IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EDF-VD Scheduling of Flexible Mixed-Criticality
System With Multiple-Shot Transitions

Gang Chen

1+ Abstract—The existing mixed-criticality (MC) real-time task
> models assume that once any high-criticality task overruns, all
s high-criticality jobs execute up to their most pessimistic WCET
4+ estimations simultaneously in a one-shot manner. This is very
5 pessimistic in the sense of unnecessary resource overbooking. In
¢ this paper, we propose a more generalized mixed-critical real-
7 time task model, called flexible MC model with multiple-shot
s transitions (FMC-MST), to address this problem. In FMC-MST,
9 high-criticality tasks can transit multiple intermediate levels to

10
1

2
13
14
15
16
17
18
19
20

21
22

handle less pessimistic overruns independently and to nonuni-
formly scale the deadline on each level. We develop a run-time
schedulability analysis for FMC-MST under EDF-VD scheduling,
in which a better tradeoff between the penalties of low-criticality
tasks and the overruns of high-criticality tasks is achieved to
improve the service quality of low-criticality tasks. We also
develop a resource optimization technique to find resource-
efficient level-insertion configurations for FMC-MST task systems
under MC timing constraints. Experiments demonstrate the
effectiveness of FMC-MST compared with the state-of-the-art
techniques.

Index Terms—EDF-VD scheduling, flexible mixed-criticality
(FMC) system, multiple-shot transitions.

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61702085, Grant 61532007, Grant
61672140, and Grant 61772123, in part by the Fundamental Research Funds
for the Central Universities under Grant N161604002, in part by RGC of Hong
Kong under Grant ECS-25204216 and Grant GRF-15204917, in part by the
University Grants Committee of Hong Kong through Hong Kong Polytechnic
University under Project 1-ZVJ2, and in part by the Ministry of Education
Joint Foundation for Equipment Pre-Research under Grant 6141A020333.
This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Gang Chen.)

G. Chen is with the Smart Systems Laboratory, School of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China, and also
with the Department of Computing, Hong Kong Polytechnic University,
Hong Kong (e-mail:chengang @cse.neu.edu.cn).

N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: nan.guan@polyu.edu.hk).

B. Hu is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
hubiao @mail.buct.edu.cn).

W. Yi is with the Department of Information Technology, Uppsala
University, 75105 Uppsala, Sweden, and also with the School of Computer
Science and Engineering, Northeastern University, Shenyang 110819, China
(e-mail: yi@it.uu.se).

This paper has supplementary downloadable material
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857359

available at

, Nan Guan, Biao Hu, and Wang Yi, Fellow, IEEE

I. INTRODUCTION

NTEGRATING applications with different criticality levels

on a shared computing platform has increasingly become a
common trend in the design of real-time embedded systems.
Such a trend has been observed in the automotive [12] and
avionics [17] industries and has led to the emergence of mixed-
criticality (MC) systems. An MC task model was proposed by
Vestal in his seminal paper [20] about ten years ago, wherein
different WCETs are specified for each task on all existing
criticality levels, with the one on a higher criticality level
being more pessimistic. Since then, many techniques for ana-
lyzing and scheduling MC systems have been proposed in
the real-time literature (see [7] for a comprehensive review).
However, these approaches proposed in nearly a decade still
share very impractical assumptions on MC task execution
behavior. Specifically, once any high criticality task overruns,
the following behaviors are assumed.

1) All low-criticality tasks are abandoned. It is pessimistic
to immediately abandon all low-criticality tasks because
low-criticality tasks require a certain timing performance
as well [12], [19].

2) All high-criticality tasks are assumed to exhibit high
criticality behaviors. It is overly pessimistic to bind the
mode switches of all high-criticality tasks together in the
analysis, as the mode switches of high-criticality tasks
are naturally independent.

3) High-criticality tasks are directly transited to the
most pessimistic level. This will result in unneces-
sary resource overbooking because high-criticality tasks
rarely reach its most pessimistic WCET estimation
during run-time.

A. Related Work

Some solutions have been proposed to partly resolve the
above problems. In Table I, we summarize the existing solu-
tions in relation to the three problems described above. These
solutions can be broadly categorized into the following classes.
The first category of research offers low-criticality tasks a
certain degraded service quality when the system is in high-
criticality mode. Assumptions of abandoning all low-criticality
tasks are relaxed by reducing the dispatch frequency of
jobs [19] or by reducing the execution budget of jobs [6], [15].
However, these studies still apply a pessimistic mode-switch
strategy.

To address the first and second problems, the second cate-
gory of studies offer solutions for improving performance for

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

https://orcid.org/0000-0002-0632-0318

68

69

7

o

7

72

73

74

7

o

7

o

7

7

®

7

©

8

S

8

8:

N

8:

@

84

8!

a

8

=3

8

9

8

-3

8!

©

9

o

9

92

9.

@

94

9!

@

El

>

9

N

9

@©

9

©

10

s}

10

102

10:

@

104

10

a

10

>

107

10

@

10

©

1"

o

11

112

1"

w

1

4

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS

Py Py Ps
Graceful Independent Multiple-Shot
Degradation Mode-Switches Transition
[19], [6], [15] V4 X X
101, 18], I, [14] v v X
[4], [5] X X Vv
Our Work v/ v/ IV

low-criticality tasks by using group-based mode-switch strate-
gies [10], [18]. However, these mode-switch strategies are
not flexible enough because the dependencies between low-
criticality and high-criticality tasks are statically determined.
To relax such dependencies, a new MC model, called flexi-
ble MC (FMC) model, was recently proposed in [9], where
mode-switches of high-criticality tasks are independent and the
service degradation of low-criticality is dynamically updated
based on the overruns of high-criticality tasks. Lee et al. [14]
proposed an MC-ADAPT framework supporting online adap-
tive task dropping under task-level mode switch that involves
using a similar technique. However, the third problem is not
addressed in these two state-of-the-art work. In [9] and [14],
high-criticality tasks always directly transit to the most pes-
simistic level, in which very pessimistic design parameters are
applied.

To support multishot transitions, EDF-VD scheduling algo-
rithm is extended to support a K-level implicit-deadline
task system in [4] and [5]. However, the K-level MC task
model in [4] and [5] still applies impractical assumptions.
Specifically, when the system switches the mode to level k,
all the tasks of criticality at least k are assumed to exhibit k-
level criticality behaviors (i.e., assumption P>). All other tasks
of criticality less than k are discarded (i.e., assumption Pq).

To the best of our knowledge, no work to date has addressed
the above three problems collectively. Compared to exist-
ing studies, the motivation of this paper is to find a more
fine-grained transition scheme for overrun handling that cap-
tures the varying execution behaviors of high-criticality tasks.
Instead of always transiting to the most pessimistic level, the
proposed MC system can undergo intermediate levels to han-
dle overruns with less pessimistic design parameters, such that
unnecessary resource over-booking can be avoided. By doing
so, a better run-time tradeoff between the penalty of low-
criticality tasks and the overruns of high-criticality tasks can be
achieved to improve the service quality of low-criticality tasks.

B. Contributions

In this paper, we propose an FMC model with multiple-shot
transitions (FMC-MST) operating on a uni-processor platform.
Rather than always switching to the most pessimistic level (the
strategy used in [9] and [14]), the new model allows each
high-criticality task to progress over multiple less pessimistic
intermediate levels and to scale the deadline nonuniformly on
each criticality level. Since high-criticality tasks rarely reach
their pessimistic WCET estimations, FMC-MST can avoid
unnecessary resource overbooking for overruns by switching
high-criticality tasks to less pessimistic intermediate levels.

Furthermore, FMC-MST provides a fine-grained transition
scheme where mode-switches are independent with these
intermediate criticality levels. The overrun of a high-criticality
task only raises its own criticality level while others remain
at their previous criticality levels. The minimum required
low-criticality service degradation is calculated to maintain
the balanced system utilization, so as to secure the addi-
tional resources requested by a level-transiting task. The
contributions of this paper can be summarized as follows.

1) We propose a new EDF-VD-based scheduling for an MC
model with multiple-shot transition schemes. Compared
to the state-of-the-art work [9], [14], this paper pro-
vides a more generalized FMC model that allows high-
criticality tasks to progress through multiple criticality
levels and to scale deadlines nonuniformly.

We develop a run-time schedulability analysis for
each independent mode-switch. To improve the service
quality of low-criticality tasks, the utilization balance
between low-criticality and high-criticality tasks serves
as a basic principle for finding an optimal service degra-
dation strategy for low-criticality tasks to compensate for
the additional resources requested by multishot overruns
of high-criticality tasks.

We formally prove the correctness of run-time schedu-
lability analysis for this fine-grained transition scheme.
We develop a resource optimization technique that can
find resource-efficient level-insertion configurations for
FMC-MST task systems under MC timing constraints.

Our evaluation on randomly generated task systems shows that
the performance of FMC-MST outperforms the state-of-the-art
MC scheduling approaches.

2)

3)

4)

II. BACKGROUND

A. FMC Implicit-Deadline Sporadic Task Model With
Multiple Criticality Levels

We consider an MC sporadic task system y as consisting of
a finite collection {1, 12, ..., 7,} of n MC implicit-deadline
sporadic tasks with multiple criticality levels. Each task 7; in
y generates an infinite sequence of jobs and can be specified
by a tuple {T;, x;, Ci}, where:

1) T; is the minimum job-arrival intervals;

2) x; is the total number of criticality levels;

3) C; = (Ci(0), Ci(1),...,Ci(x; — 1)) is a vector of the
worst-case execution times (WCETSs). We assume that
Ci(0) = G(1) =--- = CGi(xi — D).

For the classic dual-criticality system, high-criticality task has
two criticality levels with y; = 2 and low-criticality task has
one criticality level with x; = 1. In this paper, we consider an
extended dual-criticality task system in which the concepts of
high-criticality task and low-criticality task are presented as
follows.

Definition 1: In an MC system with multiple criticality lev-
els, tasks with x; >=2 and x; = 1 are called high-criticality
and low-criticality tasks, respectively.

According to Definition 1, we can divide task set y into low-
criticality task set y; and high-criticality task set yg. In an MC
system with multiple criticality levels, high-criticality tasks are

17

172

173

174

175

171

o

17

N

17

®

179

18

o

18

182

18

@

184

18!

@

186

18

%X

18

®

189

19

o

19

192

19

@

194

195

196

197

19

®

199

20

o

20

202

203

20:

=

205

20

=3

207

20

®

209

21

15}

21

21

o

21

w

21

>

215

21

o

21

J

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

allowed to have several overrun scenarios during run-time. We
denote /; as the criticality level whereby t; stays during run-
time, and we have [; = {0, 1,2, ..., x; — 1}. The mode-switch
from level [; — 1 to level /; can be defined as follows.

Definition 2 (Mode-Switch M; g and M): When high-
criticality task t; executes for its Cj([; — 1) time units
without signaling completion, high-criticality task z; imme-
diately switches from level /; — 1 to level /;. This procedure is
denoted as mode-switch Ml/ The closest mode-switch! occur-

ring before M; U is denoted as M U For the special case of =0,
M0 denotes hlgh criticality task 7; executes at level 0.

In FMC-MST, each mode-switch M; g is independent. Mode-

switch Mj/ does not require other hlgh-crltlcahty tasks to
exhibit high-criticality behavior. For low-criticality tasks, their
execution budget is updated dynamically in accordance with

M;i . To model the degradation of low-criticality tasks on the

point of mode-switch M{j, we now introduce the concept of
the service level as follows. 3
Definition 3 (Service Level zi(Mj’)): When the system has

undergone mode switch M]{j , up to zi(M;i) - C;(0) time units
can be used for the execution of 7; in one period 7;.

In this paper, we consider implicit-deadline task systems
with task period being equal to the relative deadline (i.e.,
T; = d;). The utilization of a task denotes the ratio of its
WCET to its period. We define the utilization of task t; at
level /; as

u,<z)—$ L= 10.1.2..

1

o oxi— 1)

The total utilization of low-criticality task set in the initial
mode (i.e., all high-criticality tasks stay at criticality level 0)
is defined as u; (0) = Znen u;(0). According to Definition 3,
the degraded utilization of low -criticality tasks on mode-switch

I;
Mj’ can be defined as uL(M = Ztlen z,(M) - u; (0).

In this paper, we assume that the condition of zl(M)
Zi (M ; ') should hold to accommodate the resource overbooking
of mode-switch Mjl.j . Correspondingly, the system utilization

. I; Y . .
reduction AuL(Mj’) of low-criticality tasks on mode-switch

M;j can be computed as uL(M;j) — uL(M;j). Since z,-(M;j) <

zi(M)), we have Aug (M) < 0.

Remark 1: Note that, in FMC-MST, AuL(Mjl:j) is off-line
determined to guarantee a schedulable MC system (see
Section III-C). In general, we do not need to specify the set-

tings of z; (Mlj) during off-line stage. Any on-line strategy on
tuning z; (M ') can be applied as long as it can achieve the

required utilization reduction AuL(M .

B. EDF-VD Scheduling With Nonuniform Virtual Deadlines

In this paper, we study the schedulability for FMC-MST
tasks model under EDF-VD scheduling. The main idea of

n general, the closest mode-switch M l before M l can be any task’s prior
mode switch.

lj=1;+1
. High Mod . Mode Switch
Initial Mode 1gh Mode 5\15;’
(@Transition (2)Transition
@Updates (3Updates
(@Return

Fig. 1. Execution semantics.

EDF-VD is to use reduced virtual deadlines to obtain extra
slack time for jobs and further decrease the workload of
high-criticality tasks after mode-switch.

