
IEE
E P

ro
of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EDF-VD Scheduling of Flexible Mixed-Criticality
System With Multiple-Shot Transitions

Gang Chen , Nan Guan, Biao Hu, and Wang Yi, Fellow, IEEE

Abstract—The existing mixed-criticality (MC) real-time task1

models assume that once any high-criticality task overruns, all2

high-criticality jobs execute up to their most pessimistic WCET3

estimations simultaneously in a one-shot manner. This is very4

pessimistic in the sense of unnecessary resource overbooking. In5

this paper, we propose a more generalized mixed-critical real-6

time task model, called flexible MC model with multiple-shot7

transitions (FMC-MST), to address this problem. In FMC-MST,8

high-criticality tasks can transit multiple intermediate levels to9

handle less pessimistic overruns independently and to nonuni-10

formly scale the deadline on each level. We develop a run-time11

schedulability analysis for FMC-MST under EDF-VD scheduling,12

in which a better tradeoff between the penalties of low-criticality13

tasks and the overruns of high-criticality tasks is achieved to14

improve the service quality of low-criticality tasks. We also15

develop a resource optimization technique to find resource-16

efficient level-insertion configurations for FMC-MST task systems17

under MC timing constraints. Experiments demonstrate the18

effectiveness of FMC-MST compared with the state-of-the-art19

techniques.20

Index Terms—EDF-VD scheduling, flexible mixed-criticality21

(FMC) system, multiple-shot transitions.22

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61702085, Grant 61532007, Grant
61672140, and Grant 61772123, in part by the Fundamental Research Funds
for the Central Universities under Grant N161604002, in part by RGC of Hong
Kong under Grant ECS-25204216 and Grant GRF-15204917, in part by the
University Grants Committee of Hong Kong through Hong Kong Polytechnic
University under Project 1-ZVJ2, and in part by the Ministry of Education
Joint Foundation for Equipment Pre-Research under Grant 6141A020333.
This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Gang Chen.)

G. Chen is with the Smart Systems Laboratory, School of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China, and also
with the Department of Computing, Hong Kong Polytechnic University,
Hong Kong (e-mail:chengang@cse.neu.edu.cn).

N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: nan.guan@polyu.edu.hk).

B. Hu is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
hubiao@mail.buct.edu.cn).

W. Yi is with the Department of Information Technology, Uppsala
University, 75105 Uppsala, Sweden, and also with the School of Computer
Science and Engineering, Northeastern University, Shenyang 110819, China
(e-mail: yi@it.uu.se).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857359

I. INTRODUCTION 23

INTEGRATING applications with different criticality levels 24

on a shared computing platform has increasingly become a 25

common trend in the design of real-time embedded systems. 26

Such a trend has been observed in the automotive [12] and 27

avionics [17] industries and has led to the emergence of mixed- 28

criticality (MC) systems. An MC task model was proposed by 29

Vestal in his seminal paper [20] about ten years ago, wherein 30

different WCETs are specified for each task on all existing 31

criticality levels, with the one on a higher criticality level 32

being more pessimistic. Since then, many techniques for ana- 33

lyzing and scheduling MC systems have been proposed in 34

the real-time literature (see [7] for a comprehensive review). 35

However, these approaches proposed in nearly a decade still 36

share very impractical assumptions on MC task execution 37

behavior. Specifically, once any high criticality task overruns, 38

the following behaviors are assumed. 39

1) All low-criticality tasks are abandoned. It is pessimistic 40

to immediately abandon all low-criticality tasks because 41

low-criticality tasks require a certain timing performance 42

as well [12], [19]. 43

2) All high-criticality tasks are assumed to exhibit high 44

criticality behaviors. It is overly pessimistic to bind the 45

mode switches of all high-criticality tasks together in the 46

analysis, as the mode switches of high-criticality tasks 47

are naturally independent. 48

3) High-criticality tasks are directly transited to the 49

most pessimistic level. This will result in unneces- 50

sary resource overbooking because high-criticality tasks 51

rarely reach its most pessimistic WCET estimation 52

during run-time. 53

A. Related Work 54

Some solutions have been proposed to partly resolve the 55

above problems. In Table I, we summarize the existing solu- 56

tions in relation to the three problems described above. These 57

solutions can be broadly categorized into the following classes. 58

The first category of research offers low-criticality tasks a 59

certain degraded service quality when the system is in high- 60

criticality mode. Assumptions of abandoning all low-criticality 61

tasks are relaxed by reducing the dispatch frequency of 62

jobs [19] or by reducing the execution budget of jobs [6], [15]. 63

However, these studies still apply a pessimistic mode-switch 64

strategy. 65

To address the first and second problems, the second cate- 66

gory of studies offer solutions for improving performance for 67

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0632-0318


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS

low-criticality tasks by using group-based mode-switch strate-68

gies [10], [18]. However, these mode-switch strategies are69

not flexible enough because the dependencies between low-70

criticality and high-criticality tasks are statically determined.71

To relax such dependencies, a new MC model, called flexi-72

ble MC (FMC) model, was recently proposed in [9], where73

mode-switches of high-criticality tasks are independent and the74

service degradation of low-criticality is dynamically updated75

based on the overruns of high-criticality tasks. Lee et al. [14]76

proposed an MC-ADAPT framework supporting online adap-77

tive task dropping under task-level mode switch that involves78

using a similar technique. However, the third problem is not79

addressed in these two state-of-the-art work. In [9] and [14],80

high-criticality tasks always directly transit to the most pes-81

simistic level, in which very pessimistic design parameters are82

applied.83

To support multishot transitions, EDF-VD scheduling algo-84

rithm is extended to support a K-level implicit-deadline85

task system in [4] and [5]. However, the K-level MC task86

model in [4] and [5] still applies impractical assumptions.87

Specifically, when the system switches the mode to level k,88

all the tasks of criticality at least k are assumed to exhibit k-89

level criticality behaviors (i.e., assumption P2). All other tasks90

of criticality less than k are discarded (i.e., assumption P1).91

To the best of our knowledge, no work to date has addressed92

the above three problems collectively. Compared to exist-93

ing studies, the motivation of this paper is to find a more94

fine-grained transition scheme for overrun handling that cap-95

tures the varying execution behaviors of high-criticality tasks.96

Instead of always transiting to the most pessimistic level, the97

proposed MC system can undergo intermediate levels to han-98

dle overruns with less pessimistic design parameters, such that99

unnecessary resource over-booking can be avoided. By doing100

so, a better run-time tradeoff between the penalty of low-101

criticality tasks and the overruns of high-criticality tasks can be102

achieved to improve the service quality of low-criticality tasks.103

B. Contributions104

In this paper, we propose an FMC model with multiple-shot105

transitions (FMC-MST) operating on a uni-processor platform.106

Rather than always switching to the most pessimistic level (the107

strategy used in [9] and [14]), the new model allows each108

high-criticality task to progress over multiple less pessimistic109

intermediate levels and to scale the deadline nonuniformly on110

each criticality level. Since high-criticality tasks rarely reach111

their pessimistic WCET estimations, FMC-MST can avoid112

unnecessary resource overbooking for overruns by switching113

high-criticality tasks to less pessimistic intermediate levels.114

Furthermore, FMC-MST provides a fine-grained transition 115

scheme where mode-switches are independent with these 116

intermediate criticality levels. The overrun of a high-criticality 117

task only raises its own criticality level while others remain 118

at their previous criticality levels. The minimum required 119

low-criticality service degradation is calculated to maintain 120

the balanced system utilization, so as to secure the addi- 121

tional resources requested by a level-transiting task. The 122

contributions of this paper can be summarized as follows. 123

1) We propose a new EDF-VD-based scheduling for an MC 124

model with multiple-shot transition schemes. Compared 125

to the state-of-the-art work [9], [14], this paper pro- 126

vides a more generalized FMC model that allows high- 127

criticality tasks to progress through multiple criticality 128

levels and to scale deadlines nonuniformly. 129

2) We develop a run-time schedulability analysis for 130

each independent mode-switch. To improve the service 131

quality of low-criticality tasks, the utilization balance 132

between low-criticality and high-criticality tasks serves 133

as a basic principle for finding an optimal service degra- 134

dation strategy for low-criticality tasks to compensate for 135

the additional resources requested by multishot overruns 136

of high-criticality tasks. 137

3) We formally prove the correctness of run-time schedu- 138

lability analysis for this fine-grained transition scheme. 139

4) We develop a resource optimization technique that can 140

find resource-efficient level-insertion configurations for 141

FMC-MST task systems under MC timing constraints. 142

Our evaluation on randomly generated task systems shows that 143

the performance of FMC-MST outperforms the state-of-the-art 144

MC scheduling approaches. 145

II. BACKGROUND 146

A. FMC Implicit-Deadline Sporadic Task Model With 147

Multiple Criticality Levels 148

We consider an MC sporadic task system γ as consisting of 149

a finite collection {τ1, τ2, . . . , τn} of n MC implicit-deadline 150

sporadic tasks with multiple criticality levels. Each task τi in 151

γ generates an infinite sequence of jobs and can be specified 152

by a tuple {Ti, χi, Ci}, where: 153

1) Ti is the minimum job-arrival intervals; 154

2) χi is the total number of criticality levels; 155

3) Ci = (Ci(0),Ci(1), . . . ,Ci(χi − 1)) is a vector of the 156

worst-case execution times (WCETs). We assume that 157

Ci(0) ≤ Ci(1) ≤ · · · ≤ Ci(χi − 1). 158

For the classic dual-criticality system, high-criticality task has 159

two criticality levels with χi = 2 and low-criticality task has 160

one criticality level with χi = 1. In this paper, we consider an 161

extended dual-criticality task system in which the concepts of 162

high-criticality task and low-criticality task are presented as 163

follows. 164

Definition 1: In an MC system with multiple criticality lev- 165

els, tasks with χi >= 2 and χi = 1 are called high-criticality 166

and low-criticality tasks, respectively. 167

According to Definition 1, we can divide task set γ into low- 168

criticality task set γL and high-criticality task set γH . In an MC 169

system with multiple criticality levels, high-criticality tasks are 170



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 3

allowed to have several overrun scenarios during run-time. We171

denote li as the criticality level whereby τi stays during run-172

time, and we have li = {0, 1, 2, . . . , χi − 1}. The mode-switch173

from level lj − 1 to level lj can be defined as follows.174

Definition 2 (Mode-Switch M
lj
j and M̂

lj
j ): When high-175

criticality task τj executes for its Cj(lj − 1) time units176

without signaling completion, high-criticality task τj imme-177

diately switches from level lj − 1 to level lj. This procedure is178

denoted as mode-switch M
lj
j . The closest mode-switch1 occur-179

ring before M
lj
j is denoted as M̂

lj
j . For the special case of lj = 0,180

M0
j denotes high-criticality task τj executes at level 0.181

In FMC-MST, each mode-switch M
lj
j is independent. Mode-182

switch M
lj
j does not require other high-criticality tasks to183

exhibit high-criticality behavior. For low-criticality tasks, their184

execution budget is updated dynamically in accordance with185

M
lj
j . To model the degradation of low-criticality tasks on the186

point of mode-switch M
lj
j , we now introduce the concept of187

the service level as follows.188

Definition 3 (Service Level zi(M
lj
j )): When the system has189

undergone mode switch M
lj
j , up to zi(M

lj
j ) · Ci(0) time units190

can be used for the execution of τi in one period Ti.191

In this paper, we consider implicit-deadline task systems192

with task period being equal to the relative deadline (i.e.,193

Ti = di). The utilization of a task denotes the ratio of its194

WCET to its period. We define the utilization of task τi at195

level li as196

ui(li) = Ci(li)

Ti
li = {0, 1, 2, . . . , χi − 1}.197

The total utilization of low-criticality task set in the initial198

mode (i.e., all high-criticality tasks stay at criticality level 0)199

is defined as uL(0) = ∑
τi∈γL

ui(0). According to Definition 3,200

the degraded utilization of low-criticality tasks on mode-switch201

M
lj
j can be defined as uL(M

lj
j ) = ∑

τi∈γL
zi(M

lj
j ) · ui(0).202

In this paper, we assume that the condition of zi(M
lj
j ) ≤203

zi(M̂
lj
j ) should hold to accommodate the resource overbooking204

of mode-switch M
lj
j . Correspondingly, the system utilization205

reduction �uL(M
lj
j ) of low-criticality tasks on mode-switch206

M
lj
j can be computed as uL(M

lj
j ) − uL(M̂

lj
j ). Since zi(M

lj
j ) ≤207

zi(M̂
lj
j ), we have �uL(M

lj
j ) ≤ 0.208

Remark 1: Note that, in FMC-MST, �uL(M
lj
j ) is off-line209

determined to guarantee a schedulable MC system (see210

Section III-C). In general, we do not need to specify the set-211

tings of zi(M
lj
j ) during off-line stage. Any on-line strategy on212

tuning zi(M
lj
j ) can be applied as long as it can achieve the213

required utilization reduction �uL(M
lj
j ).214

B. EDF-VD Scheduling With Nonuniform Virtual Deadlines215

In this paper, we study the schedulability for FMC-MST216

tasks model under EDF-VD scheduling. The main idea of217

1In general, the closest mode-switch M̂
lj
j before M

lj
j can be any task’s prior

mode switch.

Fig. 1. Execution semantics.

