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ABSTRACT
Extended Linear Duration Invariants (ELDIs), an importan-
t subset of Duration Calculus, extends well-studied Linear
Duration Invariants with logical connectives and the chop
modality. It is known that the model checking problem of
ELDIs is undecidable with both the standard continuous-time
and discrete-time semantics [12, 13], but it turns out to be
decidable if only bounded execution fragments of timed au-
tomata are concerned in the context of the discrete-time se-
mantics [38]. In this paper, we further prove that this problem
is still decidable in the continuous-time semantics, although
it is well-known that model-checking Duration Calculus with
continuous-time semantics is much more complicated than
with discrete-time semantics. This is achieved by reduction
to the validity of Quantified Linear Real Arithmetic (QLRA).
Some examples are provided to illustrate the efficiency of our
approach.

KEYWORDS
Model Checking, Duration Calculus, Extended Linear Du-
ration Invariants, Timed Automata, Quantified Linear Real
Arithmetic.

1 INTRODUCTION
Duration Calculus is an Interval Temporal Logic, which was
first proposed by Zhou, Hoare and Ravn [19]. It extends
Interval Temporal Logic [16] with the notion of duration,
the integral of state expression over the reference interval. It
is designed for specifying and reasoning about real-time and
embedded systems at a high abstract level [14], and has been
successfully and widely applied in practice [25, 35].

Although the powerful expressiveness of DC is desirable
for requirement specification and analysis, it is a burden
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for automatic verification as satusfiability checking, valid-
ity checking or model checing of DC is undecidable [36],
unless the use of chop (the only modality in DC), and/or nega-
tion, and/or the considered models are severely constrained
[10, 11, 17, 25, 26, 30, 32, 36, 37].

In [37], a subset of DC formulas of the form b ≤ ` ≤
e ⇒

∑
s∈S cs

∫
s ≤ M , called Linear Duration Invariants

(LDIs), was identified, in which a given interval [t, t′],
∫
s

stands for the accumulated time for the presence of state s
over [t, t′], and ` for the length of the interval, i.e., t′ − t. So,
an LDI formula says that if the length of the interval satisfies
the constraint b ≤ ` ≤ e, then over the time interval the
durations of the state expressions should satisfy the constraint∑
s∈S cs

∫
s ≤ M . LDIs is very expressive. For example, in

the gas burner example [35], the safety requirement that “the
proportion of leak time is not more than one-twentieth of the
elapsed time for any time interval at least one minute”, can
be simply specified as ` ≥ 60⇒ 20

∫
Leak ≤ `.

In [37], it was proved that the model-checking problem
of LDIs against real-time automata is decidable. Real-time
automata are a specific kind of timed automata in which reset
is not allowed. Following this work, in [4, 22, 23], the authors
investigated the model-checking of LDIs against more expres-
sive models such as timed automata [1] and hybrid automata
[18]. Some more efficient algorithms for mode-checking LDIs
against timed automata based on graph search were proposed
in [32, 33], and the results were further extended to the net-
works of timed automata [34].

An interesting problem is whether it is possible to find a
larger subset of DC whose model-checking problem is still
decidable. It is a natural solution to investigate the extension
of LDIs with Boolean connectives and the chop modality, i.e.,
ELDIs. Unfortunately, the satisfiability and validity of ELDIs
both are undecidable in the discrete-time and continuous-
time (dense-time) settings according to the results in [36]. In
[12, 13], Fränzle and Hansen further proved that the model-
checking problem of ELDIs against finite state machines
turns out to be undecidable also both in the discrete time
and continuous time settings. Therefore, they proposed an
approximation semantics for ELDIs, called doubly situation
based semantics, and showed its model-checking is decidable
in the discrete time setting with the complexity of cubic in
the number of states of the model and linear in the size of
the formula. However, further observation indicates that such



approximation semantics is too coarse to be useful in practice
[12]. So, they refined the semantics to another approximation
semantics called counting semantics and reduced the model-
checking problem of ELDIs to Presburger Arithmetic with the
complexity of 3-fold exponential [13]. In addition, according
to their approach, one can only prove/disprove those formu-
las that can be approximated to be true/false over the given
model represented by a Kripke structure, and cannot draw
any conclusion in other cases. Therefore, the low efficiency
and approximation semantics hinder the application of their
approach. Motivated by their work, as an alternative, in [38]
Zu et al. proved that model-checking ELDIs against bound-
ed execution fragments of timed automata in the standard
discrete-time semantics is decidable by providing an efficient
model-checking algorithm with the complexity of singly ex-
ponential in the size of formulas and quadratic in the number
of states of the considered model.

In this paper, we investigate the model-checking problem
of ELDIs against bounded execution fragments of timed au-
tomata in the standard continuous-time semantics. We prove
that it is still decidable. The basic idea is that for a given
timed automaton A and an ELDI formula Φ, we first find
the set Θ of all execution fragments of A whose length is
in between the lower and upper bounds from the zone graph
of A, and the number of such paths is finite. Then, for each
path in Θ, we construct a Quantified Linear Real Arithmetic
(QLRA) formula by taking Φ into account. Finally, we exploit
REDLOG [7], a computer algebra tool based on quantifier
elimination [31], to solve the resulting QLRA formula. Al-
though the complexity of REDLOG is double exponential
in the number of variables in the worst case, REDLOG can
handle QLRA formulas very efficiently in practice, as virtual
substitution [8] can be applied to formulas which only contain
polynomials with degree no more than 4. Our experiments
indicate the efficiency of our approach.

