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Abstract In safe-critical real-time systems, it is required that the timing constraints
must be respected under any circumstance at runtime. To provide such guarantees,
the designers need to describe the system behaviors with formal models, based on
which timing correctness of the system can be proved. There have been many dif-
ferent real-time task models developed over the years describing different timing
behaviors of real-time systems. This article briefly reviews some of the representa-
tive real-time task models, focusing on the expressiveness aspect. In particular, this
article will cover the basic periodic/sporadic task models with extensions of bursts
and jitters, the graph-based real-time task models which can model different possi-
ble workload release patterns in a compact model, the parallel real-time task models
that can describe the internal parallel workload structures and the arrival curves in
Real-Time Calculus as a general workload representation.

Introduction

Real-time systems are computing systems in which the correctness of system be-
haviors depends on not only the logical computation results, but also the physical
time when these results are produced (Stankovic, 1992) . Many real-time systems
are safe-critical, so timing constraints must be respected under any circumstance
at runtime. To provide such guarantees, the designers need to describe the system
behavior with formal models, based on which timing correctness of the system can
be proved. There are three major aspects in real-time system modeling: workload,
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resource and scheduling policy. This article focuses on the workload aspect of real-
time system modeling.

Real-time systems are often implemented by a number of concurrent tasks shar-
ing the hardware resource. The workload of a real-time system is characterized by
real-time task models, which typically have the following three features:

• Recurrence. A real-time task is recurrently activated for infinitely many times.
• Deadlines. The workload of a real-time task incurred by each activation is re-

quired to be finished before a certain time point.
• Multitasking. The system consists of multiple concurrent real-time tasks.

The combination of the above factors makes the real-time task models unique com-
paring with workload models in other research areas, e.g., operational research. The
deadline feature is closely related to the makespan minimization problem and also
studied in many other research areas. However, due to the (infinite) recurrence fea-
ture of real-time tasks, it is a difficult problem to analyze whether the deadlines are
always met in general, which cannot be solved by standard constraint-solving and
optimization techniques with finite state space.

Over the years, a large number of real-time task models have been developed to
model different workload release patterns. Some model is as simple as a periodic
pattern characterized by two parameters, while some of them are as expressive as
Turing machine. In general, the simpler the task model is, the easier to analyze it.
Therefore, the development of real-time task models usually takes the underlying
analysis techniques into consideration. This article will briefly review some repre-
sentative real-time task models, and only focus on their expressiveness aspect. Due
to the page limit, we can only cover a small part of real-time task models in litera-
tures. The remainder of this article is organized as follows. Section 2 introduces the
basic periodic/sporadic task models with extensions of bursts and jitters. Section 3
introduces the graph-based real-time task models. Section 4 introduces the parallel
real-time task models. Section 5 introduces arrival curves in Real-Time Calculus.
Section 6 briefly summarizes the article.
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Periodic/Sporadic Real-Time Task Models

Basic Periodic/Sporadic Task Models

The basic periodic real-time task model proposed in Liu and Layland (1973) cap-
tures the fundamental periodically recurring behavior of many real-time computing
systems (Leung and Merrill, 1980; Leung and Whitehead, 1982). A periodic task
set τ consists of a set of independent periodic tasks {τ1,τ2, · · ·}. A periodic task τi
is characterized with two parameters, the worst-case execution time (WCET) Ci and
the period Ti. A periodic task generates an infinite sequence of jobs (or called task
instances). The first job of a task may be released at any time, and each subsequent
job is released with a fixed separation time Ti from its predecessor job. A job re-
quires to execute for at most Ci time units. The execution must be finished before
the release of the next job, i.e., task τi has a relative deadline equal to its period Ti
and each job has an absolute deadline aligned with the release time of the next job.
A job sequence of a periodic task τi with Ci = 2 and Ti = 4 is shown in Figure 1(a).
A solid up arrow in the figure represents the release time of a job (also the absolute
deadline of its predecessor job).