EDF-VD is to use reduced virtual deadlines to obtain extra 218

slack time for jobs and further decrease the workload of 219

high-criticality tasks after mode-switch. 220

In EDF-VD [3], the virtual deadlines are uniformly scaled 221

by a single deadline scaling factor x and can be defined uni- 222

formly by dv
j = x · dj. In FMC-MST, we allow non-uniform 223

deadline scaling factor x
lj
j , where x

lj
j ∈ (0, 1) is a task and 224

criticality level dependent scaling parameter, to nonuniformly 225

set the virtual deadline as dv
j (lj) = x

lj
j · dj. 226

C. Execution Semantics 227

The execution semantics of a high-criticality task is illus- 228

trated in Fig. 1. Compared to the classic MC execution model, 229

FMC-MST model allows independent mode-switches for high- 230

criticality tasks and dynamic service tuning for low-criticality 231

tasks. As shown in Fig. 1, the system initially operates at level 232

0 (i.e., 1 ). An overrun of a high-criticality task only triggers 233

itself to shift its criticality level (i.e., 2 ) and degrades low- 234

criticality service to accommodate this overruns (i.e., 3 ). A 235

sequence of overruns trigger the system to proceed through 236

multiple criticality levels one by one independently (i.e., 2 237

and 3 ) until the condition for transiting back is satisfied 238

(i.e., 4 ). The execution semantics can be summarized as 239

follows. 240

1 Initial Mode: All tasks in γ start in level 0 (i.e., 241

∀τi, li = 0). As long as no high-criticality task violates its 242

Ci(0), the system remains in level 0. All tasks are scheduled 243

with Ci(0). 244

2 Transition: When one job of a high-criticality task τj 245

that is being executed in level lj − 1 overruns its Cj(lj − 1) 246

without signaling completion, τj only triggers itself to switch 247

into level lj and update virtual deadline as dv
j (lj). However, 248

all other high-criticality tasks still stay in the same criticality 249

level as before. 250

3 Updates: To balance the additional resource demand 251

caused by mode-switch M
lj
j , a new service level zi(M

lj
j ) 252

is determined and updated to provide degraded service for 253

low-criticality tasks τi. At this updating instant, if any low- 254

criticality jobs have completed more than zi(M
lj
j ) · ci(0) time 255

units of execution, those jobs will be suspended immedi- 256

ately and wait for the budget to be renewed in the next 257

period. Otherwise, low-criticality jobs can continue to use the 258

remaining time budget for their execution. 259

4 Return to Low-Criticality Mode: When the system 260

detects an idle interval [6], the system transits back to the 261

low-criticality mode. 262



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Illustrative example.

TABLE II
EXAMPLE TASK SET

TABLE III
DEGRADED UTILIZATION

D. Illustrative Example263

Now, we give an example to illustrate the related concepts264

and execution semantics of FMC-MST. Table II gives three265

tasks, one low-criticality task (χ1 = 1) and two high-criticality266

tasks (χ2 = 3 and χ3 = 3). For high-criticality tasks, each crit-267

icality level lj (j = 2, 3) associates with one virtual deadline268

dv
j (lj), where lj ∈ {0, 1, 2}. Table III gives the required utiliza-269

tion degradation �uL(M
lj
j ) for each mode switch to guarantee270

a schedulable MC system.2 Fig. 2 depicts the scheduling of271

MC tasks under execution semantics of FMC-MST, where272

the symbol ∇ is used to indicate mode-switch occurrence273

point. In Fig. 2, the jobs are operated under the following274

rules.275

1) Low-criticality task is scheduled with their real dead-276

lines. In Fig. 2, τ1 is scheduled with d1 = 6.277

2) At each mode switch point ∇, operation 2 is triggered278

to update the virtual deadline while operation 3 is trig-279

gered to update the execution budget. Now we take the280

first mode switch as example for illustration. At t = 1,281

the first mode-switch M1
3 occurs. τ3 switches its critical-282

ity level from l3 = 0 to l3 = 1 with extending virtual283

deadline as dv
3(1) = 8, while τ2 stay in the same critical-284

ity level as before (i.e., 2 ). This deadline extension (i.e.,285

dv
3(1) = 8) simultaneously results in the pre-emption of286

τ1 at t = 1. The execution budgets of low-criticality task287

τ1 are decreased from 3 to 2.5 to achieve the required288

�uL(M1
3). τ1 completes its execution at time instant 3.5289

due to using up the budget (i.e., 3 ).290

3) During a busy interval in which multiple overruns occur,291

the effects of the overruns on budget reduction are292

independent. For example, during [0, 15], three mode293

switches (M1
3 �M1

2 �M2
2) occur sequentially. By Table III,294

the required budget reduction can be simply calculated295

as the sum of the one of these three mode switches,296

2The derivations for determining �uL(M
lj
j ) are illustrated in Ex 1.

TABLE IV
TABLE OF NOTATIONS

that is −2.5. Therefore, τ1 only has 0.5 time unit for 297

execution. 298

III. SCHEDULABILITY ANALYSIS AND RESOURCE 299

OPTIMIZATION 300

Our FMC-MST model is a more generalized model 301

that allows multiple less pessimistic criticality levels and 302

nonuniform deadline scaling. In this section, we present 303

a utilization-based schedulability analysis for FMC-MST 304

scheduling algorithm. We first analyze online schedulability 305

for a single mode switch M
lj
j , by which the minimum low- 306

criticality service degradation can be derived to accommodate 307

the resource overbooking of a mode switch. In Section III-A, 308

we provide a high-level overview for this online schedulabil- 309

ity analysis and attempt to communicate the intuition behind 310

the algorithm design by means of an example. We then pro- 311

vide a more comprehensive description in Section III-B to 312

prove the correctness of Theorem 1. In Section III-C, we check 313

whether a task set is schedulable by FMC-MST under arbitrary 314

sequences of mode switches. In Section III-D, we develop an 315

intermediate level insertion technology and attempt to solve 316

the problem of how to determine intermediate levels for high- 317

criticality tasks to minimize the penalties of low-criticality 318

tasks without sacrificing MC schedulability. We finally prove 319

some important properties of FMC-MST. Table IV shows the 320

notation used throughout this paper. 321

A. Sufficient Schedulability Test on Transition Case M
lj
j 322

In this section, we provide a high-level overview of online 323

schedulability analysis for one mode switch, and introduce 324

the derived schedulability test condition in Theorem 1. With 325

these conditions, we can adaptively determine how much of 326

execution budget can be reserved for low-criticality tasks to 327

handle each intermediate overrun while ensuring a schedulable 328



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 5

system during run-time. Without loss of generality, we con-329

sider a general transition case M
lj
j where high-criticality task τj330

switches from level lj −1 to lj, and assume the system is MC-331

schedulable on level lj−1. To accommodate M
lj
j , the minimum332

required utilization reduction �uL(M
lj
j ) can be determined by333

Theorem 1.334

Theorem 1: For mode-switch M
lj
j with li ≥ 1, when high-335

criticality task τj overruns its Cj(lj − 1), the system is336

schedulable when the following conditions are satisfied:337

�uL

(
M

lj
j

)
+ uj

(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

≤ 0 (1)338

�uL

(
M

lj
j

)
+ uj

(
lj
)− uj

(
lj − 1

)+ pj
(
lj
)

1 − x
lj−1
j

≤ 0 (2)339

�uL

(
M

lj
j

)
≤ 0 (3)340

uj
(
lj
)

x
lj
j

≤ uj
(
χj − 1

)
(4)341

where pj(lj) are constrained by342

pj(lj) ≤ 0 (5)343

χj−1∑

lj=1

pj
(
lj
) = uj(0)− uj(0)

x0
j

(6)344

with the initial utilization condition on criticality level 0345

uL(0)+
∑

τj∈γH

uj(0)

x0
j

≤ 1 (7)346

uj(0)

x0
j

≤ uj
(
χj − 1

)
. (8)347

Intuition: The intuition behind Theorem 1 is to maintain348

balanced system utilization during the transitions. The condi-349

tions can be explained as follows. Equation (7) ensures MC350

schedulability when the system stays in initial mode [3]. An351

event of overrun of high-criticality task normally results in an352

increase in virtual and overrun utilization due to resource over-353

booking. By analyzing the difference in virtual and overrun354

utilization, (1) and (2) serve as an efficient way to main-355

tain the resource balance between the penalty of low-criticality356

tasks and the overruns of high-criticality tasks. Via (1) and (2),357

the minimum required utilization reduction �uL(M
lj
j ) can be358

determined to maintain the balanced system utilization, so359

as to secure the additional resources requested by a level-360

transiting task. According to [14], high-criticality task with361

(uj(lj)/x
lj
j ) ≥ uj(χj − 1) will produce schedulability loss.362

Therefore, additional constraints (4), (8) are imposed to avoid363

the performance loss during transitions. In order to provide364

an intuition of how the proposed analysis works, we apply365

Theorem 1 on a simple task set and calculate the required uti-366

lization degradation for guaranteeing MC schedulability of a367

single mode switch.368

TABLE V
FEASIBLE SETTINGS

Example 1: Consider a task set in Table II. Feasible set- 369

tings3 on pj(lj) and x
lj
j are listed in Table V, so that conditions 370

(4)–(8) are satisfied. In the following, we take the mode 371

switch M1
2 as an example to illustrate the derivation process 372

of the required utilization degradation �uL(M1
2). According to 373

(1)–(3) in Theorem 1, utilization degradation �uL(M1
2) should 374

satisfy the following conditions to accommodate a feasible 375

mode switch M1
2: 376

�uL

(
M1

2

)
377

≤ min

⎛

⎜
⎜
⎜
⎜
⎝

−
(

u2(1)

x1
2

− u2(0)

x0
2

)

︸ ︷︷ ︸
virtual utilization

,−u2(1)− u2(0)+ p2(1)

1 − x0
2︸ ︷︷ ︸

overrun utilization

, 0

⎞

⎟
⎟
⎟
⎟
⎠

378

= −1

6
. 379

The similar derivation can be operated to obtain utilization 380

degradation for other mode switches, as presented in Table III. 381

B. Proof of the Correctness 382

We now prove the correctness of the schedulability test con- 383

dition presented in Theorem 1. The proof process involves 384

three steps. We first determine the initial conditions to ensure 385

the schedulability of tasks in initial mode (7) and to satisfy 386

the necessary boundary constraints (3), (4), and (8). In the 387

second step, we prove the correctness of the sufficient condi- 388

tion [i.e., (1)] to ensure MC schedulability after mode switch 389

M
lj
j . In the third step, we propose a sufficient schedulability 390

condition [i.e., (2)] to maintain balanced overrun utilization as 391

the system undergoes mode transition M
lj
j . 392

1) Initial Conditions: The basic assumption zi(M
lj
j ) ≤ 393

zi(M̂
lj
j ) implies (3). According to [3], we can use (7) to ensure 394

MC schedulability of in level 0. Equations (4) and (8) restrict 395

resource utilization to levels less than those achieved in the 396

most pessimistic level (i.e., level χj −1). Otherwise, tasks can 397

directly execute in level χj − 1 for efficient resource use [14]. 398

2) Virtual Utilization Balance Equation: We now show 399

how to ensure MC schedulability after mode switch M
lj
j occurs. 400

This is achieved via virtual utilization balance analysis before 401

and after mode switch M
lj
j . By replacing the period as virtual 402

deadline, virtual utilization of each high-criticality task τj on 403

level lj is computed as (uj(lj)/x
lj
j ). uv

γ (M̂
lj
j ) and uv

γ (M
lj
j ) denote 404

the virtual utilization of task set γ before and after mode 405

switch M
lj
j , respectively. To ensure the correctness of system 406

3Feasible settings can be off-line determined by formulated CSP problem
presented in Section III-C.



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

behaviors after mode switch M
lj
j , system virtual utilization407

uv
γ (M

lj
j ) must meet the following condition:408

uv
γ

(
M

lj
j

)
= uL

(
M

lj
j

)
+
∑

τj∈γH

uj
(
lj
)

x
lj
j

≤ 1. (9)409

After mode switch M
lj
j , high-criticality task τj overruns410

Cj(lj − 1) and shifts from level lj − 1 to level lj. With the411

exception of high-criticality task τj, all other high-criticality412

tasks remain at their respective criticality levels without413

changing the utilization. Therefore, an increase in the vir-414

tual utilization of high-criticality tasks can be determined as415

(uj(lj)/xlj)−([uj(lj−1)]/[x
lj−1
j ]). For low-criticality tasks, low-416

criticality utilization is degraded from uL(M̂
lj
j ) to uL(M

lj
j ) due417

to resource overbooking of overruns. Therefore, the difference418

in system virtual utilization can be formulated as419

uv
γ

(
M

lj
j

)
− uv

γ

(
M̂

lj
j

)
420

= uL

(
M

lj
j

)
− uL

(
M̂

lj
j

)

︸ ︷︷ ︸
Utilization Reduction

+ uj
(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

︸ ︷︷ ︸
Utilization Increment

421

= �uL

(
M

lj
j

)
+ uj

(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

︸ ︷︷ ︸
(1)

. (10)422

As the system is schedulable before mode switch M
lj
j , we423

have uv
γ (M̂

lj
j ) ≤ 1. Hence, we find that (1) ensures the correct-424

ness of uv
γ (M

lj
j ) ≤ uv

γ (M̂
lj
j ) ≤ 1 to guarantee MC schedulability425

after the mode-switch.426

3) Overrun Utilization Balance Equation: As the third step,427

we prove that the condition presented in (2) is sufficient to428

ensure the MC schedulability during the transition phase. We429

adopt the similar proof strategy based on [4] and [9] and prove430

it by contradiction. Suppose that there is a time interval [0, tf ]431

such that the system undergoes mode switch M
lj
j and the first432

deadline miss occurs at tf . Let J denote the minimal set4 of433

jobs released from task set γ for which a deadline is missed.434

η
lj
i (t1, t2) denotes cumulative execution time of task τi when435

the system undergoes the mode-switch M
lj
j during the interval436

(t1, t2]. N
lj
γ denotes the sum of η

lj
i (0, tf ) for all tasks in γ .437

Since the first deadline miss occurs at tf , we have N
lj
γ > tf .438

In the following, we will show the upper bound of N
lj
γ is less439

than tf , which leads to a contradiction.440

To calculate the upper bound of N
lj
γ , we start the proof441

by introducing auxiliary lemmas to analyze the upper bound442

of cumulative execution time for high-criticality tasks (i.e.,443

Lemmas 1 and 2) and low-criticality tasks (i.e., Lemma 3).444

High Criticality Tasks: Since the mode switches are inde-445

pendent, high-criticality tasks can be divided into mode-446

switched task set γH
H and nonmode-switched task set γ L

H . Now,447

4This minimality means that if any job is removed from J, the remainder
of J will be schedulable.

we derive upper bounds of the cumulative execution time for 448

both types of high-criticality tasks. 449

Lemma 1: For high-criticality task τj of task set γH
H , the 450

cumulative execution time η
lj
j (0, tf ) can be bounded by 451

a1
j

x0
j

· uj(0)+
(

tf − a1
j

)
uj(1)+

lj∑

rj=2

(
tf − a

rj
j

)
�uj

(
rj
)

(11) 452

where �uj(rj) = uj(rj)− uj(rj − 1). 453

Proof: Recall that a
rj
j is the absolute release time of the job 454

executed on level rj. High-criticality task τj progresses though 455

lj levels. Therefore, the analysis duration can be divided into 456

lj +1 time segments, as shown in Fig. 3. During time segment 457

[a
rj
j , a

rj+1
j ], the execution requirement per job is bounded by 458

cj(rj). For ease of presentation, we use a
lj+1
j = tf . Considering 459

lj time segments shown in Fig. 3, the cumulative execution 460

time η
lj
j (0, tf ) can be bounded as 461

η
lj
j (0, tf ) ≤ a1

j · uj(0)+
lj∑

rj=1

(
a

rj+1
j − a

rj
j

)
· uj
(
rj
)

462

≤ a1
j

x0
j

uj(0)+
(

a2
j − a1

j

)
uj(1) 463

+
lj∑

rj=2

(
a

rj+1
j − a

rj
j

)
· uj(rj). (12) 464

Since uj(rj) = ∑rj
k=2(uj(k)− uj(k − 1))+ uj(1), we have 465

lj∑

rj=2

(
a

rj+1
j − a

rj
j

)
· uj
(
rj
)

466

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

rj=2

rj∑

k=2

(
a

rj+1
j − a

rj
j

)
467

× (
uj(k)− uj(k − 1)

)
468

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

k=2

lj∑

rj=k

(
a

rj+1
j − a

rj
j

)
469

× (
uj(k)− uj(k − 1)

)
470

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

k=2

(
a

lj+1
j − ak

j

)(
uj(k)− uj(k − 1)

)
. 471

(13) 472

Substituting the marked item in (12) with (13), η
lj
j (0, tf ) can 473

be reformulated as 474

a1
j

x0
j

uj(0)+
(

a
lj+1
j − a1

j

)
uj(1) 475

+
lj∑

k=2

(
a

lj+1
j − ak

j

)(
uj(k)− uj(k − 1)

)
. (14) 476

Therefore, η
lj
j (0, tf ) can be bounded as (11) by replacing a

lj+1
j 477

and k with tf and rj, respectively. 478



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 7

Fig. 3. Time segments.