In EDF-VD [3], the virtual deadlines are uniformly scaled
by a single deadline scaling factor x and can be defined uni-
formly by djV = x - dj. In FMC-MST, we allow non-uniform

deadline scaling factor xl.j , where x]l-j € (0,1) is a task and
criticality level dependent scaling parameter, to nonuniformly
set the virtual deadline as dj () = xjj - d;.

C. Execution Semantics

The execution semantics of a high-criticality task is illus-
trated in Fig. 1. Compared to the classic MC execution model,
FMC-MST model allows independent mode-switches for high-
criticality tasks and dynamic service tuning for low-criticality
tasks. As shown in Fig. 1, the system initially operates at level
0 (i.e., @). An overrun of a high-criticality task only triggers
itself to shift its criticality level (i.e., @) and degrades low-
criticality service to accommodate this overruns (i.e., Q). A
sequence of overruns trigger the system to proceed through
multiple criticality levels one by one independently (i.e., @
and @) until the condition for transiting back is satisfied
(i.e., @). The execution semantics can be summarized as
follows.

® Initial Mode: All tasks in y start in level 0 (i.e.,
V1, l; = 0). As long as no high-criticality task violates its
C;(0), the system remains in level 0. All tasks are scheduled
with C;(0).

@ Transition: When one job of a high-criticality task
that is being executed in level [; — 1 overruns its Cj(l; — 1)
without signaling completion, 7; only triggers itself to switch
into level /; and update virtual deadline as d;(l;). However,
all other high-criticality tasks still stay in the same criticality
level as before.

® Updates: To balance the additional resource demand
caused by mode-switch Mjlj a new service level zl(M)
is determined and updated to provide degraded service for
low-criticality tasks 7;. At this updating instant, if any low-
criticality jobs have completed more than z,-(ij) - ¢i(0) time
units of execution, those jobs will be suspended immedi-
ately and wait for the budget to be renewed in the next
period. Otherwise, low-criticality jobs can continue to use the
remaining time budget for their execution.

@ Return to Low-Criticality Mode: When the system
detects an idle interval [6], the system transits back to the
low-criticality mode.

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

d17 dAg(]‘)

QD 4, a300) "

[

I I]

CGhy XD, A
lig i |
7 8

9 10

D (—>E~

1 2 3 4 5

Fig. 2. Tllustrative example.
TABLE II
EXAMPLE TASK SET
xi | Ti [Ci0)/d7(0) | Ci(h/dy (D) | Ci(/dr (@)
Ty 1 6 3
T 3 15 3/10 4.5/12.5 5.75/15
T3 3 10 1/5 1.5/8 2.5/10
TABLE III
DEGRADED UTILIZATION
Mode Swithch M, | M3 M, M3
T
I C T I e N I 0 [
Budget Reduction —1 —1 —0.5 —0.5

263 D. Illustrative Example

4 Now, we give an example to illustrate the related concepts
265 and execution semantics of FMC-MST. Table II gives three
266 tasks, one low-criticality task (x; = 1) and two high-criticality
267 tasks (x2 = 3 and x3 = 3). For high-criticality tasks, each crit-
268 icality level /; (j = 2, 3) associates with one virtual deadline

269 djv (l;), where [; € {0, 1, 2}. Table III gives the required utiliza-

270 tion degradation AuL(M]{i) for each mode switch to guarantee
21 a schedulable MC system.? Fig. 2 depicts the scheduling of
222 MC tasks under execution semantics of FMC-MST, where
273 the symbol V is used to indicate mode-switch occurrence
274 point. In Fig. 2, the jobs are operated under the following
275 rules.

1) Low-criticality task is scheduled with their real dead-
lines. In Fig. 2, 77 is scheduled with d; = 6.

At each mode switch point V, operation Q) is triggered
to update the virtual deadline while operation Q) is trig-
gered to update the execution budget. Now we take the
261 first mode switch as example for illustration. At ¢t = 1,
282 the first mode-switch M; occurs. T3 switches its critical-
ity level from /3 = 0 to /3 = 1 with extending virtual
deadline as d3(1) = 8, while 7, stay in the same critical-
ity level as before (i.e., @). This deadline extension (i.e.,
dy(1) = 8) simultaneously results in the pre-emption of
71 at ¢ = 1. The execution budgets of low-criticality task
71 are decreased from 3 to 2.5 to achieve the required
AuL(Mi). 71 completes its execution at time instant 3.5
290 due to using up the budget (i.e., ®).

201 3) During a busy interval in which multiple overruns occur,
202 the effects of the overruns on budget reduction are
independent. For example, during [0, 15], three mode
switches (Mé >M21 [>M%) occur sequentially. By Table III,
the required budget reduction can be simply calculated
as the sum of the one of these three mode switches,

276
277
o 2)
279

280

283
284
285
286
287
288

289

293
294
295

296

],
2The derivations for determining AuL(M/:’) are illustrated in Ex 1.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

TABLE IV
TABLE OF NOTATIONS

Symbol Meaning in the paper
1;’ Virtual deadline factor of task 7; at level [;
) Utilization of task 7; at level I;
ur, (]\/[Jl.j) Total utilization of low-criticality tasks after (before)
(uL(]\Aljl.j) mode switch I\/LLL
Aup, (M]l]) Utilization reduction of low-criticality taslis required
to accommodate mode switch]VIJ.J
~H Mode-switched task set y& = {1; € vur|l; > 1}
vh Non-mode-switched task set 5 = {7; € yu|l; = 0}
aij (d;j) Absolute release time (deadline) of the j(;b
of high-criticality 7; that switches to M j’

that is —2.5. Therefore, 71 only has 0.5 time unit for
execution.

III. SCHEDULABILITY ANALYSIS AND RESOURCE
OPTIMIZATION

Our FMC-MST model is a more generalized model
that allows multiple less pessimistic criticality levels and
nonuniform deadline scaling. In this section, we present
a utilization-based schedulability analysis for FMC-MST
scheduling algorithm. We first analyze online schedulability
for a single mode switch ij , by which the minimum low-
criticality service degradation can be derived to accommodate
the resource overbooking of a mode switch. In Section III-A,
we provide a high-level overview for this online schedulabil-
ity analysis and attempt to communicate the intuition behind
the algorithm design by means of an example. We then pro-
vide a more comprehensive description in Section III-B to
prove the correctness of Theorem 1. In Section III-C, we check
whether a task set is schedulable by FMC-MST under arbitrary
sequences of mode switches. In Section III-D, we develop an
intermediate level insertion technology and attempt to solve
the problem of how to determine intermediate levels for high-
criticality tasks to minimize the penalties of low-criticality
tasks without sacrificing MC schedulability. We finally prove
some important properties of FMC-MST. Table IV shows the
notation used throughout this paper.

A. Sufficient Schedulability Test on Transition Case M;j

In this section, we provide a high-level overview of online
schedulability analysis for one mode switch, and introduce
the derived schedulability test condition in Theorem 1. With
these conditions, we can adaptively determine how much of
execution budget can be reserved for low-criticality tasks to
handle each intermediate overrun while ensuring a schedulable

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

32!

©

33

S

33

332

33

@

334

335

33

=3

33

N

338

339

340

341

3.

b

2

343

344

345

346

347

348

349

350

35

352

353

354

35!

o

356

35

N

358

359

360

3

&

1

3

3

2

363

364

365

366

367

368

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

system during run-time. Wlthout loss of generality, we con-
sider a general transition case M]’ where high-criticality task T;
switches from level /; —1 to /;, and assume the system is MC-

schedulable on level /;—1. To accommodate M l , the minimum

required utilization reduction AuL(Mj) can be determined by
Theorem 1.

Theorem 1: For mode-switch M; Y with I; > 1, when high-
criticality task t; overruns its C](l — 1), the system is
schedulable when the following conditions are satisfied:

. [; i(li—1
AuL<M;’) ”1(1) J(Jl;]) <0 1)
e x]
J J
. L) —ui(l; — 1) +pi(;
AML<1W;J>+MJ(J) () . 1) pi(l) <0 2)
T
1-— X;
Au (M) =0 3)
L i) =
uj(l;
: (1,1') = ui(—1) o)
X
J
where p;(l;) are constrained by
pip) =0 (&)
X1
uj (0)
> pi(l) = ui0) — (6)
li=1 j
with the initial utilization condition on criticality level 0
u;j(0
u 0)+ Y ’(0) <1 (7)
TE€YH X
u;(0)
jxo <uj(x— 1). t)

J

Intuition: The intuition behind Theorem 1 is to maintain
balanced system utilization during the transitions. The condi-
tions can be explained as follows. Equation (7) ensures MC
schedulability when the system stays in initial mode [3]. An
event of overrun of high-criticality task normally results in an
increase in virtual and overrun utilization due to resource over-
booking. By analyzing the difference in virtual and overrun
utilization, (1) and (2) serve as an efficient way to main-
tain the resource balance between the penalty of low-criticality
tasks and the overruns of high-criticality tasks. Via (1) and (2),
the minimum required utilization reduction AuL(ij) can be
determined to maintain the balanced system utilization, so
as to secure the additional resources requested by a level-
transmn% task. According to [14], high-criticality task with
(u; (I)/x) > uj(x; — 1) will produce schedulability loss.
Therefore additional constraints (4), (8) are imposed to avoid
the performance loss during transitions. In order to provide
an intuition of how the proposed analysis works, we apply
Theorem 1 on a simple task set and calculate the required uti-
lization degradation for guaranteeing MC schedulability of a
single mode switch.

TABLE V
FEASIBLE SETTINGS
Mode Swithch Mé M%2 M, M§
p] (l]) — a5 — I8 — 60 — 12
TR 2 5 1 4
g 3 6 2 5

Example 1: Consider a task set in Table II. Feasible set-
tings® on p;(l;) and le:/ are listed in Table V, so that conditions
(4)—(8) are satisfied. In the following, we take the mode
switch Mé as an example to illustrate the derivation process
of the required utilization degradation Auy, (M%). According to
(1)—(3) in Theorem 1, utilization degradation AuL(M%) should
satisfy the following conditions to accommodate a feasible
mode switch M%:

Au (M)
. wr (1) ua(0) up(1) — uz(0) + pa(l)
<min | — T — b , — 5 0
X, X5 1 —x;
virtual utilization overrun utilization
_ 1
Qi

The similar derivation can be operated to obtain utilization
degradation for other mode switches, as presented in Table III.

B. Proof of the Correctness

We now prove the correctness of the schedulability test con-
dition presented in Theorem 1. The proof process involves
three steps. We first determine the initial conditions to ensure
the schedulability of tasks in initial mode (7) and to satisfy
the necessary boundary constraints (3), (4), and (8). In the
second step, we prove the correctness of the sufficient condi-
tion [i.e., (1)] to ensure MC schedulability after mode switch
M]lj . In the third step, we propose a sufficient schedulability
condition [i.e., (2)] to maintain balanced overrun utilization as
the system undergoes mode transition Ml‘/

1) Initial Conditions: The basic assumption z,(M h <

Zi (M) implies (3). According to [3], we can use (7) to ensure
MC schedulabﬂlty of in level 0. Equations (4) and (8) restrict
resource utilization to levels less than those achieved in the
most pessimistic level (i.e., level x; — 1). Otherwise, tasks can
directly execute in level x; — 1 for efficient resource use [14].

2) Virtual Utilization Balance Equation: We now show
how to ensure MC schedulability after mode switch Mll.j occurs.
This is achieved via virtual utilization balance analysis before
and after mode switch M. By replacing the period as virtual
deadline, virtual utilization of each high-criticality task 7; on
level /; is computed as (u;(/;) /x]l:’). uf, (M;j) and u; (Mjl:’) denote
the virtual utilization of task set y before and after mode
switch ij , respectively. To ensure the correctness of system

3Feasible settings can be off-line determined by formulated CSP problem
presented in Section III-C.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

4

w

414

41

[

M

=)

A

3

41

®

41

©

42

o

421

422

423

424

42!

a

426

427

428

429

430

43

432

433

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

behav10rs after mode switch M;, g system virtual utilization

u (M) must meet the followmg condition:

wy (M) =w (M) + 3 ”"(,f") <1 ©)
ti€vn %

After mode switch M;j , high-criticality task 7; overruns
Ci(l; — 1) and shifts from level [; — 1 to level [;. With the
exception of high-criticality task z;, all other high-criticality
tasks remain at their respective criticality levels without
changing the utilization. Therefore, an increase in the vir-
tual utilization of high-criticality tasks can be determined as

(1) /5 — (s (=D /1)~
criticality utilization is degraded from uL(A;I;j) to uL(M;j) due
to resource overbooking of overruns. Therefore, the difference
in system virtual utilization can be formulated as

I ~
uy (M) = (417)

]). For low-criticality tasks, low-

_ ML(M{,-) B uL(m) N Mj(lj) B uj(lj._— 1)
j j U e
j j

Utilization Reduction
Utilization Increment

‘ (I (I — 1
= au (M) + ”’(lj’) - ”’(jj_l) (10)
X X

(€]

As the system is schedulable before mode switch M]{j , We
have u)", (AA/Ijj) < 1. Hence, we find that (1) ensures the correct-

ness of u; (Mjl-j) < u; (AA/I;j) < 1 to guarantee MC schedulability
after the mode-switch.

3) Overrun Utilization Balance Equation: As the third step,
we prove that the condition presented in (2) is sufficient to
ensure the MC schedulability during the transition phase. We
adopt the similar proof strategy based on [4] and [9] and prove
it by contradiction. Suppose that there is a time interval [0, #/]

i
such that the system undergoes mode switch M; ’ and the first
deadline miss occurs at #r. Let J denote the mmlmal set? of

434 jobs released from task set y for which a deadline is missed.

