷��������︸
Accelerometer Bias

bдx bдy bдz︸��������︷︷��������︸
Gyroscope Bias

].

Then position, ground speed, and attitude are updated at each sampling time according to INS.
Next, the covariance is updated according to

P(−) [k + 1] = θ [k] P(+) [k]θ [k]T + Q [k] ,

where P is the posterior error covariance matrix (a measure of the estimated accuracy of the state
estimate) and Q is the process noise covariance matrix. The state transition matrix can be approx-
imated as [k] = I + F [k]Δt . F is the state-transition model.

When GPS position and velocity become available at timestep k, the measurement y is defined
as follows:

y|GPS =
[
Px Py Pz VNorthVEastVDown

]
|GPS,

where Px , Py , and Pz are the reported North-East-Down positions with respect to a specific loca-
tion, e.g., the initial position.

Define the state error as:

δy = y|GPS −
[
Px Py Pz VNorthVEastVDown

]
|INS[k].

The covariance is updated using

H =

[
I3×3 03×3 03×9

03×3 I3×3 03×9

]
K [k] = P(−) [k] HT

(
R + HP(−) [k] HT

)−1

P(+) [k] = (I − K [k] H) P(+) [k] (I − K [k] H)T + K [k] R [k] K [k]T ,

where H is the observation model, which maps the true state space into the observed space, and
R is the covariance of the observation noise.

The state is updated according to:

δx = K [k]δy

Then, position and velocity can be estimated by INS.
When using Euler angle representation, the attitude is updated using the transformation matrix

M by INS. After that, gyros bias can be updated by

b
(+)
д [k] = b

(−)
д [k] + δx [13 : 15] .

4 OUR METHOD

4.1 The Idea of Our Method

The DATE method in Ref. [7] has a high detection precision, though it may not work well in
some non-hijacked cases, like Figure 7. In Figure 7(a), the real trajectory of a drone likes a letter
“S” during a short distance. Calculation and measurement errors brought by such sharp turns
cause that Δax and Δay , as shown in Figure 7(b), have much fluctuation (are not close to zero like
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Fig. 7. Example: DATE method doesn’t work.

Fig. 8. Body-fixed coordinate and Euler angles.

Figure 5(b)), which leads to a fault detection result. In order to improve the results accuracy of
such curve trajectories in non-hijacked cases, we proposed another detection method using only
gyroscopes and GPS data to compare the trajectory variation trends between the drone movement
and GPS trajectory.

A drone in flight is free to rotate in three dimensions as shown in Figure 8: pitch, nose up or
down about the lateral axis running from wing to wing; yaw, nose left or right about the vertical
axis running up and down; and roll, rotation about the longitudinal axis running from nose to tail.
These axes are in the body-fixed coordinate of a drone and the Euler angles (pitch, roll, and yaw)
can be easily calculated by angular velocities; the details will be discussed in Section 4.2.

If allowed, the three-dimensional body-fixed coordinate maps to the two-dimensional plan; then,
a flight procedure of a drone can be seen as a vehicle driving procedure. In other words, the yaw
(nearly) decides if the drone is to turn left or right, and it could be reflected on the GPS trajectory.
In Figure 1, when the fake GPS signal starts at p0, the fake GPS trajectory turns left along the
forward direction of the drone, while the real trajectory turns to the opposite direction. Our idea
just uses this phenomenon to develop a detection method.

However, attackers may hijack a drone to fly downward and hit the ground or a high moun-
tain when the horizontal trajectory remains the same. While on each commercial drone, it has an
altimeter to measure its flight height, so the above scenario can be easily detected.

The main idea of the proposed method is shown in Figure 9. It uses the positions reported by
the GPS to estimate the angles φ enclosed by the GPS trajectory and the line in the direction of the
geographical North Pole, as shown in Figure 10. In the following, we call the angle φ “GPS angle”
for short. The angular velocities measured by the gyroscope will be used to compute the transform
matrix M , by which the Euler angles can be calculated, as Ref. [5] does. Then, it detects the drone
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Fig. 9. The main block diagram of our method. In order to improve the detection results, compared with

thr DATE method, this method avoids the matrix multiplication in each iteration and does not rely on ac-

celerometers, which reduce errors brought by the measurements.