The rest of the paper is organized as follows. Section 2
recalls some basic notions of timed automata, zones and EL-
DIs. Section 3 explains how to find all execution fragments
with the bounded length for a given timed automaton from its
zone graph. The algorithm of constructing a QLRA formula
according to a given ELDI formula and an execution fragment
is presented in section 4. Section 5 is devoted to solve the
resulting QLRA formulas by quantifier elimination and the
complexity analysis. Section 6 presents the implementation
and experiments, and finally section 7 draws a conclusion.

2 PRELIMINARIES
In this section, we first review timed automata (TA) as a
modeling language for real-time systems and Zone graph as
the symbolic representation of states of TA, then recall ELDIs,
a subset of DC, as a specification logic for real-time systems.

For convenience, we fix a set of propositions P throughout
this paper.

2.1 Timed automata
A timed automaton (TA) [1] is a finite-state automaton e-
quipped with a set of clocks, and each location is equipped
with a set of propositions from P that hold at the location. Let
X represent the set of clocks and ∆(X) be the set of clock
constraints on X , which are conjunctions of the formulas of
the form x ≤ c or c ≤ x, where x ∈ X and c ∈ N. Addi-
tionally, we assume that all TA are strongly non-Zeno [1], i.e.,
there is a non-zero constant ε ∈ R+ such that in every control
cycle at least ε units of time is taken.

Definition 2.1 (Timed Automaton). A TA is a tuple A =
(L,X,E,Σ, l0, Λ, I), where L is a finite set of locations, X
is a finite set of clocks, E ⊆ L× Σ×∆(X)× 2X × L is a
transition relation, Σ is a set of actions, l0 ∈ L is the initial
location, Λ is a mapping that assigns a subset of P to each
location l indicating all propositions in Λ(l) hold in l, and I
is a mapping that assigns each location l ∈ L with a clock
constraint I(l) ∈ ∆(X), called invariant. Furthermore, an
invariant in TA must be downward closed.

A clock valuation is a function v : X → R+. We denote
the set of all clock valuations by H. Hence a state of a TA
A is a pair (l,v) ∈ L × H consisting of a location and a
clock valuation. Every subset λ ⊆ X induces a reset function
Resetλ : H → H defined by

Resetλv(x) =

{
0, if x ∈ λ
v(x), if x /∈ λ

We use 1 to denote the unit vector(1,. . . ,1) and 0 for zero
vector. There are two kinds of steps of a TA: discrete step
and time-delay step. A discrete step is of the form (l,v)

a−→
(l′,v′), if there exists (l, a, g, λ, l

′
) ∈ E such that v satisfies

g and v′ = Resetλ(v), where a ∈ Σ. A time-delay step is
of the form (l,v)

t−→ (l,v + t1), such that for any t′ ∈ [0, t]
v + t′1 satisfies I(l), where t ∈ R+.

Definition 2.2 (Run and Behaviour). Let A be a TA,
(1) the run r of A is an infinite sequence of the form

r : (l0,v0)
a0−→
δ0

(l1,v1)
a1−→
δ1

(l2,v2)
a2−→
δ2
· · ·

where (l0,v0) is the initial state, and δi is the time
A staying in the location li. If li = li+1, the step is
a time-delay step and vi+1 = v + δi1; otherwise,
the step is a discrete step and vi+1 = Resetλ(vi), for
i ≥ 0.

(2) a behaviour β corresponding to the run, is the infinite
sequce of timed locations

β : (l0, t0)(l1, t1) · · · (lk, tk) · · ·
2



that satisfies following conditions: (1) t0 = 0; (2) for
any T ∈ R+, there is some i ≥ 0 such that ti ≥ T ;
(3) ti is the instant that A enters to li, which implies
δi = ti+1 − ti, and A stays in li for δi time units.

A zone is a clock constraint [3]. For a location, a zone is
the maximal set of clock valuations satisfying the constraint.
In the zone-graph, zones are used to denote symbolic states.
Zones and their representations based on Difference Bounded
Matrices (DBMs) [2] are the standard data structures which
have been implemented in several verification tools for TA,
e.g., UPPAAL [21]. Operations over zones are well defined
in [3]. Note that zone provides a more efficient representation
of symbolic states of TA than region graph [1], therefore,
model-checking algorithms for TA based on zone is more
efficient than those based on region graph.

2.2 Extended linear duration invariants
ELDIs with the set P of state variables consists of three
syntactic categories, which are state expressions S, linear
duration formulas (LDFs) D, and ELDI formulas φ. The
BNFs for them are given as follows:

S ::= 0 | P | ¬S | S1 ∨ S2

D ::=
∑
i∈Ω

ci
∫
Si ≤ c

φ ::= D | ¬φ | φ1 ∨ φ2 | φ1;φ2

where P ∈ P stands for a state variable, interpreted as a
Boolean function over time, cis and c are real numbers, and
Ω is a finite set of indices.

As the convention of DC, ` is defined as
∫
1, denoting

the length of the reference interval. The Boolean value true,
denoted by >, is defined by ` ≥ 0, falling in ELDIs. Obvi-
ously, each ELDI formula can be represented by the form
b ≤ ` ≤ e⇒ φ, where b is either a positive real or 0, e is
either a positive real or∞, and φ is defined as above. In this
paper, we only focus on the case when e is bounded, and will
represent an ELDI of this form by Φ,Ψ, · · ·, possibly with
superscript and subscript in the sequel.