435

436

437

438

439

440

441

442

443

444

445

446

44

{

r),l.j (11, 1) denotes cumulative execution time of task t; when
the system undergoes the mode- switch Mlj during the interval
(t1, 1. Ny i denotes the sum of n /(0, tf) for all tasks in y.
Since the first deadline miss occurs at #r, we have NV > 1.

In the following, we will show the upper bound of Nf, is less
than #¢, which leads to a contradiction.

To calculate the upper bound of N,lf , we start the proof
by introducing auxiliary lemmas to analyze the upper bound
of cumulative execution time for high-criticality tasks (i.e.,
Lemmas 1 and 2) and low-criticality tasks (i.e., Lemma 3).

High Criticality Tasks: Since the mode switches are inde-
pendent, high-criticality tasks can be divided into mode-
switched task set yI{I{ and nonmode-switched task set yI{‘I. Now,

4This minimality means that if any job is removed from J, the remainder
of J will be schedulable.

we derive upper bounds of the cumulative execution time for
both types of high-criticality tasks.
Lemma 1: For high-criticality task 7; of task set yg , the

. . . I
cumulative execution time 17/-’ (0, r) can be bounded by

/ST S A AR

Tj=

where Au;(rj) = u/(rj) uj(rj — 1).

Proof: Recall that al is the absolute release time of the job
executed on level r;. High-criticality task t; progresses though
l; levels. Therefore, the analysis duration can be divided into

li+1 time segments, as shown in Fig. 3. During time segment
i rji rit+l
la. 4

. li+1 R
¢j(rj). For ease of presentation, we use ;" = ;. Considering
l; time segments shown in Fig. 3, the cumulative execution

], the execution requirement per job is bounded by

time njl:’ (0, r) can be bounded as

l.
7! (0.17)

IA

U
af w0 + Y (af" —d7) ()

rj=1

IA

1

a.:

50 + (a} - a})uj(l)
J

ri+1

att - a]’f) - uj(ry). (12)

Since uj(r;) = Y7, (uj(k) —

lj
S =))

=2

b
ri+l1 2 rit+1
_ (aj’ —aJ-)uj(l) +3°5 (aj’

=2 k=2

(uj(k) — Ltj(k — 1))

_ (AR)u,(1)+2!:2(i+ an')

k=2 rj=k

X (uj(k) —uj(k — 1))

l
+1 l+1
= (a;’ —af)btj(l) + E (aj’ -
k=2

uj(k — 1)) + u;(1), we have

T
a7)

ajk) (ujk) — wi(k — 1)).
(13)

Substituting the marked item in (12) with (13), n/l.j (0,) can
be reformulated as '
al

20 + ("
J

4‘2{2(b+l _

Therefore, njlf (0, #r) can be bounded as (11) by replacing ajl/ +
and k with #r and rj, respectively. |

a})u,-(l)

) (uj(k) — u;(k — 1)). (14)

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

4

3

472

4

{

3

474

475

476

477

478

479

480

481

482

48

@

484

485

48

>

487

48

-3

489

491

o

49

492

493

494

495

496

497

49

@©

49

©

5

=3

0

5

=}

1

5

=3
o

503

504

5

1=}

5

506

507

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

[0, %1] [0;7(1?] o [uljjil,a;j} la?, tf]
[A A - A ? A
0 a]l a? a],’ -1 a]J tf
Fig. 3. Time segments.

Lemma 2 (From [9]): High-criticality task 7; in task set
L
vy has

1
70(0.17) < L1500 (15)
%
Low Criticality Tasks: We now derive an upper bound on

the cumulative execution time nll:’ (0, tr) for low-criticality tasks
using a proof strategy similar to that used in [9].

Lemma 3: For low-criticality task t;, the cumulative execu-
tion time nfj (0, r) can be upper bounded by

lj
w0+ > >yl

H oy
ey 17=1

(16)

with difference term ; U= =ty —a; /)(1 —x)Au,(M .

Proof: We will only sketch the proof here as it is 51mllar to
the proof in [9]. The detailed proof is presented in Appendix A
in the supplementary material. Following the proof strategy
in [9], we analyze the difference of the cumulative execution
time before and after mode-switch M;j and prove that the dif-
ference can be uniformly upper bounded by difference term
wl.[j . By visiting all mode switches Mjr" , the upper bound of
r],l.j (0,) can be obtained. u

Total Cumulative Requirements: Now, we sum the cumula-
tive requirements over all tasks given as (17) and prove the
sufficient condition (2). The complete derivation of N;lf is
given in Appendix B in the supplementary material

M=)+ X0+ Y o 0.

T e L e H
i€y GE€VH €Yy

<tr+ Z(tf—a})

. H
L€YH

x (l—x)AuL< 1) + A1) +1(0) - ’(O)
7

[—
(6)

-3 Sl (1= +)

H pi=
geyf =2

=+ > (v-a)| (1

o H
T€YH

- ij)AuL(Mjl> + Auy(1)

le

+>pi()

li=1

+ZZ(,,(_;})((1 ") (M) + (1))

TJEVH 1j=2

1

I
Since a; <a; ffajj <tfandpj(rj)§0

<+ Z Z(tf — ap)((l —xf"*l)AuL(Aflj'f’)

H p.—
gevy =1

2
J

+ Auy(1) + i (1))- a7

The assumed deadline miss implies N, > tr. That is,

) Z(, ~af)((1 =) A (117

r,eyH rj=
+ Au(r) +pi(1)) > 0.
Taking the contrapositive, we have

> f(tf—a}")

H e
ey =1

A
e

)AuL (M;") + Aui(ry) + pj(ry)

@

rjfl
X (1 X;

(18)

Since 7 — a’ > 0, it is sufficient to ensure the system
schedulability of task set y by guaranteeing (2) holds for
each mode switch M. In (18), the constraints imposed on
each mode switch ij are consistent to each other. Based on
this property, the constraints imposed on current mode switch
Ml’ imply the condition (2), guaranteeing MC schedulability
durlng the transition phase.

C. Feasibility of Algorithm

Theorem 1 gives an online schedulability test condition
only for a single transition. It is yet unclear how to off-line
determine whether a task set is schedulable by FMC-MST
under arbitrary sequences of mode switches. In this section,
we present the off-line schedulability test conditions for a task
set with specified criticality levels. To guarantee schedulabil-
ity, we must ensure that FMC-MST can successfully schedule
the task set under any execution scenario during run-time.
Therefore, to show that the task set is MC-schedulable, we
need to satisfy the following two conditions.

Condition A: We need to guarantee the feasibility of each
mode-switch. Therefore, constraints (1)-(8) for each mode-
switch must be satisfied.

Condition B: We must ensure the system-wide feasibil-
ity. As shown in Theorem 1, each overrun will result in a
decreased low-criticality utilization. For low-criticality tasks,
we must show remaining low-criticality utilization should not
fall below a level of 0 under the worst-case overrun scenario,
that is each high-criticality task t; reaches criticality level
x;j — 1. Therefore, we require

x—1

> Au(M]) + w0 0.

Ti€YH lj:1

19)

508

5

0

511

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

54

®

549

550

55

552

55

@

554

55!

a

55

>

55

N

55i

®

559

561

=3

56

562

56

@

564

565

56

>

567

568

569

570

57

572

573

574

575

576

57

J

578

57!

©

580

58

582

583

584

585

58

>

587

588

589

591

o

59

592

59;

@

594

595

596

597

598

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

For condition A, constraints (1)—(5) must be subjected to
all mode switches with V1r; € yg and [; = 1,..., x — 1,
while constraint (6) should be subjected to all high tasks
with V7; € yg. By combining all of these conditions, we
can formulate the offline schedulability problem as a con-
straint satisfaction problem (CSP). Any insertion solution of
intermediate levels whose states satisfy a number of con-
straints in the derived CSP problem can guarantee a feasible
scheduling system. We use the following example to illus-
trate how to evaluate the schedulability of the given insertion
solution.

Example 2: Consider the example task set with the ded-
icated insertion solution given in Table II and the set-
tings listed in Table V. We have already demonstrated
condition A is satisfied, as illustrated in Example 1. For
condition B, we know it is also satisfied by simply
checking

2
I 1 1
E EAuL(Mj’>+uL(O):—_______+_:O'
s 6 6 12 126

Therefore,
schedulable.

the example task set in Table II is MC-

D. Resource Optimization

Above, we prove a metric for evaluating the schedulability
of an MC task set with specified level-insertion configurations.
However, for an MC task set with two bounded critical-
ity levels [i.e., Cj(0) and Cj(x; — 1) are known], how to
specify a reasonable level-insertion configuration for each
high-criticality task is still not known yet. In this section, we
will study the off-line resource optimization problem (ROP)
with the aim of finding the resource-efficient level-insertion
configuration for the FMC-MST task system within MC timing
constraints.

In general, the probability that the execution time of high-
criticality task reaches its most pessimistic WCET estimation
is quite low. However, in EDF-VD scheduling, high-criticality
tasks always transit from low-criticality level to the most pes-
simistic level once an overrun occurs. To avoid unnecessary
resource over-booking, we can insert several intermediate lev-
els to handle the less pessimistic overruns. The intermediate
level to take depends on the real execution time of high-
criticality tasks. In this paper, we use the distribution of the
execution time of high-criticality task 7; to compute the prob-
ability of overruns. The cumulative distribution function Fj(z)
is used to model the diversity of execution time of high-
criticality task 7; during run-time. Hence, the probability of

the overrun ij that the execution time of high-criticality
task 7; falls in [cj([j), cj(l; + 1)] can be represented as
Fi(cj(l; + 1)) — Fj(cj(l;)). When high-criticality task reaches
criticality level /;, the utilization of low-criticality tasks require
to decrease — Zgzo AuL(Mjrf). In the off-line stage, we intro-
duce a QoS function (20) with the aim to minimize the
average low-criticality utilization decrease. Based on this
objective and the aforementioned constraints, the ROP is

formulated as:

X]_l

ROP: min — Z Z

r,ewz =1

> A (M)
rj_
ConditionA: Equation (1) — (8)
for all mode switches

ConditionB: Equation (19).

cjl+1

Fi(¢i (1))

(20)

The objective function shown above is subjected to the con-
straints listed in the CSP formulation (conditions A and B).
Given an MC task set where two bounded execution times
[Ci(0), cj(x; — 1)] are specified for each high-criticality task,
the resource optimization formulation can automatically gen-
erate a feasible level-insertion configuration with intermediate
execution time c;(/;) and deadline scaling factor x;j for each
high-criticality task.

Complexity: Due to nonlinear items in the constraints, the
ROP (20) is a nonlinear optimization problem (NLP). For
a task set with M high-criticality tasks and L criticality lev-
els, then NLP problem has 4M(L — 1) + M + 2 constraints
and 4M (L — 2) + 3 real variables. Hence, the number of vari-
ables and constraints is polynomially bounded to the size of
the input problem, and it can be solved by a polynomial-time
heuristic [11].

Properties: We now provide important properties to show
the efficiency of FMC-MST.

Property 1: Criticality level insertions operated by ROP do
not degrade the schedulability of FMC-MST.

Proof: We consider a general case that a task set
is MC-schedulable by FMC-MST with L criticality lev-
els. ROP formulation generates level-insertion configuration
[Aur(M)), (1), 57 . pi(1p)] for each criticality level I; of high-
criticality task ;. In general, without changing the previous
configurations of L levels, one can insert L 4 1th level with
the following configuration:

AuL(MJ{jH) =0,u;(l; + 1) = u;(}j), Jl/+1 x]{,

pj(lj + 1) =0. 21

The new configuration still satisfies the CSP. Therefore, the
task set is still MC-schedulable. |

Property 2: FMC-MST with two criticality levels domi-
nates EDF-AD-E [14] in terms of MC-schedulability.

Proof: For FMC-MST with two criticality levels (i.e., x; =
2), u;(0) and u;(1) are equivalent to low-criticality and high-
criticality utilization in EDF-AD-E, respectively. For task set
y, the high-criticality task set yg can be divided into HI-
mode-preferred task set yH = {1 € yH1|(u](O)/x0) > ui(1)}
and non-HI-mode-preferred task set yyg — yH, respectively.
Assume task set y is MC-schedulable by EDF-AD-E [14].
Therefore, the following conditions must be satisfied to ensure

599

600

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

64

®

649

65

=}

65

652

65

@

654

65!

a

656

657

65:i

®

65!

©

660

661

662

663

664

665

666

667

668

66!

©

670

67

672

67.

%}

674

675

676

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

MC schedulability according to [14]

. <Mj(0))
ur(0) + min sui(l)y) <1 (22)
Ti€YH X
x-up(0) +ug(l) < 1. (23)

In general, we can always find a lower-bound factor X that
satisfies uz (0) + minrjeyH,([uj(O)/fc], uj(1)) =1 and (23).

To achieve equivalent behavior, we assign xj(.) =
(4;(0)/u;(1)) for HI-mode-preferred tasks and X for non-
HI-mode-preferred tasks when applying FMC-MST. By this
equivalence transformation, we can make the following obser-
vations for the CSP formulation.

1) Equations (7) and (22) are equivalent.

2) AuL(MJQ) = 0 holds for HI-mode-preferred tasks.

3) For non-HI-mode-preferred tasks, the constraints (1)—(6)

can be equivalently merged as (2).
Based on above observations, by (2) and (19), one can derive
(23) and guarantee a feasible CSP problem for FMC-MST

0
A G)
—ug(0) < Y Aw (M) < ————
o () 1—Xx
(©)
S (52— ui(1)
= —u (0) < — i S)
1—x
u;(0)

= 3w O +un() <w O+ Y

yeva—v
+ > w(h).

