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Abstract—Currently the main approaches to model-based de-
sign of embedded software rely on the synchronous paradigm
where the executions of software components are either statically
ordered or enforced using predefined orderings e.g. Simulink
diagrams [1]. However, these approaches may result in resource
over provisioning and inflexibility e.g. adding a new function
block may require re-designing the whole system.

To overcome these drawbacks, we use a dynamic approach
allowing multi-tasking implementation of software components
using real-time tasks. The challenge is run-time scheduling
and schedulability analysis of real-time tasks with inter-task
communication (i.e. resource sharing). In this paper, we use
a graph-based task model (DRT [2] developed in previous
work) to describe software components as a system of real-time
tasks sharing not only a uniprocessor but also non-preemptive
resources e.g. accesses to shared data. However, timing analysis
for such general task model with mixed execution of preemptive
and non-preemptive jobs is yet to be developed. As the main
technical contribution, we present an exact schedulability test
for task systems containing both preemptive and non-preemptive
computation jobs with experimental evaluations showing the
efficiency of our approach for realistic workload such as the
engine control applications. We also present an approach to
generate event-triggered Ada programs from analyzed design
models.

I. INTRODUCTION

Model-based design (MBD) has become an established
approach for developing embedded software. The basic idea
of this approach is to use formal models throughout the de-
velopment cycle, from design, to analysis, to implementation.
Existing MBD solutions, such as Simulink1 use Synchronous
Block Diagrams (SBDs) [33] as the model of computation.
The basic component in an SBD is a block, which can be
a state machine (known as Stateflow [25] in Simulink) with
inputs and outputs to be used for designing controller software.
The external events that can work as inputs are assumed to be
generated by periodic signals and outputs of blocks can be
connected to inputs of other blocks to form a diagram. The
execution of a block corresponds to a local reaction step of
the corresponding state machine: the machine reads its local
inputs, computes its local outputs and updates its local state.
The topological dependency among the blocks defines a partial
order relation which is maintained during execution within a
synchronous step.

To generate executable code from the model, Simulink uses
a step interval with a fixed (positive) size, which is obtained

1Simulink is a Registered Trademark of The MathWorks, Inc. [1].

based on the user-specified “base rate”. Every block has a
sample time or period, which should be an integer multiple
of the “base rate”. A single task implementation of the model
executes all the blocks maintaining their partial order relations
to avoid data inconsistency. If the model is multi-rate, where
different parts are executed at different periods, the single task
implementation should run at the fastest possible period. As
a result, the execution of the longest chain of blocks should
fit within one period of the base rate. This requirement can
significantly reduce schedulable utilization of the system and
also reduces flexibility of the implementation [34].

Multi-task implementation can provide improvement in uti-
lization by mapping blocks to different tasks and use preemp-
tive scheduling. However, tasks now need to communicate
with each other if their mapped blocks exchange data [34].
This is equivalent to solving resource sharing problem of
multi-tasking as the tasks can communicate using shared data.
Existing multi-task implementations such as [35], [36] focus
on using periodic tasks and lock-free inter-task communica-
tion. However, a periodic task is not well-suited to model
state-dependent behavior as execution behavior of all states
should be captured by single job type, which may reduce
schedulability.

Modeling state-dependent task execution behavior is the key
motivation behind graph-based real-time task models [3]. The
Digraph Real-Time (DRT) task model [2] is an expressive
graph-based model with efficient timing analysis for indepen-
dent tasks [21]. In this paper, we choose DRT as a represen-
tative of graph-based models for multi-task implementation.
So to handle inter-task communication, DRT tasks need to be
extended with resource sharing.

To solve resource sharing problem of DRT tasks, we pro-
pose non-preemptive execution of a job accessing shared data.
Non-preemptive execution not only simplifies mutual exclu-
sion in shared data access but also reduces preemption related
overheads and minimizes delay in control applications [6].
However, all the jobs of a task may not use shared data and
it is reasonable to use non-preemptive execution only during
shared data access. As a result, DRT tasks will have both
preemptive and non-preemptive jobs. Existing timing analysis
methods for DRT tasks can handle either fully preemptive [21]
or fully non-preemptive jobs [22]. To allow mixed execution
of preemptive and non-preemptive jobs in DRT, we need to
develop a new timing analysis method.

Timing analysis for non-preemptive execution is known to
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be challenging even for periodic tasks [17] due to a scheduling
anomaly, known as self-pushing. Self-pushing occurs when
high priority jobs released during non-preemptive execution
of a job are pushed ahead to interfere successive jobs. As a
result, it is difficult to find the worst-case interference suffered
by a job. Self-pushing also effects timing analysis of graph-
based tasks such as DRT, as shown in the case of fully non-
preemptive jobs [22]. In the setting of this paper, such analysis
has additional difficulty because tasks can now release both
preemptive and non-preemptive jobs by following different
paths of its graph.

Our main technical contribution in this paper is an ex-
act fixed priority uniprocessor schedulability test for DRT
tasks containing both preemptive and non-preemptive jobs. To
achieve this, we first define the concept of time interval during
which the processor is continuously busy. Such intervals (also
known as busy window) are utilized in constructing worst-case
execution scenarios for DRT jobs. The main challenge here is
to predict the exact size of the busy window leading to the
maximal interference for a job. We overcome this problem
by (a) systematically extending the scheduling window to
construct a busy window that maximizes interference and
(b) using workload abstractions in computing interferences.
Interestingly, we need different schedulability tests for pre-
emptive and non-preemptive jobs as these require different
workload abstractions and busy window constructions. As a
result, our test is a generalization of the previous schedulability
tests for fully preemptive [21] and fully non-preemptive DRT
tasks [22].