The sporadic task model generalized the Liu and Layland’s periodic task model
to allow more flexible release patterns and deadline constraints (Baruah, Mok, &
Rosier, 1990; Lehoczky, Sha, & Strosnider, 1987; Mok, 1983; Sprunt et al., 1989).
A sporadic task τi is characterized with three parameters, the worst-case execution
time (WCET) Ci, the minimum inter-release separation Ti and the relative deadline
Di (Mok, 1983). The inter-release separation between two consecutive jobs gener-
ated by a sporadic task is allowed to be larger than Ti. Moreover, a sporadic task
τi may have a relative deadline Di different from its period Ti. We say a sporadic
task τi has an implicit deadline if Di = Ti, a constrained deadline if Di ≤ Ti and an
arbitrary deadline if there is no limitation on the relation between Di and Ti. A job
sequence generated by a sporadic task τi with Ci = 2, Ti = 4 and Di = 3 is shown
in Figure 1(b). A dashed down arrow represents the absolute deadline of its prede-
cessor job. The first job is released at time 0, and the second job is released at time
5, with an inter-release separation larger than Ti = 4. The third job is released at its
earliest possible release time 9, which is 4 time units after the last job release time
5. The dashed down arrows represent the absolute deadlines.

(a) A periodic task. (b) A sporadic task.

Fig. 1: Examples of a periodic task and a sporadic task.
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Extensions with Jitter and Burst

The periodic real-time task model was extended by adding a jitter Ji for each task
τi (Audsley et al., 1993), to allow the flexibility that the actual release time of a
job may be at most Ji time units earlier or later than the exact start time of the
period. Due to the jitter, two jobs may be released with a separation smaller than
the period, which causes a local workload burst. Tindell et al. introduced another
extension of periodic/sporadic tasks to model bursts (Tindell, Burns, & Wellings,
1994). Each task has two periods: the inner period and the outer period. The inner
period denotes the minimum inter-release separation of events inside a burst, and the
outer period denotes the minimum inter-release separation between different bursts.
This burst model controls the maximum number of events that need to be processed
in a certain time interval while guaranteeing a long-term event arrival rate.

A more general extension of periodic/sporadic tasks is the PJD event model
(Richter et al., 2003), where each task τi is characterized by three parameters: pe-
riod Pi, jitter Ji and minimum inter-arrival time Di (notice here Di does not represent
the relative deadline). Although the original PJD event model only focuses on the
release pattern of the workload but does not model the time to process each event, it
is easy to extend the model by adding the WCET information. Figure 2(a) illustrates
several release patterns allowed by the PJD event model.

Fig. 2: Several release patterns of a PJD task.

Offset-based Task Models

In the Offset-based task model (Palencia and Harbour, 1998, 2003; Tindell, 1994),
a task τi has a period Ti as in the periodic/sporadic task model and includes several
subtasks {τ1

i , · · · ,τx
i }. In each period, the release time of a subtask τk

i has an offset
Ok

i relative to the start time of this period. The release of each subtask τk
i also allows

a jitter Jk
i . Moreover, an every attribute ek

i describes that a subtask τk
i can be released

once in at most ek
i periods of the task, and this subtask has an associated period ek

i Ti.
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Using the offset-based task can reduce input and output jitters in data transmis-
sion, for which an example was given by Tindell (1994). Suppose a task first does
some computation and then transmits the output data. The time for the task to send
the output data may have a large jitter, since the computation process may be influ-
enced by many factors such as task preemptions. To reduce the output data jitter,
we decompose the task into two subtasks A and B. A only performs the computation
and the output data are temporally stored. B takes charge of transmitting the output
data. We put A and B in an offset-based task, and let B have an offset large enough to
cover the jitter of A. By giving task B a higher priority, we can guarantee that latter
data can not be produced until the former data have been transmitted. Since task B
only implements a simple operation, its jitter is relatively small, and the overall jitter
of the output data emission is reduced.

Fig. 3: An offset-based task and one possible execution pattern.

In Figure 3, a sporadic offset-based task τi with period Ti has 3 subtasks τ1
i , τ2

i ,
τ3

i , among which τ1
i has the highest priority and τ3

i has the lowest priority. The
offsets of τ1

i , τ2
i , τ3

i are O1
i , O2

i , O3
i . The figure in below shows a possible execution

pattern. At some time instant, τ2
i is released with an offset O2

i relative to the start
of the current instance of τi and starts to execute. τ1

i is released with an offset more
than O1

i and preempts the execution of τ2
i . During the execution of τ1

i , τ3
i is released

with an offset O3
i . Since τ3

i has the lowest priority, it has to wait until τ1
i and τ2

i
both finish their execution. Since the task is sporadic, the next instance of task τi is
released with a minimum inter-release separation Ti from its predecessor instance.
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Graph-based Real-Time Task Models

