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Abstract—Capacity augmentation bound is a widely used1

quantitative metric in theoretical studies of schedulability anal-2

ysis for directed acyclic graph (DAG) parallel real-time tasks,3

which not only quantifies the suboptimality of the scheduling4

algorithms, but also serves as a simple linear-time schedulabil-5

ity test. Earlier studies on capacity augmentation bounds of the6

sporadic DAG task model were either restricted to a single DAG7

task or a set of tasks with implicit deadlines. In this paper, we8

consider parallel tasks with constrained deadlines under global9

earliest deadline first policy. We first show that it is impossible to10

obtain a constant bound for our problem setting, and derive both11

lower and upper bounds of the capacity augmentation bound as12

a function with respect to the maximum ratio of task period to13

deadline. Our upper bound is at most 1.47 times larger than14

the optimal one. We conduct experiments to compare the accep-15

tance ratio of our capacity augmentation bound with the existing16

schedulability test also having linear-time complexity. The results17

show that our capacity augmentation bound significantly outper-18

forms the existing linear-time schedulability test under different19

parameter settings.20

Index Terms—Capacity augmentation bound, directed acyclic21

graph (DAG), global earliest deadline first (GEDF), parallel tasks,22

real-time scheduling, schedulability analysis.23
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I. INTRODUCTION 24

DURING the last two decades, multicores are more and 25

more widely used in real-time systems to meet the 26

rapidly increasing requirements in high performance comput- 27

ing and lowering the power consumption. To fully utilize 28

the computational capacity of multicore processors, not only 29

intertask parallelisim, but also intratask parallelisim need to 30

be explored in the design and analysis of modern systems, 31

where individual tasks are parallel programs and can poten- 32

tially utilize more than one core at the same time during their 33

executions. Parallel tasks are commonly supported by nowa- 34

days parallel programming languages, such as Cilk family [1], 35

OpenMP [2], [3], and Intel’s Thread Building Blocks [4]. The 36

primitives in these languages and libraries, such as parallel 37

for-loops, omp task and fork/join or spawn/sync, results in 38

intratask parallelism structures that can be well represented via 39

graph-based task models. In the past few years, the real-time- 40

systems community has paid much attention to graph-based 41

(parallel) task models, such as fork-join tasks [5], [6], syn- 42

chronous tasks [7]–[11], and directed acyclic graph (DAG) 43

tasks [12]–[25]. 44

In this paper, we consider the general parallel tasks modeled 45

as DAGs, where each vertex represents a sequence of instruc- 46

tions and each edge represents the interdependency constraints 47

among the vertices. Real-time scheduling algorithms for DAG 48

tasks can be classified into three paradigms: 1) decomposition- 49

based scheduling [15], [17], [20], [22]; 2) global scheduling 50

(without decomposition) [13], [16], [23]; and 3) federated 51

scheduling [18], [26]–[29]. Decomposition-based scheduling 52

first decomposes each DAG task into a set of sequential sub- 53

tasks and assigns them intermediate release time and deadlines, 54

and then schedules these sequential subtasks using a traditional 55

multiprocessor scheduling policy for sequential tasks. In fed- 56

erated scheduling, the scheduler maintains a set of dedicated 57

cores for each high-utilization task with utilization >1, and 58

forces the remaining low-utilization task (with utilization ≤1) 59

to be sequentially executed by the remaining (shared) cores. 60

This paper focuses on global scheduling, in particular, 61

global earliest deadline first (GEDF) scheduling. Many exist- 62

ing systems, for example, Linux [30] and LITMUS [31] have 63

provided efficient and scalable implementations of GEDF for 64

sequential tasks, which suggests a potentially easy imple- 65

mentation for parallel tasks. However, schedulability anal- 66

ysis of GEDF for DAG tasks is a challenging problem. 67

Theoretical work on real-time scheduling and schedulabil- 68

ity analysis of real-time parallel tasks uses two quantitative 69

metrics. 70
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Fig. 1. Capacity bound as a function of β, and the red line represents the
lower bound of capacity augmentation.

1) Resource Augmentation Bound (also called speedup fac-71

tor) is a comparative metric with respect to some other72

(optimal) scheduler. A scheduler S provides a resource73

augmentation bound of ρ if it can successfully schedule74

any task set τ on m cores of speed ρ as long as the com-75

pared scheduler can schedule τ on m cores of speed 1.76

A resource augmentation bound shows how close the77

performance of a scheduler is to the compared one, but78

it cannot be directly used as a schedulability test.79

2) Capacity Augmentation Bound is an absolute metric that80

can be directly used for schedulability test. A sched-81

uler S has a capacity augmentation bound of ρ if it can82

schedule any task set τ satisfying the following two con-83

ditions: a) the total utilization of τ is at most m/ρ and84

b) the worst-case critical path length of each task is at85

most 1/ρ of its deadline. Capacity augmentation bounds86

are stronger than resource augmentation bounds in the87

sense that if a scheduler has a capacity augmentation88

bound of ρ, it is also guaranteed to have a resource89

augmentation bound of ρ. In parallel task scheduling,90

a capacity augmentation bound can serve as a simple91

linear-time schedulability test that requires no knowl-92

edge about the DAG structures except the critical path93

length and utilization of each task.94

A. Contribution95

In this paper, we derive the first capacity augmentation96

bound for GEDF scheduling of DAG tasks with constrained97

deadlines98

ρ = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
(1)99

where m is the number of processing cores and β is the max-100

imal ratio of task period to deadline (see in Section III for101

a more formal definition). When m becomes infinitely large,102

the bound approaches β + 2
√

β + 1. Moreover, we also prove103

that the capacity augmentation required by GEDF is at least104

(β+√
β2 + 4β)/2+1. Fig. 1 shows the figure of this capacity105

augmentation bound as a function of β.106

There have been many previous works on both types of107

bounds for sporadic parallel tasks under different scheduling108

algorithms and different deadline constraints (see Section II109

for a review). To the best of our knowledge, the capacity aug- 110

mentation bound for the problem setting considered in this 111

paper is still open. It is worth mentioning that [13] introduced 112

a simple schedulability test condition1 having the same time 113

complexity and requiring the same information as our capac- 114

ity augmentation bound. However, the test condition in [13] 115

is more pessimistic than our capacity augmentation bound. 116

We have conducted experiments to compare the acceptance 117

ratio of these two tests, and the results show that our capacity 118

augmentation bound significantly outperforms the test in [13] 119

under different parameter settings. 120

The remainder of this paper is organized as follows. 121

Section II reviews related work. Section III describes the 122

DAG task model and its runtime model. Section IV for- 123

mally defines the notation and terminology related to the 124

global EDF policy. Proofs of capacity augmentation bounds 125

are presented in Section V. Evaluation result is shown in 126

Section VI. Section VII gives concluding remarks. 127

II. RELATED WORK 128

The prior results on real-time scheduling and schedulability 129

analysis of real-time parallel tasks can be classified into two 130

categories: 1) those based on augmentation bound analysis and 131

2) those based on response time analysis (RTA). 132

A. Augmentation Bound Analysis 133

Augmentation bound analysis can be further classified 134

as two subcatagories: 1) resource augmentation bound and 135

2) capacity augmentation bound. Based on the resource bound, 136

one can only propose a (pseudo-)polynomial time schedula- 137

bility test with a bounded speedup, which cannot be directly 138

applied on the platform with unit-speed cores. The capacity 139

bound is the only theoretical quantitative metric that can serve 140

as a sufficient schedulability test for the tasks on unit-speed 141

cores. In the following we review previous work on resource 142

augmentation bounds and capacity augmentation bounds for 143

sporadic DAG task models with different deadline constraints 144

(implicit, constrained, or arbitrary) under different scheduling 145

algorithms (decomposition-based, global, and federated). The 146

state-of-the-art results are summarized in Table I. 147

1) Resource Augmentation Bounds: 148

1) Decomposition-Based Scheduling: For decomposition- 149

based scheduling, the associated resource augmentation 150

bounds are indicated by their capacity augmentation 151

bound results. Hence, we only survey the capacity aug- 152

mentation bounds for decomposition-based scheduling 153

in the next section. 154

2) Federated Strategy: For implicit-deadline DAG tasks, 155

Li et al. [18] proved a resource augmentation bound 156

of 2 with respect to hypothetical optimal schedul- 157

ing algorithms. For constrained-deadline DAG tasks, 158

Chen [24] showed that any federated scheduling algo- 159

rithm has a resource augmentation bound of at least 160

�(min{m, n}) with respect to any optimal scheduling 161

algorithm, where n is the number of tasks and m is the 162

1The test in [13] is for arbitrary-deadline DAG tasks, and thus also
applicable to constrained-deadline DAG tasks considered in this paper.
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TABLE I
STATE-OF-THE-ART RESOURCE AUGMENTATION BOUNDS (WITH RESPECT TO OPTIMAL SCHEDULING ALGORITHMS)

AND CAPACITY AUGMENTATION BOUND FOR DAG TASKS (WHEN m IS INFINITELY LARGE)

number of cores. With respect to any optimal federated163

scheduling algorithm,2 Baruah proved a speed-up factor164

of 3 − (1/m) for constrained deadline DAG tasks [26]165

and proved a speed-up factor of 4 − (2/m) for arbitrary166

deadline DAG tasks [27].167

3) Global Scheduling: For a single recurrent DAG task with168

an arbitrary deadline, Baruah et al. [12] proved a bound169

of 2 under GEDF. For multiple DAG tasks with arbitrary170

deadlines, Li et al. [14] and Bonifaci et al. [13] proved a171

bound of 2−(1/m) under GEDF, and Bonifaci et al. [13]172

proved a bound of 3 − (1/m) under deadline monotonic173

(DM) scheduling. All these bounds are with respect to174

an optimal scheduling algorithm.175

2) Capacity Augmentation Bounds:176

1) Decomposition-Based scheduling: The capacity aug-177

mentation bounds for decomposition-based scheduling178

are restricted to implicit-deadline DAG tasks. Earlier179

work began with synchronous tasks (a special case of180

DAG tasks). For a restricted set of synchronous tasks,181

Lakshmanan et al. [5] proved a bound of 3.42 using DM182

scheduling for decomposed tasks. For more general syn-183

chronous tasks, Saifullah et al. [7] proved a bound of184

4 for GEDF and 5 for DM scheduling. For DAG tasks,185

Saifullah et al. [17] proved a bound of 4 under GEDF186

on decomposed tasks, and Jiang et al. [20] refined this187

bound to the range of [2−(1/m), 4−(2/m)), depending188

on the DAG structure characteristics. For a special class189

of DAG task sets, Qamhieh et al. [22] proved a bound190

of [(3 + √
5)/2]. This is the best capacity augmentation191

bound known for task sets with multiple DAGs.192

2) Federated Strategy: For multiple DAGs with implicit193

deadlines, Li et al. [18] proved a bound of 2 under194

federated scheduling. For mixed-criticality DAGs with195

implicit deadlines, Li et al. [29] proved that for high196

utilization tasks, the mixed criticality federated schedul-197

ing has a capacity augmentation bound of 2 + 2
√

2 and198

[(5 + √
5)/2] for dual- and multi-criticality systems,199

respectively. Moreover, they also derived a capacity aug-200

mentation bound of (11m/[3m − 3]) for dual-criticality201

systems with both high- and low-utilization tasks.202

3) Global Scheduling: For multiple DAGs with implicit203

deadlines, Li et al. [14] proved a bound of 4 − (2/m)204

under GEDF, this bound is further improved to [(3 +205 √
5)/2], which is proved to be tight when the number206

2An optimal federated scheduling may not be a good scheduling strategy
compared with an optimal scheduling algorithm.