. F
T€YH

(24)

From the definition of y/ and yy — v}

= % u(0) + ur(1) < 0) + min (”";0) : u,(1)>.

From the definition of X
=X-ur0)+uy(l) <1.

Therefore, we can conclude when any task set y is MC-
schedulable by EDF-AD-E [14], it is also MC-schedulable by
FMC-MST with two criticality levels. |

Property 3: FMC-MST with L criticality levels inserted
by ROP dominates EDF-AD-E [14] in terms of MC-

schedulability.
Proof: This can be directly proved by Properties 1
and 2.]

I1V. EVALUATION

o7 A. Experiment Setup

678

679

680

68

682

683

684

68!

a

686

In this section, we conduct the simulation experiments
to evaluate the effectiveness of FMC-MST by an extensive
comparison to state-of-the-art approaches: EDF-AD-E [14],
FMC [9], IMC [15], EDF-VD [3]. Our experiments were con-
ducted based on randomly generated MC task systems. We
adopt the same workload generation algorithm as that used
in [3], [8], and [10] to randomly generate task sets with two
criticality levels. In FMC-MCL, two criticality levels act as the
lowest and highest criticality levels (i.e., [; = O and [; = x;—1).

The resource optimization approach presented in Section III-D
will automatically insert the intermediate levels between these
two levels. For ease of presentation, we denote these two
criticality levels as LO and HI levels during the generation
process. In particular, the various parameters> of each task are
generated in the following ways.

1) For each task t;, low-criticality utilization uiLO
number drawn at random from [0.05, 0.15].°

2) R; denotes the ratio of ulHI / uiLO for every high-criticality

task, which is a real number drawn uniformly at random
from [1, 5].

Task period T; of each task is an integer drawn uniformly
at random from [100, 1000].

4) pCri denotes the probability that a task t; is a high-
criticality task, and we set it as 0.5. When 7; is a low-
criticality task, then set CiLO = |_LLL0 - T;]. Otherwise,
set CEO = [uk0 . T;] and CH! = |utO - R; - T;]

One task is generated at a time until ugp — 0.05 < max{uég +
0 ull) < up

As stated in Remark 1, FMC-MST provides a generalized
degradation strategy. For the evaluation, we adopt dropping-
off strategy where low-criticality tasks are partly dropped by
assigning zi(M;j) = 0 for dropped tasks. We quantitatively
compare FMC-MST with above state-of-the-art approaches
in terms of offline schedulability and online performance.
Following [9] and [10], online low-criticality performance
is measured by the percentage of finished LC jobs (PFJ).
PFJ defines the ratio of the number of finished jobs of LO-
critical tasks over the total number of jobs released in a given
time interval. During the simulation, the execution distribution
in [16], which is a straight line on [C;(0), C;(x;—1)] with prob-
abilities given on a log scale, is used to generate the overrun
execution time for jobs of high-criticality tasks. The system
takes the intermediate level according to the actual execution
time. To ensure fair comparisons, we generate a job trace for
each generated task set in off-line and use this unified job trace
to obtain the PFJ for all compared schemes during run-time.

is a real

3)

B. Results

We first demonstrate the effectiveness of FMC-MST com-
pared with state-of-the-art approaches: FMC [9], EDF-AD-
E [14], IMC [15], and EDF-VD [3], in which high-criticality
tasks always directly enter the most pessimistic execution
mode once overrun occurs. We vary utilization bounds up
from 0.7 to 0.95 with step size of 0.05, to evaluate offline
schedulability and online performance. For FMC-MST, each
high-criticality task are inserted with three intermediate levels.
Each data-point was obtained by randomly generating 1000
task sets. Fig. 4 shows the acceptance ratio and average PFJ
for the compared approaches. The left-axis shows PFJ val-
ues achieved for low-criticality tasks represented by the bar

SWe also follow [13] to evaluate the performance under different settings.
More results are available online [1].

%In FMC-MCL, M]I,O and ulHl correspond to #;(0) and wu;(x; — 1),
respectively.

"In FMC-MCL, €O and CH! correspond to Cj(0) and Ci(xj — 1),
respectively.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

7:

N

0

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

EFMC»MST.EDF-AD»E.FMCD\MCDEDF-VDl &FMOMCL <EDF-AD-E AFMC £ IMC ©EDF-VD|

Average PFJ
L
S
&
Acceptance Ratio

0.70 0.80 0.85

Utilization bound u

Fig. 4. Performance with varying utilization bound.

Average PFJ

0.8 L L L L
2 4 6 8 10 12

The number of criticality levels L

Fig. 5. Impact of the number of criticality levels L.

graphs, and the right-axis shows acceptance ratios represented
by line graphs.

As shown in Fig. 4, FMC-MST can provide more low-
criticality service without sacrifice in the MC schedulability.
We can observe the following trends.

1) FMC-MST outperforms all the compared approaches

in terms of support for low-criticality execution. This
is expected because one-shot transition scheme-based
approaches always switch to the level with applying
the most pessimistic design parameters. In contrast,
FMC-MST can capture the varying execution behavior
of high-criticality tasks and can penalize low-criticality
tasks more precisely according to the overrun demands
of high-criticality tasks.
FMC-MST dominates all the EDF-VD-based schedul-
ing algorithms with one-shot transition scheme. This
schedulability performance gain is attributed to the fact
that FMC-MST provides a generalized MC model where
a nonuniform deadline scaling is a relaxation of EDF-
VD-based schedulings [9], [14] and might cause more
task sets to be deemed schedulable.

Next, we will show how the number of intermediate levels
L will impact the effectiveness of FMC-MST. In this experi-
ment, varying L from 2 to 11, we conduct the simulation on
random MC task sets with up = 0.85. Fig. 5 shows online
low-criticality performance under different settings on L. As
shown in Fig. 5, the average PFJ increases with the number
of insertion levels L. The reason for this trend is that the more

2)

insertion levels generally imply more opportunities for han-
dling the less pessimistic overruns during run-time, which can
avoid overbooking unnecessary resources.

We finally evaluate the computation time for deriving auto-
matic intermediate level insertion by solving the formulated
optimization problem presented in Section III. According to
the parameters of task sets presented above, we can automati-
cally generate an optimization problem and use the APMonitor
optimization suite [2] to solve it. For all task set tested above,
the selected optimization tool can generate results within 8.5 s.
The results show that the formulated optimization problem can
be solved efficiently.

V. CONCLUSION

We present a generalized FMC model that enables inde-
pendent multiple-shot transitions for high-criticality tasks. A
run-time schedulability test condition is successfully derived,
which serves as a basis principle to find an optimal service
degradation strategy for low-criticality tasks. We develop a
resource optimization formulation to maximize the run-time
low-criticality service quality without sacrificing MC schedu-
lability. Experimental results illustrate the efficiency of the
proposed approach.

REFERENCES

[1] G. Chen et al. (2018). EDF-VD Scheduling of Flexible Mixed-
Criticality System With Multiple-Shot Transitions. [Online]. Available:
https://github.com/flyingday/Public/blob/master/FMCMST.pdf

(2017). APMonitor Optimization Suite. [Online]. Available:
http://apmonitor.com/

S. Baruah et al., “The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems,” in Proc. 24th
Euromicro Conf. Real Time Syst., Pisa, Italy, 2012, pp. 145-154.

S. Baruah et al, “Preemptive uniprocessor scheduling of mixed-
criticality sporadic task systems,” J. ACM, vol. 62, no. 2, p. 14,
2015.

S. Baruah et al., “Scheduling of mixed-criticality sporadic task systems
with multiple levels,” in Proc. 12th Workshop Models Algorithms Plan.
Sched. Problems, 2015, pp. 1-3.

A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proc. Ist Int. Workshop Mixed Criticality Syst.,
2013, pp. 1-6.

A. Burns and I. R. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1-37, 2017.

A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Proc. IEEE 34th Real Time Syst. Symp.
(RTSS), Vancouver, BC, Canada, 2013, pp. 78-87.

G. Chen et al., “Utilization-based scheduling of flexible mixed-criticality
real-time tasks,” IEEE Trans. Comput., vol. 67, no. 4, pp. 543-558,
Apr. 2018.

X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, ‘“Resource efficient
isolation mechanisms in mixed-criticality scheduling,” in Proc. 27th
Euromicro Conf. Real Time Syst., Lund, Sweden, 2015, pp. 13-24.

D. S. Hochbaum, “Complexity and algorithms for nonlinear optimization
problems,” Anna. Oper. Res., vol. 153, no. 1, pp. 257-296, 2007.
(2014). 1SO 26262:Road Vehicles. [Online]. Available:
http://www.iso.org/iso/

N. Kim et al., “Attacking the one-out-of-m multicore problem by com-
bining hardware management with mixed-criticality provisioning,” in
Proc. IEEE Real Time Embedded Technol. Appl. Symp. (RTAS), Vienna,
Austria, 2016, pp. 1-12.

J. Lee et al., “MC-ADAPT: Adaptive task dropping in mixed-criticality
scheduling,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, p. 163,
2017.

D. Liu et al., “EDF-VD scheduling of mixed-criticality system with
degraded quality guarantees,” in Proc. 32nd IEEE Real Time Syst. Symp.,
2016, pp. 35-46.

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

765

766

767

768

769

770

77

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

845
846
847
848
849
850
851
852
853
854
855
856
857

858
859
860
861
862
863
864

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

[16] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,
“Probabilistic analysis for mixed criticality systems using fixed prior-
ity preemptive scheduling,” in Proc. 25th Int. Conf. Real Time Netw.
Syst. (RTNS), 2017, pp. 237-246.

P. J. Prisaznuk, “Integrated modular avionics,” in Proc. IEEE Nat.
Aerosp. Electron. Conf., 1992, pp. 39-45.

J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-
cessors using task grouping,” in Proc. 27th Euromicro Conf. Real Time
Syst., Lund, Sweden, 2015, pp. 25-34.

H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-
criticality systems,” in Proc. IEEE 20th Int. Conf. Embedded Real Time
Comput. Syst. Appl., Chongqing, China, 2014, pp. 1-10.

S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. 28th IEEE Int. Real
Time Syst. Symp., Tucson, AZ, USA, 2007, pp. 239-243.

(7]

[18]

[19]

[20]

Gang Chen received the B.E. degree in biomedi-
cal engineering, the B.S. degree in mathematics and
applied mathematics, and the M.S. degree in con-
trol science and engineering from Xi’an Jiaotong
University, Xi’an, China, in 2008, 2008, and 2011,
respectively, and the Ph.D. degree in computer sci-
ence from the Technical University of Munich,
Munich, Germany, in 2016.

He is currently an Associate Professor with
Northeastern University, Shenyang, China. His cur-
rent research interests include mixed-criticality
system, energy-aware real-time scheduling, certifiable cache architecture
design, and high-performance computing.

Nan Guan received the Ph.D. degree from Uppsala
University, Uppsala, Sweden, in 2013.

He is currently an Assistant Professor with Hong
Kong Polytechnic University, Hong Kong. His cur-
rent research interests include safe-critical cyber-
physical systems, including real-time scheduling the-
ory, worst-case execution time analysis, and formal

865 [verification techniques.

866 [P Dr. Guan was a recipient of the European Design
867 " \ Automation Association Outstanding Dissertation
868) ~ Award in 2014, the Best Paper Award of IEEE

869
870
871
872
873

Real-Time Systems Symposium in 2009, the Best Paper Award of Design
Automation and Test in Europe Conference in 2013, and the Best Poster Award
in the Ph.D. forum of IEEE International Parallel and Distributed Processing
Symposium in 2012 and IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications in 2017.

11

Biao Hu received the B.Sc. degree in control sci-

ence and engineering from the Harbin Institute

of Technology, Harbin, China, in 2010, the M.Sc.

- degree in control science and engineering from

3 = Tsinghua University, Beijing, China, in 2013, and

2_' the Ph.D. degree from the Department of Computer

S W Science, Technische Universitidt Miinchen, Munich,

ol Germany, in 2017. He is currently an Associate

: f Professor with the College of Information Science

and Technology, Beijing University of Chemical

Technology, Beijing. His current research interests

includes autonomous driving, OpenCL computing in heterogeneous system,

scheduling theory in real-time systems, and safety-critical embedded systems.

Dr. Hu is a Handling Editor of the Journal of Circuits, Systems, and
Computers (Elsevier).

*-,

Wang Yi (M’94-F’14) received the Ph.D. degree in
computer science from the Chalmers University of
Technology, Gothenburg, Sweden, in 1991.

He is a Chair Professor with Uppsala University,
Uppsala, Sweden. He is a member of Academy of
Europe (Section of Informatics). His current research
interests include models, algorithms, and software
tools for building and analyzing computer systems
in a systematic manner to ensure predictable behav-
iors.

Dr. Yi was a recipient of the CAV 2013 Award
for contributions to model checking of real-time systems, in particular the
development of UPPAAL, the foremost tool suite for automated analysis
and verification of real-time systems, the Best Paper Awards of RTSS 2015,
ECRTS 2015, DATE 2013, and RTSS 2009 for his contributions to real-time
systems, the Outstanding Paper Award of ECRTS 2012, and the Best Tool
Paper Award of ETAPS 2002. He is on the steering committee of ESWEEK,
the annual joint event for major conferences in embedded systems areas. He is
also on the steering committees of ACM EMSOFT (Co-Chair), ACM LCTES,
and FORMATS. He serves frequently on Technical Program Committees for
a large number of conferences. He was the TPC Chair of TACAS 2001,
FORMATS 2005, EMSOFT 2006, HSCC 2011, and LCTES 2012 and the
Track/Topic Chair for RTSS 2008 and DATE 2012-2014.