The simple periodic/sporadic task models cannot describe the complex timing be-
haviors of many realistic real-time applications. This section introduces the exten-
sion of the periodic/sporadic task model using graph structures to represent more
complex workload release patterns. The periodic/sporadic task model can also be
viewed as a simple case of graph-based task model, which has only one node repre-
senting the release of workload and one self-loop edge representing the inter-release
separation. Figure 4 summarizes the graph-based task models to be introduced in
this section. In the following we introduce them in the order from more restricted to
more expressive ones.

Fig. 4: A hierarchy of graph-based task models.

Multiframe Task Models

In many real-time systems the worst-case execution time of the job generated in one
invocation of a task may be different from that of another invocation. As an exam-
ple, Mok and Chen (1997) described an MPEG video codec that uses different types
of video frames. Video frames arrive periodically, but frames of a certain type with
large size (and thus large decoding complexity) arrive only once in several consec-
utive frames. The sporadic task model needs to account for this in the WCET of
all jobs, which is a very pessimistic overapproximation. Many schedulable systems
would fail standard schedulability tests for the sporadic task model.

To solve this problem, Mok and Chen (1997) introduced the Multiframe (MF)
task model. A multiframe task τi of k frames is described as a pair (Ti,Ci) sim-
ilar to the basic sporadic task model with implicit deadlines, except that Ci =
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{C0
i , · · · ,C

k−1
i } is a vector of different WCETs of k different frames. A multiframe

task can be viewed as a cycle G = 〈V,E〉 as shown in Figure 5(a). A node v ∈ V
represents a frame labeled with c(v), the WCET of frame v. Each edge is labeled
with the minimum inter-release separation Ti between the two nodes u,v it connects,
which is the same for all edges. Each node has an implicit deadline, i.e., the relative
deadline of each node equals the minimum inter-release separation labeled on its
outgoing edge.

The execution of an MF task starts with an arbitrary node, traverses along
the edges, and iterates along the cycle repeatedly. A job sequence is denoted by
J = (J0,J1, · · ·) with job parameters Jk = (rk,ck,vk) of release time rk, execution
time ck and job type vk. An example of an MF task is shown in Figure 5(b). A job
sequence of {(0,2,v0),(4,3,v1),(8,2,v2),(12,1,v3),(16,2,v0), · · ·} corresponds to
a path {v0,v1,v2,v3,v0, · · ·} in the cyclic task graph.

(a) A multiframe task. (b) Possible release pattern.

Fig. 5: A multiframe task and one possible release pattern of it.

The Generalized Multiframe (GMF) task model (Baruah et al., 1999; Takada and
Sakamura, 1997) extends MF to allow nodes to have not only different WCETs,
but also different relative deadlines and allow different minimum inter-release sep-
arations on different edges. A GMF task τi with k frames is characterized by three
vectors (Pi,Ei,Di). Pi = (P0

i , · · · ,P
k−1
i ) describes the minimum inter-release separa-

tions. P j
i represents the minimum separation between the release time of an instance

of frame j and its successor frame. Ci = (C0
i , · · · ,C

k−1
i ) describes the WCETs of the

frames and Di = (D0
i , · · · ,D

k−1
i ) describes their relative deadlines.

A GMF task can also be represented by a cycle G = 〈V,E〉. Each node v ∈ V is
labeled with (c(v),d(v)), where c(v) is the WCET of frame v and d(v) is the relative
deadline. Each edge (u,v) is marked with its own minimum inter-release separation
p(u,v). The relative deadline d(v) of each node v in general can be different from
its minimum inter-release separation of the outgoing edge (similar to an arbitrary-
deadline sporadic task).

An example of a GMF task with 4 different frames is shown in Figure 6(a). Sup-
pose the task starts execution with frame 0 at time 0. A job sequence (defined in the
same way as in an MF task) {(0,2,v0),(3,3,v1),(7,2,v2),(12,1,v3),(16,2,v0), · · ·}
is shown in Figure 6(b).

Both MF and GMF follow a cyclic execution pattern. The non-cyclic GMF task
model (Baruah, 2010a; Moyo et al., 2010) allows to model the execution of different
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(a) A generalized multi-
frame task.