Definition 2.3 (Interpretation Iβ of ELDIs). Given a TA
A and one of its behaviours β, define an interpretation Iβ of
ELDIs as follows:

state expressions: given a time point t ∈ R+ ∪ {0}
Iβ(0)(t) = 0 and Iβ(1)(t) = 1

Iβ(P )(t) =


1 if ti ≤ t < ti+1 ∧ P ∈ li

for some i > 0

0 otherwise
Iβ(¬S)(t) = 1− Iβ(S)(t)
Iβ(S1 ∨ S2)(t) = max{Iβ(S1)(t), Iβ(S2)(t)}

duration: given an interval [t1, t2], where t1, t2 ∈ R+∪
{0} and t1 ≤ t2,

∫
S is interpreted by Iβ(

∫
S)([t1, t2]) =

∫ t2
t1
Iβ(S)(t)dt.

formulas: given an interval [t1, t2], an ELDI formula
φ is interpreted by
Iβ , [t1, t2] |=

∑
i∈Ω ci

∫
Si ≤ c

iff
∑
i∈Ω ciIβ(

∫
Si)([t1, t2]) ≤ c;

Iβ , [t1, t2] |= ¬φ iff Iβ , [t1, t2] 6|= φ;
Iβ , [t1, t2] |= φ1∨φ2 iff Iβ , [t1, t2] |= φ1 or Iβ , [t1, t2] |=
φ2;
Iβ , [t1, t2] |= φ1;φ2 iff Iβ , [t1, t] |= φ1 and Iβ , [t, t2] |=
φ2 for some t ∈ [t1, t2].

2.3 Quantified linear real arithmetic
Quantified linear real arithmetic (QLRA) is a theory of first
order logic, with the specific signature 〈R, 0,+,=, <〉, i.e.,
in which all terms are linear. Thus, formulas of QLRA are
defined according to the following syntax:

φ ::= c0 + c1x1 + · · ·+ cnxn B 0 | ¬φ | φ1 ∧ φ2 | ∀x.φ

where c0, c1, . . . , cn ∈ R,B ∈ {=, <}. QLRA is interpreted
in the standard way. Other notations of first-order logic and
real arithmetic are defined as usual, e.g., φ∨ψ =̂ ¬(¬φ∧¬ψ),
∃x.φ =̂¬∀x.¬φ, t ≤ 5 =̂ t < 5 ∨ t = 5, etc.

2.4 A motivating example

P Q
1 ≤ x ≤ 2x := 0

x ≤ 2 x ≤ 3

· · ·x == 3

Figure 1: A motivating example

Consider a simple incomplete TA as in Fig. 1. When the
automaton enters the location P , it resets the clock x. The
invariant of the location P is x ≤ 2 which means that the
automaton can stay in P for two time units at most. There
is a transition from the location P to the location Q and the
guard is 1 ≤ x ≤ 2. The invariant at the location Q is x ≤ 3,
and the transition left from Q has a guard x = 3. So, the total
time the automaton can stay at P and Q is three time units.
Consider ELDI formula

3 ≤ ` ≤ 3⇒ 2(
∫
P +

∫
Q) ≥ 3 ; 2(

∫
P +

∫
Q) ≥ 3

on the time interval [0, 3].
Obviously, the formula is unsatisfiable on the interval with

the discrete semantics, but it becomes satisfiable in continuous
semantics.
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3 FINDING ALL POSSIBLE EXECUTION
FRAGMENTS WITH BOUNDED
LENGTH

In this section, we consider given a TAA and an interval [b, e]
with b, e ∈ R+ ∪ {0} and b ≤ e how to find all execution
fragments of A whose length are in between b and e.

As discussed in [3], ZoneG(A) is a transition graph derived
from A, can be represented by 〈Z, z0, 7→〉, where

• Every z ∈ Z stands for a zone, which is a pair
(l,∆(l)), where l ∈ A.L, and ∆(l) is a timing con-
straint on ∆(A.X), denoting a symbolic state of A,
i.e., a set of clock valuations satisfying ∆(l).
• z0 = (l0,∧x∈A.Xx = 0), is the initial zone.

• 7→= ↑ ∪∪a∈Σ
g,a,λ−−−→, where

– (l1,∆(l1)) ↑ (l2,∆(l2)) iff l1 = l2 ∧∆(l2) =
{u+d ∈ I(l1) | u ∈ ∆(l1)∧d ∈ R+}. ↑ stands
for a delay transition.

– (l1,∆(l1))
g,a,λ−−−→ (l2,∆(l2)) iff (l1, g, a, λ, l2) ∈

A.E ∧ ∆(l2) = {u[λ] | u ∈ ∆(l1) ∧ g(u)}.
g,a,λ−−−→ stands for a possible discrete transition

over the zone graph derived from A.

Given a transition τ ∈7→, τ.preZ and τ.postZ respectively
denote the pre- and post-zone of the transition, while τ.g, τ.a
and τ.λ denote its guard, action and the set of reset clocks,
respectively, if τ is a discrete transition. Given a zone z,
we use z.τ stands for the set of transitions outgoing from
z, and Posta(z) for the set of zones which can be reached
from z via a discrete transition, i.e., {z′ | (z, g, a, λ, z′) ∈7→
for some g ∈ ∆(X), a ∈ Σ, and λ ⊆ X}.