m of cores is sufficiently large. Moreover, Li et al. [18] 207

proved a bound of 2 + √
3 under global rate monotonic 208

scheduling without decomposition. 209

Moreover, for a single recurrent DAG with arbitrary dead- 210

line scheduled by GEDF, Baruah et al. [12] proved a bound of 211

2.5. In summary, prior work on capacity augmentation bounds 212

is either restricted to a single recurrent DAG task or restricted 213

to a set of multiple DAG tasks with implicit deadlines. 214

B. Response Time Analysis 215

For synchronous tasks with constrainted deadline, 216

Chwa et al. [10] proposed an RTA-based analysis for GEDF 217

scheduling algorithm, and Maia et al. [11] gave the anaylsis 218

for GFP scheduling algorithm. Axer et al. [6] proposed an 219

RTA-based analysis for fork-join tasks with arbitary deadline. 220

Qamhieh et al. [15] gave an RTA-based analysis for GEDF 221

scheduling of DAG-tasks with constrained deadline and a 222

study of its sustainability. Parri et al. [32] proposed an RTA- 223

based test for GEDF and GDM scheduling of DAG-tasks with 224

arbitrary deadline. Melani et al. [21] proposed an RTA-based 225

test for GEDF scheduling of conditional DAG-tasks with 226

constrained deadline. 227

Most RTA-based methods for multi-DAGs cannot pro- 228

vide guaranteed augmentation bounds. Moreover, unlike the 229

capacity bound analysis that can provide a simple linear 230

time schedulability test requiring no knowledge about DAG’s 231

internal structure, RTA-based schedulability tests suffer from 232

the complexity intrinsic in computation, which often have 233

a (pseudo-)polynomial time complexity, and they require to 234

explore DAG’s internal structure. 235

III. MODEL 236

We consider a sporadic task set τ that consists of n tasks 237

τ = {τ1, . . . , τn}. Each task τk is associated with a period 238

Pk and a relative deadline Dk, and its execution has a DAG 239

structure. The xth subtask of task τk is represented by vertex 240

vx
k in the DAG. If there is a directed edge from vertex vx

k to 241

vertex vy
k, then vx

k is vy
k’s predecessor. A subtask cannot start 242

its execution until the completion of all its predecessors. Each 243

vertex vx
k has its own worst-case execution time Cx

k. 244

We assume the tasks have constrained deadlines, i.e., each 245

task’s relative deadline is no larger than its period, i.e., 246

∀k, Dk ≤ Pk. We do not restrict our research on any DAG 247

of particular types. More specifically, multiple source vertices 248

and sink vertices are allowed, and the DAG is not necessary to 249

be fully connected. Fig. 2 gives an example task that contains 250

six subtasks in the DAG-structure. 251
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Fig. 2. Example DAG task τk with volume Ck = 11 and critical path length Lk = 8.

We now introduce some useful notations related to a DAG252

task.253

1) Volume: The sum of the worst-case execution time of254

all subtasks of τk is the volume of τk255

Ck =
∑

x

Cx
k.256

Moreover, we denote by C∑ the total volume of the257

whole task system: C∑ = ∑
k Ck.258

2) Utilization: We define the utilization uk of a task τk as259

uk = Ck

Pk
.260

Moreover, the total utilization of the task system is261

denoted as U∑ = ∑
k uk.262

3) We define the maximum ratio of task period to263

deadline as264

β = max
k

Pk

Dk
.265

4) Critical Path: We use the critical path of τk as the266

longest path in τk’s DAG (the length of a path is the267

total amount of the worst-case execution time associ-268

ated with the vertices along that path). Let Lk be the269

critical path length, and obviously, Lk ≤ Ck.270

For example, in Fig. 2, the volume of τk is Ck = 11, and271

the utilization of τk is uk = 11/9. The critical path (marking272

in red) starts from vertex v2
k , goes through v3

k and ends at273

vertex v6
k , so the critical path length of the DAG task τk is274

Lk = 1 + 2 + 5 = 8.275

A task τk releases an infinite number of jobs recurrently, and276

the time interval between the release time of any two adjacent277

jobs is no less than period Pk. All of the jobs released by278

the same task have the same DAG-structure. In particular, the279

volumes and the critical path lengths of all jobs generated by280

a task τk are the same as those of task τk.281

Without loss of generality, Jk,a denotes the ath job instance282

of task τk, and the xth vertex of Jk,a is represented as vx
k,a. Let283

rk,a and dk,a be the absolute release time and absolute deadline284

of job Jk,a, respectively. All the vertices of Jk,a are required285

to be executed after its release time rk,a and the execution286

must be completed on or before its deadline dk,a. The interval287

[rk,a, dk,a] is also known as the scheduling window of the job288

Jk,a, with a length of Dk = dk,a − rk,a [as demonstrated in289

Fig. 3].290

Moreover, we say that a job is unfinished if the job has291

been released but not completed yet. Any unfinished job must292

contain some vertices (subjobs) that are unfinished. To carry293

Fig. 3. Scheduling window [rk,a, dk,a] of job Jk,a.

the analysis, here we define the notion of remaining volume 294

and remaining critical path length for an unfinished job. 295

1) Remaining Volume: The remaining volume equals the 296

total volume minus the part of its volume that has 297

already been executed. 298

2) Remaining Critical Path Length: The remaining critical 299

path length is total unfinished workload of the vertices 300

in the longest path of the DAG. 301

For example, in the example DAG task shown in Fig. 2, if v1
k 302

and v2
k are completely executed, and v3

k is partially executed for 303

1 time unit (out of 2), the remaining volume is 1+1+1+5 = 8, 304

and the remaining critical path length is 1 + 5 = 6. 305

A. Runtime Scheduling and Schedulability 306

The task set is scheduled by GEDF scheduling algorithm 307

on m identical unit-speed processing cores. Under GEDF, at 308

each time instant the scheduler selects the highest-priority 309

ready vertices (at most m) for execution. Vertices of the 310

same task share the same priority (ties are broken arbitrar- 311

ily) and a vertex of a task with an earlier absolute deadline 312

has a higher priority than a vertex of a task with a later 313

absolute deadline. In particular, vertex-level preemption and 314

migration are both permitted in GEDF. Without loss of gen- 315

erality, we assume the task system starts at time 0 (i.e., the 316

first job of the system is released at time 0). The task set is 317

schedulable if all jobs released by all tasks in τ meet their 318

deadlines. 319

Lemma 1 (Necessary Conditions for Schedulability [14]): 320

A task set τ is not schedulable (by any scheduler) unless the 321

following conditions hold. 322

1) The critical path length of each task τk is less than its 323

deadline, i.e., 324

∀k : Lk ≤ Dk. (2) 325

2) The total utilization U∑ is smaller than the number of 326

cores, i.e., 327

U∑ ≤ m. (3) 328

Clearly, if (2) is violated for some task, then its deadline is 329

doomed to be violated in the worst case, even if it is executed 330
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(a) (b)

Fig. 4. Two types of jobs that may interfere with Jk,a. (a) Jj,b is a carry-in job of Jk,a. (b) Jj,b is a fall-in job of Jk,a.

exclusively on sufficiently many cores. If (3) is violated, then331

in the long term the worst-case workload of the system exceeds332

the processing capacity provided by the platform, and thus the333

backlog will increase infinitely which leads to deadline misses.334

A scheduling algorithm S has a capacity augmentation335

bound ρ if any task set τ satisfying the following conditions is336

schedulable by S: 1) ∀k : Lk ≤ Dk/ρ and 2) U∑ ≤ m/ρ. The337

concept of capacity augmentation bound can be equivalently338

stated as follows [14] and [18]:339

Definition 1 (Capacity Augmentation Bound for DAG Task340

System): A scheduling algorithm S has a capacity augmenta-341

tion bound ρ if it can always schedule DAG task set τ on m342

cores of speed ρ as long as τ satisfies the above necessary343

conditions (2) and (3).344

A scheduling algorithm with a smaller ρ is prefer-345

able and when ρ = 1 the scheduling algorithm S is346

optimal.347

B. Overall Analysis Outline348

The overall intuition behind the capacity bound analysis is349

to derive a sufficient condition, under which every released job350

can be successfully scheduled by GEDF on cores with speed ρ.351

More precisely, for each job Jk,a under analysis, we derive a352

lower bound of the multicore resource that must be utilized353

to execute tasks in the scheduling window [rk,a, dk,a] of Jk,a,354

and meanwhile, we derive an upper bound of the workload355

that must be executed by GEDF during the scheduling win-356

dow [rk,a, dk,a] of Jk,a. A sufficient condition for successfully357

scheduling tasks is that the resource’s lower bound is larger358

than the workload’s upper bound for all jobs. As we know359

that the lower resource bound increases with the core speed ρ360

and the upper workload bound decreases with the core speed361

ρ, we aim to find the minimum speed ρ to make the suffi-362

cient condition hold. Such a minimum speed ρ is the capacity363

augmentation bound as shown in Definition 1.364

In the following, the upper workload bound is analyzed in365

Sections IV-A and V-A. Moreover, the lower resource bound366

is given in Section IV-B. Determining the infimum of speed367

ρ is given in Section V-B.368

IV. PRELIMINARY RESULTS369

In this section, we introduce some concepts and properties370

that will be useful in deriving the capacity augmentation bound371

in the next section.372

A. Interference373

Suppose we are analyzing the schedulability of an arbi-374

trary job Jk,a, the ath instance of task τk, under GEDF375

scheduling. When analyzing Jk,a, we assume that all the 376

other jobs can meet their deadlines. Another job Jj,b 377

of τj can interfere with Jk,a if the following conditions 378

hold. 379

1) At some time point, Jj,b and Jk,a are both unfinished 380

(this implies the scheduling windows of Jj,b and Jk,a 381

are overlapped, assuming that Jj,b meets its deadline). 382

2) The absolute deadline of Jj,b is no later than the absolute 383

deadline of Jk,a, i.e., dj,b ≤ dk,a. 384

For any task τj we distinguish its jobs that may interfere with 385

Jk,a into two types by considering whether their scheduling 386

windows are fully contained in the scheduling window of Jk,a 387

(see in Fig. 4). 388

1) Carry-in Jobs: A carry-in job (Jj,b) must be released 389

before the job of interest (Jk,a) and has an absolute dead- 390

line earlier than the absolute deadline of Jk,a, i.e.,rj,b < 391

rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(a)]. 392

2) Fall-in Jobs: A fall-in job’s (Jj,b) scheduling window 393

is fully contained in the scheduling window of the job 394

of interest (Jk,a). More specifically, Jj,b is released after 395

the release time of Jk,a, and the absolute deadline of Jj,b 396

is earlier than the absolute deadline of Jk,a, i.e., rj,b ≥ 397

rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(b)]. 398

Note that a job Jj,b that is a carry-in job of Jk,a does not 399

interfere with Jk,a, if Jj,b has finished before the release time 400

rk,a of Jk,a. If the carry-in job Jj,b of Jk,a is unfinished at rk,a, 401

then Jj,b can interfere with Jk,a, and we call the work that 402

is from the carry-in jobs of Jk,a and interferes with Jk,a as 403

carry-in work. 404

Definition 2 (Carry-in Work): For a job Jk,a under anal- 405

ysis, the carry-in work, denoted by χk,a, is the total work 406

from the carry-in jobs executed in the scheduling window 407

of Jk,a. 408

According to Definition 2, the work from a carry-in job Jj,b 409

to Jk,a contributes to the carry-in work of Jk,a if it is executed 410

during the interval [rk,a, dj,b] (recall that when analyzing the 411

schedulability of Jk,a we assume Jj,b can meet its deadline). 412

Similarly, a fall-in job may not interfere with Jk,a unless Jk,a 413

is unfinished at the release time of Jj,b. If Jj,b interferes with 414

Jk,a, the amount of interfering work from Jj,b is Cj, which is 415

called fall-in work. 416

Definition 3 (Fall-in Work): For a job Jk,a under analysis, 417

its fall-in work Fk,a is the total work from the fall-in jobs 418

released before Jk,a finishes its execution. 419

Note that the fall-in work Fk,a of Jk,a not only consists of 420

the work from Jk,a’s fall-in jobs, but also contains the work 421

from Jk,a itself. 422

Let nk,a
j be the number of Jk,a’s fall-in jobs that are released 423

from the task τj (see an example in Fig. 5). The total amount 424
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Fig. 5. Number of Jk,a’s fall-in jobs from τj is nk,a
j = 3.