(b) Possible release pattern.

Fig. 6: A generalized multiframe task and one possible release pattern of it.

frames not following a cyclic pattern. The same as GMF tasks, a non-cyclic GMF
task τi is also represented by three vectors (Pi,Ci,Di) but with different semantics.
To define the semantics formally, let φ : N→ {0, · · · ,k−1} be a function choosing
frame φ( j) for the jth job of a job sequence. With φ , each job J j = (r j,c j,v j) in a
job sequence (J0,J1, · · ·) generated by a non-cyclic GMF task needs to correspond
to frame φ( j) and the corresponding values in all three vectors:

r j+1 ≥ r j +Pφ( j) ∧ c j ≤ Eφ( j)

A non-cyclic GMF task can also be modeled as a complete graph. Figure 7(a)
shows an example of non-cyclic GMF and Figure 7(b) shows a possible job se-
quence {(0,2,v0),(3,2,v2),(8,1,v3),(12,1,v3),(16,3,v1), · · ·}.

(a) A non-cyclic GMF task. (b) Possible release pattern.

Fig. 7: A non-cyclic GMF task and one possible release pattern of it.

Recurring Branching Task Models

The code of many real-time systems may include branches that influence the work-
load release patterns. In general, the workload released by different branches may
be incomparable. Thus, we need to model the branching semantics explicitly in the
task model. To this end, Baruah proposed the Recurring Branching Task Model in
Baruah (1998a). A Recurring Branching (RB) task (Anand et al., 2008) is repre-
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sented by a directed tree structure G = (V,E). Similar to the graph representation
of multiframe task models, each node v ∈V is labeled with with (c(v),d(v)), spec-
ifying the WCET and relative deadline of the node. A node may have multiple out-
going edges describing possible branches. There are two types of edges: edges with
sink nodes labeled with the minimum inter-release separation p(u,v) between two
jobs u,v, and edges without sink nodes labeled with the minimum inter-release time
p(vl ,vroot) between its source node (a leaf node in tree structure) vl and the root
node vroot .

The execution starts at an arbitrary node and traverses the graph along the edges.
When a node has more than one outgoing edge, only one edge is chosen for execu-
tion at one time. After a leaf node is executed, the execution starts again from the
root node and the new recursion may traverse different branches from last recursion.
Since the self-loop structure is not allowed, each node can only be visited once in
each iteration. A general period T is defined as the minimum inter-release separa-
tion between two releases of the root node. All paths from the root node to a leaf
node have the same sum of inter-release separation times and this sum is the general
period T .

Figure 8(a) shows an example of an RB task. Since WCETs and relative deadlines
of nodes are the same as former task models, they are omitted in the figure and we
focus on the semantics of the inter-release separations of the example. There exists
three branches, (v0,v1,v3), (v0,v1,v4), and (v0,v2,v5), from the root to the leafs,
with the same general period 50.

(a) An RB task. (b) An RRT task. (c) A non-cyclic RRT
task.

Fig. 8: The RB, RRT and non-cyclic RRT tasks.

In typical branching code, the control flows joined again after branches are com-
pleted. Thus, it is redundant to have one leaf node for every branch. In the recurring
real-time task (RRT) model (Baruah, 2003; Chakraborty, Erlebach, & Thiele, 2001)
proposed by Baruah (1998b), this redundancy was removed by combining all leaf
nodes into one sink node, and using a directed acyclic graph (DAG) instead of a
tree. Different from RB tasks, an RRT task does not have a minimum inter-release
separation constraint from the sink node to the source node, but specifies a min-
imum separation between two consecutive release times of the root node. Figure
8(b) shows an example of an RRT task. v0 is the root node, and v4 is the sink node.
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There is no constraint on the minimum inter-release separation from v4 to v0, but
two consecutive releases of v0 must be separated by at least 80 time units.

Baruah (2010b) generalized the RB model into non-cyclic RRT model, where the
constraint of one single sink vertex was removed. A non-cyclic RRT task is a DAG
with vertex and edge labels as before and a unique root vertex vroot . For every sink
vertex v, there is a value p(v,vroot). A non-cyclic RRT task does not have a general
period parameter. In other words, the time intervals between two consecutive visits
of the root node may not be same when different sink nodes are visited.