Given a TA A, the procedure for finding all possible execu-
tion fragments whose length is in the given interval [b, e] is
implemented by Algorithm 1. The basic idea of Algorithm 1
is as follows:

• According to the descriptions of zone in [3, 28, 29],
we first construct a zone graph ofAwith k-normalization,
denoted by ZoneG(A) the resulting zone graph. As
A does not have time difference constraints as guard,
thus ZoneG(A) is sound and complete w.r.t. the stan-
dard operational semantics of A as discussed in the
previous section and its transition relation is finite
[28, 29].
• Starting from each symbolic state in ZoneG(A), we

find all execution fragments whose length in between
b and e using depth first search. With an implicit
extra clock t added to the DBMs, we can easily de-
termine whether the length of the current execution
fragment ρ can reach the interval [b, e] through check-
ing whether currentZ ∧ (b ≤ t ≤ e) holds. STK is a
stack to store the zones to be explored. The algorithm
pushes a zone z into STK as long as the length of the

Algorithm 1: PEF(ZoneG(A), b, e) /* Finding all possi-
ble execution fragments satisfying the length bound */

input :ZoneG(A), the zone graph of A, [b, e], the bound
interval

output :Θ, the set of possible execution fragments whose
length is within [b, e]

1 begin
2 Θ := ∅ ;
3 foreach z ∈ Z do
4 ρ := ε ;
5 STK.push(z) ;

/* STK is a stack, stores all zones

to be explored */

6 while STK 6= ∅ do
7 currentZ := STK.pop;
8 if ↑∈ currentZ.τ then
9 currentZ := currentZ ↑ ;

/* t is an additional clock added
to the DBMs, reseted at the
beginning of ρ */

10 if currentZ ∧ (b ≤ t < e) 6= ∅ then
11 ρ := ρ ◦ 〈currentZ〉; Θ := Θ ∪ {ρ};
12 if Posta(currentZ) 6= ∅ then
13 foreach z′ ∈ Posta(currentZ) do
14 STK.push(z′);

15 else
16 ρ := remove(ρ, currentZ);

/* remove currentZ from ρ

*/
17 while Posta(Lastzone(ρ)) have been

popped out do
18 ρ := remove(ρ, Lastzone(ρ));

19 else if currentZ ∧ (t < b) 6= ∅ then
20 ρ := ρ ◦ 〈currentZ〉;
21 if Posta(currentZ) 6= ∅ then
22 foreach z′ ∈ Posta(currentZ) do
23 STK.push(z′);

24 else
25 ρ := remove(ρ, currentZ);
26 while Posta(Lastzone(ρ)) have been

popped out do
27 ρ := remove(ρ, Lastzone(ρ));

28 else if currentZ ∧ (t ≥ e) 6= ∅ then
29 ρ := ρ ◦ 〈currentZ〉; Θ := Θ ∪ {ρ};
30 ρ := remove(ρ, currentZ) ;
31 while Posta(Lastzone(ρ)) have been poped

out do
32 ρ := remove(ρ, Lastzone(ρ));

33 return Θ

4



derived execution fragment by appending Z to the
end of the considered execution fragment is no more
than the given upper bound e, otherwise, the head of
STK will be popped. Suppose the number of the loca-
tions of A is N , then the number of such execution
fragments is at most N1+N∗(1+d eε e), where ε is the
least dwelling time in each control cycle of A.

THEOREM 3.1 (CORRECTNESS OF ALGORITHM 1). For
any TA A and [b, e], Algorithm 1 is correct, i.e.,

Termination the algorithm terminates;
Soundness if ρ ∈ Θ then ρ is a real execution fragment

of zones in ZoneG(A) with length in [b, e]; and
Completeness if ρ is a real execution fragment of zones

in ZoneG(A) with length in [b, e], then ρ ∈ Θ.

PROOF. For termination, to guarantee the termination of
Algorithm 1, we only need to prove the while loop terminates
as it is obvious that the outermost for loop and the three inner-
most for loops terminate. For a given zone z, suppose there
is an execution fragment ρ starting from z whose length is
within [b, e] which has N ∗ (1 + d eε e) transitions, where N
is the number of zones. According to König Lemma [9, 20],
there is a zone z′ with more than 1 + d eε e occurrences in ρ,
which implies there are d eε e control cycles in ρ at least. Hence,
the execution time of ρ is more than e from the assumption
that each control cycle has ε dwelling time at least. It follows
that any execution fragment starting from z hasN ∗(1 + d eε e)
transitions at most if its length is within [b, e], and therefore,
all such execution fragments can be found in NN∗(1+d eε e)

iterations at most. After finding out all such execution frag-
ments, no zone can be pushed in STK any more, but at least
one zone is popped out from STK in each iteration (see lines
10-32). This implies that the while loop must terminate.

For soundness, suppose ρ ∈ Θ. Obviously, ρ is an exe-
cution fragment of ZoneG(A) by Algorithm 1. Additionally,
from lines 10-32, it follows that ρ’s length is within [b, e], be-
cause on one hand, ρ’s length cannot be less than b as ρ 6∈ Θ
otherwise; on the other hand, ρ’s length cannot be greater
than e, as the last zone in ρ cannot be appended otherwise
according to lines 28-32.

For completeness, suppose ρ = (l1,∆(l1)), ..., (ln,∆(ln))
is a real execution fragment of ZoneG(A) whose length is
within [b, e]. Thus, we can construct a ρ′ ∈ Θ as follows: Let
ρ′ starts from (l1,∆(l1)). Obviously, it is doable by line 3. Be-
cause ρ is a real execution fragment of ZoneG(A), the second
zone (l2,∆(l2)) in ρ must be a successor of (l1,∆(l1)), and
the length of (l1,∆(l1)), (l2,∆(l2)) is less than e, so ρ′ can
be extended by appending (l2,∆(l2)) at the end from lines
10-27. We can repeat the above procedure until (ln,∆(ln)) is
appended to the end of ρ′. Clearly, from lines 10-14, ρ′ ∈ Θ.