An experimental evaluation of our method shows that the
average analysis run-time is below 10 seconds for task sets
with maximum 25 tasks and 55% utilization. As potential
application, we show a fully non-preemptive engine controller
task of 23% utilization is scehdulable even with additional re-
source sharing DRT task set of more than 10% utilization. This
is useful considering the fact that usually engine controller
task run alone in a processor due to their complex release
behavior. As a final contribution, we provide a code generation
method in Ada to implement event-triggered job release and
non-preemptive resource sharing with DRT model.

The rest of the paper is organized as follows. First we review
previous related work on timing analysis of non-preemptive
scheduling, resource sharing and code generation in Section
II. Section III introduces the task model considered in this
work. Our proposed exact schedulability analysis method is
described in Section IV. The proposed method is evaluated in
Section V. In Section VI, we illustrate a way to implement
non-preemptive resource sharing for DRT in Ada using pro-
tected object. Finally, we conclude the paper with a summary
together with future works in Section VII.

II. RELATED WORK

Semantics-preserving implementation from SBD models is
possible using a simple read-compute-write loop for single-
rate system models. Commercial code generators like Simulink
embedded coder [35] and SCADE KCG [36] provide periodic

and sporadic task synthesis from both normal and Synchronous
Finite State Machine (FSM) blocks which is highly inefficient
in terms of resource utilization [32]. Periodic multi-task im-
plementation is optimized in [43] by partitioning the FSMs
based on the periods of their trigger events. Preservation of
synchronous semantics is difficult [32] in the case of multi-
rate models where multi-task implementation is more eligible.
Several works (e.g., [34], [41]) propose lock-free sample-and-
hold buffering to ensure correct semantics at the price of
memory overhead and delays.

The logical execution time (LET) [28] concept assumes I/O
as zero execution time activity which is performed at the start
and the end of the task execution. Such task-level timed I/O
semantics is also used in the Timed Multitasking Ptolemy
environment [31] and in TrueTime toolbox [30]. However,
this semantics increases delay in data reading as a task can
finish computation of data long before the deadline of the
current job. An emerging model based design approach is
to separate development environment for the plant and the
controller and use co-simulation, such as [29]. However, even
in this approach controller tasks have to share resource for
data transfer and synchronization.

Schedulability analysis techniques for periodic tasks us-
ing different resource sharing protocols in uniprocessor are
presented in [4]. In case of graph-based task models, Jeffay
et al. [10] proposed a resource sharing protocol called the
Deadline Dynamic Modification (DDM) for sporadic task
with multiple sequential execution phases. Ekberg et. al [11]
provided the feasibility analysis of an optimal resource sharing
protocol for the Generalized Multiframe (GMF) [5] task
model. Both of these protocols [10], [11] are for dynamic
priority based scheduling.

An alternative solution to the problem of using complex
buffer management or resource sharing protocols to maintain
data consistency is to use non-preemptive execution while
accessing the data. This eliminates possibilities of data corrup-
tion due to the preemption from high priority tasks while a low
priority task is accessing the data. Non-preemptive resource
access also simplifies the situation of nested access to shared
resources as a job can not be preempted while accessing the
shared data.

Non-preemptive scheduling of periodic tasks has been ana-
lyzed for CAN bus [17]. George et. al [18] provided a general
analysis of fully non-preemptive scheduling for periodic tasks.
In case of task models that are not periodic, DRT has a
feasibility analysis for fully non-preemptive scheduling [22].

Mixed execution of preemptive and non-preemptive jobs is
known as limited preemptive scheduling in real-time system
literature. Buttazzo et al. in [6] summarized existing limited
preemptive schedulability analysis methods for periodic and
sporadic tasks. Baldovin et al. [7] explored different imple-
mentation strategies to execute a critical section using fixed
priority limited preemptive scheduling of periodic tasks. To
the best of our knowledge, limited preemptive scheduling of
graph-based task models is only considered for the Sporadic
DAG task model [19] in multiprocessor settings [8]. Intra-job
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parallelism inherent in DAG model is of limited application in
uniprocessor while the task model considered by us can cap-
ture complex job-level release patterns even in uniprocessor. In
future, we will consider an extension of DRT with Fork-Join
feature [20] to apply our proposed methods in multiprocessor.

Busy window based timing analysis is originally proposed
by Lehoczky [12] and extended by Tindell [9] for periodic
tasks executing in uniprocessor. In [14], authors applied busy
window technique for sequential task graphs executing pre-
emptively and communicating non-preemptively using CAN
bus messages. MAST [37] tool provides timing analysis
of object-oriented real-time system designed by MARTE
UML [38] implementing offset based response time analy-
sis [15]. However, the analysis in both [37] and [14] apply
only for acyclic or tree-shaped task graphs. Kurtin et. al [16]
proposed a timing analysis for cyclic task graphs combining
precedence constraints and offsets. Existing timing analysis
techniques on task graphs have three major differences with
our approach. Firstly, existing work focuses on meeting end-
to-end deadlines where our method tries to meet individual
deadlines of jobs in a task graph. Secondly, majority of the
existing work focuses on multiprocessor platforms while our
analysis is for uniprocessor. Finally, our method is valid for
arbitrary task graphs while existing techniques mostly focus
on acyclic task chains.