Fig. 10. The illustration of GPS angle φ.

hijacking if the variation trend between GPS angles φ and yaws γ is different. The detail will be
discussed in the following section.

However, strong wind or the different atmospheric environments can affect detection results. In
such a scenario, the GPS trajectory is different with the moving trend estimated by Euler angles.
Our detection method focuses on the comparison of the trajectory variation trends triggered by the
drone itself; as for the design of our detection method, we may get the false results in a sideslip.
Before the drone does the planned auto mission, it may not be possible to plan one or several
sideslips during the flight, so only wind or atmospheric turbulence can cause unexpected sideslips.
According to the design of the drone, especially the fixed-wing drone, it can quickly recover from
sideslip or reduce the influence caused by wind or turbulence. If the wind has a long duration
and its velocity exceeds the drone affordability, users may not fly the drone in practice. For the
normal cases, the sideslip is usually caused by sudden wind or turbulence. Even if it is failed in the
correlation coefficient detection test, the proposed method still has a fault tolerance test. During
this test, our method compares the average values in a period of time instead of one sampling time.
If it is still failed, we also can wait for the result of the DATE method because the DATE method
compares the difference of accelerations between the output of the accelerator and acceleration
estimated by gyro and GPS. When the drone changes its movement after the wind, its acceleration
must be changed. The experiments in Section 5 also show that running both DATE method and the
proposed method can achieve a higher detection result than only using any of them. On the other
hand, the drone doing the planted auto mission, and during this mission, it may not be possible for
us to plan the drone to have a sideslip during the flight, so the only thing that can cause sideslip is
the wind or atmospheric turbulence, which would be unexpected. According to the design of the
drone, especially the fixed-wing drone, it can quickly recover from sideslip or reduce the influence

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 6, Article 96. Publication date: December 2018.



96:10 Z. Feng et al.

caused by sideslip. If the wind has a long duration and its velocity exceeds the drone affordability,
we may not fly the drone in practice. For the normal cases, the sideslip is usually caused by a
sudden wind, and our method has a threshold called fault tolerance. If the drone has a sudden
sideslip and fails in the correlation coefficient comparing phase, then it will have a fault tolerance
test. During this test, our method compares the average values in a period of time instead of one
sampling time. So the influence of trajectory variation trends caused by sudden sideslip can be
reduced, and it can also help to reduce the fault alarm.

Compared with the DATE method in Figure 4, the proposed method reduces some errors, re-
spectively caused by the extra calculation procedures and the measurement of accelerometers.
Therefore, the detection results accuracy ideally can be improved.

In the following, this article introduces the details of the hijacking detection method. Section 4.2
focuses on how to compute the estimated angles respectively from the GPS and gyroscopes’ output
data. Section 4.3 presents an algorithm to decide whether hijacking has happened based on the
difference between two angles’ variation trends.

4.2 Calculating GPS Angle φ and the Euler Angle Yaw γ

The GPS reports the position P (t ) = [Px (t ), Py (t ), Ph (t )]T of the drone in the geographic coor-
dinate at every sampling time point t . It can easily get the GPS angle φ at each time point
t by:

φ (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ (t ) ΔPx (t ) > 0, ΔPy (t ) > 0

ψ (t ) + 2π ΔPx (t ) < 0, ΔPy (t ) > 0

ψ (t ) + π ΔPy (t ) < 0

0 ΔPx (t ) = 0

1

2
π ΔPy (t ) = 0

, (1)

whereψ = arctan(
ΔPx (t )

ΔPy (t )
) ,ψ ∈ [−1

2
π ,

1

2
π ] and P (t − 1) is the position vector reported by the GPS

at the previous sampling time point, ΔPy (t ) = Py (t ) − Py (t − 1), and ΔPx (t ) = Px (t ) − Px (t − 1).
The Euler angles yaw γ will be calculated by transformation matrix M (t ) at time t ,

respectively [5]:

γ (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ(t ) Γ(t ) > 0, M22 (t ) > 0

Γ(t ) + 2π Γ(t ) < 0, M22 (t ) > 0

Γ(t ) + π M22 (t ) < 0

, (2)

where Γ(t ) = arctan(−M12 (t )

M22 (t )
), and M22 (t ) are the elements in matrix M (t ), and M (t ) is computed

by Equation (4):

M (t ) =

⎡⎢⎢⎢⎢⎢⎣
M11 (t ) M12 (t ) M13 (t )
M21 (t ) M22 (t ) M23 (t )
M31 (t ) M32 (t ) M33 (t )

⎤⎥⎥⎥⎥⎥⎦ (3)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11 (t ) = q0 (t )2 + q1 (t )2 − q2 (t )2 − q3 (t )2

M12 (t ) = 2(q1 (t )q2 (t ) − q0 (t )q3 (t ))

M13 (t ) = 2(q1 (t )q3 (t ) + q0 (t )q2 (t ))

M21 (t ) = 2(q1 (t )q2 (t ) + q0 (t )q3 (t ))

M22 (t ) = q0 (t )2 − q1 (t )2 + q2 (t )2 − q3 (t )2

M23 (t ) = 2(q2 (t )q3 (t ) − q0 (t )q1 (t ))

M31 (t ) = 2(q1 (t )q3 (t ) − q0 (t )q2 (t ))

M32 (t ) = 2(q2 (t )q3 (t ) + q0 (t )q1 (t ))

M33 (t ) = q0 (t )2 − q1 (t )2 − q2 (t )2 + q3 (t )2

(4)

Quaternion Q (t ) = [q0 (t ),q1 (t ),q2 (t ),q3 (t )]T is iteratively computed according to the angular
velocity vector

ω = [ωx (t ),ωy (t ),ωz (t )]T

reported by the gyroscopes:⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δq0 (t )
Δq1 (t )
Δq2 (t )
Δq3 (t )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −ωx (t ) −ωy (t ) −ωh (t )

ωx (t ) 0 ωh (t ) −ωy (t )
ωy (t ) −ωh (t ) 0 ωx (t )
ωh (t ) ωy (t ) −ωx (t ) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
q0 (t − 1)
q1 (t − 1)
q2 (t − 1)
q3 (t − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Δt , (5)

where Δqi (t ) is the variation of qi (t ) and we can get Q for the current moment t by

qi (t ) = qi (t − 1) + Δqi (t ).

Before being applied to Equation (4) to compute M , Q needs be normalized to be more robust to
measurement errors, i.e., it carries much less gyroscope bias errors:

qi (t ) ← qi (t )√
q2

0 (t ) + q2
1 (t ) + q2

2 (t ) + q2
3 (t )
, i = 0, 1, 2, 3 (6)

such that it satisfies:

q0 (t )2 + q1 (t )2 + q2 (t )2 + q3 (t )2 = 1 (7)

The iterative computation of Q starts with the initial values obtained as follows. The initial attitude
angles of the drone are θ (pitch), γ (yaw), and β (roll), then we compute the initial value of M ,
denoted by M by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11 = cosβ · cosγ − sinβ · sinθ · sinγ

M12 = −cosθ · sinγ

M13 = sinβ · cosγ + cosβ · sinθ · sinγ

M21 = cosβ · sinγ + sinβ · sinθ · cosγ

M22 = cosθ · cosγ

M23 = sinβ · cosγ − cosβ · sinθ · sinγ

M31 = −sinβ · cosθ

M32 = sinθ

M33 = cosβ · cosθ

(8)
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When a drone starts to fly, we assume that γ = β = 0 and γ can be calculated by the first two
successive GPS points. Then, according to Equation (9), the initial absolute value of Q can be
calculated. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|q1 | =
1

2

√
1 +M11 −M22 −M33

|q2 | =
1

2

√
1 −M11 +M22 −M33

|q3 | =
1

2

√
1 −M11 −M22 +M33

|q0 | =
√

1 − q1
2 − q2

2 − q3
2

(9)

The sign of qi is decided as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sign(q1) = +

sign(q1) = sign(M32 −M23)

sign(q2) = sign(M13 −M31)

sign(q3) = sign(M21 −M12)

(10)

Note that the computation of the transformation matrix M is the same as the standard position
estimation in INS [5].