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EDF-VD Scheduling of Flexible Mixed-Criticality
System With Multiple-Shot Transitions

Gang Chen®, Nan Guan, Biao Hu, and Wang Yi, Fellow, IEEE

1+ Abstract—The existing mixed-criticality (MC) real-time task
> models assume that once any high-criticality task overruns, all
s high-criticality jobs execute up to their most pessimistic WCET
4+ estimations simultaneously in a one-shot manner. This is very
5 pessimistic in the sense of unnecessary resource overbooking. In
¢ this paper, we propose a more generalized mixed-critical real-
7 time task model, called flexible MC model with multiple-shot
s transitions (FMC-MST), to address this problem. In FMC-MST,
9 high-criticality tasks can transit multiple intermediate levels to

10
1

2
13
14
15
16
17
18
19
20

21
22

handle less pessimistic overruns independently and to nonuni-
formly scale the deadline on each level. We develop a run-time
schedulability analysis for FMC-MST under EDF-VD scheduling,
in which a better tradeoff between the penalties of low-criticality
tasks and the overruns of high-criticality tasks is achieved to
improve the service quality of low-criticality tasks. We also
develop a resource optimization technique to find resource-
efficient level-insertion configurations for FMC-MST task systems
under MC timing constraints. Experiments demonstrate the
effectiveness of FMC-MST compared with the state-of-the-art
techniques.

Index Terms—EDF-VD scheduling, flexible mixed-criticality
(FMC) system, multiple-shot transitions.

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61702085, Grant 61532007, Grant
61672140, and Grant 61772123, in part by the Fundamental Research Funds
for the Central Universities under Grant N161604002, in part by RGC of Hong
Kong under Grant ECS-25204216 and Grant GRF-15204917, in part by the
University Grants Committee of Hong Kong through Hong Kong Polytechnic
University under Project 1-ZVJ2, and in part by the Ministry of Education
Joint Foundation for Equipment Pre-Research under Grant 6141A020333.
This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Gang Chen.)

G. Chen is with the Smart Systems Laboratory, School of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China, and also
with the Department of Computing, Hong Kong Polytechnic University,
Hong Kong (e-mail:chengang @cse.neu.edu.cn).

N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: nan.guan@polyu.edu.hk).

B. Hu is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
hubiao @mail.buct.edu.cn).

W. Yi is with the Department of Information Technology, Uppsala
University, 75105 Uppsala, Sweden, and also with the School of Computer
Science and Engineering, Northeastern University, Shenyang 110819, China
(e-mail: yi@it.uu.se).

This paper has supplementary downloadable material
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857359

available at

I. INTRODUCTION

NTEGRATING applications with different criticality levels

on a shared computing platform has increasingly become a
common trend in the design of real-time embedded systems.
Such a trend has been observed in the automotive [12] and
avionics [17] industries and has led to the emergence of mixed-
criticality (MC) systems. An MC task model was proposed by
Vestal in his seminal paper [20] about ten years ago, wherein
different WCETs are specified for each task on all existing
criticality levels, with the one on a higher criticality level
being more pessimistic. Since then, many techniques for ana-
lyzing and scheduling MC systems have been proposed in
the real-time literature (see [7] for a comprehensive review).
However, these approaches proposed in nearly a decade still
share very impractical assumptions on MC task execution
behavior. Specifically, once any high criticality task overruns,
the following behaviors are assumed.

1) All low-criticality tasks are abandoned. It is pessimistic
to immediately abandon all low-criticality tasks because
low-criticality tasks require a certain timing performance
as well [12], [19].

2) All high-criticality tasks are assumed to exhibit high
criticality behaviors. It is overly pessimistic to bind the
mode switches of all high-criticality tasks together in the
analysis, as the mode switches of high-criticality tasks
are naturally independent.

3) High-criticality tasks are directly transited to the
most pessimistic level. This will result in unneces-
sary resource overbooking because high-criticality tasks
rarely reach its most pessimistic WCET estimation
during run-time.

A. Related Work

Some solutions have been proposed to partly resolve the
above problems. In Table I, we summarize the existing solu-
tions in relation to the three problems described above. These
solutions can be broadly categorized into the following classes.
The first category of research offers low-criticality tasks a
certain degraded service quality when the system is in high-
criticality mode. Assumptions of abandoning all low-criticality
tasks are relaxed by reducing the dispatch frequency of
jobs [19] or by reducing the execution budget of jobs [6], [15].
However, these studies still apply a pessimistic mode-switch
strategy.

To address the first and second problems, the second cate-
gory of studies offer solutions for improving performance for

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

7

o

7

72

73

74

7

o

7

=)

7

7

®

7

©

8

3

8

8:

N

8:

@

84

8!

a

8

=3

8

9

8

-3

8!

©

9

o

9

92

9.

@

94

9!

@

El

>

9

N

9

@©

9

©

10

s}

10

102

10:

@

104

10

a

10

>

107

10

@©

10

©

1"

o

11

112

1"

w

1

4

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS

P Ps P3
Graceful Independent Multiple-Shot
Degradation Mode-Switches Transition
[19], [6], [15] V4 X X
[10], [18], [9], [14] v/ Vv X
[4], [5] X X Vv
Our Work v/ v/ v

low-criticality tasks by using group-based mode-switch strate-
gies [10], [18]. However, these mode-switch strategies are
not flexible enough because the dependencies between low-
criticality and high-criticality tasks are statically determined.
To relax such dependencies, a new MC model, called flexi-
ble MC (FMC) model, was recently proposed in [9], where
mode-switches of high-criticality tasks are independent and the
service degradation of low-criticality is dynamically updated
based on the overruns of high-criticality tasks. Lee et al. [14]
proposed an MC-ADAPT framework supporting online adap-
tive task dropping under task-level mode switch that involves
using a similar technique. However, the third problem is not
addressed in these two state-of-the-art work. In [9] and [14],
high-criticality tasks always directly transit to the most pes-
simistic level, in which very pessimistic design parameters are
applied.

To support multishot transitions, EDF-VD scheduling algo-
rithm is extended to support a K-level implicit-deadline
task system in [4] and [5]. However, the K-level MC task
model in [4] and [5] still applies impractical assumptions.
Specifically, when the system switches the mode to level k,
all the tasks of criticality at least k are assumed to exhibit k-
level criticality behaviors (i.e., assumption P>). All other tasks
of criticality less than k are discarded (i.e., assumption Pq).

To the best of our knowledge, no work to date has addressed
the above three problems collectively. Compared to exist-
ing studies, the motivation of this paper is to find a more
fine-grained transition scheme for overrun handling that cap-
tures the varying execution behaviors of high-criticality tasks.
Instead of always transiting to the most pessimistic level, the
proposed MC system can undergo intermediate levels to han-
dle overruns with less pessimistic design parameters, such that
unnecessary resource over-booking can be avoided. By doing
so, a better run-time tradeoff between the penalty of low-
criticality tasks and the overruns of high-criticality tasks can be
achieved to improve the service quality of low-criticality tasks.

B. Contributions

In this paper, we propose an FMC model with multiple-shot
transitions (FMC-MST) operating on a uni-processor platform.
Rather than always switching to the most pessimistic level (the
strategy used in [9] and [14]), the new model allows each
high-criticality task to progress over multiple less pessimistic
intermediate levels and to scale the deadline nonuniformly on
each criticality level. Since high-criticality tasks rarely reach
their pessimistic WCET estimations, FMC-MST can avoid
unnecessary resource overbooking for overruns by switching
high-criticality tasks to less pessimistic intermediate levels.

Furthermore, FMC-MST provides a fine-grained transition
scheme where mode-switches are independent with these
intermediate criticality levels. The overrun of a high-criticality
task only raises its own criticality level while others remain
at their previous criticality levels. The minimum required
low-criticality service degradation is calculated to maintain
the balanced system utilization, so as to secure the addi-
tional resources requested by a level-transiting task. The
contributions of this paper can be summarized as follows.

1) We propose a new EDF-VD-based scheduling for an MC
model with multiple-shot transition schemes. Compared
to the state-of-the-art work [9], [14], this paper pro-
vides a more generalized FMC model that allows high-
criticality tasks to progress through multiple criticality
levels and to scale deadlines nonuniformly.

We develop a run-time schedulability analysis for
each independent mode-switch. To improve the service
quality of low-criticality tasks, the utilization balance
between low-criticality and high-criticality tasks serves
as a basic principle for finding an optimal service degra-
dation strategy for low-criticality tasks to compensate for
the additional resources requested by multishot overruns
of high-criticality tasks.

We formally prove the correctness of run-time schedu-
lability analysis for this fine-grained transition scheme.
We develop a resource optimization technique that can
find resource-efficient level-insertion configurations for
FMC-MST task systems under MC timing constraints.

Our evaluation on randomly generated task systems shows that
the performance of FMC-MST outperforms the state-of-the-art
MC scheduling approaches.

2)

3)

4)

II. BACKGROUND

A. FMC Implicit-Deadline Sporadic Task Model With
Multiple Criticality Levels

We consider an MC sporadic task system y as consisting of
a finite collection {1, 12, ..., 7,} of n MC implicit-deadline
sporadic tasks with multiple criticality levels. Each task 7; in
y generates an infinite sequence of jobs and can be specified
by a tuple {T;, x;, Ci}, where:

1) T; is the minimum job-arrival intervals;

2) x; is the total number of criticality levels;

3) C; = (Ci(0), Ci(1),...,Ci(x; — 1)) is a vector of the
worst-case execution times (WCETSs). We assume that
Ci(0) = G(1) =--- = CGi(xi — D).

For the classic dual-criticality system, high-criticality task has
two criticality levels with y; = 2 and low-criticality task has
one criticality level with x; = 1. In this paper, we consider an
extended dual-criticality task system in which the concepts of
high-criticality task and low-criticality task are presented as
follows.

Definition 1: In an MC system with multiple criticality lev-
els, tasks with x; >=2 and x; = 1 are called high-criticality
and low-criticality tasks, respectively.

According to Definition 1, we can divide task set y into low-
criticality task set y; and high-criticality task set yg. In an MC
system with multiple criticality levels, high-criticality tasks are

17

172

173

174

175

171

o

17

N

17

®

179

18

o

18

182

18

@

184

18!

@

186

18

%X

18

®

189

19

o

19

192

19

@

194

195

196

197

19

®

199

20

o

20

202

203

20:

=

205

20

=3

207

20

®

209

21

15}

21

21

o

21

w

21

>

215

21

o

21

J

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

allowed to have several overrun scenarios during run-time. We
denote /; as the criticality level whereby t; stays during run-
time, and we have [; = {0, 1,2, ..., x; — 1}. The mode-switch
from level [; — 1 to level /; can be defined as follows.

Definition 2 (Mode-Switch M; g and M): When high-
criticality task t; executes for its Cj([; — 1) time units
without signaling completion, high-criticality task z; imme-
diately switches from level /; — 1 to level /;. This procedure is
denoted as mode-switch Ml/ The closest mode-switch! occur-

ring before M; U is denoted as M U For the special case of =0,
M0 denotes hlgh criticality task 7; executes at level 0.

In FMC-MST, each mode-switch M; g is independent. Mode-

switch Mj/ does not require other hlgh-crltlcahty tasks to
exhibit high-criticality behavior. For low-criticality tasks, their
execution budget is updated dynamically in accordance with

M;i . To model the degradation of low-criticality tasks on the

point of mode-switch M{j, we now introduce the concept of
the service level as follows. 3
Definition 3 (Service Level zi(Mj’)): When the system has

undergone mode switch M]{j , up to zi(M;i) - C;(0) time units
can be used for the execution of 7; in one period 7;.

In this paper, we consider implicit-deadline task systems
with task period being equal to the relative deadline (i.e.,
T; = d;). The utilization of a task denotes the ratio of its
WCET to its period. We define the utilization of task t; at
level /; as

u,<z)—$ L= 10.1.2..

1

o oxi— 1)

The total utilization of low-criticality task set in the initial
mode (i.e., all high-criticality tasks stay at criticality level 0)
is defined as u; (0) = Znen u;(0). According to Definition 3,
the degraded utilization of low -criticality tasks on mode-switch

I;
Mj’ can be defined as uL(M = Ztlen z,(M) - u; (0).

In this paper, we assume that the condition of zl(M)
Zi (M ; ') should hold to accommodate the resource overbooking
of mode-switch Mjl.j . Correspondingly, the system utilization

. I; Y . .
reduction AuL(Mj’) of low-criticality tasks on mode-switch

M;j can be computed as uL(M;j) — uL(M;j). Since z,-(M;j) <

zi(M)), we have Aug (M) < 0.

Remark 1: Note that, in FMC-MST, AuL(Mjl:j) is off-line
determined to guarantee a schedulable MC system (see
Section III-C). In general, we do not need to specify the set-

tings of z; (Mlj) during off-line stage. Any on-line strategy on
tuning z; (M ') can be applied as long as it can achieve the

required utilization reduction AuL(M .

B. EDF-VD Scheduling With Nonuniform Virtual Deadlines

In this paper, we study the schedulability for FMC-MST
tasks model under EDF-VD scheduling. The main idea of

n general, the closest mode-switch M l before M l can be any task’s prior
mode switch.

=141

High Mode .

Initial Mode

(@ Transition (2)Transition
(3Updates (3Updates
(@Return

Fig. 1. Execution semantics.

EDF-VD is to use reduced virtual deadlines to obtain extra
slack time for jobs and further decrease the workload of
high-criticality tasks after mode-switch.

In EDF-VD [3], the virtual deadlines are uniformly scaled
by a single deadline scaling factor x and can be defined uni-
formly by djV = x - dj. In FMC-MST, we allow non-uniform

deadline scaling factor xl.j , where x]l-j € (0,1) is a task and
criticality level dependent scaling parameter, to nonuniformly
set the virtual deadline as dj () = xjj - d;.