of the fall-in work of Jk,a is upper bounded by425

Fk,a ≤
∑

i

nk,a
i Ci =

∑
i

uin
k,a
i Pi. (4)426

Definition 4 (Remaining Window Length): Let Jj,b be a427

carry-in job from task τj for the analyzed job Jk,a, the428

remaining window length of τj is defined as429

α
k,a
j = dj,b − rk,a.430

Obviously, α
k,a
j ≤ Dj [see Fig. 4(a)]. Moreover, as shown431

in Fig. 5, the following inequality holds:432

Dk ≥ α
k,a
j + Pj − Dj +

(
nk,a

j − 1
)

Pj + Dj433

= α
k,a
j + nk,a

j Pj. (5)434

B. Progress Under Work-Conserving Scheduling435

The GEDF satisfies work-conserving property: cores will436

never be idle if there are ready vertices waiting for execu-437

tion. The work-conserving property guarantees the system to438

make progress whenever there is ready workload to execute.439

The progress can be guaranteed differently for two types of440

intervals.441

1) Complete Interval: At any time point in a complete442

interval, all cores are busy.443

2) Incomplete Interval: At any time point in an incomplete444

interval, at least one core is idle.445

In order to coincide with the analysis undertaken in the446

following sections, this section considers a more general case447

of scheduling on m cores with speed ρ. The following lemmas448

are given in [14].449

Lemma 2: On a processing platform of core speed ρ, the450

remaining critical path length of each unfinished job reduces451

by ρt after an incomplete interval of length t is elapsed.452

Lemma 3: On a processing platform of core speed ρ, the453

total work in a time interval of length t, in which the454

accumulated length of incomplete intervals is t∗, is at least455

ρmt − ρ(m − 1)t∗.456

By Lemmas 2 and 3, we can obtain the following lemma.457

Lemma 4: For any interval I that falls in the scheduling458

window of job Jk,a, i.e., I ⊆ [rk,a, dk,a], if Jk,a finishes after459

I, then the total amount of work done during I is at least460

ρm|I| − (m − 1)Lk, where Lk is the critical path length of τk.461

Proof: We first prove that the accumulated length of incom-462

plete intervals in I, denoted by x, is no more than Lk/ρ. We463

prove this by contradiction, assuming x > Lk/ρ. According464

to Lemma 2, Jk,a’s critical path length reduces by ρ · x465

after all the incomplete intervals with the total length x are466

elapsed. Therefore, we can conclude that the critical path467

length reduces by more than Lk at the end of I. which leads to 468

a contradiction as the length of the critical path is at most Lk. 469

By now, we know that the accumulated length of the 470

incomplete intervals in I is at most Lk/ρ. By Lemma 3, 471

the total amount of work done during I is at least 472

ρm|I| − (m − 1)Lk. 473

Lemma 4 implies a lower bound of the amount of work- 474

load that must be done during an interval when some jobs 475

are unfinished. This lemma will be used in the proofs of 476

Section V-B. 477

V. ANALYSIS 478

This section presents our schedulability analysis and the 479

capacity augmentation bound. 480

The main idea of our analysis is as follows. For any given 481

positive number ε, we formulate a speed function ρ(ε), and 482

assume that the task set is run on m cores with speed up ρ(ε). 483

Then, for every job released from the task system, we can 484

use a function of ε to bound its carry-in work. For every job, 485

the bounded carry-in work leads to bounded interference from 486

other tasks, and hence GEDF can successfully schedule all 487

of them. The infimum of the speed function ρ(ε) eventually 488

implies the capacity augmentation bound. In the following, 489

Section V-A derives an upper bound for carry-in work, based 490

on which, the proof for a capacity augmentation bound is 491

presented in Section V-B. 492

A. Upper Bound for Carry-in Work 493

In the following, we show that the carry-in work for a job 494

under analysis can be well bounded if scheduled on m ρ-speed 495

cores. First, for the cores with speed ρ ≥ 1, a straightforward 496

bound for carry-in work of the analyzed job Jk,a is as follows. 497

Lemma 5: If the core speed ρ ≥ 1, the carry-in work χk,a
498

for job Jk,a is bounded by 499

χk,a ≤ β
∑

i

uiDi. (6) 500

Proof: Using J1 to denote the set of carry-in jobs of Jk,a 501

that are unfinished at time rk,a, then we have 502

χk,a ≤
∑

Jj,b∈J1

ujPj 503

≤ β
∑

Jj,b∈J1

ujDj

[
∵ β = max

i

{
Pi

Di

}]
504

≤ β
∑

i

uiDi. 505
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The last step of the above inequality is because that each506

constrained-deadline task τi has at most one job to be the507

carry-in job of Jk,a. This completes the proof.508

For the cores with speed ρ strictly larger than 1, by rep-509

resenting the infimum of core speed ρ as a function, the510

carry-in-work bound for the analyzed job Jk,a can be further511

refined as shown in Lemma 6, and this is one of the basic512

result of this paper.513

Lemma 6: If the core speed ρ ≥ ρ(ε) (where ε > 0), the514

carry-in work χk,a for job Jk,a is bounded by515

χk,a ≤ β(1 + ε)
∑

i

uiα
k,a
i (7)516

where517

ρ(ε) = β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
. (8)518

(Recall that α
k,a
i is the remaining window length of task τi as519

defined in Definition 4.)520

Proof: We prove the lemma by an induction to jobs in the521

order of their release time. The job of interest is denoted as522

“Jk,a” at each induction step.523

Base Case: If Jk,a is the very first job released in the system,524

i.e., released at time 0, no carry-in jobs are released before525

Jk,a, implying that χk,a = 0, and α
k,a
i = 0 for each τi ∈ τ .526

Therefore, the condition (7) trivially holds527

χk,a = 0 ≤ β(1 + ε)
∑

i

uiα
k,a
i = 0.528

Inductive Step: For the case that Jk,a is not the first job529

released in the system, we have the inductive hypothesis: every530

job Jj,b released earlier than Jk,a satisfies531

χ j,b ≤ β(1 + ε)
∑

i

uiα
j,b
i . (9)532

In the following we prove that (7) holds for job Jk,a. First,533

the condition (7) trivially holds if α
k,a
j > [Dj/(1 + ε)], for534

every carry-in job Jj,b of Jk,a. The reason is as follows. From535

Lemma 5, we have536

χk,a ≤ β
∑

j

ujDj537

< β(1 + ε)
∑

j

ujα
k,a
j

[
∵ α

k,a
j >

Dj

1 + ε

]
.538

Therefore, in the following we only consider the case such539

that at least one unfinished carry-in job Jj,b satisfies α
k,a
j ≤540

[Dj/(1 + ε)]. Then by Dj = rk,a − rj,b + α
k,a
j and letting541

	 = rk,a − rj,b, we have542

	 ≥ ε

1 + ε
Dj. (10)543

On the other hand, we have (see Fig. 6 for intuition)544

	 ≥ α
j,b
i + Pi − Di + n	

i Pi + Di − α
k,a
i545

≥ α
j,b
i + n	

i Pi + Pi − α
k,a
i (11)546

where n	
i denotes the number of jobs that are547

released after the release time rj,b of Jj,b, and548

whose next job is released before the release time 549

rk,a of Jk,a. 550

Note that Jj,b has not finished at time rk,a. According to 551

Lemma 4, the total amount of work done during [rj,b, rk,a], 552

denoted by W	, is at least 553

W	 ≥ ρm	 − (m − 1)Lj. (12) 554

The work of W	 comes from three sets of jobs. 555

1) JA: the set of carry-in jobs of Jj,b. 556

2) JB: the set of carry-in jobs of Jk,a. 557

3) JC: the set of jobs that entirely fall in [rj,b, rk,a]. 558

For example, in Fig. 6, JA = {Ji,c, Jl,d} (in red rectangles), 559

JB = {Ji,c+2, Jl,d} (in blue rectangles) and JC = {Ji,c+1} (in 560

green rectangles). Obviously, (JA ∪ JB) ∩ JC = ∅, and in 561

general JA ∩ JB �= ∅. 562

Let J ′
A = JA − JB. We use Wx to denote the total amount 563

of work done by jobs in Jx (for x = A′, A, B, C), the total 564

amount of work W	 done during [rj,b, rk,a] can be divided 565

into three parts 566

W	 = WA′ + WB + WC. (13) 567

In the following, we derive an upper bound for each part 568

above, respectively. 569

Upper Bound of WA′ : Since the work in WA′ is executed 570

in the interval between the release time rj,b of Jj,b and the 571

absolute deadline dj,b of Jj,b, WA′ is included in the carry- 572

in work χ j,b of Jj,b, i.e., WA′ ≤ χ j,b, and by the inductive 573

hypothesis (9), we have 574

WA′ ≤ β(1 + ε)
∑

i

uiα
j,b
i . (14) 575

Upper Bound of WB: We observe that the total amount of 576

work by the carry-in jobs of Jk,a, denoted by Ck,a can be 577

divided into two parts. 578

1) The work done before or at the release time rk,a of Jk,a. 579

This part includes WB. 580

2) The work done after the time rk,a, which equals χk,a. 581

Therefore, we have 582

Ck,a ≥ WB + χk,a. (15) 583

Each constrained-deadline task τi has at most one job 584

to be the carry-in job of Jk,a. Thus, the total amount of 585

work Ck,a from the carry-in jobs of Jk,a has an upper 586

bound Ck,a ≤ ∑
i uiPi and combining this with (15) 587

yields 588

WB ≤
∑

i

uiPi − χk,a. (16) 589

Upper Bound of WC: For each τi ∈ τ , recall 590

that n	
i is the number of jobs that are released after 591

the release time rj,b of Jj,b, and whose next job is 592

released before the release time rk,a of Jk,a [defined right 593

after (11)]. The total amount of work WC from JC can be 594

calculated as 595

WC =
∑

i

uin
	
i Pi. (17) 596
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Fig. 6. Illustration for the proof of Lemma 6.