�

4 REDUCTION TO QRLA
In this section, we present a translation from a given possible
execution fragment whose length is within the given interval
and an ELDI formula into a QLRA formula equivalently in the
sense that the execution fragment satisfies the ELDI formula
iff the resulting QLRA formula is valid.

Note that for any execution fragment generated by Algo-
rithm 1 which is a sequence of zones, we can remove these
zones without dwelling time, because (φ; ` = 0) ⇔ (` =
0;φ)⇔ φ always holds in DC. So, in what follows, we only
consider such refined execution fragments, and denote by
z1, z2, . . . , zk. Moreover, for each zone zi, we introduce a
variable δi to indicate the real duration the automaton dwells
on. Thus, we will denote the refined execution fragment as
(z1, δ1)(z2, δ2), . . . , (zk, δk).

Given the ELDI formula (b ≤ ` ≤ e ⇒ φ) and a refined
execution fragment ρ = (z1, δ1)(z2, δ2), . . . , (zk, δk), the
encoded QLRA formula is of the form L(ρ)⇒ L(φ), where
L(ρ) is a QLRA formula translated from ρ, which entails
b ≤

∑k
i=1 δi ≤ e, and L(φ) is obtained from φ. We will

explain the details of the translation later.

Algorithm 2: LP(ρ,x0)

input :ρ, a refined execution fragment (z1, δ1), . . . , (zk, δk);
x0, the initial value of clocks at the beginning of ρ.

output : the timing constraint derived from the execution
fragment.

1 begin
2 z′1 = z1[x01 + δ1/x1, · · · , x0m + δ1/xm] ;
3 foreach i ∈ {2, . . . , k} do
4 foreach j ∈ {1, . . . ,m} do
5 if xj ∈ ai.λ then

/* ai is the transition from

zi−1 to zi */

6 ej := δi ;
/* xj should be reset */

7 else
8 ej := zi−1.xj + δi;

/* zi−1.xj stands for the value
of clock xj at the previous
zone */

9 z′i = zi[e1/x1, · · · , em/xm];

10 Γ = ∧k
i=1(z′i ∧ δi ≥ 0) ∧ b ≤

∑k
i=1 δi ≤ e;

11 return Γ ;

Deriving timing constraint from a refined execution frag-
ment: Given an execution fragment ρ = (z1, δ1), (z2, δ2),
. . . , (zk, δk) and initial value x0 = (x01, · · · , x0m) (suppose
X = {x1, . . . , xm}), Algorithm 2 derives a QLRA formula
to stand for the timing constraint on the dwelling times δis

5



and the initial value x0 derived from ρ. Essentially, the con-
straint on the dwelling times δis is derived by considering the
following three aspects:

• each δi should be nonnegative;
• their sum should be in the bound interval on the

length of considered execution fragments, i.e., b ≤∑k
i=1 δi ≤ e;

• the constraint derived from the corresponding zone
by taking the initial values of clocks into account.

Encoding ELDI formula: Given an execution fragment
ρ = 〈(z1, δ1), . . . , (zn, δn)〉 and an ELDI formula φ, the
encoding procedure is done by the structure of φ as follows:

• If φ is an atomic formula of the form b ≤ ` ≤ e⇒ D,
we mainly focus on how to encode D. Suppose D
contains d duration expressions

∫
S1, . . . ,

∫
Sd. We

use eij to denote the duration that Si holds at zj , for
i = 1, . . . , d and j = 1, . . . , n. Clearly, if zj satisfies
Si, then eij is δj , otherwise 0. Thus, the total duration
of Si holding on ρ should be

∑n
j=1 eij . Hence, we

just need to replace each Si with
∑n
j=1 eij in D,

therefore, the translated QLRA formula is

LP(ρ, 0)⇒ (D[

n∑
i=1

ei1/
∫
S1, · · · ,

n∑
i=1

eid/
∫
Sd]),

where LP(ρ, 0) stands for the QLRA formula trans-
lated from ρ by applying Algorithm 2 with initial
clock values 0, and φ[e1/e2] stands for replacing
each occurrence of e2 by e1 in φ.
• When φ = ¬φ1, φ1∧φ2, φ1∨φ2, it is easy to obtain

by revoking the procedure recursively.
• If φ = φ1;φ2, then we consider the n + 2 cases

where the chop point is taken respectively before
z1, at z1, . . ., zn, after zn. Subsequently, we recur-
sively recall the translation procedure to the resulted
corresponding subproblems.
• Finally, quantify the resulted formula with the respec-

tive quantifications to the corresponding introduced
fresh variables (line 26).

The above procedure is implemented by Algorithm 3, and the
returned formula is a closed QLRA formula.

THEOREM 4.1 (CORRECTNESS OF ALGORITHM 3). Al-
gorithm 3 is correct, i.e.,

Termination the algorithm terminates;
Soundness if ρ |= φ then LF(φ, ρ,x0) is satisfiable (valid);
Completeness if LF(φ, ρ,x0) is satisfiable (valid), then ρ |=
φ.