III. TASK MODEL

In this section, we review the syntax and semantics of the
DRT task model. In addition, we introduce non-preemptive
jobs in the context of DRT model that will be used in the
analysis presented in subsequent sections.

A. Syntax

A DRT task T is described by a directed graph G(T ) =
(V,E), where V and E denote the set of vertices and edges,
respectively. Each vertex v ∈ V represents a job type, which
is characterized by a worst-case execution time (WCET),
denoted by e(v), and a relative deadline, denoted by d(v).
It is assumed that e(v) and d(v) are positive integers. Each
instance of a job type is called a job. At runtime, a task releases
a sequence of jobs. Each job needs to finish its execution
not later than its deadline. In this case, the job is said to be
schedulable.

Each edge (v, u) ∈ E is labeled by a positive integer,
denoted by p(v, u), which specifies the minimum inter-release
separation time between the respective jobs. The absence of
an edge between v and u means that a job of type u cannot be
released directly after a job of type v. Multiple edges outgoing
from a vertex show a non-deterministic choice for the type of
the next job. A job type v ∈ V has a constrained deadline if
for all (v, u) ∈ E it holds that d(v) ≤ p(v, u). Throughout
this work, we assume that all deadlines are constrained.

In addition to the original syntax [2] of DRT task, we
annotate a job type v ∈ V to be either preemptive or non-
preemptive. Assuming τ as a set of DRT tasks, we denote
the set of all non-preemptive job types of τ by NPR(τ). This
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Fig. 1: A DRT task with five vertices. The shaded job types
v1 and v5 are non-preemptive.

notation generalizes fully preemptive and fully non-preemptive
DRT task sets. A fully preemptive task set has NPR(τ) = ∅,
while the latter one is achieved by setting v ∈ NPR(τ) for all
v ∈ V (T ) for any T ∈ τ .

We assume that each task T is assigned a fixed priority
which is specified by a unique number, denoted by πT .
A lower value of πT shows a higher priority. During the
execution of a preemptive job, if a higher priority job is
released, the running job is suspended, and the newly arrived
one will get the processor. In contrast, once a non-preemptive
job starts its execution, it continues until it is finished.

Figure 1 illustrates a sample DRT task with five vertices and
nine edges. The shaded jobs v1 and v5 are non-preemptive,
while the rest of the jobs are preemptive.

B. Semantics

The semantics of a DRT task is captured by the job se-
quences it can generate. A job is specified by a triple (R,C, v),
where R, C, and v, respectively, denote the corresponding
release time, execution time, and job type. A job sequence is
defined as a (possibly infinite) sequence of jobs. A DRT task
T described by G(T ) = (V,E) can generate the job sequence
[(R1, C1, v1), (R2, C2, v2), . . .] if v1 → v2 → . . . is a path in
G(T ), and
• Ri+1 −Ri ≥ p(vi , vi+1), for all i ≥ 1; and
• Ci ≤ e(vi), for all i ≥ 1.
Note that the release times of two consecutive jobs in

a job sequence are only separated by a lower bound, thus
subassuming all types of sporadic job release behavior. On
the other hand, the execution time is upper bounded by the
WCET of the corresponding job. For non-preemptive job
execution, this is similar to the floating model of Deferred
preemption scheduling [6] where the maximum length of the
non-preemptive region is specified with the task model.

IV. SCHEDULABILITY ANALYSIS

In this section, we present our exact schedulability test for
DRT tasks with mixed preemptive and non-preemptive job
execution. First we define the notion of busy window and the
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functions that abstract DRT workload in any interval. Then we
construct necessary and sufficient condition for a DRT job to
be schedulable in a given release scenario. In the next step, we
extend the schedulability condition to be usable in the worst-
case release scenario and provide relevant proofs. Finally, we
present a pseudocode of our schedulability test.

Assume a task set τ with a priority assignment Q. We want
to test whether jobs of job type v ∈ G(T ) of a task T ∈ τ
will always be able meet their deadlines. Let τ<T and τ>T
denote the set of tasks with higher and lower priority than
T respectively. Now we review some observations regarding
non-preemptive execution which may effect schedulability
analysis:

A. Blocking and Busy Window

Unlike fully preemptive scheduling, a higher priority job
may be delayed by non-preemptive execution of a lower
priority job that starts before it. To incorporate this blocking
effect into schedulability analysis, we define the maximum
blocking time from a lower priority task experienced by a job
of job type v ∈ G(T ) as

B(τ>T ) ≡ max {e(v′) | v′ ∈ NPR(τ>T )}. (1)

With non-preemptive execution, the interference that a job
experiences also depends on the jobs that execute in the
continuously busy interval before the concerned job’s re-
lease [13],[22]. This concept of continuously busy interval,
also known as busy window is inspired by Lehoczky’s notion
of busy period [12]. We formally define a busy window in the
context of mixed preemptive non-preemptive job execution as
following:

Definition 1 (Busy Window): Consider a job J , released at
time tr, with a given release scenario for other jobs (released
by the J’s task or by other tasks). We define t1 and tl as:

t1 ≡ max {t ≤ tr | all the jobs with a priority higher than
or equal to J released before t have finished their
execution by (i.e., before or exactly at) t}, (2)

tl ≡ max {t < tr | t is the start time of a non-preemptive
lower priority job (than J)}. (3)

We denote the job that starts at tl by Jl, and its WCET by el.
In particular, if Jl does not exist, tl = −∞, el = 0. The busy
window of J is defined as the interval [Ws,Wf], where

Ws =

{
t1, if t1 ≥ tl + el,

tl, otherwise,
(4)

and Wf is the finish time of J .
Figure 2 demonstrates the busy window of a job J in two
possible cases. In the scenario depicted in Fig. 2a, the busy
window does not include any lower priority job. In contrast,
Fig. 2b illustrates a situation where the busy window begins
with the execution of a non-preemptive lower priority job.