In addition, the proposed method also uses EKF to reduce bias errors caused by gyroscopes. It is
wildly used in many autopilots, and it processes sensor measurements then provides the gyroscope
delta angle bias estimates [5, 11]. In the experiment, the proposed method directly uses them from
the outputs of the autopilot.

ALGORITHM 1: Pseudo-code of calculating GPS angle φ and yaw γ (t )

1: Calculate the initial transformation matrix M by Equation (8)
2: Calculate the initial quaternion Q by Equations (9) and (10)
3: for each sampling time t do

4: Calculate quaternion Q (t ) with Q (t − 1) by Equations (5) and (6)
5: Calculate transformation matrix M (t ) with Q (t ) by Equation (4)
6: Calculate yaw γ (t ) by Equation (2), respectively
7: Calculate GPS angle φ (t ) by Equation (1)
8: end for

4.3 Detection Method

Now, we present how to decide whether the drone has been hijacked by comparing GPS angle φ
and the Euler angles: yaw γ . Assume φ ′(t ) and γ ′(t ) are, respectively, GPS angle and yaw at time
point t . We apply a simple median filtering algorithm to GPS angle φ (t ) and yaw γ (t ) sequence by

φ (t ) =
t∑

i=t−n

φ ′(i )/n

γ (t ) =
t∑

i=t−n

γ ′(i )/n,

where n is the window size of the median filtering and the size of n is relatively small. This step
also reduces angular random walk caused by the gyroscope. It can be thought of like the variation

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 6, Article 96. Publication date: December 2018.



An Efficient UAV Hijacking Detection Method Using Onboard Inertial Measurement Unit 96:13

Fig. 11. The waveforms of φ and γ before and after median filtering.

(or standard deviation). And Angle Random Walk (ARW) can be seen as random, independent, and
distribution irrelevant.

Figure 11 shows an example of median filtering, where we see φ (t ) and Euler angles become
much smoother. In the following, we use φ and γ for hijacking detection.

Before presenting the hijacking detection rules, we first look into some data collected from
experiments with a realistic drone (the parameters of the drone and experiment methodology
will be introduced in Section 5), and use these examples to motivate the design of the proposed
hijacking detection rules.

As we mentioned before, yaw γ is the primary angle referred to the trajectory turning left or
right, and GPS angleφ calculated by GPS trajectory also reflected on the moving forward directions
(left or right). So in some way, we can assumeγ andφ are the linear correlation. In order to compare
the variation trends of these two angles, in this method, it mainly calculates the linear correlation
coefficient ρ that a number represents the linear dependence. It has a value between +1 and −1,
where +1 is the total positive linear correlation, 0 is no linear correlation, and −1 is the total
negative linear correlation, calculated by Equation (11).

ρ =
cov (φ,γ )

σφσγ
, (11)

where cov is the covariance function, σφ is the standard deviation of φ, and σγ is the standard
deviation of γ .

In the experiment of Figure 12, the drone flies normally along a straight line, where GPS angle
φ and Euler angles nearly have the same variant trend. In other words, the correlation coefficient
is close to 1. The similar result shows in Figure 13. However, only relying on the correlation co-
efficient may give wrong results. In the experiment of Figure 14, the drone is not hijacked, while
the correlation coefficient is about 0.6 instead 1. An interesting observation in the above case is
the averages angles of the GPS angle and the Euler angles are extremely close.

On the other hand, in the experiment of Figure 15, the drone is hijacked, where GPS angle φ and
Euler angles don’t have the same variant trend, and their averages aren’t closed either. In addition,
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Fig. 12. Detection rule motivating example 1.

