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Abstract We present a tool for compositional timing and performance
analysis of real-time systems modeled using timed automata and the
real-time calculus [5]. It is based on an (over-) approximation technique
in which a timed automaton is abstracted as a transducer of abstract
streams described by arrival curves from network calculus [2]. As the
main feature, the tool can be used to check the schedulability of a system
and to estimate the best and worst case response times of its computation
tasks. The tool is available for evaluation at www.timestool.com/cats.

1 Introduction

Real-time systems are often constructed based on a set of real-time tasks. These
tasks may be scheduled and executed according to given release patterns. There
have been a number of methods and tools developed for timing analysis to esti-
mate the worst case (and also the best case) response times of computation tasks
for such systems, e.g., Rate-Monotonic Analysis [4] for periodic tasks, Real-Time
Calculus (RTC) [5] for tasks described using arrival curves [2], and Times [3]
using Timed Automata (TA) [1]. Some of these techniques, e.g., implemented in
Times can deal with systems with complex release patterns, but do not scale
well with system size and complexity; the others are scalable but can not handle
systems with complex structures. Our goal is to take the advantages of these ex-
isting techniques and develop a tool, that is scalable and also capable of handling
complex systems.

We model the architecture of a system using data-flow networks in the style
of the RTC, where the nodes stand for the building blocks or components of
the system and edges for the communication links between the nodes. In the
RTC, nodes represent either tasks or functions on arrival and service curves. To
enhance the expressiveness of the task model, we also allow TA nodes as release
patterns. The essential idea of our analysis technique is to abstract the TA nodes
using arrival curves, which can be done modularly for each node, and to compose
the analysis results in order to perform the system level analysis.

2 The Model

The basic concepts of our model are tasks, task arrival patterns and computa-
tional resources. Tasks are abstractions of programs that execute on a processing



unit and thus consume computational resources. The parameters of a task are
its best and worst case execution times on a reference processor. A task arrival
pattern describes the moments in time at which tasks are released for execu-
tion. The execution of a task is scheduled on a processing unit according to a
preemptive fixed priority scheduling strategy. The capacity and availability of
a processing unit form the model of a computational resource. We use arrival
curves [5] and TA [1] to model task arrival patterns, and service curves [5] to
model computational resources.

We shall introduce a notion of an abstract stream as a set of non-decreasing
diverging sequences of timestamps ranging over positive reals. Each timestamp
denotes an occurrence of an event. An abstract stream defined by a pair of
upper and lower arrival curves is the greatest abstract stream such that all the
sequences of events of this abstract stream comply with the constraints induced
by the pair of arrival curves as in [5]. A timestamp with a name assigned to it is
called an action. We define a timed trace to be a sequence of actions with non-
decreasing diverging timestamps. A set of timed traces forms a timed language.

A timed language where action names are taken from a bounded (by the
resource capacity) subset of non-negative rational numbers is called an abstract
resource. These numbers represent the amount of computational resources in
reference processor units until the next action. An abstract resource defined
by a pair of upper and lower service curves is the greatest abstract resource
such that all the sequences of actions of this abstract resource comply with the
constraints induced by the pair of service curves as in [5].

The model analysed by the tool is a finite network of nodes interconnected
with links. Nodes may have ports and links are directed edges connecting ports
of the nodes. Each port has three parameters: name, direction (input or output)
and type (event or resource). We distinguish the following types of nodes:

– Task node, a node with a task assigned to it; it has two input ports: release
(an arrival pattern of the task) and demand (computational resource avail-
able for the task execution) and two output ports: finish and rest representing
the pattern of task finishing times and the remaining computational resource
respectively; the ports release and finish are of the event type whereas de-
mand and rest are ports of the resource type,

– Task arrival pattern node, a node with either a pair of upper and lower
arrival curves or a TA assigned to it; in the first case the node has only
one output port and no input ports, and in the second case – the input and
output ports corresponds to the input and output letters of the TA; all the
ports are of the event type,

– Resource node, a node with one output port of the resource type and a
pair of upper and lower service curves assigned to it,

– Function node, a node containing a function of the real-time calculus [6];
the input ports correspond to the parameters of the function and there is
only one output port; all the ports have the same type – event or resource.

The links between the node ports must always connect an output port to an
input port and loops are not allowed. Moreover, it is only possible to connect



ports of the same type. Intuitively, the links model the control flow and the flow
of computational resources. Task priorities are defined by the order of the task
nodes in the flow of computational resources.

Semantically, every time an event arrives to the release port of a task node,
the task associated with the node is released for execution. During its execution
a task consumes computational resources entering the demand port of a task
node. The task completes its execution after being computed for a period of time
between the best and the worst case times specified in task parameters and issues
an event to the finish port. The resources not used by the task are passed through
to the rest port. Task arrival pattern nodes and resource nodes with assigned pair
of curves generate events triggering task releases and computational resources
respectively. Task arrival pattern nodes with an associated TA transform input
abstract streams into the output abstract streams as follows. First, the input
abstract streams are converted into a timed language. Then, the TA interpreted
as a transducer computes the output timed language. Finally, this language is
approximated by an abstract stream for each output port of the node. Function
nodes transform abstract streams or resources from incoming ports according to
the real-time calculus functions assigned to them.

3 Tool Architecture and Features

The tool implementation (as shown in Fig. 1) consists of two parts: model con-
struction and model analysis. The first part contains internal system model
representation and the editors, which allow to define the topology of a system,
the timed automata assigned to TA nodes, the functions assigned to the RTC
nodes, and pairs of arrival and service curves.
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Figure1. The architecture of the tool.

The tool computes the best and the worst case response times of every task
for a given task release pattern and a set of computational resources. It does this
by analysing abstract streams and resources appearing on the links of the model
network. Depending on the type of the node the tool assembles an appropriate
operation at the evaluation time. For example, for a TA node an evaluation oper-
ation consists of the encoding of the input abstract streams into TA, computing



the output of the TA node using Uppaal verification engine, and decoding the
results back into the form of the abstract streams.

The screenshot of the tool is shown in Fig. 2. The tool is implemented as a
set of plugins built on top of the Eclipse Development Platform. The implemen-
tations of the internal models are based on the Eclipse Modeling Framework. A
script language is used for specification of the model together with a dedicated
text editor. The graphical editor assists designers in TA modelling and is built
on top of the Eclipse Graphical Editing Framework. The runtime part of the tool
extends Eclipse Launch&Debug functionality and provides a set of specialized
views for monitoring and interpreting the results. We use Real-Time Calculus
Toolbox [6] to evaluate RTC functions.

Figure2. The screenshot of the tool.
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