PROOF. Regarding termination, it can be simply done by
induction on the structure of φ. Regarding soundness and
completeness, we still proceed by induction on the structure
of φ as follows:

• The basic case, i.e., φ is a formula of the form

b ≤ ` ≤ e⇒ D, where D =
∑
i∈Ω

ci
∫
Si ≤ c

Then Iρ, [ρ.b, ρ.e] |= b ≤ ` ≤ e ⇒
∑
i∈Ω ci

∫
Si ≤

c iff b ≤ ρ.e−ρ.b ≤ e⇒
∑
i∈Ω ciIρ(

∫
Si)([ρ.b, ρ.e]) ≤

c, where ρ.b and ρ.e stands for the starting and ending
points of ρ. Obviously,

∀δ1, · · · , δn,Q.(
LP(ρ,x0)

⇒ D[
∑n
i=1 ei1/

∫
S1, · · · ,

∑n
i=1 eid/

∫
Sd]

)
(1)

is unsatisfiable implies ρ 6|= φ (soundness), and that
(1) holds implies ρ |= φ (completeness) according to
Algorithm 2 and Algorithm 3.
• φ = ¬φ1

For soundness, suppose LF(ρ,¬φ1) is unsatisfiable,
i.e.,¬LF(φ1, ρ,x0) is unsatisfiable by Algorithm 3,
which implies LF(φ1, ρ,x0) is valid. By the induc-
tion hypothesis, we have ρ |= φ1. Therefore, ρ 6|=
¬φ1.

For completeness, suppose LF(¬φ1, ρ,x0) is valid,
which derives LF(φ1, ρ,x0) is unsatisfiable by Al-
gorithm 3. By the induction hypothesis, we have
ρ 6|= φ1. Hence, ρ |= ¬φ1.
• φ = φ1 ∨ φ2

For soundness, suppose LF(φ1 ∨ φ2, ρ,x0) is unsat-
isfiable, i.e., LF(φ1, ρ,x0) ∨ LF(φ2, ρ,x0) is unsat-
isfiable by Algorithm 3, which implies LF(φ1, ρ,x0)
and LF(φ2, ρ,x0) both are unsatisfiable. By the in-
duction hypothesis, it follows that ρ 6|= φ1 and ρ 6|=
φ2. Therefore, ρ 6|= φ1 ∨ φ2.

For completeness, suppose LF(φ1 ∨ φ2, ρ,x0) is
valid, which implies ¬LF(φ1, ρ,x0) is unsatisfiable
or¬LF(φ2, ρ,x0) is unsatisfiable by Algorithm 3. By
the induction hypothesis, we have either ρ 6|= ¬φ1 or
ρ 6|= φ2, hence ρ |= φ1 ∨ φ2.
• φ = φ1;φ2

It is clear that ρ |= φ1;φ2 iff that ρ can be split into
two parts ρ1 and ρ2 such that ρ = ρ1 ◦ ρ2, and ρ1 |=
φ1 and ρ2 |= φ2, iff there exists 0 ≤ i ≤ n such
that zone zi can be split two parts, i.e., 〈zi, δi1〉 and
〈zi, δi2〉 with ρ1 = 〈z1, δ1〉 ◦ · · · 〈zi, δi1〉 |= φ1 and
ρ2 = 〈zi, δi2〉◦· · · 〈zn, δn〉 |= φ1 with δi = δi1+δi2,
where δi1 and δi2 are fresh variables, which is exactly
equivalent to

∀δ1, · · · ,∀δn,Q.
LF(φ1, 〈(z1, δ1), · · · , (zi, δi1)〉,x0)

∧ LF(〈(φ2, zi, δi2), · · · , (zn, δn)〉,
x0 +

∑i−1
j=1 δj + δi1)

∧ δi = δi1 + δi2
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by Algorithm 3 and the induction hypothesis.
�

Algorithm 3: LF(φ, ρ,x0)

input :ρ = 〈(z1, δ1), (z2, δ2), . . . , (zn, δn)〉, the underlined
execution fragment;
x0, the initial value of clocks at the beginning of ρ;
φ, the considered ELDI formula.

output :Γ, the derived QLRA formula.
1 begin
2 Q := ε ;

/* Q records existential
quantifications over introduced
fresh variables */

3 case φ := b ≤ ` ≤ e⇒ D
4 foreach i ∈ {1, . . . , n} do
5 foreach j ∈ {1, . . . , d} do
6 if zi |= Sj then
7 eij := δi;
8 else
9 eij := 0

10 Γ := LP(ρ,x0)⇒
(D[

∑n
i=1 ei1/

∫
S1, · · · ,

∑n
i=1 eid/

∫
Sd]) ;

11 case φ := ¬φ1

12 Γ := ¬LF(φ1, ρ,x0);

13 case φ := φ1 ∧ φ2

14 Γ := LF(φ1, ρ,x0) ∧ LF(φ2, ρ,x0) ;

15 case φ := φ1 ∨ φ2

16 Γ := LF(φ1, ρ,x0) ∨ LF(φ2, ρ,x0) ;

17 case φ := φ1;φ2

18 Γ :=

∨n+1
i=0


LF(φ1, 〈(z1, δ1), · · · , (zi, δi1)〉,x0)

∧ LF(φ2, 〈(zi, δi2), · · · , (zn, δn)〉,
x0 +

∑i−1
j=1 δj + δi1)

∧ δi = δi1 + δi2


;

19 Q := Q, ∃δ11,∃δ12, · · · , ∃δn1,∃δn2;
/* δ11, δ12, . . . , δn1, δn2 are fresh

variables */

20 return ∀δ1, · · · , ∀δn,Q.Γ ;

5 SOLVING DERIVED QLRA FORMULAS
AND COMPLEXITY ANALYSIS

In this section, we further discuss how to solve the resulted
QLRA formulas and the complexity of our approach.