Remark 1: According to the definition of t1 in (2), the
processor is continuously busy during [t1, tr].

t0 1 2 3 4 5 6 7

tl
tr

t1

Jl J

Ws = t1 Wf

(a) Illustration of the first case in (4), i.e., where t1 ≥ tl+el.

t0 1 2 3 4 5 6 7

tl t1
tr

Jl J

Ws = tl Wf

(b) Illustration of the second case in (4), i.e., where t1 <
tl + el.

Fig. 2: A schematic view of busy window. (Hatched area
depicts the execution of higher priority workload than J .)

The definition of busy window in (1) entails continually
activeness of the processor during [Ws,Wf], as shown by the
following lemma.

Lemma 1: During the interval [Ws,Wf], the processor is
continually busy with job execution.

Proof 1: We first show that the processor cannot be idle
during [Ws, tr]. For this, we inspect two possible cases of
Ws in (4). If the first condition in (4) holds, which implies
Ws = t1, then according to Remark 1, the processor is busy
in [Ws, tr]. On the other side, if t1 < tl + el, which means
Ws = tl, then the processor must be busy with executing
Jl during [Ws,Ws + el]. As it is also busy during [t1, tr]
(based on Remark 1), and since t1 < Ws +el, the processor is
continuously busy during [Ws, tr]. Next, we observe that the
processor must be busy during [tr,Wf]. Otherwise, J would
be completed at some instant before Wf, which contradicts
the definition of Wf. Putting these two results together, the
processor is always busy in [Ws,Wf].

According to the definition of busy window, all higher and
equal priority jobs than J that are released before Ws must
have finished their execution by Ws. In addition, no lower
priority job (than J) is executed after Jl starts executing during
the busy window (due to the definition of Jl). Based on these
observations, the following proposition and lemma follow.

Proposition 1 (Higher Priority Interference): Let [Ws,Wf]
denote a busy window of a job J . Then, among the jobs with
an equal or higher priority than J , only those that are released
in [Ws,Wf] are executed in [Ws,Wf].

Lemma 2: In a busy window of a job J as defined in
Definition 1, from the lower priority tasks, either no job is
executed, or one non-preemptive job is executed.

Proof 2: We first notice that no preemptive lower priority
job can be executed during the busy window. To observe this,
based on (4) we consider two possible cases with respect to
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(the beginning of) the busy window. In the first case, i.e., when
t1 ≥ tl + el, there is always some workload in the system
during the busy window with the same or higher priority of
J ; hence no preemptive lower priority job can find a chance
of execution. In the second case, i.e., when Ws = tl, the
same situation holds for the time interval [t1,Wf]. Moreover,
in [Ws, t1], the non-preemptive job Jl is executing (according
to the definition of tl and since Ws = tl). As a result, again
there is no chance for a preemptive lower priority job to be
executed during [Ws,Wf].

Next, we show that at most one lower priority job may be
executed in a busy window. According to the definition of
Jl, we only need to show that no lower priority job can start
before Wf. As tr is the release time of J , after tr (i.e., during
the interval [tr,Wf]), J is always privileged for execution over
any (not started) lower priority job, which completes the proof.

B. Workload Abstraction

We use the notion of request function to capture the work-
load generated by DRT task in an interval, as defined below.

Definition 2 (Request Function, [22]): Consider a DRT task
T described by a graph G(T ). Let π = v1 → v2 → . . .→ vl
denote a path in G(T ). The request function associated to π,
defined over the domain of non-negative numbers, is described
as

rfπ(t) ≡ max
1≤j≤l

 ∑
1≤k≤j

e(vk) |
∑

1≤k<j

p(vk, vk+1) < t

 (5)

As a special case, we have rfπ(0) = 0. Intuitively, rfπ(t)
denotes the maximum workload that T can release within any
time interval of length t through π or any prefix of π. We also
define the notion of inclusive request function as follows.

Definition 3 (Inclusive Request Function, [22]): Assume
that π = v1 → v2 → . . . → vl denotes a path in G(T )
for a DRT task T . The inclusive request function associated
to π is then defined as

rf •π (t) ≡ max
1≤j≤l

 ∑
1≤k≤j

e(vk) |
∑

1≤k<j

p(vk, vk+1) ≤ t

 (6)

Based on this definition, rf •π (t) captures the maximum work-
load that can be released in any interval of length t, including
the execution time of the job released exactly at the ending
point of the interval. In particular, this implies rf •π (0) = e(v1).

For a task T , we denote the set of request functions
associated with the paths in G(T ) by RF (T ). Further, for
a task set τ = {T1, . . . , TN}, we denote all combinations
of the tasks’ request functions by RF (τ); that is, RF (τ) ≡
RF (T1)× . . .×RF (TN ). We also denote elements of RF (τ)
by r̄f = (rf (T1), . . . , rf (TN )) where rf (T ) denotes a request
function of task T . Analogously, we use RF •(T ) and RF •(τ)
to denote those of inclusive request functions.