Putting (13), (14), (16), and (17) together, we have597

W	 ≤ β(1 + ε)
∑

i

uiα
j,b
i +

∑
i

uin
	
i Pi +

∑
i

uiPi − χk,a
598

≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
− χk,a

599

[∵ ε > 0, β > 1]600

and by (12), we have601

χk,a ≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
602

− ρm	 + (m − 1)Lj603

≤ β(1 + ε)
∑

i

ui

(
	 + α

k,a
i

)
− ρm	604

+ (m − 1)Lj [∵ (11)]605

and since
∑

i ui ≤ m and Lj ≤ Dj, we have606

χk,a ≤ β(1 + ε)

(
m	 +

∑
i

uiα
k,a
i

)
− ρm	 + (m − 1)Dj607

and by 	 ≥ (ε/[1 + ε])Dj, we have608

χk,a ≤ (β(1 + ε) − ρ)m	 + (m − 1)

(
ε + 1

ε

)
	609

+ β(1 + ε)
∑

i

uiα
k,a
i610

and since ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m)), we have611

χk,a ≤
(

ε + 1

ε

)
(1 − m)	 +

(
ε + 1

ε

)
(m − 1)	612

+ β(1 + ε)
∑

i

uiα
k,a
i613

by which we finally get χk,a ≤ β(1 + ε)
∑

i uiα
k,a
i .614

B. Upper Capacity Augmentation Bound615

In this section, we propose an capacity augmentation bound616

for the DAG tasks with constrained deadlines.617

Recall that we can bound the fall-in work Fk,a by (4),618

and Lemma 6 bounds the carry-in work χk,a, so by now619

we have bounded the total amount of work to be executed 620

in the scheduling window of Jk,a, the job under analysis. 621

Next, we will present a lemma that identifies core speeds 622

for the platform to be able to finish this total amount of 623

work in the scheduling window of Jk,a, and thus guarantee 624

the schedulability. 625

Lemma 7: A task set that satisfies the necessary conditions 626

in Lemma 1 is schedulable under GEDF on a multicore plat- 627

form with core speed ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m)) 628

(where ε > 0), i.e., GEDF has a capacity augmentation bound 629

of β(1+ε)+(ε+(1/ε))(1−(1/m)), where β = maxi{(Pi/Di)}. 630

Proof: We prove this theorem by contradiction. Suppose an 631

arbitrary job Jk,a misses its deadline. It implies that all the 632

work done during the scheduling window [rk,a, dk,a] of Jk,a 633

(the length of which is Dk) can interfere with Jk,a (including 634

Jk,a’s work). 635

We use W to denote the total amount of work that has been 636

done in [rk,a, dk,a]. Since Jk,a misses deadline, we know 637

W ≤ χk,a + Fk,a. (18) 638

Since Jk,a has not finished at its absolute deadline dk,a, by 639

Lemma 4, we have 640

W ≥ ρmDk − (m − 1)Lk 641

≥ (1 + (ρ − 1)m)Dk [∵ m > 1, Lk ≤ Dk]. (19) 642

Then by (18) and (19), as well as the upper bounds for χk,a
643

in Lemma 6 and for Fk,a in (4), we have 644

(1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiα
k,a
i +

∑
i

uin
k,a
i Pi 645

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

ui

(
α

k,a
i + nk,a

i Pi

)
646

[∵ ε > 0, β > 1] 647

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiDk [from (5)] 648

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)mDk

[
∵

∑
i

ui ≤ m

]
649

⇔ 1 + (ρ − 1)m ≤ β(1 + ε)m 650
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⇔ ρ ≤ β(1 + ε) + 1 − 1

m
651

⇒ ρ < β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
652 [

∵ m > 1, ε + 1

ε
≥ 2

]
.653

It contradicts to the precondition ρ ≥ β(1+ε)+(ε+(1/ε))(1−654

(1/m)), so assumption is not true and the lemma is proved.655

Note that the capacity augmentation bound in Lemma 7656

contains an open variable ε. Lemma 7 holds for any ε > 0,657

and our target is to achieve a bound as low as possible. The658

following lemma gives the value of ε to make the bound β(1+659

ε) + (ε + (1/ε))(1 − (1/m)) to reach its minimum.660

Lemma 8: β(1 + ε) + (ε + (1/ε))(1 − (1/m)) reaches661

its minimum β + 2
√

(β + 1 − (1/m))(1 − (1/m)) with ε =662 √
([1 − (1/m)]/[β + 1 − (1/m)]).663

Proof: We rewrite the β(1 + ε)+ (ε + (1/ε))(1 − (1/m)) as664

β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
= β + A + B665

where A = (β + 1 − (1/m))ε, B = (1 − (1/m))(1/ε).666

Since A+B ≥ 2
√

AB, we know the lower bound of β+A+B667

β + A + B ≥ β + 2
√

AB = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
.668

Since A + B reaches its minimum 2
√

AB with A = B, we can669

solve the desired ε with670 (
β + 1 − 1

m

)
ε =

(
1 − 1

m

)
1

ε
671

by which we get ε = √
([1 − (1/m)]/[β + 1 − (1/m)]).672

Now, by substituting the bound in Lemma 7 by its minimum673

we can conclude the main result of this paper.674

Theorem 1: A task set that satisfies the necessary con-675

ditions in Lemma 1 is schedulable under GEDF on676

a multicore platform with core speed ρ ≥ β +677

2
√

(β + 1 − (1/m))(1 − (1/m)), i.e., GEDF has a capacity678

augmentation bound of β + 2
√

(β + 1 − (1/m))(1 − (1/m)),679

where β = maxi{(Pi/Di)}.680

We can state Theorem 1 in the form of a direct schedula-681

bility test on unit-speed cores.682

Corollary 1: On m unit-speed cores, where m > 1, if a683

sporadic task set τ with constrained deadlines satisfies the684

following two conditions:685

U∑ ≤ m

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)686

∀k : Lk ≤ Dk

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)687

where β = maxi{(Pi/Di)}, then τ is schedulable by GEDF.688

C. Lower Capacity Augmentation Bound689

This section gives an example to show the lower bound of690

the capacity augmentation bound.691

Fig. 7. Structure of the task set that demonstrates GEDF does not provide
a capacity augmentation bound less than [(β +

√
β2 + 4β)/2] + 1.

Fig. 8. Execution of the task set under GEDF at speed ρ.

The example is constructed as shown in Fig. 7. The task 692

set contains two tasks. One task τ1 is structured as a single 693

vertex with workload x followed by nm vertices with workload 694

y. Its critical path length L1 is x+y and so is its deadline. The 695

period of τ1 is set to be β(x+y), and moreover, the utilization 696

u1 is set to be m − 1 697

m − 1 = x + nmy

β(x + y)
. (20) 698

The other task τ2 has a single vertex with workload, dead- 699

line, and period equal to x + y − (x/ρ), and thus the critical 700

path length L2 of τ2 is x + y − (x/ρ) and the utilization u2 of 701

τ2 is 1. 702

Obviously, the necessity conditions (2) and (3) hold: U∑ = 703

u1 + u2 ≤ m, L1 ≤ D1 and L2 ≤ D2. During the execution, τ1 704

is released at the absolute time 0, and τ2 is released at time 705

(x/ρ) + 1. The execution is shown in Fig. 8. 706

We want to generate an example, so we want τ2 to miss its 707

deadline. In order for this to occur, we must have 708

x + y − x

ρ
+ 1 <

ny + x + y − x
ρ

ρ
. (21) 709

Reorganizing and combining (20) and inequality (21), 710

we get 711

ρ <
(n + 1)mβ + 2(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)
712

+
√

(n + 1)2m2β2 + 4n((m − 1)β − 1)(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)
. 713

(22) 714

In (22), for large enough nm, we have 715

ρ <
(β + 2)nm +

√(
β2 + 4β

)
n2m2

2nm
716

⇔ ρ <
β + √

β2 + 4β

2
+ 1. (23) 717

So there exists an example for any speed-up ρ that satisfies 718

the above conditions. Therefore, the capacity augmentation 719
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Fig. 9. n = 20, m = 16, β = 2, p = 0.25.

required by GEDF is at least [(β + √
β2 + 4β)/2] + 1. In720

particular, the bound is [(3 + √
5)/2] for implicit deadline721

task sets.722

Corollary 2: The gap ratio of the bound in Theorem 1 to723

the optimal one does not exceed 1.47.724

Proof: By dividing the upper bound in Theorem 1 by the725

lower bound in (23) and for large m, we obtain the upper726

bound of the ratio of the gap ratio under analysis as follows:727

2β + 4
√

β + 1

β + √
β2 + 4β + 2

. (24)728

The maximum value of (24) is 1.4641, when β ≈ 2.729

VI. EXPERIMENTS730

In this evaluation, we compare the schedulability tests based731

on Corollary 1 of this paper (denoted by CAP) and [13, Th. 21]732

(denoted by BON), both of which are linear-time schedulabil-733

ity test conditions for constrained-deadline DAG tasks under734

GEDF.735

The task sets are generated using the Erdös–Rényi method736

G(nk, p) [33]. For each task τk, the number of vertices is737

randomly chosen in the range [50, 250] and the worst-case738

execution time of each vertex is randomly picked in the range739

[50, 100]. A valid period Pk is generated according to its tar-740

get utilization, and the deadline Dk is uniformly chosen in741

[Pk/β, Pk]. For each possible edge we generate a random value742

in the range [0, 1] and add the edge to the graph only if the743

generated value is less than a predefined threshold p. In general744

the critical path of a DAG generated using the Erdös–Rényi745

method becomes longer as p increases, which makes the task746

more sequential. We use n to denote the number of tasks in a747

task set and m the number of cores. For each parameter config-748

uration, we randomly generate 10 000 task sets. We compare749

the acceptance ratio of CAP and BON. The acceptance ratio750

is the ratio between the number of task sets deemed to be751

schedulable by a method and the total number of task sets752

that participate in the experiment (with a specific parameter753

configuration).754

Fig. 9 reports the acceptance ratio of the tests as a function755

of the total utilization U∑, where we set n = 20, m = 16, β =756

2, p = 0.25. We observe that CAP method clearly outperforms757

the BON method.758

Fig. 10 shows the results with different number of cores,759

with a fixed utilization U∑ = 4, and set n = 20, β = 2,760

p = 0.25. Since the total volume is fixed now, it becomes761

easier to successfully schedule a task set with more cores.762

Fig. 10. n = 20, U∑ = 4, β = 2, p = 0.25.

Fig. 11. n = 20, m = 16, U∑ = 2, β = 2.5.

Fig. 12. n = 20, m = 16, U∑ = 2, p = 0.25.

The experimental result shows that CAP requires less cores 763

than BON to make the task set to be schedulable. 764

Fig. 11 shows the results with different p (which determines 765

the intratask parallelism of tasks), with U∑ = 2, n = 20, 766

m = 16, and β = 2.5. We observe that CAP, the schedulability 767

is better for tasks with higher parallelism. This is because, for 768

a task with fixed volume, a more parallel structure in general 769

leads to a shorter critical path, and thus more laxity, which is 770

beneficial to schedulability. However, this trend is very weak 771

for BON. Fig. 11 shows that BON has a low acceptance ratio 772

ranging from 0.2 to 0.3 with different parallelism degrees, 773

which clearly implies the superiority of CAP over BON in 774

exploring the laxity of the tasks. 775

Fig. 12 shows the results with different β (which determines 776

the relative deadlines of tasks), with U∑ = 2, n = 20, m = 16, 777

and p = 0.25. For both tests, the schedulability ratio decreases 778

when β increases. However, CAP can tolerate the increase of 779

β much better than BON. 780

VII. CONCLUSION 781

In this paper, we consider multiple parallel tasks in the 782

DAG model, and prove that for parallel tasks with constrained 783

deadlines the capacity augmentation bound of GEDF is β + 784

2
√

(β + 1 − (1/m))(1 + (1/m)), where β = maxi{(Pi/Di)}. 785
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This is the first capacity augmentation bound for DAG tasks786

with constrained deadlines. Compared with existing schedula-787

bility test for the same problem setting also with linear-time788

complexity, the capacity augmentation result reported here per-789

forms better in terms of acceptance ratio. Moreover, we prove790

that the optimal capacity augmentation bound cannot be lower791

than (β + 2 + √
β2 + 4β)/2. The ratio of our bound to the792

optimal one does not exceed 1.47. As the future work, we will793

generalize the result of this paper to arbitrary-deadline tasks.794
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Abstract—Capacity augmentation bound is a widely used1

quantitative metric in theoretical studies of schedulability anal-2

ysis for directed acyclic graph (DAG) parallel real-time tasks,3

which not only quantifies the suboptimality of the scheduling4

algorithms, but also serves as a simple linear-time schedulabil-5

ity test. Earlier studies on capacity augmentation bounds of the6

sporadic DAG task model were either restricted to a single DAG7

task or a set of tasks with implicit deadlines. In this paper, we8

consider parallel tasks with constrained deadlines under global9

earliest deadline first policy. We first show that it is impossible to10

obtain a constant bound for our problem setting, and derive both11

lower and upper bounds of the capacity augmentation bound as12

a function with respect to the maximum ratio of task period to13

deadline. Our upper bound is at most 1.47 times larger than14

the optimal one. We conduct experiments to compare the accep-15

tance ratio of our capacity augmentation bound with the existing16

schedulability test also having linear-time complexity. The results17

show that our capacity augmentation bound significantly outper-18

forms the existing linear-time schedulability test under different19

parameter settings.20

Index Terms—Capacity augmentation bound, directed acyclic21

graph (DAG), global earliest deadline first (GEDF), parallel tasks,22

real-time scheduling, schedulability analysis.23
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I. INTRODUCTION 24