Lemma 2 (From [9]): High-criticality task τj in task set479

γ L
H has480

η0
j

(
0, tf

) ≤ tf
x0

j

uj(0). (15)481

Low Criticality Tasks: We now derive an upper bound on482

the cumulative execution time η
lj
i (0, tf ) for low-criticality tasks483

using a proof strategy similar to that used in [9].484

Lemma 3: For low-criticality task τi, the cumulative execu-485

tion time η
lj
i (0, tf ) can be upper bounded by486

tf · ui(0)+
∑

τj∈γH
H

lj∑

rj=1

ψ
rj
i (16)487

with difference term ψ
rj
i = (tf − a

rj
j )(1 − x

rj−1
j )�ui(M

rj
j ).488

Proof: We will only sketch the proof here as it is similar to489

the proof in [9]. The detailed proof is presented in Appendix A490

in the supplementary material. Following the proof strategy491

in [9], we analyze the difference of the cumulative execution492

time before and after mode-switch M
lj
j and prove that the dif-493

ference can be uniformly upper bounded by difference term494

ψ
lj
i . By visiting all mode switches M

rj
j , the upper bound of495

η
lj
i (0, tf ) can be obtained.496

Total Cumulative Requirements: Now, we sum the cumula-497

tive requirements over all tasks given as (17) and prove the498

sufficient condition (2). The complete derivation of N
lj
γ is499

given in Appendix B in the supplementary material500

N
lj
γ =

∑

τi∈γL

η
lj
i

(
0, tf

)+
∑

τj∈γ L
H

η0
j

(
0, tf

)+
∑

τj∈γH
H

η
lj
j

(
0, tf

)
501

≤ tf +
∑

τj∈γH
H

(
tf − a1

j

)
502

×

⎛

⎜
⎜
⎜
⎜
⎝

(
1 − x0

j

)
�uL

(
M1

j

)
+�uj(1)+ uj(0)− uj(0)

x0
j

︸ ︷︷ ︸
(6)

⎞

⎟
⎟
⎟
⎟
⎠

503

+
∑

τj∈γH
H

lj∑

rj=2

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
))

504

= tf +
∑

τj∈γH
H

(
tf − a1

j

)
⎛

⎝
(

1 − x0
j

)
�uL

(
M1

j

)
+�uj(1)505

+
χj−1∑

lj=1

pj
(
lj
)
⎞

⎠506

+
∑

τj∈γH
H

lj∑

rj=2

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
))

507

Since a1
j ≤ a2

j ≤ · · · ≤ a
lj
j < tf and pj

(
rj
) ≤ 0 508

≤ tf +
∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
509

+ �uj
(
rj
)+ pj

(
rj
))
. (17) 510

The assumed deadline miss implies Nγ > tf . That is, 511

∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
512

+ �uj
(
rj
)+ pj

(
rj
))
> 0. 513

Taking the contrapositive, we have 514

∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)
515

×

⎛

⎜
⎜
⎝

(
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
)+ pj

(
rj
)

︸ ︷︷ ︸
(2)

⎞

⎟
⎟
⎠ ≤ 0. 516

(18) 517

Since tf − a
rj
j > 0, it is sufficient to ensure the system 518

schedulability of task set γ by guaranteeing (2) holds for 519

each mode switch M
rj
j . In (18), the constraints imposed on 520

each mode switch M
rj
j are consistent to each other. Based on 521

this property, the constraints imposed on current mode switch 522

M
lj
j imply the condition (2), guaranteeing MC schedulability 523

during the transition phase. 524

C. Feasibility of Algorithm 525

Theorem 1 gives an online schedulability test condition 526

only for a single transition. It is yet unclear how to off-line 527

determine whether a task set is schedulable by FMC-MST 528

under arbitrary sequences of mode switches. In this section, 529

we present the off-line schedulability test conditions for a task 530

set with specified criticality levels. To guarantee schedulabil- 531

ity, we must ensure that FMC-MST can successfully schedule 532

the task set under any execution scenario during run-time. 533

Therefore, to show that the task set is MC-schedulable, we 534

need to satisfy the following two conditions. 535

Condition A: We need to guarantee the feasibility of each 536

mode-switch. Therefore, constraints (1)–(8) for each mode- 537

switch must be satisfied. 538

Condition B: We must ensure the system-wide feasibil- 539

ity. As shown in Theorem 1, each overrun will result in a 540

decreased low-criticality utilization. For low-criticality tasks, 541

we must show remaining low-criticality utilization should not 542

fall below a level of 0 under the worst-case overrun scenario, 543

that is each high-criticality task τj reaches criticality level 544

χj − 1. Therefore, we require 545

∑

τj∈γH

χj−1∑

lj=1

�uL

(
M

lj
j

)
+ uL(0) ≥ 0. (19) 546



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

For condition A, constraints (1)–(5) must be subjected to547

all mode switches with ∀τj ∈ γH and lj = 1, . . . , χj − 1,548

while constraint (6) should be subjected to all high tasks549

with ∀τj ∈ γH . By combining all of these conditions, we550

can formulate the offline schedulability problem as a con-551

straint satisfaction problem (CSP). Any insertion solution of552

intermediate levels whose states satisfy a number of con-553

straints in the derived CSP problem can guarantee a feasible554

scheduling system. We use the following example to illus-555

trate how to evaluate the schedulability of the given insertion556

solution.557

Example 2: Consider the example task set with the ded-558

icated insertion solution given in Table II and the set-559

tings listed in Table V. We have already demonstrated560

condition A is satisfied, as illustrated in Example 1. For561

condition B, we know it is also satisfied by simply562

checking563

∑

τj∈γH

2∑

lj=1

�uL

(
M

lj
j

)
+ uL(0) = −1

6
− 1

6
− 1

12
− 1

12
+ 3

6
= 0.564

Therefore, the example task set in Table II is MC-565

schedulable.566

D. Resource Optimization567

Above, we prove a metric for evaluating the schedulability568

of an MC task set with specified level-insertion configurations.569

However, for an MC task set with two bounded critical-570

ity levels [i.e., Cj(0) and Cj(χi − 1) are known], how to571

specify a reasonable level-insertion configuration for each572

high-criticality task is still not known yet. In this section, we573

will study the off-line resource optimization problem (ROP)574

with the aim of finding the resource-efficient level-insertion575

configuration for the FMC-MST task system within MC timing576

constraints.577

In general, the probability that the execution time of high-578

criticality task reaches its most pessimistic WCET estimation579

is quite low. However, in EDF-VD scheduling, high-criticality580

tasks always transit from low-criticality level to the most pes-581

simistic level once an overrun occurs. To avoid unnecessary582

resource over-booking, we can insert several intermediate lev-583

els to handle the less pessimistic overruns. The intermediate584

level to take depends on the real execution time of high-585

criticality tasks. In this paper, we use the distribution of the586

execution time of high-criticality task τj to compute the prob-587

ability of overruns. The cumulative distribution function Fj(t)588

is used to model the diversity of execution time of high-589

criticality task τj during run-time. Hence, the probability of590

the overrun M
lj
j that the execution time of high-criticality591

task τj falls in [cj(lj), cj(lj + 1)] can be represented as592

Fj(cj(lj + 1)) − Fj(cj(lj)). When high-criticality task reaches593

criticality level lj, the utilization of low-criticality tasks require594

to decrease −∑lj
rj=0�uL(M

rj
j ). In the off-line stage, we intro-595

duce a QoS function (20) with the aim to minimize the596

average low-criticality utilization decrease. Based on this597

objective and the aforementioned constraints, the ROP is598

formulated as: 599

ROP: min −
∑

τj∈γH

χj−1∑

lj=1

(
Fj
(
cj
(
lj + 1

))− Fj
(
cj
(
lj
)))

600

lj∑

rj=0

�uL

(
M

rj
j

)
601

s.t.

⎧
⎨

⎩

ConditionA: Equation (1) − (8)
for all mode switches

ConditionB: Equation (19).
(20) 602

The objective function shown above is subjected to the con- 603

straints listed in the CSP formulation (conditions A and B). 604

Given an MC task set where two bounded execution times 605

[Cj(0), cj(χj − 1)] are specified for each high-criticality task, 606

the resource optimization formulation can automatically gen- 607

erate a feasible level-insertion configuration with intermediate 608

execution time cj(lj) and deadline scaling factor x
lj
j for each 609

high-criticality task. 610

Complexity: Due to nonlinear items in the constraints, the 611

ROP (20) is a nonlinear optimization problem (NLP). For 612

a task set with M high-criticality tasks and L criticality lev- 613

els, then NLP problem has 4M(L − 1) + M + 2 constraints 614

and 4M(L − 2)+ 3 real variables. Hence, the number of vari- 615

ables and constraints is polynomially bounded to the size of 616

the input problem, and it can be solved by a polynomial-time 617

heuristic [11]. 618

Properties: We now provide important properties to show 619

the efficiency of FMC-MST. 620

Property 1: Criticality level insertions operated by ROP do 621

not degrade the schedulability of FMC-MST. 622

Proof: We consider a general case that a task set 623

is MC-schedulable by FMC-MST with L criticality lev- 624

els. ROP formulation generates level-insertion configuration 625

[�uL(M
lj
j ), uj(lj), x

lj
j , pj(lj)] for each criticality level lj of high- 626

criticality task τj. In general, without changing the previous 627

configurations of L levels, one can insert L + 1th level with 628

the following configuration: 629

�uL

(
M

lj+1
j

)
= 0, uj

(
lj + 1

) = uj
(
lj
)
, x

lj+1
j = x

lj
j 630

pj
(
lj + 1

) = 0. (21) 631

The new configuration still satisfies the CSP. Therefore, the 632

task set is still MC-schedulable. 633

Property 2: FMC-MST with two criticality levels domi- 634

nates EDF-AD-E [14] in terms of MC-schedulability. 635

Proof: For FMC-MST with two criticality levels (i.e., χj = 636

2), uj(0) and uj(1) are equivalent to low-criticality and high- 637

criticality utilization in EDF-AD-E, respectively. For task set 638

γ , the high-criticality task set γH can be divided into HI- 639

mode-preferred task set γ F
H = {τj ∈ γHI |(uj(0)/x0

j ) ≥ uj(1)} 640

and non-HI-mode-preferred task set γH − γ F
H , respectively. 641

Assume task set γ is MC-schedulable by EDF-AD-E [14]. 642

Therefore, the following conditions must be satisfied to ensure 643



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 9

MC schedulability according to [14]644

uL(0)+ min
τj∈γH

(
uj(0)

x
, uj(1)

)

≤ 1 (22)645

x · uL(0)+ uH(1) ≤ 1. (23)646

In general, we can always find a lower-bound factor x̂ that647

satisfies uL(0)+ minτj∈γHI ([uj(0)/x̂], uj(1)) = 1 and (23).648

To achieve equivalent behavior, we assign x0
j =649

(uj(0)/uj(1)) for HI-mode-preferred tasks and x̂ for non-650

HI-mode-preferred tasks when applying FMC-MST. By this651

equivalence transformation, we can make the following obser-652

vations for the CSP formulation.653

1) Equations (7) and (22) are equivalent.654

2) �uL(M0
j ) = 0 holds for HI-mode-preferred tasks.655

3) For non-HI-mode-preferred tasks, the constraints (1)–(6)656

can be equivalently merged as (2).657

Based on above observations, by (2) and (19), one can derive658

(23) and guarantee a feasible CSP problem for FMC-MST659

− uL(0) ≤
∑

τj∈γH

�uL

(
M1

j

)
≤
∑
τj∈γH−γ F

H

(
uj(0)

x̂ − uj(1)
)

1 − x̂
660

� −uL(0) ≤
∑
τj∈γH−γ F

H

(
uj(0)

x̂ − uj(1)
)

1 − x̂
661

� x̂ · uL(0)+ uH(1) ≤ uL(0)+
∑

τj∈γH−γ F
H

uj(0)

x̂
662

+
∑

τj∈γ F
H

uj(1). (24)663

From the definition of γ F
H and γH − γ F

H664

� x̂ · uL(0)+ uH(1) ≤ uL(0)+ min
τj∈γH

(
uj(0)

x̂
, uj(1)

)