C. Execution Semantics

The execution semantics of a high-criticality task is illus-
trated in Fig. 1. Compared to the classic MC execution model,
FMC-MST model allows independent mode-switches for high-
criticality tasks and dynamic service tuning for low-criticality
tasks. As shown in Fig. 1, the system initially operates at level
0 (i.e., @). An overrun of a high-criticality task only triggers
itself to shift its criticality level (i.e., @) and degrades low-
criticality service to accommodate this overruns (i.e., Q). A
sequence of overruns trigger the system to proceed through
multiple criticality levels one by one independently (i.e., @
and @) until the condition for transiting back is satisfied
(i.e., @). The execution semantics can be summarized as
follows.

® Initial Mode: All tasks in y start in level 0 (i.e.,
V1, l; = 0). As long as no high-criticality task violates its
C;(0), the system remains in level 0. All tasks are scheduled
with C;(0).

@ Transition: When one job of a high-criticality task
that is being executed in level [; — 1 overruns its Cj(l; — 1)
without signaling completion, 7; only triggers itself to switch
into level /; and update virtual deadline as d;(l;). However,
all other high-criticality tasks still stay in the same criticality
level as before.

® Updates: To balance the additional resource demand
caused by mode-switch Mjlj a new service level zl(M)
is determined and updated to provide degraded service for
low-criticality tasks 7;. At this updating instant, if any low-
criticality jobs have completed more than z,-(ij) - ¢i(0) time
units of execution, those jobs will be suspended immedi-
ately and wait for the budget to be renewed in the next
period. Otherwise, low-criticality jobs can continue to use the
remaining time budget for their execution.

@ Return to Low-Criticality Mode: When the system
detects an idle interval [6], the system transits back to the
low-criticality mode.

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

¥ d :@’;_El éi dy . di, dz(1) @@ dy d3(0 dy
esaemr— 1 peiT | i |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Fig. 2. Tllustrative example.
TABLE 11 TABLE IV
EXAMPLE TASK SET TABLE OF NOTATIONS
xi | Ts | Ci(0)/d;(0) | Ci(1)/di (1) | Ci(2)/d;(2) Symbol Meaning in the paper
T
71 ; 165 3/310 157125 575718 wj*] Virtual deadline factor of task 7; at level [;
T2 . . . N " oH o > . "
- 3 10 175 1578 35/10 uj (l]l), Utilization of task 7; at level [;
ur, (]Wjj) Total utilization of low-criticality tasks after (before)
T 1.
wr, (M7 mode switch M .7
TABLE IIT Cur (M) i
DEGRADED UTILIZATION Aur (M) Utilization reduction of low-criticality tasks required
to accommodate mode switch]ijlvj
Mode Swithch M21 1W§]\,[?} 1\13? ’yg Mode-switched task set 'yg ={r; € yull; > 1}
AuL(]\,]Jl_j) _% _% _ﬁ _le : »’yf]l ‘ Non-mode-switched task set 'yIL, ={7; € yu|l; =0}
Budget Reduction —1 —1 —0.5 —0.5 J (dj]) Absolute release time (deadline) of the job
of high-criticality 7; that switches to 1\~'Ijlj

263 D. Illustrative Example

4 Now, we give an example to illustrate the related concepts
265 and execution semantics of FMC-MST. Table II gives three
266 tasks, one low-criticality task (x; = 1) and two high-criticality
267 tasks (x2 = 3 and x3 = 3). For high-criticality tasks, each crit-
268 icality level /; (j = 2, 3) associates with one virtual deadline

269 djv (l;), where [; € {0, 1, 2}. Table III gives the required utiliza-

270 tion degradation AuL(M]{i) for each mode switch to guarantee
21 a schedulable MC system.? Fig. 2 depicts the scheduling of
222 MC tasks under execution semantics of FMC-MST, where
273 the symbol V is used to indicate mode-switch occurrence
274 point. In Fig. 2, the jobs are operated under the following
275 rules.

1) Low-criticality task is scheduled with their real dead-
lines. In Fig. 2, 77 is scheduled with d; = 6.

At each mode switch point V, operation Q) is triggered
to update the virtual deadline while operation Q) is trig-
gered to update the execution budget. Now we take the
261 first mode switch as example for illustration. At ¢t = 1,
282 the first mode-switch M; occurs. T3 switches its critical-
ity level from /3 = 0 to /3 = 1 with extending virtual
deadline as d3(1) = 8, while 7, stay in the same critical-
ity level as before (i.e., @). This deadline extension (i.e.,
dy(1) = 8) simultaneously results in the pre-emption of
71 at ¢ = 1. The execution budgets of low-criticality task
71 are decreased from 3 to 2.5 to achieve the required
AuL(Mi). 71 completes its execution at time instant 3.5
290 due to using up the budget (i.e., ®).

201 3) During a busy interval in which multiple overruns occur,
202 the effects of the overruns on budget reduction are
independent. For example, during [0, 15], three mode
switches (Mé >M21 [>M%) occur sequentially. By Table III,
the required budget reduction can be simply calculated
as the sum of the one of these three mode switches,

276
277
o 2)
279

280

283
284
285
286
287
288

289

293
294
295

296

l,
2The derivations for determining AuL(M/:’) are illustrated in Ex 1.

that is —2.5. Therefore, 71 only has 0.5 time unit for
execution.

III. SCHEDULABILITY ANALYSIS AND RESOURCE
OPTIMIZATION

Our FMC-MST model is a more generalized model
that allows multiple less pessimistic criticality levels and
nonuniform deadline scaling. In this section, we present
a utilization-based schedulability analysis for FMC-MST
scheduling algorithm. We first analyze online schedulability
for a single mode switch ij , by which the minimum low-
criticality service degradation can be derived to accommodate
the resource overbooking of a mode switch. In Section III-A,
we provide a high-level overview for this online schedulabil-
ity analysis and attempt to communicate the intuition behind
the algorithm design by means of an example. We then pro-
vide a more comprehensive description in Section III-B to
prove the correctness of Theorem 1. In Section III-C, we check
whether a task set is schedulable by FMC-MST under arbitrary
sequences of mode switches. In Section III-D, we develop an
intermediate level insertion technology and attempt to solve
the problem of how to determine intermediate levels for high-
criticality tasks to minimize the penalties of low-criticality
tasks without sacrificing MC schedulability. We finally prove
some important properties of FMC-MST. Table IV shows the
notation used throughout this paper.

A. Sufficient Schedulability Test on Transition Case M;j

In this section, we provide a high-level overview of online
schedulability analysis for one mode switch, and introduce
the derived schedulability test condition in Theorem 1. With
these conditions, we can adaptively determine how much of
execution budget can be reserved for low-criticality tasks to
handle each intermediate overrun while ensuring a schedulable

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

32!

©

33

S

33

332

33

@

334

335

33

=3

33

N

338

339

340

341

3.

b

2

343

344

345

346

347

348

349

350

35

352

353

354

35!

o

356

35

N

358

359

360

3

&

1

3

3

2

363

364

365

366

367

368

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

system during run-time. Wlthout loss of generality, we con-
sider a general transition case M]’ where high-criticality task T;
switches from level /; —1 to /;, and assume the system is MC-

schedulable on level /;—1. To accommodate M l , the minimum

required utilization reduction AuL(Mj) can be determined by
Theorem 1.

Theorem 1: For mode-switch M; Y with I; > 1, when high-
criticality task t; overruns its C](l — 1), the system is
schedulable when the following conditions are satisfied:

. [; i(li—1
AuL<M;’) ”1(1) J(Jl;]) <0 1)
e x]
J J
. L) —ui(l; — 1) +pi(;
AML<1W;J>+MJ(J) () . 1) pi(l) <0 2)
T
1-— X;
Au (M) =0 3)
L i) =
uj(l;
: (1,1') = ui(—1) o)
X
J
where p;(l;) are constrained by
pip) =0 (&)
X1
uj (0)
> pi(l) = ui0) — (6)
li=1 j
with the initial utilization condition on criticality level 0
u;j(0
u 0)+ Y ’(0) <1 (7)
TE€YH X
u;(0)
jxo <uj(x— 1). t)

J

Intuition: The intuition behind Theorem 1 is to maintain
balanced system utilization during the transitions. The condi-
tions can be explained as follows. Equation (7) ensures MC
schedulability when the system stays in initial mode [3]. An
event of overrun of high-criticality task normally results in an
increase in virtual and overrun utilization due to resource over-
booking. By analyzing the difference in virtual and overrun
utilization, (1) and (2) serve as an efficient way to main-
tain the resource balance between the penalty of low-criticality
tasks and the overruns of high-criticality tasks. Via (1) and (2),
the minimum required utilization reduction AuL(ij) can be
determined to maintain the balanced system utilization, so
as to secure the additional resources requested by a level-
transmn% task. According to [14], high-criticality task with
(u; (I)/x) > uj(x; — 1) will produce schedulability loss.
Therefore additional constraints (4), (8) are imposed to avoid
the performance loss during transitions. In order to provide
an intuition of how the proposed analysis works, we apply
Theorem 1 on a simple task set and calculate the required uti-
lization degradation for guaranteeing MC schedulability of a
single mode switch.

TABLE V
FEASIBLE SETTINGS
Mode Swithch | M} M3 M} M2
(1) — 2 —_ L _ 1 — L
VRANT] a5 1 60 12
U 2 5 1 4
g 3 6 2 5

Example 1: Consider a task set in Table II. Feasible set-
tings® on p;(l;) and x]lf are listed in Table V, so that conditions
(4)—(8) are satisfied. In the following, we take the mode
switch Mé as an example to illustrate the derivation process
of the required utilization degradation Auy, (M%). According to
(1)-(3) in Theorem 1, utilization degradation AuL(M%) should
satisfy the following conditions to accommodate a feasible
mode switch M%:

Au (M)
. wr (1) ua(0) up(1) — uz(0) + pa(l)
<min | — T — b , — 5 0
X, X5 1 —x;
virtual utilization overrun utilization
_ 1
Qi

The similar derivation can be operated to obtain utilization
degradation for other mode switches, as presented in Table III.

B. Proof of the Correctness

We now prove the correctness of the schedulability test con-
dition presented in Theorem 1. The proof process involves
three steps. We first determine the initial conditions to ensure
the schedulability of tasks in initial mode (7) and to satisfy
the necessary boundary constraints (3), (4), and (8). In the
second step, we prove the correctness of the sufficient condi-
tion [i.e., (1)] to ensure MC schedulability after mode switch
M]lj . In the third step, we propose a sufficient schedulability
condition [i.e., (2)] to maintain balanced overrun utilization as
the system undergoes mode transition Ml‘/

1) Initial Conditions: The basic assumption z,(M h <

Zi (M) implies (3). According to [3], we can use (7) to ensure
MC schedulabﬂlty of in level 0. Equations (4) and (8) restrict
resource utilization to levels less than those achieved in the
most pessimistic level (i.e., level x; — 1). Otherwise, tasks can
directly execute in level x; — 1 for efficient resource use [14].

2) Virtual Utilization Balance Equation: We now show
how to ensure MC schedulability after mode switch Mll.j occurs.
This is achieved via virtual utilization balance analysis before
and after mode switch M. By replacing the period as virtual
deadline, virtual utilization of each high-criticality task 7; on
level /; is computed as (u;(/;) /x]l:’). uf, (M;j) and u; (Mjl:’) denote
the virtual utilization of task set y before and after mode
switch ij , respectively. To ensure the correctness of system

3Feasible settings can be off-line determined by formulated CSP problem
presented in Section III-C.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

4

w

414

41

[

M

=)

A

3

41

®

41

©

42

o

421

422

423

424

42!

a

426

427

428

429

430

43

432

433

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

behav10rs after mode switch M;, g system virtual utilization

u (M) must meet the followmg condition:

wy (M) =w (M) + 3 ”"(,f") <1 ©)
ti€vn %

After mode switch M;j , high-criticality task 7; overruns
Ci(l; — 1) and shifts from level [; — 1 to level [;. With the
exception of high-criticality task z;, all other high-criticality
tasks remain at their respective criticality levels without
changing the utilization. Therefore, an increase in the vir-
tual utilization of high-criticality tasks can be determined as

(1) /5 — (s (=D /1)~
criticality utilization is degraded from uL(A;I;j) to uL(M;j) due
to resource overbooking of overruns. Therefore, the difference
in system virtual utilization can be formulated as

I ~
uy (M) = (417)

]). For low-criticality tasks, low-

_ ML(M{,-) B uL(m) N Mj(lj) B uj(lj._— 1)
j j U e
j j

Utilization Reduction
Utilization Increment

‘ (I (I — 1
= au (M) + ”’(lj’) - ”’(jj_l) (10)
X X

(€]

As the system is schedulable before mode switch M]{j , We
have u)", (AA/Ijj) < 1. Hence, we find that (1) ensures the correct-

ness of u; (Mjl-j) < u; (AA/I;j) < 1 to guarantee MC schedulability
after the mode-switch.

3) Overrun Utilization Balance Equation: As the third step,
we prove that the condition presented in (2) is sufficient to
ensure the MC schedulability during the transition phase. We
adopt the similar proof strategy based on [4] and [9] and prove
it by contradiction. Suppose that there is a time interval [0, #/]

i
such that the system undergoes mode switch M; ’ and the first
deadline miss occurs at #r. Let J denote the mmlmal set? of

434 jobs released from task set y for which a deadline is missed.