Additionally, we require a notion for capturing the maxi-
mum workload that a task can release through any suffix of a
path. For this, we define suffix request function as follows.

Definition 4 (Suffix Request Function, [22]): Let π = v1 →
v2 → . . . → vl denote a path in the graph G(T ) of a DRT
task T . The suffix request function associated to π is defined
as

rf sfx
π (t) ≡ max

1≤j≤l

 ∑
j≤k≤l

e(vk) |
∑
j<k≤l

p(vk−1, vk) ≤ t


(7)

We also denote the set of suffix request functions of all paths
leading to a certain vertex v by RF sfx (v).

C. Analysis for a Concrete Case

In this section, we specify a necessary and sufficient condi-
tion for the job J to meet its deadline in the assumed release
scenario (or equivalently, in the respective busy window). For
presentation purposes, we define x ≡ tr −Ws, referred to as
the busy window extension [22].

We assume that T denotes the task releasing J , and v is
the job type of J . Let τ<T denote the set of tasks with a
priority higher than T . Also, let wl•(T

′)(x + t) denote the
total workload, i.e., total execution time of the jobs, released
by a task T ′ in the interval [Ws,Ws + x + t], for t ≥ 0.
Further, let wl (T

′)(x + t) denote the workload specified by
wl•(T

′)(x+ t) subtracted by the execution time of the job re-
leased at Ws+x+t, if any. We call wl•(T

′)(x+t) the inclusive
workload, and wl (T

′)(x+t) the exclusive workload. Then, the
overall inclusive workload released by higher priority tasks
than T in the interval [Ws,Ws + x+ t], for any t ≥ 0, can be
written as wl•hp(x+ t) =

∑
T ′∈τ<T

wl•(T
′)(x+ t). Similarly,

the total exclusive workload is computable by wlhp(x+ t) =∑
T ′∈τ<T

wl (T
′)(x + t). Based on this, the total inclusive

workload which may be executed during [Ws,Ws + x + t],
excluding J’s execution time, is obtained by

wl•(t) =

{
wl sfx (x)− e(v) + wl•hp(x+ t), if t1 ≥ tl + el,

wl sfx (x)− e(v) + wl•hp(x+ t) + el, otherwise,
(8)

where wl sfx (x) denotes the workload released by T during
[Ws, R] (including that of J). Also, the exclusive workload is
computed by

wl(t) =

{
wl sfx (x)− e(v) + wlhp(x+ t), if t1 ≥ tl + el,

wl sfx (x)− e(v) + wlhp(x+ t) + el, otherwise.
(9)

Based on these definitions, we provide a schedulability test
for the job J . For this, we note that J is either preemptive or
non-preemptive. If J is non-preemptive, then, it is schedulable
if, and only if, there exists a non-negative value t ≤ d(v)−e(v)
such that

wl•(t) ≤ x+ t. (10)

The intuition behind the test is that, if Condition (10) holds for
some t ≥ 0, then, according to Lemma 1, the processor must
have executed all the workload with a possible interference
with J up to time t; thus, J starts its execution in some point in
[0, t]. Since t ≤ d(v)− e(v), and also as J is non-preemptive,
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J will be completed by its deadline. Besides, if no such t is
found, then, during [Ws, d(v) − e(v)] there is always some
workload more eligible than J to execute, leading J to miss
its deadline.

Besides, if the job J is preemptive, then it is schedulable
if, and only if, there exists a positive t ≤ d(v) such that

wl(t) + e(v) ≤ x+ t. (11)

The test examines the existence of an instant t such that the
workload interfering with J released before t, as well as the
workload of J , has been completely executed.

D. Generalization
The above analysis is specific to an assumed release sce-

nario. In the next step, we explore that what the worst-case
release scenario, or the so-called critical instant, is, when
assuming a fixed busy window extension x.

Our analysis for the general case is based on the following
observations with respect to the busy window of a job J .
• For any busy window [Ws,Wf] that does not include a lower

priority job Jl, i.e., whenever t1 ≥ tl+el, there exists a busy
window w.r.t another scenario that includes the execution of
a lower priority job and leads to a worse situation for job
J , if a lower priority job Jl exists, i.e., B(τ>T ) > 0. Such
a scenario can be constructed by letting the lower priority
job start execution right before Ws, and keeping the arrival
pattern of the higher priority jobs during [Ws,Wf] intact.
From (8) and (9), it is seen that, in this latter scenario, the
interfering workload, i.e., wl(t) and wl•(t), which is written
in the LHS of (10) and (11), in the worst case, is increased
by the WCET of the lower priority job, for any t ≥ 0. This
reveals a more stringent condition for schedulability of J .

• In a busy window [Ws,Wf] that starts with the execution
of a lower priority job, the interfering workload of any
higher priority task T ′ is maximized when T ′ releases a job
right after Ws. Accordingly, in the worst case, the maximum
workload of such a task up to any time t ≥ 0 is captured
by rf (T ′)(x + t), where rf (T ′)(.) denotes the respective
inclusive or exclusive request function of T ′.
Putting it together, we provide a schedulability test for a job

J under all scenarios that reveal a busy window extension of
size x.