.665

From the definition of x̂666

� x̂ · uL(0)+ uH(1) ≤ 1.667

Therefore, we can conclude when any task set γ is MC-668

schedulable by EDF-AD-E [14], it is also MC-schedulable by669

FMC-MST with two criticality levels.670

Property 3: FMC-MST with L criticality levels inserted671

by ROP dominates EDF-AD-E [14] in terms of MC-672

schedulability.673

Proof: This can be directly proved by Properties 1674

and 2.675

IV. EVALUATION676

A. Experiment Setup677

In this section, we conduct the simulation experiments678

to evaluate the effectiveness of FMC-MST by an extensive679

comparison to state-of-the-art approaches: EDF-AD-E [14],680

FMC [9], IMC [15], EDF-VD [3]. Our experiments were con-681

ducted based on randomly generated MC task systems. We682

adopt the same workload generation algorithm as that used683

in [3], [8], and [10] to randomly generate task sets with two684

criticality levels. In FMC-MCL, two criticality levels act as the685

lowest and highest criticality levels (i.e., lj = 0 and lj = χj−1).686

The resource optimization approach presented in Section III-D 687

will automatically insert the intermediate levels between these 688

two levels. For ease of presentation, we denote these two 689

criticality levels as LO and HI levels during the generation 690

process. In particular, the various parameters5 of each task are 691

generated in the following ways. 692

1) For each task τi, low-criticality utilization uLO
i is a real 693

number drawn at random from [0.05, 0.15].6 694

2) Ri denotes the ratio of uHI
i /u

LO
i for every high-criticality 695

task, which is a real number drawn uniformly at random 696

from [1, 5]. 697

3) Task period Ti of each task is an integer drawn uniformly 698

at random from [100, 1000]. 699

4) pCri denotes the probability that a task τi is a high- 700

criticality task, and we set it as 0.5. When τi is a low- 701

criticality task, then set CLO
i = 	uLO

i · Ti
. Otherwise, 702

set CLO
i = 	uLO

i · Ti
 and CHI
i = 	uLO

i · Ri · Ti
.7 703

One task is generated at a time until uB − 0.05 ≤ max{uLO
LO + 704

uLO
HI , uHI

HI} ≤ uB. 705

As stated in Remark 1, FMC-MST provides a generalized 706

degradation strategy. For the evaluation, we adopt dropping- 707

off strategy where low-criticality tasks are partly dropped by 708

assigning zi(M
lj
j ) = 0 for dropped tasks. We quantitatively 709

compare FMC-MST with above state-of-the-art approaches 710

in terms of offline schedulability and online performance. 711

Following [9] and [10], online low-criticality performance 712

is measured by the percentage of finished LC jobs (PFJ). 713

PFJ defines the ratio of the number of finished jobs of LO- 714

critical tasks over the total number of jobs released in a given 715

time interval. During the simulation, the execution distribution 716

in [16], which is a straight line on [Ci(0),Ci(χi−1)] with prob- 717

abilities given on a log scale, is used to generate the overrun 718

execution time for jobs of high-criticality tasks. The system 719

takes the intermediate level according to the actual execution 720

time. To ensure fair comparisons, we generate a job trace for 721

each generated task set in off-line and use this unified job trace 722

to obtain the PFJ for all compared schemes during run-time. 723

B. Results 724

We first demonstrate the effectiveness of FMC-MST com- 725

pared with state-of-the-art approaches: FMC [9], EDF-AD- 726

E [14], IMC [15], and EDF-VD [3], in which high-criticality 727

tasks always directly enter the most pessimistic execution 728

mode once overrun occurs. We vary utilization bounds uB 729

from 0.7 to 0.95 with step size of 0.05, to evaluate offline 730

schedulability and online performance. For FMC-MST, each 731

high-criticality task are inserted with three intermediate levels. 732

Each data-point was obtained by randomly generating 1000 733

task sets. Fig. 4 shows the acceptance ratio and average PFJ 734

for the compared approaches. The left-axis shows PFJ val- 735

ues achieved for low-criticality tasks represented by the bar 736

5We also follow [13] to evaluate the performance under different settings.
More results are available online [1].

6In FMC-MCL, uLO
i and uHI

i correspond to ui(0) and ui(χj − 1),
respectively.

7In FMC-MCL, CLO
i and CHI

i correspond to Ci(0) and Ci(χj − 1),
respectively.



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Performance with varying utilization bound.

Fig. 5. Impact of the number of criticality levels L.

graphs, and the right-axis shows acceptance ratios represented737

by line graphs.738

As shown in Fig. 4, FMC-MST can provide more low-739

criticality service without sacrifice in the MC schedulability.740

We can observe the following trends.741

1) FMC-MST outperforms all the compared approaches742

in terms of support for low-criticality execution. This743

is expected because one-shot transition scheme-based744

approaches always switch to the level with applying745

the most pessimistic design parameters. In contrast,746

FMC-MST can capture the varying execution behavior747

of high-criticality tasks and can penalize low-criticality748

tasks more precisely according to the overrun demands749

of high-criticality tasks.750

2) FMC-MST dominates all the EDF-VD-based schedul-751

ing algorithms with one-shot transition scheme. This752

schedulability performance gain is attributed to the fact753

that FMC-MST provides a generalized MC model where754

a nonuniform deadline scaling is a relaxation of EDF-755

VD-based schedulings [9], [14] and might cause more756

task sets to be deemed schedulable.757

Next, we will show how the number of intermediate levels758

L will impact the effectiveness of FMC-MST. In this experi-759

ment, varying L from 2 to 11, we conduct the simulation on760

random MC task sets with uB = 0.85. Fig. 5 shows online761

low-criticality performance under different settings on L. As762

shown in Fig. 5, the average PFJ increases with the number763

of insertion levels L. The reason for this trend is that the more764

insertion levels generally imply more opportunities for han- 765

dling the less pessimistic overruns during run-time, which can 766

avoid overbooking unnecessary resources. 767

We finally evaluate the computation time for deriving auto- 768

matic intermediate level insertion by solving the formulated 769

optimization problem presented in Section III. According to 770

the parameters of task sets presented above, we can automati- 771

cally generate an optimization problem and use the APMonitor 772

optimization suite [2] to solve it. For all task set tested above, 773

the selected optimization tool can generate results within 8.5 s. 774

The results show that the formulated optimization problem can 775

be solved efficiently. 776

V. CONCLUSION 777

We present a generalized FMC model that enables inde- 778

pendent multiple-shot transitions for high-criticality tasks. A 779

run-time schedulability test condition is successfully derived, 780

which serves as a basis principle to find an optimal service 781

degradation strategy for low-criticality tasks. We develop a 782

resource optimization formulation to maximize the run-time 783

low-criticality service quality without sacrificing MC schedu- 784

lability. Experimental results illustrate the efficiency of the 785

proposed approach. 786

REFERENCES 787

[1] G. Chen et al. (2018). EDF-VD Scheduling of Flexible Mixed- 788

Criticality System With Multiple-Shot Transitions. [Online]. Available: 789

https://github.com/flyingday/Public/blob/master/FMCMST.pdf 790

[2] (2017). APMonitor Optimization Suite. [Online]. Available: 791

http://apmonitor.com/ 792

[3] S. Baruah et al., “The preemptive uniprocessor scheduling of mixed- 793

criticality implicit-deadline sporadic task systems,” in Proc. 24th 794

Euromicro Conf. Real Time Syst., Pisa, Italy, 2012, pp. 145–154. 795

[4] S. Baruah et al., “Preemptive uniprocessor scheduling of mixed- 796

criticality sporadic task systems,” J. ACM, vol. 62, no. 2, p. 14, 797

2015. 798

[5] S. Baruah et al., “Scheduling of mixed-criticality sporadic task systems 799

with multiple levels,” in Proc. 12th Workshop Models Algorithms Plan. 800

Sched. Problems, 2015, pp. 1–3. 801

[6] A. Burns and S. Baruah, “Towards a more practical model for mixed 802

criticality systems,” in Proc. 1st Int. Workshop Mixed Criticality Syst., 803

2013, pp. 1–6. 804

[7] A. Burns and I. R. Davis, “A survey of research into mixed criticality 805

systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1–37, 2017. 806

[8] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic 807

tasks on one processor,” in Proc. IEEE 34th Real Time Syst. Symp. 808

(RTSS), Vancouver, BC, Canada, 2013, pp. 78–87. 809

[9] G. Chen et al., “Utilization-based scheduling of flexible mixed-criticality 810

real-time tasks,” IEEE Trans. Comput., vol. 67, no. 4, pp. 543–558, 811

Apr. 2018. 812

[10] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient 813

isolation mechanisms in mixed-criticality scheduling,” in Proc. 27th 814

Euromicro Conf. Real Time Syst., Lund, Sweden, 2015, pp. 13–24. 815

[11] D. S. Hochbaum, “Complexity and algorithms for nonlinear optimization 816

problems,” Anna. Oper. Res., vol. 153, no. 1, pp. 257–296, 2007. 817

[12] (2014). ISO 26262:Road Vehicles. [Online]. Available: 818

http://www.iso.org/iso/ 819

[13] N. Kim et al., “Attacking the one-out-of-m multicore problem by com- 820

bining hardware management with mixed-criticality provisioning,” in 821

Proc. IEEE Real Time Embedded Technol. Appl. Symp. (RTAS), Vienna, 822

Austria, 2016, pp. 1–12. 823

[14] J. Lee et al., “MC-ADAPT: Adaptive task dropping in mixed-criticality 824

scheduling,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, p. 163, 825

2017. 826

[15] D. Liu et al., “EDF-VD scheduling of mixed-criticality system with 827

degraded quality guarantees,” in Proc. 32nd IEEE Real Time Syst. Symp., 828

2016, pp. 35–46. 829



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 11

[16] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,830

“Probabilistic analysis for mixed criticality systems using fixed prior-831

ity preemptive scheduling,” in Proc. 25th Int. Conf. Real Time Netw.832

Syst. (RTNS), 2017, pp. 237–246.833

[17] P. J. Prisaznuk, “Integrated modular avionics,” in Proc. IEEE Nat.834

Aerosp. Electron. Conf., 1992, pp. 39–45.835

[18] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-836

cessors using task grouping,” in Proc. 27th Euromicro Conf. Real Time837

Syst., Lund, Sweden, 2015, pp. 25–34.838

[19] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-839

criticality systems,” in Proc. IEEE 20th Int. Conf. Embedded Real Time840

Comput. Syst. Appl., Chongqing, China, 2014, pp. 1–10.841

[20] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-842

ing degrees of execution time assurance,” in Proc. 28th IEEE Int. Real843

Time Syst. Symp., Tucson, AZ, USA, 2007, pp. 239–243.844

Gang Chen received the B.E. degree in biomedi-845

cal engineering, the B.S. degree in mathematics and846

applied mathematics, and the M.S. degree in con-847

trol science and engineering from Xi’an Jiaotong848

University, Xi’an, China, in 2008, 2008, and 2011,849

respectively, and the Ph.D. degree in computer sci-850

ence from the Technical University of Munich,851

Munich, Germany, in 2016.852

He is currently an Associate Professor with853

Northeastern University, Shenyang, China. His cur-854

rent research interests include mixed-criticality855

system, energy-aware real-time scheduling, certifiable cache architecture856

design, and high-performance computing.857

Nan Guan received the Ph.D. degree from Uppsala858

University, Uppsala, Sweden, in 2013.859

He is currently an Assistant Professor with Hong860

Kong Polytechnic University, Hong Kong. His cur-861

rent research interests include safe-critical cyber-862

physical systems, including real-time scheduling the-863

ory, worst-case execution time analysis, and formal864

verification techniques.865

Dr. Guan was a recipient of the European Design866

Automation Association Outstanding Dissertation867

Award in 2014, the Best Paper Award of IEEE868

Real-Time Systems Symposium in 2009, the Best Paper Award of Design869

Automation and Test in Europe Conference in 2013, and the Best Poster Award870

in the Ph.D. forum of IEEE International Parallel and Distributed Processing871

Symposium in 2012 and IEEE International Conference on Embedded and872

Real-Time Computing Systems and Applications in 2017.873

Biao Hu received the B.Sc. degree in control sci- 874

ence and engineering from the Harbin Institute 875

of Technology, Harbin, China, in 2010, the M.Sc. 876

degree in control science and engineering from 877

Tsinghua University, Beijing, China, in 2013, and 878

the Ph.D. degree from the Department of Computer 879

Science, Technische Universität München, Munich, 880

Germany, in 2017. He is currently an Associate 881

Professor with the College of Information Science 882

and Technology, Beijing University of Chemical 883

Technology, Beijing. His current research interests 884

includes autonomous driving, OpenCL computing in heterogeneous system, 885

scheduling theory in real-time systems, and safety-critical embedded systems. 886

Dr. Hu is a Handling Editor of the Journal of Circuits, Systems, and 887

Computers (Elsevier). 888

Wang Yi (M’94–F’14) received the Ph.D. degree in 889

computer science from the Chalmers University of 890

Technology, Gothenburg, Sweden, in 1991. 891

He is a Chair Professor with Uppsala University, 892

Uppsala, Sweden. He is a member of Academy of 893

Europe (Section of Informatics). His current research 894

interests include models, algorithms, and software 895

tools for building and analyzing computer systems 896

in a systematic manner to ensure predictable behav- 897

iors. 898

Dr. Yi was a recipient of the CAV 2013 Award 899

for contributions to model checking of real-time systems, in particular the 900

development of UPPAAL, the foremost tool suite for automated analysis 901

and verification of real-time systems, the Best Paper Awards of RTSS 2015, 902

ECRTS 2015, DATE 2013, and RTSS 2009 for his contributions to real-time 903

systems, the Outstanding Paper Award of ECRTS 2012, and the Best Tool 904

Paper Award of ETAPS 2002. He is on the steering committee of ESWEEK, 905

the annual joint event for major conferences in embedded systems areas. He is 906

also on the steering committees of ACM EMSOFT (Co-Chair), ACM LCTES, 907

and FORMATS. He serves frequently on Technical Program Committees for 908

a large number of conferences. He was the TPC Chair of TACAS 2001, 909

FORMATS 2005, EMSOFT 2006, HSCC 2011, and LCTES 2012 and the 910

Track/Topic Chair for RTSS 2008 and DATE 2012–2014. 911



IEE
E P

ro
of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EDF-VD Scheduling of Flexible Mixed-Criticality
System With Multiple-Shot Transitions

Gang Chen , Nan Guan, Biao Hu, and Wang Yi, Fellow, IEEE

Abstract—The existing mixed-criticality (MC) real-time task1

models assume that once any high-criticality task overruns, all2

high-criticality jobs execute up to their most pessimistic WCET3

estimations simultaneously in a one-shot manner. This is very4

pessimistic in the sense of unnecessary resource overbooking. In5

this paper, we propose a more generalized mixed-critical real-6

time task model, called flexible MC model with multiple-shot7

transitions (FMC-MST), to address this problem. In FMC-MST,8

high-criticality tasks can transit multiple intermediate levels to9

handle less pessimistic overruns independently and to nonuni-10

formly scale the deadline on each level. We develop a run-time11

schedulability analysis for FMC-MST under EDF-VD scheduling,12

in which a better tradeoff between the penalties of low-criticality13

tasks and the overruns of high-criticality tasks is achieved to14

improve the service quality of low-criticality tasks. We also15

develop a resource optimization technique to find resource-16

efficient level-insertion configurations for FMC-MST task systems17

under MC timing constraints. Experiments demonstrate the18

effectiveness of FMC-MST compared with the state-of-the-art19

techniques.20

Index Terms—EDF-VD scheduling, flexible mixed-criticality21

(FMC) system, multiple-shot transitions.22

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. This work was supported in part by the National Natural
Science Foundation of China under Grant 61702085, Grant 61532007, Grant
61672140, and Grant 61772123, in part by the Fundamental Research Funds
for the Central Universities under Grant N161604002, in part by RGC of Hong
Kong under Grant ECS-25204216 and Grant GRF-15204917, in part by the
University Grants Committee of Hong Kong through Hong Kong Polytechnic
University under Project 1-ZVJ2, and in part by the Ministry of Education
Joint Foundation for Equipment Pre-Research under Grant 6141A020333.
This article was presented in the International Conference on Embedded
Software 2018 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Gang Chen.)