DURING the last two decades, multicores are more and 25

more widely used in real-time systems to meet the 26

rapidly increasing requirements in high performance comput- 27

ing and lowering the power consumption. To fully utilize 28

the computational capacity of multicore processors, not only 29

intertask parallelisim, but also intratask parallelisim need to 30

be explored in the design and analysis of modern systems, 31

where individual tasks are parallel programs and can poten- 32

tially utilize more than one core at the same time during their 33

executions. Parallel tasks are commonly supported by nowa- 34

days parallel programming languages, such as Cilk family [1], 35

OpenMP [2], [3], and Intel’s Thread Building Blocks [4]. The 36

primitives in these languages and libraries, such as parallel 37

for-loops, omp task and fork/join or spawn/sync, results in 38

intratask parallelism structures that can be well represented via 39

graph-based task models. In the past few years, the real-time- 40

systems community has paid much attention to graph-based 41

(parallel) task models, such as fork-join tasks [5], [6], syn- 42

chronous tasks [7]–[11], and directed acyclic graph (DAG) 43

tasks [12]–[25]. 44

In this paper, we consider the general parallel tasks modeled 45

as DAGs, where each vertex represents a sequence of instruc- 46

tions and each edge represents the interdependency constraints 47

among the vertices. Real-time scheduling algorithms for DAG 48

tasks can be classified into three paradigms: 1) decomposition- 49

based scheduling [15], [17], [20], [22]; 2) global scheduling 50

(without decomposition) [13], [16], [23]; and 3) federated 51

scheduling [18], [26]–[29]. Decomposition-based scheduling 52

first decomposes each DAG task into a set of sequential sub- 53

tasks and assigns them intermediate release time and deadlines, 54

and then schedules these sequential subtasks using a traditional 55

multiprocessor scheduling policy for sequential tasks. In fed- 56

erated scheduling, the scheduler maintains a set of dedicated 57

cores for each high-utilization task with utilization >1, and 58

forces the remaining low-utilization task (with utilization ≤1) 59

to be sequentially executed by the remaining (shared) cores. 60

This paper focuses on global scheduling, in particular, 61

global earliest deadline first (GEDF) scheduling. Many exist- 62

ing systems, for example, Linux [30] and LITMUS [31] have 63

provided efficient and scalable implementations of GEDF for 64

sequential tasks, which suggests a potentially easy imple- 65

mentation for parallel tasks. However, schedulability anal- 66

ysis of GEDF for DAG tasks is a challenging problem. 67

Theoretical work on real-time scheduling and schedulabil- 68

ity analysis of real-time parallel tasks uses two quantitative 69

metrics. 70

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Capacity bound as a function of β, and the red line represents the
lower bound of capacity augmentation.

1) Resource Augmentation Bound (also called speedup fac-71

tor) is a comparative metric with respect to some other72

(optimal) scheduler. A scheduler S provides a resource73

augmentation bound of ρ if it can successfully schedule74

any task set τ on m cores of speed ρ as long as the com-75

pared scheduler can schedule τ on m cores of speed 1.76

A resource augmentation bound shows how close the77

performance of a scheduler is to the compared one, but78

it cannot be directly used as a schedulability test.79

2) Capacity Augmentation Bound is an absolute metric that80

can be directly used for schedulability test. A sched-81

uler S has a capacity augmentation bound of ρ if it can82

schedule any task set τ satisfying the following two con-83

ditions: a) the total utilization of τ is at most m/ρ and84

b) the worst-case critical path length of each task is at85

most 1/ρ of its deadline. Capacity augmentation bounds86

are stronger than resource augmentation bounds in the87

sense that if a scheduler has a capacity augmentation88

bound of ρ, it is also guaranteed to have a resource89

augmentation bound of ρ. In parallel task scheduling,90

a capacity augmentation bound can serve as a simple91

linear-time schedulability test that requires no knowl-92

edge about the DAG structures except the critical path93

length and utilization of each task.94

A. Contribution95

In this paper, we derive the first capacity augmentation96

bound for GEDF scheduling of DAG tasks with constrained97

deadlines98

ρ = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
(1)99

where m is the number of processing cores and β is the max-100

imal ratio of task period to deadline (see in Section III for101

a more formal definition). When m becomes infinitely large,102

the bound approaches β + 2
√

β + 1. Moreover, we also prove103

that the capacity augmentation required by GEDF is at least104

(β+√
β2 + 4β)/2+1. Fig. 1 shows the figure of this capacity105

augmentation bound as a function of β.106

There have been many previous works on both types of107

bounds for sporadic parallel tasks under different scheduling108

algorithms and different deadline constraints (see Section II109

for a review). To the best of our knowledge, the capacity aug- 110

mentation bound for the problem setting considered in this 111

paper is still open. It is worth mentioning that [13] introduced 112

a simple schedulability test condition1 having the same time 113

complexity and requiring the same information as our capac- 114

ity augmentation bound. However, the test condition in [13] 115

is more pessimistic than our capacity augmentation bound. 116

We have conducted experiments to compare the acceptance 117

ratio of these two tests, and the results show that our capacity 118

augmentation bound significantly outperforms the test in [13] 119

under different parameter settings. 120

The remainder of this paper is organized as follows. 121

Section II reviews related work. Section III describes the 122

DAG task model and its runtime model. Section IV for- 123

mally defines the notation and terminology related to the 124

global EDF policy. Proofs of capacity augmentation bounds 125

are presented in Section V. Evaluation result is shown in 126

Section VI. Section VII gives concluding remarks. 127

II. RELATED WORK 128

The prior results on real-time scheduling and schedulability 129

analysis of real-time parallel tasks can be classified into two 130

categories: 1) those based on augmentation bound analysis and 131

2) those based on response time analysis (RTA). 132

A. Augmentation Bound Analysis 133

Augmentation bound analysis can be further classified 134

as two subcatagories: 1) resource augmentation bound and 135

2) capacity augmentation bound. Based on the resource bound, 136

one can only propose a (pseudo-)polynomial time schedula- 137

bility test with a bounded speedup, which cannot be directly 138

applied on the platform with unit-speed cores. The capacity 139

bound is the only theoretical quantitative metric that can serve 140

as a sufficient schedulability test for the tasks on unit-speed 141

cores. In the following we review previous work on resource 142

augmentation bounds and capacity augmentation bounds for 143

sporadic DAG task models with different deadline constraints 144

(implicit, constrained, or arbitrary) under different scheduling 145

algorithms (decomposition-based, global, and federated). The 146

state-of-the-art results are summarized in Table I. 147

1) Resource Augmentation Bounds: 148

1) Decomposition-Based Scheduling: For decomposition- 149

based scheduling, the associated resource augmentation 150

bounds are indicated by their capacity augmentation 151

bound results. Hence, we only survey the capacity aug- 152

mentation bounds for decomposition-based scheduling 153

in the next section. 154

2) Federated Strategy: For implicit-deadline DAG tasks, 155

Li et al. [18] proved a resource augmentation bound 156

of 2 with respect to hypothetical optimal schedul- 157

ing algorithms. For constrained-deadline DAG tasks, 158

Chen [24] showed that any federated scheduling algo- 159

rithm has a resource augmentation bound of at least 160

�(min{m, n}) with respect to any optimal scheduling 161

algorithm, where n is the number of tasks and m is the 162

1The test in [13] is for arbitrary-deadline DAG tasks, and thus also
applicable to constrained-deadline DAG tasks considered in this paper.
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TABLE I
STATE-OF-THE-ART RESOURCE AUGMENTATION BOUNDS (WITH RESPECT TO OPTIMAL SCHEDULING ALGORITHMS)

AND CAPACITY AUGMENTATION BOUND FOR DAG TASKS (WHEN m IS INFINITELY LARGE)

number of cores. With respect to any optimal federated163

scheduling algorithm,2 Baruah proved a speed-up factor164

of 3 − (1/m) for constrained deadline DAG tasks [26]165

and proved a speed-up factor of 4 − (2/m) for arbitrary166

deadline DAG tasks [27].167

3) Global Scheduling: For a single recurrent DAG task with168

an arbitrary deadline, Baruah et al. [12] proved a bound169

of 2 under GEDF. For multiple DAG tasks with arbitrary170

deadlines, Li et al. [14] and Bonifaci et al. [13] proved a171

bound of 2−(1/m) under GEDF, and Bonifaci et al. [13]172

proved a bound of 3 − (1/m) under deadline monotonic173

(DM) scheduling. All these bounds are with respect to174

an optimal scheduling algorithm.175

2) Capacity Augmentation Bounds:176

1) Decomposition-Based scheduling: The capacity aug-177

mentation bounds for decomposition-based scheduling178

are restricted to implicit-deadline DAG tasks. Earlier179

work began with synchronous tasks (a special case of180

DAG tasks). For a restricted set of synchronous tasks,181

Lakshmanan et al. [5] proved a bound of 3.42 using DM182

scheduling for decomposed tasks. For more general syn-183

chronous tasks, Saifullah et al. [7] proved a bound of184

4 for GEDF and 5 for DM scheduling. For DAG tasks,185

Saifullah et al. [17] proved a bound of 4 under GEDF186

on decomposed tasks, and Jiang et al. [20] refined this187

bound to the range of [2−(1/m), 4−(2/m)), depending188

on the DAG structure characteristics. For a special class189

of DAG task sets, Qamhieh et al. [22] proved a bound190

of [(3 + √
5)/2]. This is the best capacity augmentation191

bound known for task sets with multiple DAGs.192

2) Federated Strategy: For multiple DAGs with implicit193

deadlines, Li et al. [18] proved a bound of 2 under194

federated scheduling. For mixed-criticality DAGs with195

implicit deadlines, Li et al. [29] proved that for high196

utilization tasks, the mixed criticality federated schedul-197

ing has a capacity augmentation bound of 2 + 2
√

2 and198

[(5 + √
5)/2] for dual- and multi-criticality systems,199

respectively. Moreover, they also derived a capacity aug-200

mentation bound of (11m/[3m − 3]) for dual-criticality201

systems with both high- and low-utilization tasks.202

3) Global Scheduling: For multiple DAGs with implicit203

deadlines, Li et al. [14] proved a bound of 4 − (2/m)204

under GEDF, this bound is further improved to [(3 +205 √
5)/2], which is proved to be tight when the number206

2An optimal federated scheduling may not be a good scheduling strategy
compared with an optimal scheduling algorithm.