Figure 8(c) shows an example of non-cyclic RRT task. v0 is the root node, and v3,
v5 are sink nodes. There is minimum inter-release separation from v3, v5 to v0, but no
general period for the whole task. The non-cyclic GMF and non-cyclic RRT share
the similarity that they are both recurring but do not have a fixed general period.
Non-cyclic GMF is a special case of non-cyclic RRT, and a non-cyclic GMF task
can be transformed to a non-cyclic RRT task (Stiggie, 2014).

Digraph Real-Time Task Models

The graph-based task model can be generalized to any directed graph. Stigge
et al. (2011a) introduced the Digraph Real-Time (DRT) task model (Mohaqeqi
et al., 2016; Stigge and Yi, 2012, 2013, 2014). A DRT task is described by
a directed graph with edge and vertex labels as before. There are no further
restrictions, and any directed graph can be used to describe a task. Using any
graph allows modeling local loops which are not possible in any model presented
above. Even in the non-cyclic RRT model, all cycles in that model have to pass
through the source vertex. An example of DRT is shown in Figure 9(a). The ex-
ecution could start at any node and there exists a self-loop for v0. A job se-
quence of {(0,2,v0),(10,3,v1),(20,5,v3),(50,2,v0), · · ·} corresponds to the path
{v0,v1,v3,v0, · · ·} in the graph.

DRT is further extended to the extended DRT (EDRT) task model (Stigge et al.
, 2011b) by allowing specifying the minimum inter-arrival time between two nodes
that are not connected directly. In addition to a graph as in the DRT model, an
EDRT task also includes a set of global inter-release separation constraints. Each
constraint ( f romk, tok,γk) expresses that between the visits of nodes f romk and tok,
at least γk time units must pass. An example of EDRT is shown in Figure 9(b). The
dashed edge from v0 to v4 shows that at least 50 time units have to pass between the
release of these two nodes.

Task Automata

Task automata (Fersman, Pettersson, & Yi, 2002) is a very expressive model based
on graph structures, extending the well-known timed automata model (Bengtsson
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(a) DRT. (b) Extended DRT.

Fig. 9: A DRT task and its extension to EDRT.

and Yi, 2003) to model task release patterns. Timed automata are finite automata
extended with real-valued clocks to specify timing constraints as enabling condi-
tions, i.e., guards on transitions. The essential idea of task automata is to use the
timed language of an automaton to describe task release patterns.

A task automaton can also be represented by a graph G = (V,E). Similar to
DRT, each node v ∈ V represents the release of a type of job, with WCET c(v)
and relative deadline d(v). A task automata has an initial node which is the start
of each execution. Edges still represent the order of execution, but the labels on
edges are more expressive. An edge (u,v) is labeled with a guard g(u,v) which
is a boolean combination of clock comparisons of form x4C where C is a nature
number and4∈ {≤,<,≥,>,=}. An edge may be labeled with a clock reset r(u,v)
which resets the clock to be 0 when this edge is taken. Since the value of clocks
is an increasing real value which represents that time passes, guards and resets can
be used to constrain timing behaviors on generated job sequences. Apart from the
timing constraints, the edges may also be labeled by external events representing
the trigger of the transition.

An example of task automata is shown in Figure 10. v0 is the initial node. Event a
triggers the release of v1, which will execute for at most 2 time units. After 10 time
units passed, the transition from v1 to v2 is enabled, and v2 can be released at any
time after that by taking the transition. When the clock y counts more than (equal
to) 50 time units, the transition of edge v2 to v3 is taken, and clock x is reset to 0.
The transition from v3 to v1 needs to be triggered by event b. So if event b arrives
before clock x counts 5 time units, the transition from v3 to v1 is taken. If event b
arrives late, then v3 will repeat its computation without stop.

Fig. 10: An example of task automata
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Parallel Real-Time Task Models

When real-time systems are executed on parallel processing architectures (e.g., mul-
tiprocessors and multi-cores), it is meaningful to explore the parallelism of the work-
load to better utilize the resource. Traditional real-time systems assume full inde-
pendence among tasks. However, this is not the case when the workload consists of
several processes communicating and cooperating with each other. As a result, task
models that can describe fine-grained synchronizations among tasks (Feitelson and
Rudolph, 1992) are requested.In this section, we introduce several parallel real-time
task models.