5.1 Solving derived QLRA formulas
From Theorem 3.1 and Theorem 4.1, given a TA A, an inter-
val [b, e] to bound the length of the execution fragments of

A, and an ELDI formula Φ, model-checking Φ is satisfied by
all execution fragments of A whose length is within [b, e] is
reduced to whether a QLRA formula is valid, i.e.,

THEOREM 5.1. Given a timed automaton A and an ELDI
formula Φ, A, [b, e] |= Φ iff ∧ρ∈PEF(ZoneG(A))LF(Φ, ρ, 0) is
valid.

PROOF. It is straightforward by Theorem 3.1 and Theo-
rem 4.1. �

According to Tarsk’s result, the satisfiability and validity of
QLRA both are decidable [31], as QLRA admits the property
of quantifier elimination (QE). So, an immediate result of
Theorem 5.1 is that

COROLLARY 5.2. Given a timed automaton A and an
ELDI formula Φ, A, [b, e] |= Φ is decidable.

Tarski’s original QE algorithm for real arithmetics is non-
elementary [31]. But in 1970s, Collins invented a new algo-
rithm for QE based on cylindrical algebra decomposition
(CAD) [6], which is double exponential in the number of vari-
ables. CAD has been implemented in many computer algebra
tools such as REDLOG [7], QEPCAD [5], and so on. Partic-
ularly, all formulas of QLRA are linear, therefore the QE of
QLRA can be achieved more efficiently by virtual substitu-
tion due to Weinspfenning [8], which has been implemented
in REDLOG, although the worst case is still double expo-
nential. Additionally, according to Grigor’ev’s result [15], a
more efficient algorithm on QE with double exponential on
the number of alternations of quantifiers could be possible,
while in our case, the alternation of quantifiers in the resulted
QLRA formula is at most two.

5.2 Complexity
As discussed above, the model checking of ELDIs against
bounded behaviours of timed automata consists of three pro-
cedures:

• The first one is PEF to find out all execution frag-
ments whose length is within the bounded interval
[b, e] for a given TAA. The number of such execution
fragments is at most N1+N∗(1+d eε e) as we discussed
before, whereN is the number of the zones generated
from A and ε is the least dwelling time in each cycle
of A. This step can be done in O(NN∗(1+d eε e)).
• The second one is LF, which translate whether a giv-

en execution fragment ρ satisfies a considered ELDI
formula Φ into a QLRA formula. LF itself can be
done in the linear of the size of Φ, but the size of the
generated QLRA formula could beO((N(1 + d eε e))

d∗
|Φ|) in the worst case, where d is the number of nest-
ed chops. In addition, we need to introduce d ∗M
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fresh variables and the corresponding quantification-
s, where M is the number of zones in a bounded
observation interval, N ∗ (1 + d eε e) at most.
• The last one is QE tool, here we adopt REDLOG,

whose complexity is double exponential in the num-
ber of variables, i.e.,O(22dN∗(1+d

e
ε
e)

) to check whether
each of such execution fragments satisfies the con-
sidered ELDI Φ.
• So, the total complexity to check whetherA, [b, e] |=

Φ is

O(NN∗(1+d eε e) ∗ 22dN∗(1+d
e
ε
e)

). (2)

Moreover, it is well-known that N , the number of
zones of ZoneG(A), is exponential in n, the number
of the locations of A [3], so the complexity of our
approach is 3-fold exponential in the size of A and
2-fold exponential in the number of nested chops in
Φ.

Although the theoretical complexity of our approach is
quite high as analyzed above, in practice, the worst cases
happen with quite low possibility. We believe that REDLOG
can handle QLRA formulas in polynomial time in their sizes
in most cases. The below experiments will justify this.

6 IMPLEMENTATION AND
EXPERIMENTS

Based on the DBM library of UPPAAL, we develop a proto-
typical tool for our approach on Linux with two input files:
the first is a .xml file to represent the timed automaton un-
der consideration in UPPAAL format, and the other contains
the ELDI formula to be verified. Our tool outputs a text file,
which represents the generated QLRA formula as the input
of REDLOG (Reduce), the QE tool we used. REDLOG will
return true or false to the problem whether the ELDI formula
is satisfied by the timed automaton on all bounded observa-
tion intervals. Besides, our tool also provides the function to
check whether a given bounded execution fragment satisfies
the ELDI formula. Therefore, on the one hand, the size of the

QLRA

φ A

Θ

{ζ}

QE

Reduce

false true

counterexample

ζk

`

Figure 2: The overall structure

generated QLRA formula could be decreased dramatically,
which can scale up our approach very much; on the other hand,

it can tell which execution fragment is a counterexample as
well, when model-checking the problem is done by enumerat-
ing all possible execution paths. The overall structure of our
tool is depicted as Fig. 2.

The following case studies are used to illustrate the effi-
ciency of our approach in practice, although it has a quite
high theoretical complexity. The experiments are conducted
on a laptop with Inter Core i3-5005U at 2.0GHz and 4GB
DDR3L-1600MHz RAM.

Example 6.1. In this example, we consider the anomalous
behaviour of priority-driven systems given in [24].

J1

J2

J3

J4

r d [e−, e+]

0

0

4

0

10

10

15

20

5

[2, 6]

8

10

Figure 3: The description of jobs

The simple system contains four independent jobs, which
are scheduled on two identical processors P1 and P2 in a
priority-driven manner. P1 and P2 maintain a common priori-
ty order of jobs J1>J2>J3>J4. These jobs may be preempt-
ed, but never be migrated, which means that once it begins
to be executed on a processor, the job has to be executed on
that processor until completion. The release times (r), dead-
lines (d), and execution times of the jobs are listed in Fig. 3.
J1, J2, J4 are released at 0, while J3 is released at 4. The
execution times of J1, J3, J4 are fixed, while J2’s is varied
in [2, 6]. In addition, J1 is required to be executed on P1, J2

is required to be executed on P2, while J3 and J4 can be
executed on either of P1 and P2.