m of cores is sufficiently large. Moreover, Li et al. [18] 207

proved a bound of 2 + √
3 under global rate monotonic 208

scheduling without decomposition. 209

Moreover, for a single recurrent DAG with arbitrary dead- 210

line scheduled by GEDF, Baruah et al. [12] proved a bound of 211

2.5. In summary, prior work on capacity augmentation bounds 212

is either restricted to a single recurrent DAG task or restricted 213

to a set of multiple DAG tasks with implicit deadlines. 214

B. Response Time Analysis 215

For synchronous tasks with constrainted deadline, 216

Chwa et al. [10] proposed an RTA-based analysis for GEDF 217

scheduling algorithm, and Maia et al. [11] gave the anaylsis 218

for GFP scheduling algorithm. Axer et al. [6] proposed an 219

RTA-based analysis for fork-join tasks with arbitary deadline. 220

Qamhieh et al. [15] gave an RTA-based analysis for GEDF 221

scheduling of DAG-tasks with constrained deadline and a 222

study of its sustainability. Parri et al. [32] proposed an RTA- 223

based test for GEDF and GDM scheduling of DAG-tasks with 224

arbitrary deadline. Melani et al. [21] proposed an RTA-based 225

test for GEDF scheduling of conditional DAG-tasks with 226

constrained deadline. 227

Most RTA-based methods for multi-DAGs cannot pro- 228

vide guaranteed augmentation bounds. Moreover, unlike the 229

capacity bound analysis that can provide a simple linear 230

time schedulability test requiring no knowledge about DAG’s 231

internal structure, RTA-based schedulability tests suffer from 232

the complexity intrinsic in computation, which often have 233

a (pseudo-)polynomial time complexity, and they require to 234

explore DAG’s internal structure. 235

III. MODEL 236

We consider a sporadic task set τ that consists of n tasks 237

τ = {τ1, . . . , τn}. Each task τk is associated with a period 238

Pk and a relative deadline Dk, and its execution has a DAG 239

structure. The xth subtask of task τk is represented by vertex 240

vx
k in the DAG. If there is a directed edge from vertex vx

k to 241

vertex vy
k, then vx

k is vy
k’s predecessor. A subtask cannot start 242

its execution until the completion of all its predecessors. Each 243

vertex vx
k has its own worst-case execution time Cx

k. 244

We assume the tasks have constrained deadlines, i.e., each 245

task’s relative deadline is no larger than its period, i.e., 246

∀k, Dk ≤ Pk. We do not restrict our research on any DAG 247

of particular types. More specifically, multiple source vertices 248

and sink vertices are allowed, and the DAG is not necessary to 249

be fully connected. Fig. 2 gives an example task that contains 250

six subtasks in the DAG-structure. 251
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Fig. 2. Example DAG task τk with volume Ck = 11 and critical path length Lk = 8.

We now introduce some useful notations related to a DAG252

task.253

1) Volume: The sum of the worst-case execution time of254

all subtasks of τk is the volume of τk255

Ck =
∑

x

Cx
k.256

Moreover, we denote by C∑ the total volume of the257

whole task system: C∑ = ∑
k Ck.258

2) Utilization: We define the utilization uk of a task τk as259

uk = Ck

Pk
.260

Moreover, the total utilization of the task system is261

denoted as U∑ = ∑
k uk.262

3) We define the maximum ratio of task period to263

deadline as264

β = max
k

Pk

Dk
.265

4) Critical Path: We use the critical path of τk as the266

longest path in τk’s DAG (the length of a path is the267

total amount of the worst-case execution time associ-268

ated with the vertices along that path). Let Lk be the269

critical path length, and obviously, Lk ≤ Ck.270

For example, in Fig. 2, the volume of τk is Ck = 11, and271

the utilization of τk is uk = 11/9. The critical path (marking272

in red) starts from vertex v2
k , goes through v3

k and ends at273

vertex v6
k , so the critical path length of the DAG task τk is274

Lk = 1 + 2 + 5 = 8.275

A task τk releases an infinite number of jobs recurrently, and276

the time interval between the release time of any two adjacent277

jobs is no less than period Pk. All of the jobs released by278

the same task have the same DAG-structure. In particular, the279

volumes and the critical path lengths of all jobs generated by280

a task τk are the same as those of task τk.281

Without loss of generality, Jk,a denotes the ath job instance282

of task τk, and the xth vertex of Jk,a is represented as vx
k,a. Let283

rk,a and dk,a be the absolute release time and absolute deadline284

of job Jk,a, respectively. All the vertices of Jk,a are required285

to be executed after its release time rk,a and the execution286

must be completed on or before its deadline dk,a. The interval287

[rk,a, dk,a] is also known as the scheduling window of the job288

Jk,a, with a length of Dk = dk,a − rk,a [as demonstrated in289

Fig. 3].290

Moreover, we say that a job is unfinished if the job has291

been released but not completed yet. Any unfinished job must292

contain some vertices (subjobs) that are unfinished. To carry293

Fig. 3. Scheduling window [rk,a, dk,a] of job Jk,a.

the analysis, here we define the notion of remaining volume 294

and remaining critical path length for an unfinished job. 295

1) Remaining Volume: The remaining volume equals the 296

total volume minus the part of its volume that has 297

already been executed. 298

2) Remaining Critical Path Length: The remaining critical 299

path length is total unfinished workload of the vertices 300

in the longest path of the DAG. 301

For example, in the example DAG task shown in Fig. 2, if v1
k 302

and v2
k are completely executed, and v3

k is partially executed for 303

1 time unit (out of 2), the remaining volume is 1+1+1+5 = 8, 304

and the remaining critical path length is 1 + 5 = 6. 305

A. Runtime Scheduling and Schedulability 306

The task set is scheduled by GEDF scheduling algorithm 307

on m identical unit-speed processing cores. Under GEDF, at 308

each time instant the scheduler selects the highest-priority 309

ready vertices (at most m) for execution. Vertices of the 310

same task share the same priority (ties are broken arbitrar- 311

ily) and a vertex of a task with an earlier absolute deadline 312

has a higher priority than a vertex of a task with a later 313

absolute deadline. In particular, vertex-level preemption and 314

migration are both permitted in GEDF. Without loss of gen- 315

erality, we assume the task system starts at time 0 (i.e., the 316

first job of the system is released at time 0). The task set is 317

schedulable if all jobs released by all tasks in τ meet their 318

deadlines. 319

Lemma 1 (Necessary Conditions for Schedulability [14]): 320

A task set τ is not schedulable (by any scheduler) unless the 321

following conditions hold. 322

1) The critical path length of each task τk is less than its 323

deadline, i.e., 324

∀k : Lk ≤ Dk. (2) 325

2) The total utilization U∑ is smaller than the number of 326

cores, i.e., 327

U∑ ≤ m. (3) 328

Clearly, if (2) is violated for some task, then its deadline is 329

doomed to be violated in the worst case, even if it is executed 330
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(a) (b)

Fig. 4. Two types of jobs that may interfere with Jk,a. (a) Jj,b is a carry-in job of Jk,a. (b) Jj,b is a fall-in job of Jk,a.

exclusively on sufficiently many cores. If (3) is violated, then331

in the long term the worst-case workload of the system exceeds332

the processing capacity provided by the platform, and thus the333

backlog will increase infinitely which leads to deadline misses.334

A scheduling algorithm S has a capacity augmentation335

bound ρ if any task set τ satisfying the following conditions is336

schedulable by S: 1) ∀k : Lk ≤ Dk/ρ and 2) U∑ ≤ m/ρ. The337

concept of capacity augmentation bound can be equivalently338

stated as follows [14] and [18]:339

Definition 1 (Capacity Augmentation Bound for DAG Task340

System): A scheduling algorithm S has a capacity augmenta-341

tion bound ρ if it can always schedule DAG task set τ on m342

cores of speed ρ as long as τ satisfies the above necessary343

conditions (2) and (3).344

A scheduling algorithm with a smaller ρ is prefer-345

able and when ρ = 1 the scheduling algorithm S is346

optimal.347

B. Overall Analysis Outline348

The overall intuition behind the capacity bound analysis is349

to derive a sufficient condition, under which every released job350

can be successfully scheduled by GEDF on cores with speed ρ.351

More precisely, for each job Jk,a under analysis, we derive a352

lower bound of the multicore resource that must be utilized353

to execute tasks in the scheduling window [rk,a, dk,a] of Jk,a,354

and meanwhile, we derive an upper bound of the workload355

that must be executed by GEDF during the scheduling win-356

dow [rk,a, dk,a] of Jk,a. A sufficient condition for successfully357

scheduling tasks is that the resource’s lower bound is larger358

than the workload’s upper bound for all jobs. As we know359

that the lower resource bound increases with the core speed ρ360

and the upper workload bound decreases with the core speed361

ρ, we aim to find the minimum speed ρ to make the suffi-362

cient condition hold. Such a minimum speed ρ is the capacity363

augmentation bound as shown in Definition 1.364

In the following, the upper workload bound is analyzed in365

Sections IV-A and V-A. Moreover, the lower resource bound366

is given in Section IV-B. Determining the infimum of speed367

ρ is given in Section V-B.368

IV. PRELIMINARY RESULTS369

In this section, we introduce some concepts and properties370

that will be useful in deriving the capacity augmentation bound371

in the next section.372

A. Interference373

Suppose we are analyzing the schedulability of an arbi-374

trary job Jk,a, the ath instance of task τk, under GEDF375

scheduling. When analyzing Jk,a, we assume that all the 376

other jobs can meet their deadlines. Another job Jj,b 377

of τj can interfere with Jk,a if the following conditions 378

hold. 379

1) At some time point, Jj,b and Jk,a are both unfinished 380

(this implies the scheduling windows of Jj,b and Jk,a 381

are overlapped, assuming that Jj,b meets its deadline). 382

2) The absolute deadline of Jj,b is no later than the absolute 383

deadline of Jk,a, i.e., dj,b ≤ dk,a. 384

For any task τj we distinguish its jobs that may interfere with 385

Jk,a into two types by considering whether their scheduling 386

windows are fully contained in the scheduling window of Jk,a 387

(see in Fig. 4). 388

1) Carry-in Jobs: A carry-in job (Jj,b) must be released 389

before the job of interest (Jk,a) and has an absolute dead- 390

line earlier than the absolute deadline of Jk,a, i.e.,rj,b < 391

rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(a)]. 392

2) Fall-in Jobs: A fall-in job’s (Jj,b) scheduling window 393

is fully contained in the scheduling window of the job 394

of interest (Jk,a). More specifically, Jj,b is released after 395

the release time of Jk,a, and the absolute deadline of Jj,b 396

is earlier than the absolute deadline of Jk,a, i.e., rj,b ≥ 397

rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(b)]. 398

Note that a job Jj,b that is a carry-in job of Jk,a does not 399

interfere with Jk,a, if Jj,b has finished before the release time 400

rk,a of Jk,a. If the carry-in job Jj,b of Jk,a is unfinished at rk,a, 401

then Jj,b can interfere with Jk,a, and we call the work that 402

is from the carry-in jobs of Jk,a and interferes with Jk,a as 403

carry-in work. 404

Definition 2 (Carry-in Work): For a job Jk,a under anal- 405

ysis, the carry-in work, denoted by χk,a, is the total work 406

from the carry-in jobs executed in the scheduling window 407

of Jk,a. 408

According to Definition 2, the work from a carry-in job Jj,b 409

to Jk,a contributes to the carry-in work of Jk,a if it is executed 410

during the interval [rk,a, dj,b] (recall that when analyzing the 411

schedulability of Jk,a we assume Jj,b can meet its deadline). 412

Similarly, a fall-in job may not interfere with Jk,a unless Jk,a 413

is unfinished at the release time of Jj,b. If Jj,b interferes with 414

Jk,a, the amount of interfering work from Jj,b is Cj, which is 415

called fall-in work. 416

Definition 3 (Fall-in Work): For a job Jk,a under analysis, 417

its fall-in work Fk,a is the total work from the fall-in jobs 418

released before Jk,a finishes its execution. 419

Note that the fall-in work Fk,a of Jk,a not only consists of 420

the work from Jk,a’s fall-in jobs, but also contains the work 421

from Jk,a itself. 422

Let nk,a
j be the number of Jk,a’s fall-in jobs that are released 423

from the task τj (see an example in Fig. 5). The total amount 424
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Fig. 5. Number of Jk,a’s fall-in jobs from τj is nk,a
j = 3.