Fig. 13. Detection rule motivating example 2.

Fig. 14. Detection rule motivating example 3.

we planned the trajectory to be a straight line, and in this experiment, the fake GPS trajectory is
closed to the planned trajectory.

By the above observations, we design the detection procedure as shown in Algorithm 2. Note
that the window size N used to compute the average or the correlation coefficient is subject to the
designer’s choice. In all the experiments in this article, we setN = 100. Correlation coefficient ε and
fault tolerance μ, respectively in Line 4 and Line 7, are two thresholds set by observations; more
details will be discussed in Section 5. Moreover, the design of hijacking detection rules heavily
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Fig. 15. Detection rule motivating example 4.

ALGORITHM 2: Pseudo-code of the detecting procedure

1: while not hijacked do

2: Calculate γ (t ), φ (t )in Algorithm 1
3: Calculate linear correlation ρ (t )
4: if ρ (t ) < ε then

5: Calculate avд(φ (t )) and avд(γ (t )) from t − N to t
6: Calculate Δavд(t ) = avд(φ (t )) − avд(γ (t ))
7: if Δavд(t ) > μ then

8: Claim hijacked; break

9: end if

10: else

11: Claim non-hijacked

12: end if

13: end while

depends on the flight control algorithm of the drone. The detection algorithm in this article is
designed with observations from experiments with a particular drone. In future work, we may
conduct experiments to different drones and study detection algorithms that are more general to
a different flight control algorithm.

5 EXPERIMENTS

Experiments are conducted with a Quadrotor drone (same as Ref. [7]) shown in Figure 16, which
uses the PixhawkTM flight control system [16]. It uses L3GD20H gyroscopes [9] and LSM303D
accelerometers [12], and we set the sampling rate at 50HZ for both(inter-sampling separation of
0.2 seconds). The drone uses the NEO-M8N GPS system [15], for which we set the data rate to
5Hz (inter-sampling separation of 0.2 seconds). Therefore, the GPS outputs are updated every 10
sampling points. The onboard micro-controller is PX4FMU [18], a 168MHz Cortex-M4F processor
with 1024KB Flash, and 192KB SRAM. We let the drone fly in an open space 100 times with low
speed, among which the hijacked and non-hijacked cases are half-half. For the non-hijacked cases,
half of the flight routes are straight lines and half are randomly generated curves. Because of
(measurement and accumulated) errors and noises, especially in the Zigzag trajectory, Ref. [7] may
not work well when no hijacking occurs in curve trajectory situations. In the proposed method,
it doesn’t need any accelerometer in the detection procedure; in other words, it reduces some
measurement errors, which make the results more accurate in some way. So, in the experiment,
we let the generating curve procedure be more complex than Ref. [7], i.e., 80% curves with at least
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Fig. 16. The Quadrotor drone used in our experiments.

two continuous turns during a short time interval, while in Ref. [7], it is no more than 50%. The
hijacked cases are implemented as follows. We use an array to store the fake GPS signals on the
micro-controller, and set a timer to trigger the hijacked mode, in which the GPS signal processing
the program reads inputs from this array instead of from the GPS receiver. We implement our
hijacking detection method on the micro-controller and modify the flight control algorithm so
that the drone will land immediately when it detects hijacking.

The hijacking precision is evaluated with the metric correctness ratio α :

α =
succ

total
,

where total is the total number of experiments, and succ is the number of experiments that our
method correctly judges as to whether the hijacking has occurred. In other words, in the hijacked
case, 1 − α is the false-positive ratio, while in the non-hijacked case, 1 − α is the false-negative
ratio.

The thresholds ε and μ greatly affect the correctness ratio. If ε and μ are too tight, the correctness
ratio in the hijacked cases will be higher, but it will be lower in the non-hijacked cases, and the
other way around if ε and μ are too loose. Therefore, in the following, we evaluate the correctness
ratio in both hijacked and non-hijacked cases with varying ε and μ.