Lemma 3 (Sufficient Schedulability Test for a Fixed Busy
Window Extension): A job of type v released by a DRT task
T is schedulable in any release scenario which causes a busy
window extension of size x if

∀r̄f ∈ RF •(τ<T ), rf sfx ∈ RF sfx (v) : ∃t ≤ d(v)− e(v) :

B(τ>T ) + rf sfx (x)− e(v) +
∑

T ′∈τ<T

rf (T ′)(x+ t) ≤ x+ t,

(12)

when v ∈ NPR(τ), and

∀r̄f ∈ RF (τ<T ), rf sfx ∈ RF sfx (v) : ∃t ≤ d(v) :

B(τ>T ) + rf sfx (x) +
∑

T ′∈τ<T

rf (T ′)(x+ t) ≤ x+ t, (13)

otherwise.
Proof 3: We first show that when v ∈ NPR(τ), then if

there exists a t satisfying Condition (12), the job is schedu-
lable. According to Proposition 1 and Lemma 2, during time
interval [Ws,Ws + x+ t], the processor is busy no more than
b = B(τ>T ) + rf sfx (x)− e(v) +

∑
T ′∈τ<T

rf (T ′)(x+ t) time
units. According to Lemma 1, the processor is busy during
[Ws, tr], which means that it executes exactly x time units of
the workload in this interval. Thus, the remaining workload is
bounded by b−x, which, when (12) holds, satisfies b−x ≤ t.
This means that the workload to be executed/scheduled by the
processor in [tr, tr+t] is not more than t time units. Therefore,
the processor must become idle in some point in [tr, tr + t],
where it will start to execute the job v. Consequently, the start
time of v is no later than tr + t. Since t ≤ d(v) − e(v), the
job v will finish its execution by its deadline in this situation.

When v 6∈ NPR(τ), the workload released by higher
priority tasks after the start of J can also delay its finish time.
If Condition 13 holds, we are sure that there exists a time
instant no later than the deadline of J at which all interfering
workload, as well as the J’s workload are computed. This
means that J meets its deadline.

Based on Lemma 3, if the schedulability condition holds
for all possible values of x, then the job turns out to be
schedulable. We notice that x is upper-bounded by a value L,
where L is the smallest t satisfying

∑
T∈τ mrf (T )(t) ≤ t [22],

in which

mrf (T)(t) ≡ max {rf (t) | rf(.) ∈ RF (T )} (14)

Using this, we present a sufficient test for schedulability of a
job.

Lemma 4 (Sufficient Schedulability Condition): Consider a
job J of type v that is released by task T . If v ∈ NPR(τ),
then J is schedulable if

∀x ≤ L, r̄f ∈ RF •(τ<T ), rf sfx ∈ RF sfx (v) : ∃t ≤ d(v)−e(v) :

B(τ>T ) + rf sfx (x)− e(v) +
∑

T ′∈τ<T

rf (T ′)(x+ t) ≤ x+ t.

(15)

In addition, if v 6∈ NPR(τ), then J is schedulable if

∀x ≤ L, r̄f ∈ RF (τ<T ), rf sfx ∈ RF sfx (v) : ∃t ≤ d(v) :

B(τ>T ) + rf sfx (x) +
∑

T ′∈τ<T

rf (T ′)(x+ t) ≤ x+ t. (16)

Now, we argue that the provided test serves as a necessary
condition for schedulability of a job J , too. This is because
that one can always construct a scenario which generates the
same workload as accounted by the LHS of (15) (or (16),
according to the preemptability of J). This means that if
the condition does not hold for a certain combination of the
request functions and a specific value of x, then there exists an
actual scenario under which J misses its deadline. As a result,
the tests provide a necessary condition for schedulability as
well.
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Require: v, τ, B(τ>T ),RF •(τ<T ),RF (τ<T ),RF sfx (v)
Ensure: v is schedulable or not

1: if v ∈ NPR(τ) then
2: for all r̄f ∈ RF •(τ<T ) do
3: for all rf sfx ∈ RF sfx (v) do
4: for ∀x ≤ L do
5: if ∀t ≤ d(v)− e(v) : B(τ>T ) + rf sfx (x)−
e(v) +

∑
T ′∈τ<T

rf (T ′)(x+ t) > x+ t then
6: returnfalse
7: else
8: for all r̄f ∈ RF (τ<T ) do
9: for all rf sfx ∈ RF sfx (v) do

10: for ∀x ≤ L do
11: if ∀t ≤ d(v) : B(τ>T ) + rf sfx (x) +∑

T ′∈τ<T
rf (T ′)(x+ t) > x+ t then

12: returnfalse
return true

Fig. 3: Algorithm for schedulability of a vertex v

Theorem 1 (Schedulability Test): Conditions (15) and (16)
in Lemma 4 provide a necessary and sufficient schedulability
test for a job of type v released by task T , for the situations
v ∈ NPR(τ) and v 6∈ NPR(τ), respectively.

Figure 3 shows the pseudo-code of the schedulability test.
To tackle the combinatorial problem of having to try all combi-
nations of the request functions, we employ the combinatorial
abstraction refinement algorithm proposed in [22]. However,
details of the abstraction refinement framework is omitted in
the pseudo-code.

V. EVALUATION

A. Experiments with random task sets

TABLE I: Task set parameters

Job types Branching degree p d/p e/d

[3, 5] [1, 3] [50, 200] [0.5, 1] [0, 0.02]

In this section we evaluate scalability of our proposed
method by running it on task sets of different sizes while
measuring run-times and acceptance ratios. We use a Python
implementation of our methods based on the Python library
used in [22]. To generate a task, a random number of job
types is created with edges by maintaining a specified range
of branching degrees. Minimum inter-release separation times
on edge labels are chosen with uniform probability. Then job
deadlines are chosen randomly with a uniform ratio to the min-
imum outgoing edge label and job execution times are chosen
randomly with a uniform ratio to the job deadlines. Finally,
jobs are randomly marked as non-preemptive according to a
given ratio of non-preemptive to total number of jobs. Table
I gives the details of the used parameter ranges where p, d
and e denote minimum inter-release time, job deadline and
job execution time respectively.
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(a) Average analysis run-time of the proposed method without timeout for
different utilization and ratio of non-preemptive jobs.
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(b) Acceptance ratio of the task sets with different utilizations and ratio of
non-preemptive jobs.