Gang Task Model

The gang task model (Berten, Courbin , & Goossens, 2011; Dong and Liu, 2017)
describes the simple parallel execution behavior where the task executes on several
processing units simultaneously. A gang task τi is characterized by (Ci,mi,Di,Ti)
where Di and Ti are relative deadlines and minimum inter-release separations as
before. The task contains mi parallel threads, which must execute simultaneously.
Ci denotes the WCET of each thread, and thus the total workload of the task is
Ci×mi.

Figure 11 (b) shows an example of a task set with 3 sporadic gang tasks with
implicit deadlines executing on 4 processors. Task τ1 is characterized by C1 = 2,
m1 = 2, D1 = T1 = 10, task τ2 is characterized by C2 = 2, m2 = 2, D2 = T2 = 5,
and task τ3 is characterized by C3 = 3, m3 = 3, D3 = T3 = 5. We assume τ1 has the
highest priority, and τ3 has the lowest priority. At time 0, tasks τ1, τ2, τ3 are released
simultaneously, and τ1, τ2 start execution first due to their higher priority. At time
2, τ1 and τ2 finish execution and τ3 starts execution. At time 5, τ2 is released again,
and it starts execution. τ2 only occupies 2 processors, but τ3 cannot execute from
time 5 since all its threads must execute simultaneously and only one idle processor
is not enough. At time 7, task τ2 finishes and task τ3 starts execution. Finally task τ3
completes its execution at time 10.

Parallel Synchronous Task Models

The fork-join task model introduced in Lakshmanan, Kato, & Rajkumar (2010) de-
scribes structures with interleaving sequential and parallel segments which are com-
mon in parallel programs such as OpenMP (OpenMP, 2018; Sun et al., 2017; Wang
et al. , 2017). A segment is a continuous section of computation operations. The
execution of a fork/join task starts with a sequential segment, and forks into several
parallel sections in a parallel segment, then joins together at the end of segment. This
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Fig. 11: One possible execution pattern of a sporadic gang task.

pattern repeats for multiple times in a task, and the number of threads in different
parallel segments is same.

A fork/join task τi is also characterized by (Ci,mi,Di,Ti), where Di is the rela-
tive deadline and Ti is the minimum inter-release separation, which are similar with
before. mi is the parallelism, i.e., number of threads, of each parallel segment. All
parallel segments share the same mi. Ci = {C1

i ,C
2
i , ...,C

j
i } is the set of worst-case

execution times for the segments. When k is odd, Ck
i is the WCET of sequential seg-

ment sk on an unit-speed processor. When k is even, Ck
i is the WCET of each thread

in parallel segment sk on an unit-speed processor. The segments with odd numbers
are sequential and the task starts and ends with a sequential segment. An example
of a fork/join task is shown in Figure 12(a).

(a) A fork-join task. (b) A parallel synchronous task.

Fig. 12: Parallel synchronous tasks.

The parallel synchronous task model extends the fork/join task by removing the
constraint that odd segments must be sequential (Saifullah et al., 2011). Instead, the
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number of threads in any segment is arbitrary. An example of this model is shown
in Figure 12(b).

DAG Task Model

A DAG parallel task (Saifullah et al., 2011; Bonifaci, 2013; Jiang et al., 2017, 2016;
Saifullah et al., 2012) models parallel workload structure with arbitrary directed
acyclic graphs. A DAG parallel task τi is characterized with (Ci,Di,Ti), where Di
and Ti are relative deadlines and minimum inter-release separations as before. Ci =
(C1

i ,C
2
i , ...,C

j
i ) records the WCETs of each thread of the task. The DAG parallel task

has an internal structure modeled by a directed acyclic graph G = (V,E), describing
the precedence relationships among the threads. Each node v∈V represents a thread
with worst-case execution time c(v) and each edge e ∈ E represents the execution
order of the two nodes it connects. A node is eligible for execution only when all its
predecessors have completed execution. An example of the DAG parallel task model
is shown in Figure 13. v0 and v1 can execute simultaneously since both of them have
no procedessor nodes. v2 can start execution only when all of its predecessor nodes
(v0 and v1) complete.

Fig. 13: A DAG task.