G. Chen is with the Smart Systems Laboratory, School of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China, and also
with the Department of Computing, Hong Kong Polytechnic University,
Hong Kong (e-mail:chengang@cse.neu.edu.cn).

N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: nan.guan@polyu.edu.hk).

B. Hu is with the College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing 100029, China (e-mail:
hubiao@mail.buct.edu.cn).

W. Yi is with the Department of Information Technology, Uppsala
University, 75105 Uppsala, Sweden, and also with the School of Computer
Science and Engineering, Northeastern University, Shenyang 110819, China
(e-mail: yi@it.uu.se).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857359

I. INTRODUCTION 23

INTEGRATING applications with different criticality levels 24

on a shared computing platform has increasingly become a 25

common trend in the design of real-time embedded systems. 26

Such a trend has been observed in the automotive [12] and 27

avionics [17] industries and has led to the emergence of mixed- 28

criticality (MC) systems. An MC task model was proposed by 29

Vestal in his seminal paper [20] about ten years ago, wherein 30

different WCETs are specified for each task on all existing 31

criticality levels, with the one on a higher criticality level 32

being more pessimistic. Since then, many techniques for ana- 33

lyzing and scheduling MC systems have been proposed in 34

the real-time literature (see [7] for a comprehensive review). 35

However, these approaches proposed in nearly a decade still 36

share very impractical assumptions on MC task execution 37

behavior. Specifically, once any high criticality task overruns, 38

the following behaviors are assumed. 39

1) All low-criticality tasks are abandoned. It is pessimistic 40

to immediately abandon all low-criticality tasks because 41

low-criticality tasks require a certain timing performance 42

as well [12], [19]. 43

2) All high-criticality tasks are assumed to exhibit high 44

criticality behaviors. It is overly pessimistic to bind the 45

mode switches of all high-criticality tasks together in the 46

analysis, as the mode switches of high-criticality tasks 47

are naturally independent. 48

3) High-criticality tasks are directly transited to the 49

most pessimistic level. This will result in unneces- 50

sary resource overbooking because high-criticality tasks 51

rarely reach its most pessimistic WCET estimation 52

during run-time. 53

A. Related Work 54

Some solutions have been proposed to partly resolve the 55

above problems. In Table I, we summarize the existing solu- 56

tions in relation to the three problems described above. These 57

solutions can be broadly categorized into the following classes. 58

The first category of research offers low-criticality tasks a 59

certain degraded service quality when the system is in high- 60

criticality mode. Assumptions of abandoning all low-criticality 61

tasks are relaxed by reducing the dispatch frequency of 62

jobs [19] or by reducing the execution budget of jobs [6], [15]. 63

However, these studies still apply a pessimistic mode-switch 64

strategy. 65

To address the first and second problems, the second cate- 66

gory of studies offer solutions for improving performance for 67

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
COMPARISON OF THE EXISTING SOLUTIONS

low-criticality tasks by using group-based mode-switch strate-68

gies [10], [18]. However, these mode-switch strategies are69

not flexible enough because the dependencies between low-70

criticality and high-criticality tasks are statically determined.71

To relax such dependencies, a new MC model, called flexi-72

ble MC (FMC) model, was recently proposed in [9], where73

mode-switches of high-criticality tasks are independent and the74

service degradation of low-criticality is dynamically updated75

based on the overruns of high-criticality tasks. Lee et al. [14]76

proposed an MC-ADAPT framework supporting online adap-77

tive task dropping under task-level mode switch that involves78

using a similar technique. However, the third problem is not79

addressed in these two state-of-the-art work. In [9] and [14],80

high-criticality tasks always directly transit to the most pes-81

simistic level, in which very pessimistic design parameters are82

applied.83

To support multishot transitions, EDF-VD scheduling algo-84

rithm is extended to support a K-level implicit-deadline85

task system in [4] and [5]. However, the K-level MC task86

model in [4] and [5] still applies impractical assumptions.87

Specifically, when the system switches the mode to level k,88

all the tasks of criticality at least k are assumed to exhibit k-89

level criticality behaviors (i.e., assumption P2). All other tasks90

of criticality less than k are discarded (i.e., assumption P1).91

To the best of our knowledge, no work to date has addressed92

the above three problems collectively. Compared to exist-93

ing studies, the motivation of this paper is to find a more94

fine-grained transition scheme for overrun handling that cap-95

tures the varying execution behaviors of high-criticality tasks.96

Instead of always transiting to the most pessimistic level, the97

proposed MC system can undergo intermediate levels to han-98

dle overruns with less pessimistic design parameters, such that99

unnecessary resource over-booking can be avoided. By doing100

so, a better run-time tradeoff between the penalty of low-101

criticality tasks and the overruns of high-criticality tasks can be102

achieved to improve the service quality of low-criticality tasks.103

B. Contributions104

In this paper, we propose an FMC model with multiple-shot105

transitions (FMC-MST) operating on a uni-processor platform.106

Rather than always switching to the most pessimistic level (the107

strategy used in [9] and [14]), the new model allows each108

high-criticality task to progress over multiple less pessimistic109

intermediate levels and to scale the deadline nonuniformly on110

each criticality level. Since high-criticality tasks rarely reach111

their pessimistic WCET estimations, FMC-MST can avoid112

unnecessary resource overbooking for overruns by switching113

high-criticality tasks to less pessimistic intermediate levels.114

Furthermore, FMC-MST provides a fine-grained transition 115

scheme where mode-switches are independent with these 116

intermediate criticality levels. The overrun of a high-criticality 117

task only raises its own criticality level while others remain 118

at their previous criticality levels. The minimum required 119

low-criticality service degradation is calculated to maintain 120

the balanced system utilization, so as to secure the addi- 121

tional resources requested by a level-transiting task. The 122

contributions of this paper can be summarized as follows. 123

1) We propose a new EDF-VD-based scheduling for an MC 124

model with multiple-shot transition schemes. Compared 125

to the state-of-the-art work [9], [14], this paper pro- 126

vides a more generalized FMC model that allows high- 127

criticality tasks to progress through multiple criticality 128

levels and to scale deadlines nonuniformly. 129

2) We develop a run-time schedulability analysis for 130

each independent mode-switch. To improve the service 131

quality of low-criticality tasks, the utilization balance 132

between low-criticality and high-criticality tasks serves 133

as a basic principle for finding an optimal service degra- 134

dation strategy for low-criticality tasks to compensate for 135

the additional resources requested by multishot overruns 136

of high-criticality tasks. 137

3) We formally prove the correctness of run-time schedu- 138

lability analysis for this fine-grained transition scheme. 139

4) We develop a resource optimization technique that can 140

find resource-efficient level-insertion configurations for 141

FMC-MST task systems under MC timing constraints. 142

Our evaluation on randomly generated task systems shows that 143

the performance of FMC-MST outperforms the state-of-the-art 144

MC scheduling approaches. 145

II. BACKGROUND 146

A. FMC Implicit-Deadline Sporadic Task Model With 147

Multiple Criticality Levels 148

We consider an MC sporadic task system γ as consisting of 149

a finite collection {τ1, τ2, . . . , τn} of n MC implicit-deadline 150

sporadic tasks with multiple criticality levels. Each task τi in 151

γ generates an infinite sequence of jobs and can be specified 152

by a tuple {Ti, χi, Ci}, where: 153

1) Ti is the minimum job-arrival intervals; 154

2) χi is the total number of criticality levels; 155

3) Ci = (Ci(0),Ci(1), . . . ,Ci(χi − 1)) is a vector of the 156

worst-case execution times (WCETs). We assume that 157

Ci(0) ≤ Ci(1) ≤ · · · ≤ Ci(χi − 1). 158

For the classic dual-criticality system, high-criticality task has 159

two criticality levels with χi = 2 and low-criticality task has 160

one criticality level with χi = 1. In this paper, we consider an 161

extended dual-criticality task system in which the concepts of 162

high-criticality task and low-criticality task are presented as 163

follows. 164

Definition 1: In an MC system with multiple criticality lev- 165

els, tasks with χi >= 2 and χi = 1 are called high-criticality 166

and low-criticality tasks, respectively. 167

According to Definition 1, we can divide task set γ into low- 168

criticality task set γL and high-criticality task set γH . In an MC 169

system with multiple criticality levels, high-criticality tasks are 170



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 3

allowed to have several overrun scenarios during run-time. We171

denote li as the criticality level whereby τi stays during run-172

time, and we have li = {0, 1, 2, . . . , χi − 1}. The mode-switch173

from level lj − 1 to level lj can be defined as follows.174

Definition 2 (Mode-Switch M
lj
j and M̂

lj
j ): When high-175

criticality task τj executes for its Cj(lj − 1) time units176

without signaling completion, high-criticality task τj imme-177

diately switches from level lj − 1 to level lj. This procedure is178

denoted as mode-switch M
lj
j . The closest mode-switch1 occur-179

ring before M
lj
j is denoted as M̂

lj
j . For the special case of lj = 0,180

M0
j denotes high-criticality task τj executes at level 0.181

In FMC-MST, each mode-switch M
lj
j is independent. Mode-182

switch M
lj
j does not require other high-criticality tasks to183

exhibit high-criticality behavior. For low-criticality tasks, their184

execution budget is updated dynamically in accordance with185

M
lj
j . To model the degradation of low-criticality tasks on the186

point of mode-switch M
lj
j , we now introduce the concept of187

the service level as follows.188

Definition 3 (Service Level zi(M
lj
j )): When the system has189

undergone mode switch M
lj
j , up to zi(M

lj
j ) · Ci(0) time units190

can be used for the execution of τi in one period Ti.191

In this paper, we consider implicit-deadline task systems192

with task period being equal to the relative deadline (i.e.,193

Ti = di). The utilization of a task denotes the ratio of its194

WCET to its period. We define the utilization of task τi at195

level li as196

ui(li) = Ci(li)

Ti
li = {0, 1, 2, . . . , χi − 1}.197

The total utilization of low-criticality task set in the initial198

mode (i.e., all high-criticality tasks stay at criticality level 0)199

is defined as uL(0) = ∑
τi∈γL

ui(0). According to Definition 3,200

the degraded utilization of low-criticality tasks on mode-switch201

M
lj
j can be defined as uL(M

lj
j ) = ∑

τi∈γL
zi(M

lj
j ) · ui(0).202

In this paper, we assume that the condition of zi(M
lj
j ) ≤203

zi(M̂
lj
j ) should hold to accommodate the resource overbooking204

of mode-switch M
lj
j . Correspondingly, the system utilization205

reduction �uL(M
lj
j ) of low-criticality tasks on mode-switch206

M
lj
j can be computed as uL(M

lj
j ) − uL(M̂

lj
j ). Since zi(M

lj
j ) ≤207

zi(M̂
lj
j ), we have �uL(M

lj
j ) ≤ 0.208

Remark 1: Note that, in FMC-MST, �uL(M
lj
j ) is off-line209

determined to guarantee a schedulable MC system (see210

Section III-C). In general, we do not need to specify the set-211

tings of zi(M
lj
j ) during off-line stage. Any on-line strategy on212

tuning zi(M
lj
j ) can be applied as long as it can achieve the213

required utilization reduction �uL(M
lj
j ).214

B. EDF-VD Scheduling With Nonuniform Virtual Deadlines215

In this paper, we study the schedulability for FMC-MST216

tasks model under EDF-VD scheduling. The main idea of217

1In general, the closest mode-switch M̂
lj
j before M

lj
j can be any task’s prior

mode switch.

Fig. 1. Execution semantics.