Figures 17 and 18 show how the correctness ratio changes (for both the hijacked cases and
non-hijacked cases) with one of the two thresholds while keeping another constant. In the first
experiment shown in Figure 17, the correctness ratio of the hijacked cases is improved when the
threshold increases, while the correctness ratio of the non-hijacked cases is decreased due to the
threshold being too tight for detection. The second experiment is shown in Figure 18; the correct-
ness ratio of the non-hijacked cases is improved when the threshold increases, while the correct-
ness ratio of the hijacked cases is decreased due to the detection condition being too loose that for
more hijacked cases get false results.

According to the above experiment results and observations, the following thresholds appear
to be a good choice for our drone in this section: ε = 0.85 and μ = 10.

The detection accuracy of the proposed method is based on IMU sensors (such as gyro) read-
ings, and even though the same type of gyros are placed at different positions of one drone, the
readings are totally different during the same flight task. The proposed method is doing a com-
parison based on these “uncertainty” sensor readings. So, to achieve a high detection accuracy, we
strongly suggest users adjust the thresholds by doing several flight tests before using this method;
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Fig. 17. The correctness vs. ε when

μ = 10.
Fig. 18. The correctness vs. μ when

ε = 0.85.

Table 1. Correctness Ratio Comparison of Different Methods

Non-hijacked cases Non-hijacked cases Hijacked cases
(line trajectories) (curve trajectories)

Our method 92% 100% 100%
DATE method 100% 84% 100%
Both methods 100% 100% 100%

it is just like a baseline test. First, fly the drone in an open space several times, and then download
the flight data. Next, slightly adjust the values of thresholds based on the values set in this article,
and run the proposed method using the IMU data and GPS data offline. Finally, find the satisfied
values and implement the detection method on the drone.

We also implement the straightforward approach by comparing the DATE method and the pro-
posed method, and use both methods, as shown in Table 1. It turns out that in non-hijacked cases,
the DATE method is good at straight line trajectory situations, while the proposed method is good
at curve trajectory situations. The reason is that the proposed method doesn’t use any accelerom-
eter and simplifies the calculation which reduce some errors and improve the results accuracy,
especially in curve trajectory situations. However, only using gyroscopes and GPS data without
accelerometers makes the proposed method have less information to get detection results; and the
drifting that the gyroscopes bring from the slow variation of angular velocities also may decrease
the results’ accuracy, especially when no hijacking occurs in straight line trajectory situations.
Therefore, using both methods to detect the drone hijacking can make the results much more ac-
curate than using any single one. When the results of all the methods are hijacked, then the final
result is hijacked; otherwise, the result is non-hijacked. For example, in this experiment, shown in
Figure 19, we plan the drone to fly a straight line without hijacking; but actually, the GPS trajectory
has some fluctuations around the planned trajectory because of the wind. The proposed method
gives a fault result (correlation coefficient is -0.074), while it gets the right result from the DATE
method (average of Δay is 0.10, which is close to 0).

6 CONCLUSIONS

This article presents an efficient method to let a drone detect whether it has been hijacked. This
method reduces some error problems with a novel approach that only uses the gyroscopes and
GPS data and simplifies the calculation procedures compared with the DATE method. This is easy
to be implemented on any drone. On the other hand, the accuracy of this method may not be high
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Fig. 19. The proposed method is failed but the DATA method detects successfully.

enough compared with the DATE method in straight line trajectory situations when the drone has
not been hijacked, due to the measurement and calculation error problems. So another contribution
in this article is using both the DATE method and the proposed method to guarantee the high
results accuracy of the GPS spoofing attacks detection. In addition, the most complex calculation
procedures of both methods are based on INS, and most of the variables in the proposed method
can be directly taken from the operating autopilot, so the complexity of running both methods is
low.

In future work, we will implement our proposed method in different types of drones, evaluate,
and refine the detection algorithms. Another important direction of our future work is to extend
the work in this article to anti-hijacking flight control so that the drone can not only detect the
hijacking, but also improve the flight control algorithm design to make them resilient to false or
low-quality GPS signals.
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