The property which should be satisfied by P2 on [0, 20] can
be represented by the following ELDI formula:
20 ≤ ` ≤ 20⇒ [(2 ≤

∫
runJ2 ≤ 6 ∧

∫
runJ2 −

∫
1 = 0)

; ((
∫

runJ3 = 0 ∨
∫

runJ3 = 8) ∧ (
∫

runJ4 = 0 ∨
∫

runJ4 = 10)∧
0 <

∫
runJ3 +

∫
runJ4 ≤ 18)].

The tool verifies the formula in 2.4 seconds, and returns false.
This implies that some job cannot catch the deadline on the
observation interval [0, 20], a counterexample is provided in
Fig. 4.

Example 6.2. Now consider an example of final testing
of integrated circuits, which is a simplified version of a real-
world problem reported in [27]. In this simplified version, all
jobs are clustered into two product types A and B. Both of
A and B jobs are processed in two stages, i.e., testing
and burn in. A and B jobs are grouped into 5 and 2 lots
respectively. In testing stage, all A and B lots are pro-
cessed serially on several parallel machines, and it takes 3
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0 5 10 15 20

J1 J3P1

P2 J2 J4

6 16

J1P1

P2 J2 J4 J3 J4
202

J1P1

P2 J2 J3 J4J4
3 21

(a)

(b)

(c)

Figure 4: A counterexample

time units to handle each A lot, and 4 time units to handle
each B lot by one machine. In burn in stage, all A and
B lots are processed in a batch manner on several parallel
machines, and it takes 10 time units to finish a batch by one
machine. The maximum batch size for a machine is 5. For
simplicity, here we assume there are two machines on each
stage. So, we introduce two integer variables m test ∈ [0, 2]
and m burn ∈ [0, 2] to stand for how many machines have
been used at testing and burn in stages, respectively.
At testing, any machine cannot be allocated to B product
(dually A product) unless all A jobs (dually B jobs) have
been finished in case it has been allocated to A product (du-
ally B product). Additionally, any type product can switch
from testing to burn in immediately whenever all its
lots have been processed at testing. Thus, A and B prod-
ucts can be modelled by TA PA and PB in Fig. 5.(a) and
Fig. 5.(b) correspondingly.

PA have nine locations 0, 1, 2, 3, 4, 5, 6, 7, 8. 0 stands for
waiting for testing, 1 for one machine allocated to test A
product, 2, 3, 4 for both of the two machines allocated to
test A product, but with different scheduling policies. In 2,
one machine has 5 lots and the other has no jobs; in 3, one
machine has 4 lots and the other has 1 lot; in 4, one machine
has 3 lots and the other has 2 lots. 5 for waiting for burning,
6, 7 for A lots under burn respectively with one machine and
two the machines, 8 for completion. PB can be understood
similarly. Note that there are only two scheduling policies in
PB at testing when both of the two machines are allocated
to it. x and y are two clock variables. Fig. 6 is the product
of PA and PB. The timing constraints on the products A and
B are given as follows: The deadlines for A and B are 30
and 36, respectively. Now, the question is wether we can find
a feasible schedule to meet these requirements within 36 to
40 time units, i.e., we need to check whether the following

(a)

(b)

Figure 5: (a) PA: TA for product A; (b) PB: TA for prod-
uct B.

Figure 6: PA× PB, the product of PA and PB

formula holds.
36 ≤ ` ≤ 40⇒ ∫

(PA.wait testing, ∗) +
∫
(PA.testing, ∗)+∫

(PA.wait burn in, ∗) +
∫
(PA.burn in, ∗) ≤ 30

∧[9 ≤
∫
(PA.testing, ∗) ≤ 15;

∫
(PA.burn in, ∗) = 10]


∧

 ∫
(∗,PB.wait testing) +

∫
(∗,PB.testing)+∫

(∗,PB.wait burn in) +
∫
(∗,PB.burn in) ≤ 36

∧[4 ≤
∫
(∗,PB.testing) ≤ 8;

∫
(∗,PB.burn in) = 10]
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where (PA.l, ∗) stands for a state expression, which means
that in PA × PB , the component PA stays in location l at
time t if (PA.l, ∗)(t) = 1, (∗,PB.l) can be understood sym-
metrically.

By checking the above property with our tool, which takes
83.9 seconds totally, we find several feasible schedules by
solving the resulting QLRA formula. For example, in Fig. 6,
the path 00 → 10 → 11 → 14 → 54 → 55 → 65 → 67 →
87 with chop points at 54 is a feasible schedule.

7 CONCLUSION
In this paper, we investigate the model-checking of continuous-
time extended linear duration invariants against bounded exe-
cution fragments of timed automata. This is achieved through
the following steps: firstly, we compute all execution frag-
ments of a given timed automaton A whose length is within
the given bounded interval according to A’s zone graph; sec-
ondly, we encode whether each execution fragment obtained
in the first step satisfies the given ELDI formula φ into a QL-
RA formula; finally, we invoke REDLOG, a computer algebra
tool, to solve the resulting QLRA formula. The complexity
of our approach is 3-fold exponential in the number of A’s
locations in the worst case. But in practice, it is very efficient
as in REDLOG, virtual substitution can be applied to QLRA
formulas.

We have implemented a prototypical tool and some case
studies are provided to illustrate our approach, which can be
found at https://github.com/Leslieaj/VCELDI.
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