EDF-VD is to use reduced virtual deadlines to obtain extra 218

slack time for jobs and further decrease the workload of 219

high-criticality tasks after mode-switch. 220

In EDF-VD [3], the virtual deadlines are uniformly scaled 221

by a single deadline scaling factor x and can be defined uni- 222

formly by dv
j = x · dj. In FMC-MST, we allow non-uniform 223

deadline scaling factor x
lj
j , where x

lj
j ∈ (0, 1) is a task and 224

criticality level dependent scaling parameter, to nonuniformly 225

set the virtual deadline as dv
j (lj) = x

lj
j · dj. 226

C. Execution Semantics 227

The execution semantics of a high-criticality task is illus- 228

trated in Fig. 1. Compared to the classic MC execution model, 229

FMC-MST model allows independent mode-switches for high- 230

criticality tasks and dynamic service tuning for low-criticality 231

tasks. As shown in Fig. 1, the system initially operates at level 232

0 (i.e., 1 ). An overrun of a high-criticality task only triggers 233

itself to shift its criticality level (i.e., 2 ) and degrades low- 234

criticality service to accommodate this overruns (i.e., 3 ). A 235

sequence of overruns trigger the system to proceed through 236

multiple criticality levels one by one independently (i.e., 2 237

and 3 ) until the condition for transiting back is satisfied 238

(i.e., 4 ). The execution semantics can be summarized as 239

follows. 240

1 Initial Mode: All tasks in γ start in level 0 (i.e., 241

∀τi, li = 0). As long as no high-criticality task violates its 242

Ci(0), the system remains in level 0. All tasks are scheduled 243

with Ci(0). 244

2 Transition: When one job of a high-criticality task τj 245

that is being executed in level lj − 1 overruns its Cj(lj − 1) 246

without signaling completion, τj only triggers itself to switch 247

into level lj and update virtual deadline as dv
j (lj). However, 248

all other high-criticality tasks still stay in the same criticality 249

level as before. 250

3 Updates: To balance the additional resource demand 251

caused by mode-switch M
lj
j , a new service level zi(M

lj
j ) 252

is determined and updated to provide degraded service for 253

low-criticality tasks τi. At this updating instant, if any low- 254

criticality jobs have completed more than zi(M
lj
j ) · ci(0) time 255

units of execution, those jobs will be suspended immedi- 256

ately and wait for the budget to be renewed in the next 257

period. Otherwise, low-criticality jobs can continue to use the 258

remaining time budget for their execution. 259

4 Return to Low-Criticality Mode: When the system 260

detects an idle interval [6], the system transits back to the 261

low-criticality mode. 262



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Illustrative example.

TABLE II
EXAMPLE TASK SET

TABLE III
DEGRADED UTILIZATION

D. Illustrative Example263

Now, we give an example to illustrate the related concepts264

and execution semantics of FMC-MST. Table II gives three265

tasks, one low-criticality task (χ1 = 1) and two high-criticality266

tasks (χ2 = 3 and χ3 = 3). For high-criticality tasks, each crit-267

icality level lj (j = 2, 3) associates with one virtual deadline268

dv
j (lj), where lj ∈ {0, 1, 2}. Table III gives the required utiliza-269

tion degradation �uL(M
lj
j ) for each mode switch to guarantee270

a schedulable MC system.2 Fig. 2 depicts the scheduling of271

MC tasks under execution semantics of FMC-MST, where272

the symbol ∇ is used to indicate mode-switch occurrence273

point. In Fig. 2, the jobs are operated under the following274

rules.275

1) Low-criticality task is scheduled with their real dead-276

lines. In Fig. 2, τ1 is scheduled with d1 = 6.277

2) At each mode switch point ∇, operation 2 is triggered278

to update the virtual deadline while operation 3 is trig-279

gered to update the execution budget. Now we take the280

first mode switch as example for illustration. At t = 1,281

the first mode-switch M1
3 occurs. τ3 switches its critical-282

ity level from l3 = 0 to l3 = 1 with extending virtual283

deadline as dv
3(1) = 8, while τ2 stay in the same critical-284

ity level as before (i.e., 2 ). This deadline extension (i.e.,285

dv
3(1) = 8) simultaneously results in the pre-emption of286

τ1 at t = 1. The execution budgets of low-criticality task287

τ1 are decreased from 3 to 2.5 to achieve the required288

�uL(M1
3). τ1 completes its execution at time instant 3.5289

due to using up the budget (i.e., 3 ).290

3) During a busy interval in which multiple overruns occur,291

the effects of the overruns on budget reduction are292

independent. For example, during [0, 15], three mode293

switches (M1
3 �M1

2 �M2
2) occur sequentially. By Table III,294

the required budget reduction can be simply calculated295

as the sum of the one of these three mode switches,296

2The derivations for determining �uL(M
lj
j ) are illustrated in Ex 1.

TABLE IV
TABLE OF NOTATIONS

that is −2.5. Therefore, τ1 only has 0.5 time unit for 297

execution. 298

III. SCHEDULABILITY ANALYSIS AND RESOURCE 299

OPTIMIZATION 300

Our FMC-MST model is a more generalized model 301

that allows multiple less pessimistic criticality levels and 302

nonuniform deadline scaling. In this section, we present 303

a utilization-based schedulability analysis for FMC-MST 304

scheduling algorithm. We first analyze online schedulability 305

for a single mode switch M
lj
j , by which the minimum low- 306

criticality service degradation can be derived to accommodate 307

the resource overbooking of a mode switch. In Section III-A, 308

we provide a high-level overview for this online schedulabil- 309

ity analysis and attempt to communicate the intuition behind 310

the algorithm design by means of an example. We then pro- 311

vide a more comprehensive description in Section III-B to 312

prove the correctness of Theorem 1. In Section III-C, we check 313

whether a task set is schedulable by FMC-MST under arbitrary 314

sequences of mode switches. In Section III-D, we develop an 315

intermediate level insertion technology and attempt to solve 316

the problem of how to determine intermediate levels for high- 317

criticality tasks to minimize the penalties of low-criticality 318

tasks without sacrificing MC schedulability. We finally prove 319

some important properties of FMC-MST. Table IV shows the 320

notation used throughout this paper. 321

A. Sufficient Schedulability Test on Transition Case M
lj
j 322

In this section, we provide a high-level overview of online 323

schedulability analysis for one mode switch, and introduce 324

the derived schedulability test condition in Theorem 1. With 325

these conditions, we can adaptively determine how much of 326

execution budget can be reserved for low-criticality tasks to 327

handle each intermediate overrun while ensuring a schedulable 328



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 5

system during run-time. Without loss of generality, we con-329

sider a general transition case M
lj
j where high-criticality task τj330

switches from level lj −1 to lj, and assume the system is MC-331

schedulable on level lj−1. To accommodate M
lj
j , the minimum332

required utilization reduction �uL(M
lj
j ) can be determined by333

Theorem 1.334

Theorem 1: For mode-switch M
lj
j with li ≥ 1, when high-335

criticality task τj overruns its Cj(lj − 1), the system is336

schedulable when the following conditions are satisfied:337

�uL

(
M

lj
j

)
+ uj

(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

≤ 0 (1)338

�uL

(
M

lj
j

)
+ uj

(
lj
)− uj

(
lj − 1

)+ pj
(
lj
)

1 − x
lj−1
j

≤ 0 (2)339

�uL

(
M

lj
j

)
≤ 0 (3)340

uj
(
lj
)

x
lj
j

≤ uj
(
χj − 1

)
(4)341

where pj(lj) are constrained by342

pj(lj) ≤ 0 (5)343

χj−1∑

lj=1

pj
(
lj
) = uj(0)− uj(0)

x0
j

(6)344

with the initial utilization condition on criticality level 0345

uL(0)+
∑

τj∈γH

uj(0)

x0
j

≤ 1 (7)346

uj(0)

x0
j

≤ uj
(
χj − 1

)
. (8)347

Intuition: The intuition behind Theorem 1 is to maintain348

balanced system utilization during the transitions. The condi-349

tions can be explained as follows. Equation (7) ensures MC350

schedulability when the system stays in initial mode [3]. An351

event of overrun of high-criticality task normally results in an352

increase in virtual and overrun utilization due to resource over-353

booking. By analyzing the difference in virtual and overrun354

utilization, (1) and (2) serve as an efficient way to main-355

tain the resource balance between the penalty of low-criticality356

tasks and the overruns of high-criticality tasks. Via (1) and (2),357

the minimum required utilization reduction �uL(M
lj
j ) can be358

determined to maintain the balanced system utilization, so359

as to secure the additional resources requested by a level-360

transiting task. According to [14], high-criticality task with361

(uj(lj)/x
lj
j ) ≥ uj(χj − 1) will produce schedulability loss.362

Therefore, additional constraints (4), (8) are imposed to avoid363

the performance loss during transitions. In order to provide364

an intuition of how the proposed analysis works, we apply365

Theorem 1 on a simple task set and calculate the required uti-366

lization degradation for guaranteeing MC schedulability of a367

single mode switch.368

TABLE V
FEASIBLE SETTINGS

Example 1: Consider a task set in Table II. Feasible set- 369

tings3 on pj(lj) and x
lj
j are listed in Table V, so that conditions 370

(4)–(8) are satisfied. In the following, we take the mode 371

switch M1
2 as an example to illustrate the derivation process 372

of the required utilization degradation �uL(M1
2). According to 373

(1)–(3) in Theorem 1, utilization degradation �uL(M1
2) should 374

satisfy the following conditions to accommodate a feasible 375

mode switch M1
2: 376

�uL

(
M1

2

)
377

≤ min

⎛

⎜
⎜
⎜
⎜
⎝

−
(

u2(1)

x1
2

− u2(0)

x0
2

)

︸ ︷︷ ︸
virtual utilization

,−u2(1)− u2(0)+ p2(1)

1 − x0
2︸ ︷︷ ︸

overrun utilization

, 0

⎞

⎟
⎟
⎟
⎟
⎠

378

= −1

6
. 379

The similar derivation can be operated to obtain utilization 380

degradation for other mode switches, as presented in Table III. 381

B. Proof of the Correctness 382

We now prove the correctness of the schedulability test con- 383

dition presented in Theorem 1. The proof process involves 384

three steps. We first determine the initial conditions to ensure 385

the schedulability of tasks in initial mode (7) and to satisfy 386

the necessary boundary constraints (3), (4), and (8). In the 387

second step, we prove the correctness of the sufficient condi- 388

tion [i.e., (1)] to ensure MC schedulability after mode switch 389

M
lj
j . In the third step, we propose a sufficient schedulability 390

condition [i.e., (2)] to maintain balanced overrun utilization as 391

the system undergoes mode transition M
lj
j . 392

1) Initial Conditions: The basic assumption zi(M
lj
j ) ≤ 393

zi(M̂
lj
j ) implies (3). According to [3], we can use (7) to ensure 394

MC schedulability of in level 0. Equations (4) and (8) restrict 395

resource utilization to levels less than those achieved in the 396

most pessimistic level (i.e., level χj −1). Otherwise, tasks can 397

directly execute in level χj − 1 for efficient resource use [14]. 398

2) Virtual Utilization Balance Equation: We now show 399

how to ensure MC schedulability after mode switch M
lj
j occurs. 400

This is achieved via virtual utilization balance analysis before 401

and after mode switch M
lj
j . By replacing the period as virtual 402

deadline, virtual utilization of each high-criticality task τj on 403

level lj is computed as (uj(lj)/x
lj
j ). uv

γ (M̂
lj
j ) and uv

γ (M
lj
j ) denote 404

the virtual utilization of task set γ before and after mode 405

switch M
lj
j , respectively. To ensure the correctness of system 406

3Feasible settings can be off-line determined by formulated CSP problem
presented in Section III-C.



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

behaviors after mode switch M
lj
j , system virtual utilization407

uv
γ (M

lj
j ) must meet the following condition:408

uv
γ

(
M

lj
j

)
= uL

(
M

lj
j

)
+
∑

τj∈γH

uj
(
lj
)

x
lj
j

≤ 1. (9)409

After mode switch M
lj
j , high-criticality task τj overruns410

Cj(lj − 1) and shifts from level lj − 1 to level lj. With the411

exception of high-criticality task τj, all other high-criticality412

tasks remain at their respective criticality levels without413

changing the utilization. Therefore, an increase in the vir-414

tual utilization of high-criticality tasks can be determined as415

(uj(lj)/xlj)−([uj(lj−1)]/[x
lj−1
j ]). For low-criticality tasks, low-416

criticality utilization is degraded from uL(M̂
lj
j ) to uL(M

lj
j ) due417

to resource overbooking of overruns. Therefore, the difference418

in system virtual utilization can be formulated as419

uv
γ

(
M

lj
j

)
− uv

γ

(
M̂

lj
j

)
420

= uL

(
M

lj
j

)
− uL

(
M̂

lj
j

)

︸ ︷︷ ︸
Utilization Reduction

+ uj
(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

︸ ︷︷ ︸
Utilization Increment

421

= �uL

(
M

lj
j

)
+ uj

(
lj
)

x
lj
j

− uj
(
lj − 1

)

x
lj−1
j

︸ ︷︷ ︸
(1)

. (10)422

As the system is schedulable before mode switch M
lj
j , we423

have uv
γ (M̂

lj
j ) ≤ 1. Hence, we find that (1) ensures the correct-424

ness of uv
γ (M

lj
j ) ≤ uv

γ (M̂
lj
j ) ≤ 1 to guarantee MC schedulability425

after the mode-switch.426

3) Overrun Utilization Balance Equation: As the third step,427

we prove that the condition presented in (2) is sufficient to428

ensure the MC schedulability during the transition phase. We429

adopt the similar proof strategy based on [4] and [9] and prove430

it by contradiction. Suppose that there is a time interval [0, tf ]431

such that the system undergoes mode switch M
lj
j and the first432

deadline miss occurs at tf . Let J denote the minimal set4 of433

jobs released from task set γ for which a deadline is missed.434

η
lj
i (t1, t2) denotes cumulative execution time of task τi when435

the system undergoes the mode-switch M
lj
j during the interval436

(t1, t2]. N
lj
γ denotes the sum of η

lj
i (0, tf ) for all tasks in γ .437

Since the first deadline miss occurs at tf , we have N
lj
γ > tf .438

In the following, we will show the upper bound of N
lj
γ is less439

than tf , which leads to a contradiction.440

To calculate the upper bound of N
lj
γ , we start the proof441

by introducing auxiliary lemmas to analyze the upper bound442

of cumulative execution time for high-criticality tasks (i.e.,443

Lemmas 1 and 2) and low-criticality tasks (i.e., Lemma 3).444

High Criticality Tasks: Since the mode switches are inde-445

pendent, high-criticality tasks can be divided into mode-446

switched task set γH
H and nonmode-switched task set γ L

H . Now,447

4This minimality means that if any job is removed from J, the remainder
of J will be schedulable.

we derive upper bounds of the cumulative execution time for 448

both types of high-criticality tasks. 449

Lemma 1: For high-criticality task τj of task set γH
H , the 450

cumulative execution time η
lj
j (0, tf ) can be bounded by 451

a1
j

x0
j

· uj(0)+
(

tf − a1
j

)
uj(1)+

lj∑

rj=2

(
tf − a

rj
j

)
�uj

(
rj
)

(11) 452

where �uj(rj) = uj(rj)− uj(rj − 1). 453

Proof: Recall that a
rj
j is the absolute release time of the job 454

executed on level rj. High-criticality task τj progresses though 455

lj levels. Therefore, the analysis duration can be divided into 456

lj +1 time segments, as shown in Fig. 3. During time segment 457

[a
rj
j , a

rj+1
j ], the execution requirement per job is bounded by 458

cj(rj). For ease of presentation, we use a
lj+1
j = tf . Considering 459

lj time segments shown in Fig. 3, the cumulative execution 460

time η
lj
j (0, tf ) can be bounded as 461

η
lj
j (0, tf ) ≤ a1

j · uj(0)+
lj∑

rj=1

(
a

rj+1
j − a

rj
j

)
· uj
(
rj
)

462

≤ a1
j

x0
j

uj(0)+
(

a2
j − a1

j

)
uj(1) 463

+
lj∑

rj=2

(
a

rj+1
j − a

rj
j

)
· uj(rj). (12) 464

Since uj(rj) = ∑rj
k=2(uj(k)− uj(k − 1))+ uj(1), we have 465

lj∑

rj=2

(
a

rj+1
j − a

rj
j

)
· uj
(
rj
)

466

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

rj=2

rj∑

k=2

(
a

rj+1
j − a

rj
j

)
467

× (
uj(k)− uj(k − 1)

)
468

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

k=2

lj∑

rj=k

(
a

rj+1
j − a

rj
j

)
469

× (
uj(k)− uj(k − 1)

)
470

=
(

a
rj+1
j − a2

j

)
uj(1)+

lj∑

k=2

(
a

lj+1
j − ak

j

)(
uj(k)− uj(k − 1)

)
. 471

(13) 472

Substituting the marked item in (12) with (13), η
lj
j (0, tf ) can 473

be reformulated as 474

a1
j

x0
j

uj(0)+
(

a
lj+1
j − a1

j

)
uj(1) 475

+
lj∑

k=2

(
a

lj+1
j − ak

j

)(
uj(k)− uj(k − 1)

)
. (14) 476

Therefore, η
lj
j (0, tf ) can be bounded as (11) by replacing a

lj+1
j 477

and k with tf and rj, respectively. 478



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 7

Fig. 3. Time segments.