Both the DAG parallel task model and graph-based task models, e.g., the DRT
model, introduced in last section use directed graphs to model the workload struc-
ture, but they are different in the following aspects. First, the multiple outgoing
edges of a node have forking semantics in the DAG parallel task model but have
branching semantics in DRT task model. In a DAG parallel task, all the successors
of a node v will be released for execution after v is finished, while in a DRT task,
only one of the successors will be eligible. Second, each edge in a DRT task is af-
filiated with a minimum inter-release separation, and a node is released only after
such a time interval has passed since the release of its predecessor. In a DAG paral-
lel task, all the successors become eligible for execution as soon as the predecessor
finishes execution.
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Parallel Conditional Task Models

Combining the graph-based task models in last section and the parallel task models
in this section yields a more expressive representation which can model workload
structures with both branching semantics and forking semantics, such as the work-
load generated by OpenMP programs.

One example of such combination is the parallel conditional task model (Baruah,
2015; Melani et al., 2015). Similar to a DAG parallel task, a parallel conditional
task τi has a minimum inter-release separation Ti and a relative deadline Di. The
graph structure of a parallel conditional task has two types of nodes. The first type
is regular nodes, which model the execution threads (similar to the nodes in DAG
parallel tasks). The second type is conditional nodes, which represent the start/end
of branching structures. A node v in either type is affiliated with a WCET value
c(v). The start node of a conditional branch is denoted by a diamond and the end
node is denoted by a rectangle. A start node must be paired with an end node, and
there is no edge pointing to nodes outside the branching structure defined by this
pair of start/end nodes. An example of conditional DAG tasks is shown in Figure
14(a). The execution starts with v0, and traverses along the edges. v2 and v6 are a
pair of start/end nodes of branching structures. Only one path in {v2,v4,v6} and
{v2,v5,v6} can be chosen to be traversed, since they are different branches in a
branching structure and only one branch can be executed at one time.

The fork-join real-time task model (Stigge, Ekberg, & Yi, 2012; Sun et al. , 2016)
is another way to combine the conditional branching and parallel workload struc-
ture. A fork-join real-time task model is represented by a hypergraph G = (V,E).
Each v ∈ V denotes the release of a job labeled with the worst-case execution time
c(v) and relative deadline d(v) as in DRT. There are two types of edges in the
graph. One type is sequential edges, and the other type is hyperedges. A sequen-
tial edge is the same as an edge in the DRT model. A hyperedge is actually a set of
edges starting with the same node or ending with the same node. A fork hyperedge
{(u,v1),(u,v2), ...,(u,vi)} is annotated with an intersecting double line in the graph
(as shown in Figure 14(b)), and includes a set of edges which start with the same
node, representing the start of multiple parallel tasks. Correspondingly, a join hy-
peredge {(u1,v),(u2,v), ...,(ui,v)} is annotated with an intersecting single line and
includes a set of edges which end with the same node, representing the end of paral-
lel tasks and all joining back to the sequential part. A fork hyperedge must be paired
with a join hyperedge, and the fork/join structure can be nested. All fork edges start-
ing from the same node are labeled with same minimum inter-release separation and
it is the same with join hyperedges. An example of the fork-join real-time tasks is
shown in Figure 14(b). Assume that a job sequence is denoted by J = (J0,J1, · · ·)
with job parameters Jk = (rk,vk) of release time rk and job type vk. A possible job
sequence is {(0,v0),(4,v1),(3,v2),(3,v3),(5,v4),(6,v5),(9,v7),(5,v6)(15,v8)}.
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(a) A conditional DAG task. (b) A fork/join real-time task.

Fig. 14: Examples of parallel conditional tasks.

Data-Flow Task Model

The data-flow graph models (Lee and Messerschmitt, 1987; Lee and Seshia, 2011;
Singh and Baruah, 2017; Singh, Ekberg, & Baruah, 2017) not only represent parallel
workload structures, but also can describe the amount of data consumed at the input
and produced at the output of each computation unit. A widely used data-flow graph
model is the synchronous data-flow (SDF) graph model (Lee and Messerschmitt,
1987). An SDF is represented by a directed graph G=(V,E,PROD,CONS,DELAY ).
Each node v ∈ V (called actor) represents a computation unit and each edge e ∈ E
(called channel) represents the direction of data flow from the output of one actor to
the input of another actor. An actor consumes a certain amount data (tokens) from its
input and produces a certain amount of tokens as output in one execution. An edge e
starting with u and ending with v is labeled with (PROD(e),CONS(e),DELAY (e))
where PROD(e) represents the number of tokens produced by one execution of u,
CONS(e) is the number of tokens consumed by one execution of v, and DELAY (e)
is the number of initial tokens in channel e before the system starts run.