of the fall-in work of Jk,a is upper bounded by425

Fk,a ≤
∑

i

nk,a
i Ci =

∑
i

uin
k,a
i Pi. (4)426

Definition 4 (Remaining Window Length): Let Jj,b be a427

carry-in job from task τj for the analyzed job Jk,a, the428

remaining window length of τj is defined as429

α
k,a
j = dj,b − rk,a.430

Obviously, α
k,a
j ≤ Dj [see Fig. 4(a)]. Moreover, as shown431

in Fig. 5, the following inequality holds:432

Dk ≥ α
k,a
j + Pj − Dj +

(
nk,a

j − 1
)

Pj + Dj433

= α
k,a
j + nk,a

j Pj. (5)434

B. Progress Under Work-Conserving Scheduling435

The GEDF satisfies work-conserving property: cores will436

never be idle if there are ready vertices waiting for execu-437

tion. The work-conserving property guarantees the system to438

make progress whenever there is ready workload to execute.439

The progress can be guaranteed differently for two types of440

intervals.441

1) Complete Interval: At any time point in a complete442

interval, all cores are busy.443

2) Incomplete Interval: At any time point in an incomplete444

interval, at least one core is idle.445

In order to coincide with the analysis undertaken in the446

following sections, this section considers a more general case447

of scheduling on m cores with speed ρ. The following lemmas448

are given in [14].449

Lemma 2: On a processing platform of core speed ρ, the450

remaining critical path length of each unfinished job reduces451

by ρt after an incomplete interval of length t is elapsed.452

Lemma 3: On a processing platform of core speed ρ, the453

total work in a time interval of length t, in which the454

accumulated length of incomplete intervals is t∗, is at least455

ρmt − ρ(m − 1)t∗.456

By Lemmas 2 and 3, we can obtain the following lemma.457

Lemma 4: For any interval I that falls in the scheduling458

window of job Jk,a, i.e., I ⊆ [rk,a, dk,a], if Jk,a finishes after459

I, then the total amount of work done during I is at least460

ρm|I| − (m − 1)Lk, where Lk is the critical path length of τk.461

Proof: We first prove that the accumulated length of incom-462

plete intervals in I, denoted by x, is no more than Lk/ρ. We463

prove this by contradiction, assuming x > Lk/ρ. According464

to Lemma 2, Jk,a’s critical path length reduces by ρ · x465

after all the incomplete intervals with the total length x are466

elapsed. Therefore, we can conclude that the critical path467

length reduces by more than Lk at the end of I. which leads to 468

a contradiction as the length of the critical path is at most Lk. 469

By now, we know that the accumulated length of the 470

incomplete intervals in I is at most Lk/ρ. By Lemma 3, 471

the total amount of work done during I is at least 472

ρm|I| − (m − 1)Lk. 473

Lemma 4 implies a lower bound of the amount of work- 474

load that must be done during an interval when some jobs 475

are unfinished. This lemma will be used in the proofs of 476

Section V-B. 477

V. ANALYSIS 478

This section presents our schedulability analysis and the 479

capacity augmentation bound. 480

The main idea of our analysis is as follows. For any given 481

positive number ε, we formulate a speed function ρ(ε), and 482

assume that the task set is run on m cores with speed up ρ(ε). 483

Then, for every job released from the task system, we can 484

use a function of ε to bound its carry-in work. For every job, 485

the bounded carry-in work leads to bounded interference from 486

other tasks, and hence GEDF can successfully schedule all 487

of them. The infimum of the speed function ρ(ε) eventually 488

implies the capacity augmentation bound. In the following, 489

Section V-A derives an upper bound for carry-in work, based 490

on which, the proof for a capacity augmentation bound is 491

presented in Section V-B. 492

A. Upper Bound for Carry-in Work 493

In the following, we show that the carry-in work for a job 494

under analysis can be well bounded if scheduled on m ρ-speed 495

cores. First, for the cores with speed ρ ≥ 1, a straightforward 496

bound for carry-in work of the analyzed job Jk,a is as follows. 497

Lemma 5: If the core speed ρ ≥ 1, the carry-in work χk,a
498

for job Jk,a is bounded by 499

χk,a ≤ β
∑

i

uiDi. (6) 500

Proof: Using J1 to denote the set of carry-in jobs of Jk,a 501

that are unfinished at time rk,a, then we have 502

χk,a ≤
∑

Jj,b∈J1

ujPj 503

≤ β
∑

Jj,b∈J1

ujDj

[
∵ β = max

i

{
Pi

Di

}]
504

≤ β
∑

i

uiDi. 505
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The last step of the above inequality is because that each506

constrained-deadline task τi has at most one job to be the507

carry-in job of Jk,a. This completes the proof.508

For the cores with speed ρ strictly larger than 1, by rep-509

resenting the infimum of core speed ρ as a function, the510

carry-in-work bound for the analyzed job Jk,a can be further511

refined as shown in Lemma 6, and this is one of the basic512

result of this paper.513

Lemma 6: If the core speed ρ ≥ ρ(ε) (where ε > 0), the514

carry-in work χk,a for job Jk,a is bounded by515

χk,a ≤ β(1 + ε)
∑

i

uiα
k,a
i (7)516

where517

ρ(ε) = β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
. (8)518

(Recall that α
k,a
i is the remaining window length of task τi as519

defined in Definition 4.)520

Proof: We prove the lemma by an induction to jobs in the521

order of their release time. The job of interest is denoted as522

“Jk,a” at each induction step.523

Base Case: If Jk,a is the very first job released in the system,524

i.e., released at time 0, no carry-in jobs are released before525

Jk,a, implying that χk,a = 0, and α
k,a
i = 0 for each τi ∈ τ .526

Therefore, the condition (7) trivially holds527

χk,a = 0 ≤ β(1 + ε)
∑

i

uiα
k,a
i = 0.528

Inductive Step: For the case that Jk,a is not the first job529

released in the system, we have the inductive hypothesis: every530

job Jj,b released earlier than Jk,a satisfies531

χ j,b ≤ β(1 + ε)
∑

i

uiα
j,b
i . (9)532

In the following we prove that (7) holds for job Jk,a. First,533

the condition (7) trivially holds if α
k,a
j > [Dj/(1 + ε)], for534

every carry-in job Jj,b of Jk,a. The reason is as follows. From535

Lemma 5, we have536

χk,a ≤ β
∑

j

ujDj537

< β(1 + ε)
∑

j

ujα
k,a
j

[
∵ α

k,a
j >

Dj

1 + ε

]
.538

Therefore, in the following we only consider the case such539

that at least one unfinished carry-in job Jj,b satisfies α
k,a
j ≤540

[Dj/(1 + ε)]. Then by Dj = rk,a − rj,b + α
k,a
j and letting541

	 = rk,a − rj,b, we have542

	 ≥ ε

1 + ε
Dj. (10)543

On the other hand, we have (see Fig. 6 for intuition)544

	 ≥ α
j,b
i + Pi − Di + n	

i Pi + Di − α
k,a
i545

≥ α
j,b
i + n	

i Pi + Pi − α
k,a
i (11)546

where n	
i denotes the number of jobs that are547

released after the release time rj,b of Jj,b, and548

whose next job is released before the release time 549

rk,a of Jk,a. 550

Note that Jj,b has not finished at time rk,a. According to 551

Lemma 4, the total amount of work done during [rj,b, rk,a], 552

denoted by W	, is at least 553

W	 ≥ ρm	 − (m − 1)Lj. (12) 554

The work of W	 comes from three sets of jobs. 555

1) JA: the set of carry-in jobs of Jj,b. 556

2) JB: the set of carry-in jobs of Jk,a. 557

3) JC: the set of jobs that entirely fall in [rj,b, rk,a]. 558

For example, in Fig. 6, JA = {Ji,c, Jl,d} (in red rectangles), 559

JB = {Ji,c+2, Jl,d} (in blue rectangles) and JC = {Ji,c+1} (in 560

green rectangles). Obviously, (JA ∪ JB) ∩ JC = ∅, and in 561

general JA ∩ JB �= ∅. 562

Let J ′
A = JA − JB. We use Wx to denote the total amount 563

of work done by jobs in Jx (for x = A′, A, B, C), the total 564

amount of work W	 done during [rj,b, rk,a] can be divided 565

into three parts 566

W	 = WA′ + WB + WC. (13) 567

In the following, we derive an upper bound for each part 568

above, respectively. 569

Upper Bound of WA′ : Since the work in WA′ is executed 570

in the interval between the release time rj,b of Jj,b and the 571

absolute deadline dj,b of Jj,b, WA′ is included in the carry- 572

in work χ j,b of Jj,b, i.e., WA′ ≤ χ j,b, and by the inductive 573

hypothesis (9), we have 574

WA′ ≤ β(1 + ε)
∑

i

uiα
j,b
i . (14) 575

Upper Bound of WB: We observe that the total amount of 576

work by the carry-in jobs of Jk,a, denoted by Ck,a can be 577

divided into two parts. 578

1) The work done before or at the release time rk,a of Jk,a. 579

This part includes WB. 580

2) The work done after the time rk,a, which equals χk,a. 581

Therefore, we have 582

Ck,a ≥ WB + χk,a. (15) 583

Each constrained-deadline task τi has at most one job 584

to be the carry-in job of Jk,a. Thus, the total amount of 585

work Ck,a from the carry-in jobs of Jk,a has an upper 586

bound Ck,a ≤ ∑
i uiPi and combining this with (15) 587

yields 588

WB ≤
∑

i

uiPi − χk,a. (16) 589

Upper Bound of WC: For each τi ∈ τ , recall 590

that n	
i is the number of jobs that are released after 591

the release time rj,b of Jj,b, and whose next job is 592

released before the release time rk,a of Jk,a [defined right 593

after (11)]. The total amount of work WC from JC can be 594

calculated as 595

WC =
∑

i

uin
	
i Pi. (17) 596
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Fig. 6. Illustration for the proof of Lemma 6.