Lemma 2 (From [9]): High-criticality task τj in task set479

γ L
H has480

η0
j

(
0, tf

) ≤ tf
x0

j

uj(0). (15)481

Low Criticality Tasks: We now derive an upper bound on482

the cumulative execution time η
lj
i (0, tf ) for low-criticality tasks483

using a proof strategy similar to that used in [9].484

Lemma 3: For low-criticality task τi, the cumulative execu-485

tion time η
lj
i (0, tf ) can be upper bounded by486

tf · ui(0)+
∑

τj∈γH
H

lj∑

rj=1

ψ
rj
i (16)487

with difference term ψ
rj
i = (tf − a

rj
j )(1 − x

rj−1
j )�ui(M

rj
j ).488

Proof: We will only sketch the proof here as it is similar to489

the proof in [9]. The detailed proof is presented in Appendix A490

in the supplementary material. Following the proof strategy491

in [9], we analyze the difference of the cumulative execution492

time before and after mode-switch M
lj
j and prove that the dif-493

ference can be uniformly upper bounded by difference term494

ψ
lj
i . By visiting all mode switches M

rj
j , the upper bound of495

η
lj
i (0, tf ) can be obtained.496

Total Cumulative Requirements: Now, we sum the cumula-497

tive requirements over all tasks given as (17) and prove the498

sufficient condition (2). The complete derivation of N
lj
γ is499

given in Appendix B in the supplementary material500

N
lj
γ =

∑

τi∈γL

η
lj
i

(
0, tf

)+
∑

τj∈γ L
H

η0
j

(
0, tf

)+
∑

τj∈γH
H

η
lj
j

(
0, tf

)
501

≤ tf +
∑

τj∈γH
H

(
tf − a1

j

)
502

×

⎛

⎜
⎜
⎜
⎜
⎝

(
1 − x0

j

)
�uL

(
M1

j

)
+�uj(1)+ uj(0)− uj(0)

x0
j

︸ ︷︷ ︸
(6)

⎞

⎟
⎟
⎟
⎟
⎠

503

+
∑

τj∈γH
H

lj∑

rj=2

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
))

504

= tf +
∑

τj∈γH
H

(
tf − a1

j

)
⎛

⎝
(

1 − x0
j

)
�uL

(
M1

j

)
+�uj(1)505

+
χj−1∑

lj=1

pj
(
lj
)
⎞

⎠506

+
∑

τj∈γH
H

lj∑

rj=2

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
))

507

Since a1
j ≤ a2

j ≤ · · · ≤ a
lj
j < tf and pj

(
rj
) ≤ 0 508

≤ tf +
∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
509

+ �uj
(
rj
)+ pj

(
rj
))
. (17) 510

The assumed deadline miss implies Nγ > tf . That is, 511

∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)((
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
512

+ �uj
(
rj
)+ pj

(
rj
))
> 0. 513

Taking the contrapositive, we have 514

∑

τj∈γH
H

lj∑

rj=1

(
tf − a

rj
j

)
515

×

⎛

⎜
⎜
⎝

(
1 − x

rj−1
j

)
�uL

(
M

rj
j

)
+�uj

(
rj
)+ pj

(
rj
)

︸ ︷︷ ︸
(2)

⎞

⎟
⎟
⎠ ≤ 0. 516

(18) 517

Since tf − a
rj
j > 0, it is sufficient to ensure the system 518

schedulability of task set γ by guaranteeing (2) holds for 519

each mode switch M
rj
j . In (18), the constraints imposed on 520

each mode switch M
rj
j are consistent to each other. Based on 521

this property, the constraints imposed on current mode switch 522

M
lj
j imply the condition (2), guaranteeing MC schedulability 523

during the transition phase. 524

C. Feasibility of Algorithm 525

Theorem 1 gives an online schedulability test condition 526

only for a single transition. It is yet unclear how to off-line 527

determine whether a task set is schedulable by FMC-MST 528

under arbitrary sequences of mode switches. In this section, 529

we present the off-line schedulability test conditions for a task 530

set with specified criticality levels. To guarantee schedulabil- 531

ity, we must ensure that FMC-MST can successfully schedule 532

the task set under any execution scenario during run-time. 533

Therefore, to show that the task set is MC-schedulable, we 534

need to satisfy the following two conditions. 535

Condition A: We need to guarantee the feasibility of each 536

mode-switch. Therefore, constraints (1)–(8) for each mode- 537

switch must be satisfied. 538

Condition B: We must ensure the system-wide feasibil- 539

ity. As shown in Theorem 1, each overrun will result in a 540

decreased low-criticality utilization. For low-criticality tasks, 541

we must show remaining low-criticality utilization should not 542

fall below a level of 0 under the worst-case overrun scenario, 543

that is each high-criticality task τj reaches criticality level 544

χj − 1. Therefore, we require 545

∑

τj∈γH

χj−1∑

lj=1

�uL

(
M

lj
j

)
+ uL(0) ≥ 0. (19) 546



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

For condition A, constraints (1)–(5) must be subjected to547

all mode switches with ∀τj ∈ γH and lj = 1, . . . , χj − 1,548

while constraint (6) should be subjected to all high tasks549

with ∀τj ∈ γH . By combining all of these conditions, we550

can formulate the offline schedulability problem as a con-551

straint satisfaction problem (CSP). Any insertion solution of552

intermediate levels whose states satisfy a number of con-553

straints in the derived CSP problem can guarantee a feasible554

scheduling system. We use the following example to illus-555

trate how to evaluate the schedulability of the given insertion556

solution.557

Example 2: Consider the example task set with the ded-558

icated insertion solution given in Table II and the set-559

tings listed in Table V. We have already demonstrated560

condition A is satisfied, as illustrated in Example 1. For561

condition B, we know it is also satisfied by simply562

checking563

∑

τj∈γH

2∑

lj=1

�uL

(
M

lj
j

)
+ uL(0) = −1

6
− 1

6
− 1

12
− 1

12
+ 3

6
= 0.564

Therefore, the example task set in Table II is MC-565

schedulable.566

D. Resource Optimization567

Above, we prove a metric for evaluating the schedulability568

of an MC task set with specified level-insertion configurations.569

However, for an MC task set with two bounded critical-570

ity levels [i.e., Cj(0) and Cj(χi − 1) are known], how to571

specify a reasonable level-insertion configuration for each572

high-criticality task is still not known yet. In this section, we573

will study the off-line resource optimization problem (ROP)574

with the aim of finding the resource-efficient level-insertion575

configuration for the FMC-MST task system within MC timing576

constraints.577

In general, the probability that the execution time of high-578

criticality task reaches its most pessimistic WCET estimation579

is quite low. However, in EDF-VD scheduling, high-criticality580

tasks always transit from low-criticality level to the most pes-581

simistic level once an overrun occurs. To avoid unnecessary582

resource over-booking, we can insert several intermediate lev-583

els to handle the less pessimistic overruns. The intermediate584

level to take depends on the real execution time of high-585

criticality tasks. In this paper, we use the distribution of the586

execution time of high-criticality task τj to compute the prob-587

ability of overruns. The cumulative distribution function Fj(t)588

is used to model the diversity of execution time of high-589

criticality task τj during run-time. Hence, the probability of590

the overrun M
lj
j that the execution time of high-criticality591

task τj falls in [cj(lj), cj(lj + 1)] can be represented as592

Fj(cj(lj + 1)) − Fj(cj(lj)). When high-criticality task reaches593

criticality level lj, the utilization of low-criticality tasks require594

to decrease −∑lj
rj=0�uL(M

rj
j ). In the off-line stage, we intro-595

duce a QoS function (20) with the aim to minimize the596

average low-criticality utilization decrease. Based on this597

objective and the aforementioned constraints, the ROP is598

formulated as: 599

ROP: min −
∑

τj∈γH

χj−1∑

lj=1

(
Fj
(
cj
(
lj + 1

))− Fj
(
cj
(
lj
)))

600

lj∑

rj=0

�uL

(
M

rj
j

)
601

s.t.

⎧
⎨

⎩

ConditionA: Equation (1) − (8)
for all mode switches

ConditionB: Equation (19).
(20) 602

The objective function shown above is subjected to the con- 603

straints listed in the CSP formulation (conditions A and B). 604

Given an MC task set where two bounded execution times 605

[Cj(0), cj(χj − 1)] are specified for each high-criticality task, 606

the resource optimization formulation can automatically gen- 607

erate a feasible level-insertion configuration with intermediate 608

execution time cj(lj) and deadline scaling factor x
lj
j for each 609

high-criticality task. 610

Complexity: Due to nonlinear items in the constraints, the 611

ROP (20) is a nonlinear optimization problem (NLP). For 612

a task set with M high-criticality tasks and L criticality lev- 613

els, then NLP problem has 4M(L − 1) + M + 2 constraints 614

and 4M(L − 2)+ 3 real variables. Hence, the number of vari- 615

ables and constraints is polynomially bounded to the size of 616

the input problem, and it can be solved by a polynomial-time 617

heuristic [11]. 618

Properties: We now provide important properties to show 619

the efficiency of FMC-MST. 620

Property 1: Criticality level insertions operated by ROP do 621

not degrade the schedulability of FMC-MST. 622

Proof: We consider a general case that a task set 623

is MC-schedulable by FMC-MST with L criticality lev- 624

els. ROP formulation generates level-insertion configuration 625

[�uL(M
lj
j ), uj(lj), x

lj
j , pj(lj)] for each criticality level lj of high- 626

criticality task τj. In general, without changing the previous 627

configurations of L levels, one can insert L + 1th level with 628

the following configuration: 629

�uL

(
M

lj+1
j

)
= 0, uj

(
lj + 1

) = uj
(
lj
)
, x

lj+1
j = x

lj
j 630

pj
(
lj + 1

) = 0. (21) 631

The new configuration still satisfies the CSP. Therefore, the 632

task set is still MC-schedulable. 633

Property 2: FMC-MST with two criticality levels domi- 634

nates EDF-AD-E [14] in terms of MC-schedulability. 635

Proof: For FMC-MST with two criticality levels (i.e., χj = 636

2), uj(0) and uj(1) are equivalent to low-criticality and high- 637

criticality utilization in EDF-AD-E, respectively. For task set 638

γ , the high-criticality task set γH can be divided into HI- 639

mode-preferred task set γ F
H = {τj ∈ γHI |(uj(0)/x0

j ) ≥ uj(1)} 640

and non-HI-mode-preferred task set γH − γ F
H , respectively. 641

Assume task set γ is MC-schedulable by EDF-AD-E [14]. 642

Therefore, the following conditions must be satisfied to ensure 643



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 9

MC schedulability according to [14]644

uL(0)+ min
τj∈γH

(
uj(0)

x
, uj(1)

)

≤ 1 (22)645

x · uL(0)+ uH(1) ≤ 1. (23)646

In general, we can always find a lower-bound factor x̂ that647

satisfies uL(0)+ minτj∈γHI ([uj(0)/x̂], uj(1)) = 1 and (23).648

To achieve equivalent behavior, we assign x0
j =649

(uj(0)/uj(1)) for HI-mode-preferred tasks and x̂ for non-650

HI-mode-preferred tasks when applying FMC-MST. By this651

equivalence transformation, we can make the following obser-652

vations for the CSP formulation.653

1) Equations (7) and (22) are equivalent.654

2) �uL(M0
j ) = 0 holds for HI-mode-preferred tasks.655

3) For non-HI-mode-preferred tasks, the constraints (1)–(6)656

can be equivalently merged as (2).657

Based on above observations, by (2) and (19), one can derive658

(23) and guarantee a feasible CSP problem for FMC-MST659

−uL(0) ≤
∑

τj∈γH

�uL

(
M1

j

)
≤
∑
τj∈γH−γ F

H

(
uj(0)

x̂ − uj(1)
)

1 − x̂
660

� −uL(0) ≤
∑
τj∈γH−γ F

H

(
uj(0)

x̂ − uj(1)
)

1 − x̂
661

� x̂ · uL(0)+ uH(1) ≤ uL(0)+
∑

τj∈γH−γ F
H

uj(0)

x̂
662

+
∑

τj∈γ F
H

uj(1). (24)663

From the definition of γ F
H and γH − γ F

H664

� x̂ · uL(0)+ uH(1) ≤ uL(0)+ min
τj∈γH

(
uj(0)

x̂
, uj(1)

)