Fig. 4: Experimental Evaluation

We randomly generate each task set with a given goal of
a task set utilization. Here we denote a task utilization as
the highest ratio of the sum of job WCETs over the sum
of minimum inter-release times in all cycles of a DRT task.
Randomly generated tasks are added to a task set until the
total utilization of the task set reaches the goal. To see effect
of non-preemptive jobs we randomly mark jobs in tasks as
non-preemptive to create task sets with 5% and 10% non-
preemptive jobs. The motivation of using smaller number of
jobs as non-preemptive is that these settings tend to give more
feasible task sets.

We evaluate two aspects of our analysis method. One is the
analysis run-time for growing task set sizes and the other is the
effect of non-preemptive jobs in acceptance ratio. We ran our
code in a dual-core processor with frequency 2.10 GHz and a
memory of 16 GB. We analyzed about 200 task sets per slot of
3% utilization and measured average run time in each slot. The
generated task sets have sizes upto 25 DRT tasks. Although
the reported results are platform and task parameter dependent,
they provide a qualitative overview of the scalability of our
method.

Figure 4a shows average analysis run-time of our method
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for task sets with different utilizations. The analysis run-time
starts to increase after 30% utilization and increases expo-
nentially after 55% utilization. This is expected, as the busy
window extension used in our analysis grows with increasing
utilization. A larger busy window also means increased effort
to derive request functions in a larger interval. However, the
ratio of non-preemptive jobs has little impact on the analysis
run-time as it starts to increase in almost identical utilizations
for different ratios of non-preemptive jobs. Figure 4b shows
that the number of feasible task sets drops to almost zero after
45% utilization. This is still useful considering 4a, as we can
analyze potentially feasible task sets before the analysis time
starts to increase quickly.

B. Experiments with engine controller

To apply our method in a more realistic scenario, we
consider the recently proposed automotive industrial case
study by Robert Bosch GmbH [39]. In this case study of
Engine Management System (EMS), one of the workload is
a engine controller or angle synchronous task. An engine
controller task releases different jobs based on different engine
speeds. In the original case study, this task is mapped into a
separate processor due to its complex release behavior and
only one or two very low utilization task is allowed to run
with it. However, in a recent work [40], DRT has been shown
to be a faithful and fine grained model for such workload.
Inspired by this progress, we consider schedulability of a DRT
model representing a engine controller (see Figure 5) with
randomly generated task set as before. The engine controller
DRT task in consideration is fully non-preemptive with worst-
case utilization of 23.07%. Additionally we assign the highest
task priority to this task to maximize its interference on other
co-running tasks. In the experiments, we vary the ratio of
non-preemptive jobs from 5% to 20% in randomly generated
tasks to see the effect on acceptance ratio. As seen in Table
II, acceptance ratio drops very quickly for task sets with
more than 10% non-preemptive jobs. On the positive side,
we observe that some additional task set with utilization more
than 10% is schedulable even in the presence of a highest
priority fully non-preemptive engine controller.

TABLE II: Acceptance ratio with engine controller

v1 v2 v3

〈5, 22〉 〈3, 13〉 〈1, 9〉

22

22

13

13

23 13 9

Fig. 5: An engine control DRT task example extracted using
the methods of [40]. Job types v1, v2 and v3 represent
jobs released in speed range [500,2500), [2500,4500) and
[4500,6500) rpm respectively.

VI. CODE GENERATION APPROACH

In order to implement the semantics of a DRT task set
in Ada, we adopt an approach similar to the one proposed
in [23]. The main difference between our approach and [23]
is in allowing job release by external events and in realizing
the non-preemptive executions of a job type. In the following,
we first review the time-triggered and event-triggered release
of a DRT task implemented in Ada. Then, we discuss the
implementation of non-preemptive execution.

1 begin
2 Last_Release := Clock;
3 loop
4 <<T1_loop>>
5 case Current_State is
6 when s =>
7 s_code;
8 -- Task will be blocked here for event
9 Event_receiver.Wait(event_type);

10 if event_type = u then
11 Current_State := u;
12 Last_Release := Clock;
13 goto T1_loop;
14 else if event_type = v then
15 Current_State := v;
16 Last_Release := Clock;
17 goto T1_loop;
18 end if;
19 when u =>
20 -- Granted access to Event_receiver will raise the

priority
21 Event_receiver.u_code;
22 -- Priority will return to the normal one
23 delay until Last_Release + p3;
24 Current_State := w;
25 Last_Release := Last_Release + p3;
26 goto T1_loop;
27 -- Respective code is also generated for v and w
28 ...

Listing 1: Event-triggered task release

We illustrate our approach using a sample DRT task T1
shown in Fig. 6. In this example, we assume that only u is a
non-preemptive job; thus, NPR(τ) = {u}. Execution of each
job type comprises calling its respective procedure. The code
implementing the graph structure, which governs the release
times of the jobs, is implemented in the task body, as seen
in Listing 1. We assume jobs can be released either time-
triggered or event-triggered way. In case of time-triggered job
release, for job types (vertices) with more than one outgoing
edges, we suppose that each outgoing edge is labeled with a
logical condition, called a guard. At runtime, the edge with the
minimum inter-release time whose guard evaluates to True is
taken.
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Fig. 6: A sample DRT task T1.