Putting (13), (14), (16), and (17) together, we have597

W	 ≤ β(1 + ε)
∑

i

uiα
j,b
i +

∑
i

uin
	
i Pi +

∑
i

uiPi − χk,a
598

≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
− χk,a

599

[∵ ε > 0, β > 1]600

and by (12), we have601

χk,a ≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
602

− ρm	 + (m − 1)Lj603

≤ β(1 + ε)
∑

i

ui

(
	 + α

k,a
i

)
− ρm	604

+ (m − 1)Lj [∵ (11)]605

and since
∑

i ui ≤ m and Lj ≤ Dj, we have606

χk,a ≤ β(1 + ε)

(
m	 +

∑
i

uiα
k,a
i

)
− ρm	 + (m − 1)Dj607

and by 	 ≥ (ε/[1 + ε])Dj, we have608

χk,a ≤ (β(1 + ε) − ρ)m	 + (m − 1)

(
ε + 1

ε

)
	609

+ β(1 + ε)
∑

i

uiα
k,a
i610

and since ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m)), we have611

χk,a ≤
(

ε + 1

ε

)
(1 − m)	 +

(
ε + 1

ε

)
(m − 1)	612

+ β(1 + ε)
∑

i

uiα
k,a
i613

by which we finally get χk,a ≤ β(1 + ε)
∑

i uiα
k,a
i .614

B. Upper Capacity Augmentation Bound615

In this section, we propose an capacity augmentation bound616

for the DAG tasks with constrained deadlines.617

Recall that we can bound the fall-in work Fk,a by (4),618

and Lemma 6 bounds the carry-in work χk,a, so by now619

we have bounded the total amount of work to be executed 620

in the scheduling window of Jk,a, the job under analysis. 621

Next, we will present a lemma that identifies core speeds 622

for the platform to be able to finish this total amount of 623

work in the scheduling window of Jk,a, and thus guarantee 624

the schedulability. 625

Lemma 7: A task set that satisfies the necessary conditions 626

in Lemma 1 is schedulable under GEDF on a multicore plat- 627

form with core speed ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m)) 628

(where ε > 0), i.e., GEDF has a capacity augmentation bound 629

of β(1+ε)+(ε+(1/ε))(1−(1/m)), where β = maxi{(Pi/Di)}. 630

Proof: We prove this theorem by contradiction. Suppose an 631

arbitrary job Jk,a misses its deadline. It implies that all the 632

work done during the scheduling window [rk,a, dk,a] of Jk,a 633

(the length of which is Dk) can interfere with Jk,a (including 634

Jk,a’s work). 635

We use W to denote the total amount of work that has been 636

done in [rk,a, dk,a]. Since Jk,a misses deadline, we know 637

W ≤ χk,a + Fk,a. (18) 638

Since Jk,a has not finished at its absolute deadline dk,a, by 639

Lemma 4, we have 640

W ≥ ρmDk − (m − 1)Lk 641

≥ (1 + (ρ − 1)m)Dk [∵ m > 1, Lk ≤ Dk]. (19) 642

Then by (18) and (19), as well as the upper bounds for χk,a
643

in Lemma 6 and for Fk,a in (4), we have 644

(1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiα
k,a
i +

∑
i

uin
k,a
i Pi 645

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

ui

(
α

k,a
i + nk,a

i Pi

)
646

[∵ ε > 0, β > 1] 647

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiDk [from (5)] 648

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)mDk

[
∵

∑
i

ui ≤ m

]
649

⇔ 1 + (ρ − 1)m ≤ β(1 + ε)m 650
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⇔ ρ ≤ β(1 + ε) + 1 − 1

m
651

⇒ ρ < β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
652 [

∵ m > 1, ε + 1

ε
≥ 2

]
.653

It contradicts to the precondition ρ ≥ β(1+ε)+(ε+(1/ε))(1−654

(1/m)), so assumption is not true and the lemma is proved.655

Note that the capacity augmentation bound in Lemma 7656

contains an open variable ε. Lemma 7 holds for any ε > 0,657

and our target is to achieve a bound as low as possible. The658

following lemma gives the value of ε to make the bound β(1+659

ε) + (ε + (1/ε))(1 − (1/m)) to reach its minimum.660

Lemma 8: β(1 + ε) + (ε + (1/ε))(1 − (1/m)) reaches661

its minimum β + 2
√

(β + 1 − (1/m))(1 − (1/m)) with ε =662 √
([1 − (1/m)]/[β + 1 − (1/m)]).663

Proof: We rewrite the β(1 + ε)+ (ε + (1/ε))(1 − (1/m)) as664

β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
= β + A + B665

where A = (β + 1 − (1/m))ε, B = (1 − (1/m))(1/ε).666

Since A+B ≥ 2
√

AB, we know the lower bound of β+A+B667

β + A + B ≥ β + 2
√

AB = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
.668

Since A + B reaches its minimum 2
√

AB with A = B, we can669

solve the desired ε with670 (
β + 1 − 1

m

)
ε =

(
1 − 1

m

)
1

ε
671

by which we get ε = √
([1 − (1/m)]/[β + 1 − (1/m)]).672

Now, by substituting the bound in Lemma 7 by its minimum673

we can conclude the main result of this paper.674

Theorem 1: A task set that satisfies the necessary con-675

ditions in Lemma 1 is schedulable under GEDF on676

a multicore platform with core speed ρ ≥ β +677

2
√

(β + 1 − (1/m))(1 − (1/m)), i.e., GEDF has a capacity678

augmentation bound of β + 2
√

(β + 1 − (1/m))(1 − (1/m)),679

where β = maxi{(Pi/Di)}.680

We can state Theorem 1 in the form of a direct schedula-681

bility test on unit-speed cores.682

Corollary 1: On m unit-speed cores, where m > 1, if a683

sporadic task set τ with constrained deadlines satisfies the684

following two conditions:685

U∑ ≤ m

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)686

∀k : Lk ≤ Dk

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)687

where β = maxi{(Pi/Di)}, then τ is schedulable by GEDF.688

C. Lower Capacity Augmentation Bound689

This section gives an example to show the lower bound of690

the capacity augmentation bound.691

Fig. 7. Structure of the task set that demonstrates GEDF does not provide
a capacity augmentation bound less than [(β +

√
β2 + 4β)/2] + 1.

Fig. 8. Execution of the task set under GEDF at speed ρ.

The example is constructed as shown in Fig. 7. The task 692

set contains two tasks. One task τ1 is structured as a single 693

vertex with workload x followed by nm vertices with workload 694

y. Its critical path length L1 is x+y and so is its deadline. The 695

period of τ1 is set to be β(x+y), and moreover, the utilization 696

u1 is set to be m − 1 697

m − 1 = x + nmy

β(x + y)
. (20) 698

The other task τ2 has a single vertex with workload, dead- 699

line, and period equal to x + y − (x/ρ), and thus the critical 700

path length L2 of τ2 is x + y − (x/ρ) and the utilization u2 of 701

τ2 is 1. 702

Obviously, the necessity conditions (2) and (3) hold: U∑ = 703

u1 + u2 ≤ m, L1 ≤ D1 and L2 ≤ D2. During the execution, τ1 704

is released at the absolute time 0, and τ2 is released at time 705

(x/ρ) + 1. The execution is shown in Fig. 8. 706

We want to generate an example, so we want τ2 to miss its 707

deadline. In order for this to occur, we must have 708

x + y − x

ρ
+ 1 <

ny + x + y − x
ρ

ρ
. (21) 709

Reorganizing and combining (20) and inequality (21), 710

we get 711

ρ <
(n + 1)mβ + 2(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)
712

+
√

(n + 1)2m2β2 + 4n((m − 1)β − 1)(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)
. 713

(22) 714

In (22), for large enough nm, we have 715

ρ <
(β + 2)nm +

√(
β2 + 4β

)
n2m2

2nm
716

⇔ ρ <
β + √

β2 + 4β

2
+ 1. (23) 717

So there exists an example for any speed-up ρ that satisfies 718

the above conditions. Therefore, the capacity augmentation 719
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Fig. 9. n = 20, m = 16, β = 2, p = 0.25.

required by GEDF is at least [(β + √
β2 + 4β)/2] + 1. In720

particular, the bound is [(3 + √
5)/2] for implicit deadline721

task sets.722

Corollary 2: The gap ratio of the bound in Theorem 1 to723

the optimal one does not exceed 1.47.724

Proof: By dividing the upper bound in Theorem 1 by the725

lower bound in (23) and for large m, we obtain the upper726

bound of the ratio of the gap ratio under analysis as follows:727

2β + 4
√

β + 1

β + √
β2 + 4β + 2

. (24)728

The maximum value of (24) is 1.4641, when β ≈ 2.729

VI. EXPERIMENTS730

In this evaluation, we compare the schedulability tests based731

on Corollary 1 of this paper (denoted by CAP) and [13, Th. 21]732

(denoted by BON), both of which are linear-time schedulabil-733

ity test conditions for constrained-deadline DAG tasks under734

GEDF.735

The task sets are generated using the Erdös–Rényi method736

G(nk, p) [33]. For each task τk, the number of vertices is737

randomly chosen in the range [50, 250] and the worst-case738

execution time of each vertex is randomly picked in the range739

[50, 100]. A valid period Pk is generated according to its tar-740

get utilization, and the deadline Dk is uniformly chosen in741

[Pk/β, Pk]. For each possible edge we generate a random value742

in the range [0, 1] and add the edge to the graph only if the743

generated value is less than a predefined threshold p. In general744

the critical path of a DAG generated using the Erdös–Rényi745

method becomes longer as p increases, which makes the task746

more sequential. We use n to denote the number of tasks in a747

task set and m the number of cores. For each parameter config-748

uration, we randomly generate 10 000 task sets. We compare749

the acceptance ratio of CAP and BON. The acceptance ratio750

is the ratio between the number of task sets deemed to be751

schedulable by a method and the total number of task sets752

that participate in the experiment (with a specific parameter753

configuration).754

Fig. 9 reports the acceptance ratio of the tests as a function755

of the total utilization U∑, where we set n = 20, m = 16, β =756

2, p = 0.25. We observe that CAP method clearly outperforms757

the BON method.758

Fig. 10 shows the results with different number of cores,759

with a fixed utilization U∑ = 4, and set n = 20, β = 2,760

p = 0.25. Since the total volume is fixed now, it becomes761

easier to successfully schedule a task set with more cores.762

Fig. 10. n = 20, U∑ = 4, β = 2, p = 0.25.

Fig. 11. n = 20, m = 16, U∑ = 2, β = 2.5.

Fig. 12. n = 20, m = 16, U∑ = 2, p = 0.25.

The experimental result shows that CAP requires less cores 763

than BON to make the task set to be schedulable. 764

Fig. 11 shows the results with different p (which determines 765

the intratask parallelism of tasks), with U∑ = 2, n = 20, 766

m = 16, and β = 2.5. We observe that CAP, the schedulability 767

is better for tasks with higher parallelism. This is because, for 768

a task with fixed volume, a more parallel structure in general 769

leads to a shorter critical path, and thus more laxity, which is 770

beneficial to schedulability. However, this trend is very weak 771

for BON. Fig. 11 shows that BON has a low acceptance ratio 772

ranging from 0.2 to 0.3 with different parallelism degrees, 773

which clearly implies the superiority of CAP over BON in 774

exploring the laxity of the tasks. 775

Fig. 12 shows the results with different β (which determines 776

the relative deadlines of tasks), with U∑ = 2, n = 20, m = 16, 777

and p = 0.25. For both tests, the schedulability ratio decreases 778

when β increases. However, CAP can tolerate the increase of 779

β much better than BON. 780

VII. CONCLUSION 781

In this paper, we consider multiple parallel tasks in the 782

DAG model, and prove that for parallel tasks with constrained 783

deadlines the capacity augmentation bound of GEDF is β + 784

2
√

(β + 1 − (1/m))(1 + (1/m)), where β = maxi{(Pi/Di)}. 785
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This is the first capacity augmentation bound for DAG tasks786

with constrained deadlines. Compared with existing schedula-787

bility test for the same problem setting also with linear-time788

complexity, the capacity augmentation result reported here per-789

forms better in terms of acceptance ratio. Moreover, we prove790

that the optimal capacity augmentation bound cannot be lower791

than (β + 2 + √
β2 + 4β)/2. The ratio of our bound to the792

optimal one does not exceed 1.47. As the future work, we will793

generalize the result of this paper to arbitrary-deadline tasks.794
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