435

436

437

438

439

440

441

442

443

444

445

446

44

{

r),l.j (11, 1) denotes cumulative execution time of task t; when
the system undergoes the mode- switch Mlj during the interval
(t1, 1. Ny i denotes the sum of n /(0, tf) for all tasks in y.
Since the first deadline miss occurs at #r, we have NV > 1.

In the following, we will show the upper bound of Nf, is less
than #¢, which leads to a contradiction.

To calculate the upper bound of N,lf , we start the proof
by introducing auxiliary lemmas to analyze the upper bound
of cumulative execution time for high-criticality tasks (i.e.,
Lemmas 1 and 2) and low-criticality tasks (i.e., Lemma 3).

High Criticality Tasks: Since the mode switches are inde-
pendent, high-criticality tasks can be divided into mode-
switched task set yI{I{ and nonmode-switched task set yI{‘I. Now,

4This minimality means that if any job is removed from J, the remainder
of J will be schedulable.

we derive upper bounds of the cumulative execution time for
both types of high-criticality tasks.
Lemma 1: For high-criticality task 7; of task set yg , the

. . . I
cumulative execution time 17/-’ (0, r) can be bounded by

/ST S A AR

Tj=

where Au;(rj) = u/(rj) uj(rj — 1).

Proof: Recall that al is the absolute release time of the job
executed on level r;. High-criticality task t; progresses though
l; levels. Therefore, the analysis duration can be divided into

li+1 time segments, as shown in Fig. 3. During time segment
i rji rit+l
la. 4

. li+1 R
¢j(rj). For ease of presentation, we use a;' "~ = ;. Considering
l; time segments shown in Fig. 3, the cumulative execution

], the execution requirement per job is bounded by

time njl:’ (0, r) can be bounded as

l.
7! (0.17)

IA

U
af w0 + Y (af" —d7) ()

rj=1

IA

1

a.:

50 + (a} - a})uj(l)
J

ri+1

att - a]’f) - uj(ry). (12)

Since uj(r;) = Y7, (uj(k) —

lj
S =))

=2

b
ri+l1 2 rit+1
_ (aj’ —aJ-)uj(l) +3°5 (aj’

=2 k=2

(uj(k) — Ltj(k — 1))

_ (AR)u,(1)+2!:2(i+ an')

k=2 rj=k

X (uj(k) —uj(k — 1))

l
+1 l+1
= (a;’ —af)btj(l) + E (aj’ -
k=2

uj(k — 1)) + u;(1), we have

T
a7)

ajk) (ujk) — wi(k — 1)).
(13)

Substituting the marked item in (12) with (13), n/l.j (0,) can
be reformulated as '
al

20 + ("
J

4‘2{2(b+l _

Therefore, njlf (0, #r) can be bounded as (11) by replacing ajl/ +
and k with #r and rj, respectively. |

a})u,-(l)

) (uj(k) — u;(k — 1)). (14)

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

4

3

472

4

{

3

474

475

476

477

478

479

480

481

482

48

@

484

485

48

>

487

48

-3

489

491

o

49

492

493

494

495

496

497

49

@©

49

©

5

=3

0

5

=}

1

5

=3
o

503

504

5

1=}

5

506

507

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

[0.al] [a},a?] - a7, a9] [a 4]
[A A l* ? A
0 a]l (L? a]?il a]J ff
Fig. 3. Time segments.

Lemma 2 (From [9]): High-criticality task 7; in task set
L
vy has

1
70(0.17) < L1500 (15)
%
Low Criticality Tasks: We now derive an upper bound on

the cumulative execution time nll:’ (0, tr) for low-criticality tasks
using a proof strategy similar to that used in [9].

Lemma 3: For low-criticality task t;, the cumulative execu-
tion time nfj (0, r) can be upper bounded by

lj
w0+ > >yl

H oy
ey 17=1

(16)

with difference term ; U= =ty —a; /)(1 —x)Au,(M .

Proof: We will only sketch the proof here as it is 51mllar to
the proof in [9]. The detailed proof is presented in Appendix A
in the supplementary material. Following the proof strategy
in [9], we analyze the difference of the cumulative execution
time before and after mode-switch M;j and prove that the dif-
ference can be uniformly upper bounded by difference term
wl.[j . By visiting all mode switches Mjr" , the upper bound of
r],l.j (0,) can be obtained. u

Total Cumulative Requirements: Now, we sum the cumula-
tive requirements over all tasks given as (17) and prove the
sufficient condition (2). The complete derivation of N;lf is
given in Appendix B in the supplementary material

M=)+ X0+ Y o 0.

T e L e H
i€y GE€VH €Yy

<tr+ Z(tf—a})

. H
L€YH

x (l—x)AuL< 1) + A1) +1(0) - ’(O)
7

[—
(6)

-3 Sl (1= +)

H pi=
geyf =2

=+ > (v-a)| (1

o H
T€YH

- ij)AuL(Mjl> + Auy(1)

le

+>pi()

li=1

+ZZ(,,(_;})((1 ") (M) + (1))

TJEVH 1j=2

1

I
Since a; <a; ffajj <tfandpj(rj)§0

<+ Z Z(tf — ap)((l —xf"*l)AuL(Aflj'f’)

H p.—
gevy =1

2
J

+ Auy(1) + i (1))- a7

The assumed deadline miss implies N, > tr. That is,

) Z(, ~af)((1 =) A (117

r,eyH rj=
+ Au(r) +pi(1)) > 0.
Taking the contrapositive, we have

> f(tf—a}")

H e
ey =1

A
e

)AuL (M;") + Aui(ry) + pj(ry)

@

rjfl
X (1 X;

(18)

Since 7 — a’ > 0, it is sufficient to ensure the system
schedulability of task set y by guaranteeing (2) holds for
each mode switch M. In (18), the constraints imposed on
each mode switch ij are consistent to each other. Based on
this property, the constraints imposed on current mode switch
Ml’ imply the condition (2), guaranteeing MC schedulability
durlng the transition phase.

C. Feasibility of Algorithm

Theorem 1 gives an online schedulability test condition
only for a single transition. It is yet unclear how to off-line
determine whether a task set is schedulable by FMC-MST
under arbitrary sequences of mode switches. In this section,
we present the off-line schedulability test conditions for a task
set with specified criticality levels. To guarantee schedulabil-
ity, we must ensure that FMC-MST can successfully schedule
the task set under any execution scenario during run-time.
Therefore, to show that the task set is MC-schedulable, we
need to satisfy the following two conditions.

Condition A: We need to guarantee the feasibility of each
mode-switch. Therefore, constraints (1)-(8) for each mode-
switch must be satisfied.

Condition B: We must ensure the system-wide feasibil-
ity. As shown in Theorem 1, each overrun will result in a
decreased low-criticality utilization. For low-criticality tasks,
we must show remaining low-criticality utilization should not
fall below a level of 0 under the worst-case overrun scenario,
that is each high-criticality task t; reaches criticality level
x;j — 1. Therefore, we require

x—1

>3 Au(M]) + w0 = 0.

tieyn =1

19)

508

5

0

511

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

54

®

549

550

55

552

55

@

554

55!

a

55

>

55

N

55i

®

559

561

=3

56

562

56

@

564

565

56

>

567

568

569

570

57

572

573

574

575

576

57

J

578

57!

©

580

58

582

583

584

585

58

>

587

588

589

591

o

59

592

59;

@

594

595

596

597

598

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

For condition A, constraints (1)—(5) must be subjected to
all mode switches with V1r; € yg and [; = 1,..., x — 1,
while constraint (6) should be subjected to all high tasks
with V7; € yg. By combining all of these conditions, we
can formulate the offline schedulability problem as a con-
straint satisfaction problem (CSP). Any insertion solution of
intermediate levels whose states satisfy a number of con-
straints in the derived CSP problem can guarantee a feasible
scheduling system. We use the following example to illus-
trate how to evaluate the schedulability of the given insertion
solution.

Example 2: Consider the example task set with the ded-
icated insertion solution given in Table II and the set-
tings listed in Table V. We have already demonstrated
condition A is satisfied, as illustrated in Example 1. For
condition B, we know it is also satisfied by simply
checking

2
I 1 1
E EAuL(Mj’>+uL(O):—_______+_:O'
s 6 6 12 126

Therefore,
schedulable.

the example task set in Table II is MC-

D. Resource Optimization

Above, we prove a metric for evaluating the schedulability
of an MC task set with specified level-insertion configurations.
However, for an MC task set with two bounded critical-
ity levels [i.e., Cj(0) and Cj(x; — 1) are known], how to
specify a reasonable level-insertion configuration for each
high-criticality task is still not known yet. In this section, we
will study the off-line resource optimization problem (ROP)
with the aim of finding the resource-efficient level-insertion
configuration for the FMC-MST task system within MC timing
constraints.

In general, the probability that the execution time of high-
criticality task reaches its most pessimistic WCET estimation
is quite low. However, in EDF-VD scheduling, high-criticality
tasks always transit from low-criticality level to the most pes-
simistic level once an overrun occurs. To avoid unnecessary
resource over-booking, we can insert several intermediate lev-
els to handle the less pessimistic overruns. The intermediate
level to take depends on the real execution time of high-
criticality tasks. In this paper, we use the distribution of the
execution time of high-criticality task 7; to compute the prob-
ability of overruns. The cumulative distribution function Fj(z)
is used to model the diversity of execution time of high-
criticality task 7; during run-time. Hence, the probability of

the overrun ij that the execution time of high-criticality
task 7; falls in [cj([j), cj(l; + 1)] can be represented as
Fi(cj(l; + 1)) — Fj(cj(l;)). When high-criticality task reaches
criticality level /;, the utilization of low-criticality tasks require
to decrease — Zgzo AuL(Mjrf). In the off-line stage, we intro-
duce a QoS function (20) with the aim to minimize the
average low-criticality utilization decrease. Based on this
objective and the aforementioned constraints, the ROP is

formulated as:

X]_l

ROP: min — Z Z

r,ewz =1

> A (M)
rj_
ConditionA: Equation (1) — (8)
for all mode switches

ConditionB: Equation (19).

cjl+1

Fi(¢i (1))

(20)

The objective function shown above is subjected to the con-
straints listed in the CSP formulation (conditions A and B).
Given an MC task set where two bounded execution times
[Ci(0), cj(x; — 1)] are specified for each high-criticality task,
the resource optimization formulation can automatically gen-
erate a feasible level-insertion configuration with intermediate
execution time c;(/;) and deadline scaling factor x;j for each
high-criticality task.

Complexity: Due to nonlinear items in the constraints, the
ROP (20) is a nonlinear optimization problem (NLP). For
a task set with M high-criticality tasks and L criticality lev-
els, then NLP problem has 4M(L — 1) + M + 2 constraints
and 4M (L — 2) + 3 real variables. Hence, the number of vari-
ables and constraints is polynomially bounded to the size of
the input problem, and it can be solved by a polynomial-time
heuristic [11].

Properties: We now provide important properties to show
the efficiency of FMC-MST.

Property 1: Criticality level insertions operated by ROP do
not degrade the schedulability of FMC-MST.

Proof: We consider a general case that a task set
is MC-schedulable by FMC-MST with L criticality lev-
els. ROP formulation generates level-insertion configuration
[Aur(M)), (1), 57 . pi(1p)] for each criticality level I; of high-
criticality task ;. In general, without changing the previous
configurations of L levels, one can insert L 4 1th level with
the following configuration:

AuL(MJ{jH) =0,u;(l; + 1) = u;(}j), Jl/+1 x]{,

pj(lj + 1) =0. 21

The new configuration still satisfies the CSP. Therefore, the
task set is still MC-schedulable. |

Property 2: FMC-MST with two criticality levels domi-
nates EDF-AD-E [14] in terms of MC-schedulability.

Proof: For FMC-MST with two criticality levels (i.e., x; =
2), u;(0) and u;(1) are equivalent to low-criticality and high-
criticality utilization in EDF-AD-E, respectively. For task set
y, the high-criticality task set yg can be divided into HI-
mode-preferred task set yH = {1 € yH1|(u](O)/x0) > ui(1)}
and non-HI-mode-preferred task set yyg — yH, respectively.
Assume task set y is MC-schedulable by EDF-AD-E [14].
Therefore, the following conditions must be satisfied to ensure

599

600

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

64

®

649

65

=}

65

652

65

@

654

65!

a

656

657

65:i

&®

65!

©

660

661

662

663

664

665

666

667

668

66!

©

670

67

672

67.

%}

674

675

676

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

MC schedulability according to [14]

. <Mj(0))
ur(0) + min sui(l)y) <1 (22)
Ti€YH X
x-up(0) +ug(l) < 1. (23)

In general, we can always find a lower-bound factor X that
satisfies uz (0) + minrjeyH,([uj(O)/fc], uj(1)) =1 and (23).

To achieve equivalent behavior, we assign xj(.) =
(4;(0)/u;(1)) for HI-mode-preferred tasks and X for non-
HI-mode-preferred tasks when applying FMC-MST. By this
equivalence transformation, we can make the following obser-
vations for the CSP formulation.

1) Equations (7) and (22) are equivalent.

2) AuL(MJQ) = 0 holds for HI-mode-preferred tasks.

3) For non-HI-mode-preferred tasks, the constraints (1)—(6)

can be equivalently merged as (2).
Based on above observations, by (2) and (19), one can derive
(23) and guarantee a feasible CSP problem for FMC-MST

(0)
e F(L —uj(l))
_ 1 i €YH—VH X
u(0) < Y AuL(M,) < —
TE€YH
(0)
> e (L2 = ui(1)
= —u(0) < = y”(a)
1—Xx
u;(0)

=3O +un() <w©O+ Yo K

GEYH—Vi
+ > w(h).

o F
T€YH

(24)

From the definition of y/ and yy — v}

= % u(0) + ur(1) < 0) + min (”";0) : u,(1)>.