For event-triggered job release, we assume the task to be
blocked in a event that is generated by an interrupt and the job
releasing events satisfy their corresponding minimum inter-
release time between jobs. In our example, Task T1 releases
job types u and v depending on events that is generated
by an external interrupt. The corresponding Ada code is
depicted in Listing 1 where T1 is blocked on a protected
object [27] entry which inherits the priority of the interrupt. As
interrupts always have priority higher than any task, execution
of any part of that interrupt protected object will be non-
preemptive. An example of such a protected object called
Event receiver is shown in Listing 2. Notice that the code for
non-preemptive job type can be implemented as a procedure
of Event receiver. In our current example, the non-preemptive
procedure u code of jobtype u is placed in the protected
body of Event receiver. As a result, during the execution of
u code (Line 21 in Listing 1), the priority of task T1 will be
raised to the highest system priority and the execution will
be non-preemptive. There are three ways to execute a task
non-preemptively in Ada. Since Ada 2005, all Ada tasks in
a system can execute non-preemptively using Non-Preemptive
FIFO Within Priorities task dispatching policy. This policy
allows tasks to run to completion unless they are blocked or
execute a delay statement. However, this policy does not allow
mixed preemptive and non-preemptive execution.

Ada allows changing priority of a task during runtime by
calling the library procedure Set_Priority(Priority).
A task can raise its priority to the highest system priority be-
fore executing the non-preemptive job and return to its original
priority after the non-preemptive execution. The problem with
this approach is that dynamic priorities are not allowed in
Ada restrictions for high integrity systems called the Ravenscar
profile [24].

A more general way to execute a non-preemptive job in
Ada is to use a protected object with the highest task priority.
A protected object is a data structure that encapsulates the
shared resource for mutually exclusive access using the Ceiling
Locking Protocol (CLP) [26]. Ceiling priorities for protected
objects are statically assigned by means of a pragma when the
object is created. Protected objects have lock variables, which
are inaccessible to the programmer. The compiler includes the
necessary operations in the locks. In this case, all the non-
preemptive procedures (code blocks) from all the tasks are
placed in the protected body of the highest priority protected
object. Whenever a task tries to execute its non-preemptive

job, it simply calls the respective protected procedure. A
successful call raises the priority of the caller task to the ceiling
priority during the execution of the procedure. As the protected
procedure is executed with the highest priority, all preemptions
are disallowed during its execution. This way has two clear
advantages over dynamic priorities approach. Firstly, task
priority raising/lowering during the non-preemptive execution
is handled by the runtime system. Secondly, this type of non-
preemptive execution of the protected object is allowed in
Ravenscar.

1 protected Event_receiver is
2 -- All non-preemptive procedures are declared here
3 entry Wait (Event: event_type ID);
4 -- Highest priority
5 pragma Interrupt_Priority (Interrupt_Priority’Last);
6 procedure u_code;
7 -- Declaration for other non-preemptive procedures
8 ...
9 private

10 procedure Handle_Incoming_Event;
11 pragma Attach_Handler (Handle_Incoming_Event,

Event_Arrival);
12 Buffer : Contents (Message_Size);
13 Ready : Boolean := False;
14 end Event_receiver;
15

16 protected body Event_receiver is
17

18 procedure Handle_Incoming_Event is
19 begin
20 -- interrupt handler code
21 Ready := True;
22 end Handle_Incoming_Event;
23

24 entry Wait (Event: event_type ID) when Ready is
25 begin
26 -- this entry will be unblocked by the interrupt
27 Ready := False;
28 end Wait;
29

30 procedure u_code is
31 begin
32 -- This code will be executed non-preemptively
33 end u_code;
34

35 -- Defintion of the other non-preemptive procdures
as part of this protected object body

36 ...
37 end Event_receiver;

Listing 2: Implementation of a non-preemptive job using
interrupt handling protected object.

As we see from the above discussion, the protected object
approach is the most suitable way to implement the mixed
preemptive non-preemptive execution of jobs in Ada.

VII. CONCLUSION

DRT task model can precisely capture state-dependent
workload via multiple job types. However to be considered
for multi-task implementation, DRT should be extended with
resource sharing. One effective way to achieve this is to non-
preemptively execute the jobs that use shared resource. In
this paper, we provide an exact schedulability test method
for DRT tasks with mixed preemptive non-preemptive job
execution. Experimental evaluation shows the efficiency of the
method to analyze potentially feasible task sets. Meanwhile,
we propose an Ada implementation which preserves the event-
triggered semantics of DRT tasks and achieves non-preemptive
execution by employing protected objects.
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We identify following future works based on the results of
this paper:
• A line of future research is to explore resource sharing

protocols such as the Priority Ceiling Protocol (PCP) and
the Priority Inheritance Protocol (PIP) [42] to understand
their overhead and suitability for DRT tasks.

• An interesting extension of the proposed method is to con-
sider non-preemeptive resource sharing in case of Fork-Join
DRT task [20] which is more suitable for multiprocessor
platforms.

• A tool implementation incorporating the proposed timing
analysis methods with graphical modeling facilities would
be useful to explore more realistic case studies.
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