An actor is eligible for execution as soon as there are enough amount of tokens
on all its input channels. For node v, if every incoming edge e contains more than
CONS(e) tokens, v is enabled. After the node is executed, CONS(e) tokens are
removed from each of its input channel e and PROD(e) tokens are added to each of
its output channel e. An example of a synchronous data-flow task is shown in Figure
15(a).

The original SDF model does not involve any timing information. Some work
(Bamakhrama and Stefanov, 2011, 2013; Spasic et al., 2015) extended the SDF
model to model real-time systems by adding timing information. A sporadic real-
time SDF task model was proposed (Singh and Baruah, 2017; Singh, Ekberg, &
Baruah, 2017) by adding the following timing constraints to SDF. Each SDF task
τi has a minimum inter-release separation Ti and a relative deadline Di. Each actor
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v is affiliated with a WCET c(v). A fixed source actor vin and sink node actor vout
are defined for each task. vin is triggered when there are enough tokens on its input
channel, including an external token which arrives with a minimum inter-arrival
separation of Ti. The sink actor vout must be finished no longer than Di time units
after the arrival of the external token at vin.

An example of a sporadic real-time SDF task τi is shown in Figure 15(b), where
v0 is the source actor and v1 is the sink actor. v0 can start computation as long as
the required amount of external token arrives and at least 10 tokens at its input on
channel (v2,v0). The period is 20, enforcing the minimum inter-release separation
between two consecutive vin. If v0 is triggered at t, the execution of v1 in the same
iteration has to be completed before t +5.

(a) A synchronous data-
flow task.

(b) A sporadic real-time SDF task.

Fig. 15: An example of synchronous data-flow task model and its sporadic
extension.
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Real-Time Calculus

Real-Time Calculus (RTC) (Chakraborty, Knzli, & Thiele, 2003; Thiele, Chakraborty,
Naedele , 2000) is a theoretical framework for performance analysis of networked
embedded systems, which is rooted in the Network Calculus (Berten, Courbin , &
Goossens, 2001). RTC uses variability characterization curves (called curves for
short) (Wandeler, 2006) to model workload and resource. Comparing to the tradi-
tional real-time task model, the workload model is more general, and thus can model
a much wider range of realistic systems. Two types of curves are defined to model
workload in Real-Time Calculus. The first type is cumulative function, denoted by
R[s, t), which describes the accumulated incoming task requests during the time
interval [s, t). A cumulative function corresponds to a concrete event trace. The
second type of curves is arrival curves defined as follows:

Definition 1 (Arrival Curve). Let R[s, t) denote the total number of arrived events
in time interval [s, t), where s and t are two arbitrary non-negative real numbers.
Then, the corresponding upper and lower arrival curves are denoted as αu and α l ,
respectively, and satisfy:

∀s < t, α
l(t− s)≤ R[s, t)≤ α

u(t− s), (1)

where αu(0) = α l(0) = 0.

Intuitively, arrival curves represent, for each ∆ , the maximum and minimum
number of events arrived in any time interval of length ∆ . While cumulative function
corresponds to one concrete event stream trace, arrival curves models the common
worst-case/best-case timing behavior of a set of event stream traces whose cumu-
lative functions are bounded in certain ranges. Figure 16(a) shows an event stream
trace, its corresponding cumulative function and arrival curves. Events in a dashed
box are released simultaneously. The arrival curves in RTC can be used to precisely
or approximately represent the workload generated by many other real-time task
models. For example, it was shown in Guan et al. (2015) how to derive the work-
load of a DRT task to utilize the analysis techniques in RTC.

Fig. 16: An event sequence, its corresponding cumulative function and arrival
curves.
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Summary

This article gives a brief summary of some representative real-time task mod-
els, focusing on their expressiveness aspect. We first introduce the simple peri-
odic/sporadic task model, and how it is extended to cover burst and jitter seman-
tics. Second, we introduce the graph-based real-time task models describing more
complex workload release patterns. What follows are parallel real-time task models
describing parallel inter-task workload structures. Finally, arrival curves in Real-
Time Calculus are introduced as a general workload representation.
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