From the definition of X
=X-ur0)+uy(l) <1.

Therefore, we can conclude when any task set y is MC-
schedulable by EDF-AD-E [14], it is also MC-schedulable by
FMC-MST with two criticality levels. |

Property 3: FMC-MST with L criticality levels inserted
by ROP dominates EDF-AD-E [14] in terms of MC-

schedulability.
Proof: This can be directly proved by Properties 1
and 2.]

I1V. EVALUATION

o7 A. Experiment Setup

678

679

680

68

682

683

684

68!

a

686

In this section, we conduct the simulation experiments
to evaluate the effectiveness of FMC-MST by an extensive
comparison to state-of-the-art approaches: EDF-AD-E [14],
FMC [9], IMC [15], EDF-VD [3]. Our experiments were con-
ducted based on randomly generated MC task systems. We
adopt the same workload generation algorithm as that used
in [3], [8], and [10] to randomly generate task sets with two
criticality levels. In FMC-MCL, two criticality levels act as the
lowest and highest criticality levels (i.e., [; = O and [; = x;—1).

The resource optimization approach presented in Section III-D
will automatically insert the intermediate levels between these
two levels. For ease of presentation, we denote these two
criticality levels as LO and HI levels during the generation
process. In particular, the various parameters> of each task are
generated in the following ways.

1) For each task t;, low-criticality utilization uiLO
number drawn at random from [0.05, 0.15].°

2) R; denotes the ratio of ulHI / uiLO for every high-criticality

task, which is a real number drawn uniformly at random
from [1, 5].

Task period T; of each task is an integer drawn uniformly
at random from [100, 1000].

4) pCri denotes the probability that a task t; is a high-
criticality task, and we set it as 0.5. When 7; is a low-
criticality task, then set CiLO = |_LLL0 - T;]. Otherwise,
set CEO = [uk0 . T;] and CH! = |utO - R; - T;]

One task is generated at a time until ugp — 0.05 < max{uég +
0 ull) < up

As stated in Remark 1, FMC-MST provides a generalized
degradation strategy. For the evaluation, we adopt dropping-
off strategy where low-criticality tasks are partly dropped by
assigning zi(M;j) = 0 for dropped tasks. We quantitatively
compare FMC-MST with above state-of-the-art approaches
in terms of offline schedulability and online performance.
Following [9] and [10], online low-criticality performance
is measured by the percentage of finished LC jobs (PFJ).
PFJ defines the ratio of the number of finished jobs of LO-
critical tasks over the total number of jobs released in a given
time interval. During the simulation, the execution distribution
in [16], which is a straight line on [C;(0), C;(x;—1)] with prob-
abilities given on a log scale, is used to generate the overrun
execution time for jobs of high-criticality tasks. The system
takes the intermediate level according to the actual execution
time. To ensure fair comparisons, we generate a job trace for
each generated task set in off-line and use this unified job trace
to obtain the PFJ for all compared schemes during run-time.

is a real

3)

B. Results

We first demonstrate the effectiveness of FMC-MST com-
pared with state-of-the-art approaches: FMC [9], EDF-AD-
E [14], IMC [15], and EDF-VD [3], in which high-criticality
tasks always directly enter the most pessimistic execution
mode once overrun occurs. We vary utilization bounds up
from 0.7 to 0.95 with step size of 0.05, to evaluate offline
schedulability and online performance. For FMC-MST, each
high-criticality task are inserted with three intermediate levels.
Each data-point was obtained by randomly generating 1000
task sets. Fig. 4 shows the acceptance ratio and average PFJ
for the compared approaches. The left-axis shows PFJ val-
ues achieved for low-criticality tasks represented by the bar

SWe also follow [13] to evaluate the performance under different settings.
More results are available online [1].

%In FMC-MCL, M]I,O and ulHl correspond to #;(0) and wu;(x; — 1),
respectively.

"In FMC-MCL, €O and CH! correspond to Cj(0) and Ci(xj — 1),
respectively.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

7:

N

0

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

EFMC»MSTDEDFAD»EDFMCD\MCDEDFNDl [FMC-MCL < EDF-AD-E AFMC - IMC © EDF-VD|

P
&

F
o
T
L
=)
=

Average PFJ
L
S
b
Acceptance Ratio

1 1
0.80 0.85 0.90

Utilization bound Ug

1
0.70 0.75

Fig. 4. Performance with varying utilization bound.

Average PFJ
o
&

o
©
&

0.84

0.8%

0.8 s s s s
2 4 6 8 10 12

The number of criticality levels L

Fig. 5. Impact of the number of criticality levels L.

graphs, and the right-axis shows acceptance ratios represented
by line graphs.

As shown in Fig. 4, FMC-MST can provide more low-
criticality service without sacrifice in the MC schedulability.
We can observe the following trends.

1) FMC-MST outperforms all the compared approaches

in terms of support for low-criticality execution. This
is expected because one-shot transition scheme-based
approaches always switch to the level with applying
the most pessimistic design parameters. In contrast,
FMC-MST can capture the varying execution behavior
of high-criticality tasks and can penalize low-criticality
tasks more precisely according to the overrun demands
of high-criticality tasks.
FMC-MST dominates all the EDF-VD-based schedul-
ing algorithms with one-shot transition scheme. This
schedulability performance gain is attributed to the fact
that FMC-MST provides a generalized MC model where
a nonuniform deadline scaling is a relaxation of EDF-
VD-based schedulings [9], [14] and might cause more
task sets to be deemed schedulable.

Next, we will show how the number of intermediate levels
L will impact the effectiveness of FMC-MST. In this experi-
ment, varying L from 2 to 11, we conduct the simulation on
random MC task sets with up = 0.85. Fig. 5 shows online
low-criticality performance under different settings on L. As
shown in Fig. 5, the average PFJ increases with the number
of insertion levels L. The reason for this trend is that the more

2)

insertion levels generally imply more opportunities for han-
dling the less pessimistic overruns during run-time, which can
avoid overbooking unnecessary resources.

We finally evaluate the computation time for deriving auto-
matic intermediate level insertion by solving the formulated
optimization problem presented in Section III. According to
the parameters of task sets presented above, we can automati-
cally generate an optimization problem and use the APMonitor
optimization suite [2] to solve it. For all task set tested above,
the selected optimization tool can generate results within 8.5 s.
The results show that the formulated optimization problem can
be solved efficiently.

V. CONCLUSION

We present a generalized FMC model that enables inde-
pendent multiple-shot transitions for high-criticality tasks. A
run-time schedulability test condition is successfully derived,
which serves as a basis principle to find an optimal service
degradation strategy for low-criticality tasks. We develop a
resource optimization formulation to maximize the run-time
low-criticality service quality without sacrificing MC schedu-
lability. Experimental results illustrate the efficiency of the
proposed approach.

REFERENCES

[1] G. Chen et al. (2018). EDF-VD Scheduling of Flexible Mixed-
Criticality System With Multiple-Shot Transitions. [Online]. Available:
https://github.com/flyingday/Public/blob/master/FMCMST.pdf

(2017). APMonitor Optimization Suite. [Online]. Available:
http://apmonitor.com/

S. Baruah et al., “The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems,” in Proc. 24th
Euromicro Conf. Real Time Syst., Pisa, Italy, 2012, pp. 145-154.

S. Baruah et al, “Preemptive uniprocessor scheduling of mixed-
criticality sporadic task systems,” J. ACM, vol. 62, no. 2, p. 14,
2015.

S. Baruah et al., “Scheduling of mixed-criticality sporadic task systems
with multiple levels,” in Proc. 12th Workshop Models Algorithms Plan.
Sched. Problems, 2015, pp. 1-3.

A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proc. Ist Int. Workshop Mixed Criticality Syst.,
2013, pp. 1-6.

A. Burns and I. R. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1-37, 2017.

A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Proc. IEEE 34th Real Time Syst. Symp.
(RTSS), Vancouver, BC, Canada, 2013, pp. 78-87.

G. Chen et al., “Utilization-based scheduling of flexible mixed-criticality
real-time tasks,” IEEE Trans. Comput., vol. 67, no. 4, pp. 543-558,
Apr. 2018.

X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient
isolation mechanisms in mixed-criticality scheduling,” in Proc. 27th
Euromicro Conf. Real Time Syst., Lund, Sweden, 2015, pp. 13-24.

D. S. Hochbaum, “Complexity and algorithms for nonlinear optimization
problems,” Anna. Oper. Res., vol. 153, no. 1, pp. 257-296, 2007.
(2014). 1SO 26262:Road Vehicles. [Online]. Available:
http://www.iso.org/iso/

N. Kim et al., “Attacking the one-out-of-m multicore problem by com-
bining hardware management with mixed-criticality provisioning,” in
Proc. IEEE Real Time Embedded Technol. Appl. Symp. (RTAS), Vienna,
Austria, 2016, pp. 1-12.

J. Lee et al., “MC-ADAPT: Adaptive task dropping in mixed-criticality
scheduling,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, p. 163,
2017.

D. Liu et al., “EDF-VD scheduling of mixed-criticality system with
degraded quality guarantees,” in Proc. 32nd IEEE Real Time Syst. Symp.,
2016, pp. 35-46.

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

765

766

767

768

769

770

77

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

845
846
847
848
849
850
851
852
853
854
855
856
857

858
859
860
861
862
863
864

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST

[16] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,
“Probabilistic analysis for mixed criticality systems using fixed prior-
ity preemptive scheduling,” in Proc. 25th Int. Conf. Real Time Netw.
Syst. (RTNS), 2017, pp. 237-246.

P. J. Prisaznuk, “Integrated modular avionics,” in Proc. IEEE Nat.
Aerosp. Electron. Conf., 1992, pp. 39-45.

J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-
cessors using task grouping,” in Proc. 27th Euromicro Conf. Real Time
Syst., Lund, Sweden, 2015, pp. 25-34.

H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-
criticality systems,” in Proc. IEEE 20th Int. Conf. Embedded Real Time
Comput. Syst. Appl., Chongqing, China, 2014, pp. 1-10.

S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. 28th IEEE Int. Real
Time Syst. Symp., Tucson, AZ, USA, 2007, pp. 239-243.

(7]

[18]

[19]

[20]

Gang Chen received the B.E. degree in biomedi-
cal engineering, the B.S. degree in mathematics and
applied mathematics, and the M.S. degree in con-
trol science and engineering from Xi’an Jiaotong
University, Xi’an, China, in 2008, 2008, and 2011,
respectively, and the Ph.D. degree in computer sci-
ence from the Technical University of Munich,
Munich, Germany, in 2016.

He is currently an Associate Professor with
Northeastern University, Shenyang, China. His cur-
rent research interests include mixed-criticality
system, energy-aware real-time scheduling, certifiable cache architecture
design, and high-performance computing.

Nan Guan received the Ph.D. degree from Uppsala
University, Uppsala, Sweden, in 2013.

He is currently an Assistant Professor with Hong
Kong Polytechnic University, Hong Kong. His cur-
rent research interests include safe-critical cyber-
physical systems, including real-time scheduling the-
ory, worst-case execution time analysis, and formal

865 [verification techniques.

866 [P Dr. Guan was a recipient of the European Design
867 " \ Automation Association Outstanding Dissertation
868) ~ Award in 2014, the Best Paper Award of IEEE

869
870
871
872
873

Real-Time Systems Symposium in 2009, the Best Paper Award of Design
Automation and Test in Europe Conference in 2013, and the Best Poster Award
in the Ph.D. forum of IEEE International Parallel and Distributed Processing
Symposium in 2012 and IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications in 2017.

11

Biao Hu received the B.Sc. degree in control sci-

ence and engineering from the Harbin Institute

of Technology, Harbin, China, in 2010, the M.Sc.

- degree in control science and engineering from

3 = Tsinghua University, Beijing, China, in 2013, and

2_' the Ph.D. degree from the Department of Computer

S W Science, Technische Universitidt Miinchen, Munich,

ol Germany, in 2017. He is currently an Associate

: f Professor with the College of Information Science

and Technology, Beijing University of Chemical

Technology, Beijing. His current research interests

includes autonomous driving, OpenCL computing in heterogeneous system,

scheduling theory in real-time systems, and safety-critical embedded systems.

Dr. Hu is a Handling Editor of the Journal of Circuits, Systems, and
Computers (Elsevier).

*-,

Wang Yi (M’94-F’14) received the Ph.D. degree in
computer science from the Chalmers University of
Technology, Gothenburg, Sweden, in 1991.

He is a Chair Professor with Uppsala University,
Uppsala, Sweden. He is a member of Academy of
Europe (Section of Informatics). His current research
interests include models, algorithms, and software
tools for building and analyzing computer systems
in a systematic manner to ensure predictable behav-
iors.

Dr. Yi was a recipient of the CAV 2013 Award
for contributions to model checking of real-time systems, in particular the
development of UPPAAL, the foremost tool suite for automated analysis
and verification of real-time systems, the Best Paper Awards of RTSS 2015,
ECRTS 2015, DATE 2013, and RTSS 2009 for his contributions to real-time
systems, the Outstanding Paper Award of ECRTS 2012, and the Best Tool
Paper Award of ETAPS 2002. He is on the steering committee of ESWEEK,
the annual joint event for major conferences in embedded systems areas. He is
also on the steering committees of ACM EMSOFT (Co-Chair), ACM LCTES,
and FORMATS. He serves frequently on Technical Program Committees for
a large number of conferences. He was the TPC Chair of TACAS 2001,
FORMATS 2005, EMSOFT 2006, HSCC 2011, and LCTES 2012 and the
Track/Topic Chair for RTSS 2008 and DATE 2012-2014.

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