.665

From the definition of x̂666

� x̂ · uL(0)+ uH(1) ≤ 1.667

Therefore, we can conclude when any task set γ is MC-668

schedulable by EDF-AD-E [14], it is also MC-schedulable by669

FMC-MST with two criticality levels.670

Property 3: FMC-MST with L criticality levels inserted671

by ROP dominates EDF-AD-E [14] in terms of MC-672

schedulability.673

Proof: This can be directly proved by Properties 1674

and 2.675

IV. EVALUATION676

A. Experiment Setup677

In this section, we conduct the simulation experiments678

to evaluate the effectiveness of FMC-MST by an extensive679

comparison to state-of-the-art approaches: EDF-AD-E [14],680

FMC [9], IMC [15], EDF-VD [3]. Our experiments were con-681

ducted based on randomly generated MC task systems. We682

adopt the same workload generation algorithm as that used683

in [3], [8], and [10] to randomly generate task sets with two684

criticality levels. In FMC-MCL, two criticality levels act as the685

lowest and highest criticality levels (i.e., lj = 0 and lj = χj−1).686

The resource optimization approach presented in Section III-D 687

will automatically insert the intermediate levels between these 688

two levels. For ease of presentation, we denote these two 689

criticality levels as LO and HI levels during the generation 690

process. In particular, the various parameters5 of each task are 691

generated in the following ways. 692

1) For each task τi, low-criticality utilization uLO
i is a real 693

number drawn at random from [0.05, 0.15].6 694

2) Ri denotes the ratio of uHI
i /u

LO
i for every high-criticality 695

task, which is a real number drawn uniformly at random 696

from [1, 5]. 697

3) Task period Ti of each task is an integer drawn uniformly 698

at random from [100, 1000]. 699

4) pCri denotes the probability that a task τi is a high- 700

criticality task, and we set it as 0.5. When τi is a low- 701

criticality task, then set CLO
i = 	uLO

i · Ti
. Otherwise, 702

set CLO
i = 	uLO

i · Ti
 and CHI
i = 	uLO

i · Ri · Ti
.7 703

One task is generated at a time until uB − 0.05 ≤ max{uLO
LO + 704

uLO
HI , uHI

HI} ≤ uB. 705

As stated in Remark 1, FMC-MST provides a generalized 706

degradation strategy. For the evaluation, we adopt dropping- 707

off strategy where low-criticality tasks are partly dropped by 708

assigning zi(M
lj
j ) = 0 for dropped tasks. We quantitatively 709

compare FMC-MST with above state-of-the-art approaches 710

in terms of offline schedulability and online performance. 711

Following [9] and [10], online low-criticality performance 712

is measured by the percentage of finished LC jobs (PFJ). 713

PFJ defines the ratio of the number of finished jobs of LO- 714

critical tasks over the total number of jobs released in a given 715

time interval. During the simulation, the execution distribution 716

in [16], which is a straight line on [Ci(0),Ci(χi−1)] with prob- 717

abilities given on a log scale, is used to generate the overrun 718

execution time for jobs of high-criticality tasks. The system 719

takes the intermediate level according to the actual execution 720

time. To ensure fair comparisons, we generate a job trace for 721

each generated task set in off-line and use this unified job trace 722

to obtain the PFJ for all compared schemes during run-time. 723

B. Results 724

We first demonstrate the effectiveness of FMC-MST com- 725

pared with state-of-the-art approaches: FMC [9], EDF-AD- 726

E [14], IMC [15], and EDF-VD [3], in which high-criticality 727

tasks always directly enter the most pessimistic execution 728

mode once overrun occurs. We vary utilization bounds uB 729

from 0.7 to 0.95 with step size of 0.05, to evaluate offline 730

schedulability and online performance. For FMC-MST, each 731

high-criticality task are inserted with three intermediate levels. 732

Each data-point was obtained by randomly generating 1000 733

task sets. Fig. 4 shows the acceptance ratio and average PFJ 734

for the compared approaches. The left-axis shows PFJ val- 735

ues achieved for low-criticality tasks represented by the bar 736

5We also follow [13] to evaluate the performance under different settings.
More results are available online [1].

6In FMC-MCL, uLO
i and uHI

i correspond to ui(0) and ui(χj − 1),
respectively.

7In FMC-MCL, CLO
i and CHI

i correspond to Ci(0) and Ci(χj − 1),
respectively.



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Performance with varying utilization bound.

Fig. 5. Impact of the number of criticality levels L.

graphs, and the right-axis shows acceptance ratios represented737

by line graphs.738

As shown in Fig. 4, FMC-MST can provide more low-739

criticality service without sacrifice in the MC schedulability.740

We can observe the following trends.741

1) FMC-MST outperforms all the compared approaches742

in terms of support for low-criticality execution. This743

is expected because one-shot transition scheme-based744

approaches always switch to the level with applying745

the most pessimistic design parameters. In contrast,746

FMC-MST can capture the varying execution behavior747

of high-criticality tasks and can penalize low-criticality748

tasks more precisely according to the overrun demands749

of high-criticality tasks.750

2) FMC-MST dominates all the EDF-VD-based schedul-751

ing algorithms with one-shot transition scheme. This752

schedulability performance gain is attributed to the fact753

that FMC-MST provides a generalized MC model where754

a nonuniform deadline scaling is a relaxation of EDF-755

VD-based schedulings [9], [14] and might cause more756

task sets to be deemed schedulable.757

Next, we will show how the number of intermediate levels758

L will impact the effectiveness of FMC-MST. In this experi-759

ment, varying L from 2 to 11, we conduct the simulation on760

random MC task sets with uB = 0.85. Fig. 5 shows online761

low-criticality performance under different settings on L. As762

shown in Fig. 5, the average PFJ increases with the number763

of insertion levels L. The reason for this trend is that the more764

insertion levels generally imply more opportunities for han- 765

dling the less pessimistic overruns during run-time, which can 766

avoid overbooking unnecessary resources. 767

We finally evaluate the computation time for deriving auto- 768

matic intermediate level insertion by solving the formulated 769

optimization problem presented in Section III. According to 770

the parameters of task sets presented above, we can automati- 771

cally generate an optimization problem and use the APMonitor 772

optimization suite [2] to solve it. For all task set tested above, 773

the selected optimization tool can generate results within 8.5 s. 774

The results show that the formulated optimization problem can 775

be solved efficiently. 776

V. CONCLUSION 777

We present a generalized FMC model that enables inde- 778

pendent multiple-shot transitions for high-criticality tasks. A 779

run-time schedulability test condition is successfully derived, 780

which serves as a basis principle to find an optimal service 781

degradation strategy for low-criticality tasks. We develop a 782

resource optimization formulation to maximize the run-time 783

low-criticality service quality without sacrificing MC schedu- 784

lability. Experimental results illustrate the efficiency of the 785

proposed approach. 786

REFERENCES 787

[1] G. Chen et al. (2018). EDF-VD Scheduling of Flexible Mixed- 788

Criticality System With Multiple-Shot Transitions. [Online]. Available: 789

https://github.com/flyingday/Public/blob/master/FMCMST.pdf 790

[2] (2017). APMonitor Optimization Suite. [Online]. Available: 791

http://apmonitor.com/ 792

[3] S. Baruah et al., “The preemptive uniprocessor scheduling of mixed- 793

criticality implicit-deadline sporadic task systems,” in Proc. 24th 794

Euromicro Conf. Real Time Syst., Pisa, Italy, 2012, pp. 145–154. 795

[4] S. Baruah et al., “Preemptive uniprocessor scheduling of mixed- 796

criticality sporadic task systems,” J. ACM, vol. 62, no. 2, p. 14, 797

2015. 798

[5] S. Baruah et al., “Scheduling of mixed-criticality sporadic task systems 799

with multiple levels,” in Proc. 12th Workshop Models Algorithms Plan. 800

Sched. Problems, 2015, pp. 1–3. 801

[6] A. Burns and S. Baruah, “Towards a more practical model for mixed 802

criticality systems,” in Proc. 1st Int. Workshop Mixed Criticality Syst., 803

2013, pp. 1–6. 804

[7] A. Burns and I. R. Davis, “A survey of research into mixed criticality 805

systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1–37, 2017. 806

[8] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic 807

tasks on one processor,” in Proc. IEEE 34th Real Time Syst. Symp. 808

(RTSS), Vancouver, BC, Canada, 2013, pp. 78–87. 809

[9] G. Chen et al., “Utilization-based scheduling of flexible mixed-criticality 810

real-time tasks,” IEEE Trans. Comput., vol. 67, no. 4, pp. 543–558, 811

Apr. 2018. 812

[10] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient 813

isolation mechanisms in mixed-criticality scheduling,” in Proc. 27th 814

Euromicro Conf. Real Time Syst., Lund, Sweden, 2015, pp. 13–24. 815

[11] D. S. Hochbaum, “Complexity and algorithms for nonlinear optimization 816

problems,” Anna. Oper. Res., vol. 153, no. 1, pp. 257–296, 2007. 817

[12] (2014). ISO 26262:Road Vehicles. [Online]. Available: 818

http://www.iso.org/iso/ 819

[13] N. Kim et al., “Attacking the one-out-of-m multicore problem by com- 820

bining hardware management with mixed-criticality provisioning,” in 821

Proc. IEEE Real Time Embedded Technol. Appl. Symp. (RTAS), Vienna, 822

Austria, 2016, pp. 1–12. 823

[14] J. Lee et al., “MC-ADAPT: Adaptive task dropping in mixed-criticality 824

scheduling,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, p. 163, 825

2017. 826

[15] D. Liu et al., “EDF-VD scheduling of mixed-criticality system with 827

degraded quality guarantees,” in Proc. 32nd IEEE Real Time Syst. Symp., 828

2016, pp. 35–46. 829



IEE
E P

ro
of

CHEN et al.: EDF-VD SCHEDULING OF FMC-MST 11

[16] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,830

“Probabilistic analysis for mixed criticality systems using fixed prior-831

ity preemptive scheduling,” in Proc. 25th Int. Conf. Real Time Netw.832

Syst. (RTNS), 2017, pp. 237–246.833

[17] P. J. Prisaznuk, “Integrated modular avionics,” in Proc. IEEE Nat.834

Aerosp. Electron. Conf., 1992, pp. 39–45.835

[18] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-836

cessors using task grouping,” in Proc. 27th Euromicro Conf. Real Time837

Syst., Lund, Sweden, 2015, pp. 25–34.838

[19] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-839

criticality systems,” in Proc. IEEE 20th Int. Conf. Embedded Real Time840

Comput. Syst. Appl., Chongqing, China, 2014, pp. 1–10.841

[20] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-842

ing degrees of execution time assurance,” in Proc. 28th IEEE Int. Real843

Time Syst. Symp., Tucson, AZ, USA, 2007, pp. 239–243.844

Gang Chen received the B.E. degree in biomedi-845

cal engineering, the B.S. degree in mathematics and846

applied mathematics, and the M.S. degree in con-847

trol science and engineering from Xi’an Jiaotong848

University, Xi’an, China, in 2008, 2008, and 2011,849

respectively, and the Ph.D. degree in computer sci-850

ence from the Technical University of Munich,851

Munich, Germany, in 2016.852

He is currently an Associate Professor with853

Northeastern University, Shenyang, China. His cur-854

rent research interests include mixed-criticality855

system, energy-aware real-time scheduling, certifiable cache architecture856

design, and high-performance computing.857

Nan Guan received the Ph.D. degree from Uppsala858

University, Uppsala, Sweden, in 2013.859

He is currently an Assistant Professor with Hong860

Kong Polytechnic University, Hong Kong. His cur-861

rent research interests include safe-critical cyber-862

physical systems, including real-time scheduling the-863

ory, worst-case execution time analysis, and formal864

verification techniques.865

Dr. Guan was a recipient of the European Design866

Automation Association Outstanding Dissertation867

Award in 2014, the Best Paper Award of IEEE868

Real-Time Systems Symposium in 2009, the Best Paper Award of Design869

Automation and Test in Europe Conference in 2013, and the Best Poster Award870

in the Ph.D. forum of IEEE International Parallel and Distributed Processing871

Symposium in 2012 and IEEE International Conference on Embedded and872

Real-Time Computing Systems and Applications in 2017.873

Biao Hu received the B.Sc. degree in control sci- 874

ence and engineering from the Harbin Institute 875

of Technology, Harbin, China, in 2010, the M.Sc. 876

degree in control science and engineering from 877

Tsinghua University, Beijing, China, in 2013, and 878

the Ph.D. degree from the Department of Computer 879

Science, Technische Universität München, Munich, 880

Germany, in 2017. He is currently an Associate 881

Professor with the College of Information Science 882

and Technology, Beijing University of Chemical 883

Technology, Beijing. His current research interests 884

includes autonomous driving, OpenCL computing in heterogeneous system, 885

scheduling theory in real-time systems, and safety-critical embedded systems. 886

Dr. Hu is a Handling Editor of the Journal of Circuits, Systems, and 887

Computers (Elsevier). 888

Wang Yi (M’94–F’14) received the Ph.D. degree in 889

computer science from the Chalmers University of 890

Technology, Gothenburg, Sweden, in 1991. 891

He is a Chair Professor with Uppsala University, 892

Uppsala, Sweden. He is a member of Academy of 893

Europe (Section of Informatics). His current research 894

interests include models, algorithms, and software 895

tools for building and analyzing computer systems 896

in a systematic manner to ensure predictable behav- 897

iors. 898

Dr. Yi was a recipient of the CAV 2013 Award 899

for contributions to model checking of real-time systems, in particular the 900

development of UPPAAL, the foremost tool suite for automated analysis 901

and verification of real-time systems, the Best Paper Awards of RTSS 2015, 902

ECRTS 2015, DATE 2013, and RTSS 2009 for his contributions to real-time 903

systems, the Outstanding Paper Award of ECRTS 2012, and the Best Tool 904

Paper Award of ETAPS 2002. He is on the steering committee of ESWEEK, 905

the annual joint event for major conferences in embedded systems areas. He is 906

also on the steering committees of ACM EMSOFT (Co-Chair), ACM LCTES, 907

and FORMATS. He serves frequently on Technical Program Committees for 908

a large number of conferences. He was the TPC Chair of TACAS 2001, 909

FORMATS 2005, EMSOFT 2006, HSCC 2011, and LCTES 2012 and the 910

Track/Topic Chair for RTSS 2008 and DATE 2012–2014. 911


