Towards a Tool: TIMES-Pro for Modeling,
Analysis, Simulation and Implementation
of Cyber-Physical Systems

Jakaria Abdullah'®) | Gaoyang Dai', Nan Guan?, Morteza Mohaqeqi®,
and Wang Yi!

! Uppsala University, Uppsala, Sweden
{jakaria.abdullah,gaoyang.dai,morteza.mohageqi,yi}@it.uu.se
2 Northeastern University, Shenyang, China

Abstract. We consider a Cyber-Physical System (CPS) as a network of
components that are either physical plants with continuous behaviors or
discrete controllers. To build CPS’s in a systematic manner, the TIMES-
Pro tool is designed to support modeling, analysis and code generation
for real-time simulation and final deployment. In this paper, we present
our decisions in designing the modeling language, the tool architecture
and features of TIMES-Pro, and also a case study to demonstrate its
applicability.

Keywords: Cyber-Physical System - Timing analysis - Real-time
simulation - Automated code generation

1 Introduction

Cyber-Physical Systems are systems that contain both discrete components such
as digital controllers that generate and react to discrete events according to con-
trol laws and continuous components such as physical plants whose behaviors
change continuously according to natural laws. Existing design tools for design-
ing such hybrid systems such as Simulink [1] and Modelica [2] have inherent
limitation due to the lack of expressiveness in their underlying modeling lan-
guage and ability for analysis. In this paper, we present an integrated system
design tool TIMES-Pro which adopts an expressive yet analytically tractable
modeling language based on the Digraph Real-Time (DRT) task model [3-5] to
model discrete components and conditional differential equations to model con-
tinuous physical components (differential equations with mode switches). For
analysis, the continuous components of a system will be abstracted according to
a set of predicates of interests, controlling the interaction with the discrete com-
ponents of the system. DRT models will be used to approximate the continuous
components for automated analysis. Our goal is to develop a toolbox supporting
modeling and abstraction of both discrete and continuous components, timing

© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 623-639, 2017.
DOI: 10.1007/978-3-319-63121-9_31

624 J. Abdullah et al.

analysis and code generation for real-time simulation as well as final deploy-
ment on a given execution platform for the discrete components. The rest of the
paper is organized as such, first we present different design decisions related to
our system design tool. Next, we briefly introduce our modeling language and
its existing analysis and code generation supports. Then we present the status
of our tool implementation. Finally, we present an intended case study involving
a pacemaker and a random heart model.

2 Design Decisions

In this section we summarize design decisions concerning mainly the design of the
modeling language as well as the architecture and the features of TIMES-Pro.

Trade-Off Between Expressiveness and Analysis Efficiency. Ideally, the modeling
language of a tool should be as expressive as possible to enable faithful modeling
of complex system behaviors such as dynamic branching and looping. As the
expressiveness of models grows, so grows the complexity of their analysis. For
example, timed automata have been found to be the most expressive model
for real-time workload [6], but its analysis suffers from state-space explosion
problem which makes it impractical to be used in large system design. To study
the trade-off, different real-time models have been developed to compromise the
expressiveness and analysis efficiency [7].

The DRT task model [3] is a rather expressive model allowing large flexibility
to express release patterns accurately by representing each computation task as
a directed graph. It generalizes most existing models in real-time scheduling the-
ory [7]. Tt is shown that the feasibility problem of DRT can be solved in pseudo-
polynomial time [3]. Additionally, efficient techniques of exact response-time
analysis for DRT task models, for both static-priority and EDF scheduling have
been developed using over-approximation of workload abstraction and refine-
ment methods [5]. Finally, DRT model is extended to support rendezvous-style
synchronizations with efficient analysis using over-approximation and under-
approximation of workload abstractions [8]. Based on availability of these effi-
cient analysis methods we choose DRT as the core modeling language of our
design tool.

Separation of Communication and Computation Concerns. The two major
aspects of computer systems embedded in a CPS are computation and commu-
nication. Computational elements of a system should be independently designed
without adherence to any specific communication mechanism. This allows not
only, separation of concerns, in system design but also efficient analysis. From
our previous work on task automata and scheduling analysis [9], it is known
that many decision problems are computationally hard (even undecidable) for
systems where feedback is allowed. Allowing communication to occur during the
execution of a computation task may easily bring the feedback effects and change
the workload of the system dynamically [9]. Obviously, making communication
independent of computation may also allow modularity in system design, and
flexible and portable design.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 625

We impose this principle by allowing communication to occur only on the
release of computational jobs. This means that the released computation job
involves no blocking or non-blocking communication primitives and thus com-
munication can not happen during the execution of the job, which makes it easier
to analyse the timing properties of a computation job and also the global timing
properties of a system when scheduling is involved.

Functional Correctness Independent of Non-functional Behavior. The functional
correctness of a system should be maintained during design-space exploration for
satisfying the non-functional requirements. For example, changing the execution
time of a task should not change its output or its logical correctness. This sounds
a simple principle to implement if only the functional correctness of a task is
concerned. On the system level, this is a challenging problem. For example, a
functionality of a system is implemented by the execution of a number of tasks.
The system designer should make sure that the execution order of tasks by
the scheduler will not change the functionality. Technically, this requires that
the scheduling policies adopted by the scheduler should ensure the functional
correctness implied by system-level global invariants.

System Development in a Simulated Environment. A popular engineering tech-
nique to validate or certify CPS is emulation. Emulation, popularly known as
hardware-in-the-loop simulation, is used to validate controllers by running them
in closed-loop with the actual plant. However, in many cases the actual plant
is not available for emulation. Firstly, the plant may be a hardware which is
developed at the same time. Secondly, actual plant may be too sensitive and can
not tolerate an error during simulation (such as human organs). Finally, con-
struction of the actual plant may be too expensive for the test of a prototype of
concept. To encounter these deficiencies, we decide that our system design tool
should provide simulated environment using realistic but approximated model
of the actual plant.

Here the challenge lies in modeling the continuous semantics of a physical
process using discrete software so that all important plant behavior necessary
for the simulation can be generated. Current practice of using numerical solvers
for evaluating continuous state is either too slow or too complex for any real-
time simulation. To counter this, we tend to explore computationally efficient
approximation techniques for solving differential equations which we can model
using only software components. Our final goal in this regard is to generate code
of plant to allow real-time co-simulation.

Analysis Based on Abstraction Refinement Techniques. Analysis of complex sys-
tem behavior is computationally challenging as possible combinations of con-
current component behaviors grow exponentially with the number of active
system components. However, for analysis of many properties such as non-
functional properties (e.g. schedulability) partial orders may be derived for the
search space, preserving the properties of interests. Thus a hierarchy of abstrac-
tions may be generated and systematically evaluated using different levels of
the abstractions until an acceptable solution is found. This is the fundamental

626 J. Abdullah et al.

behind combinatorial abstraction refinement approach [5] which is generalized
in [10,11]. We intend to use this abstraction refinement framework for different
analysis problems of our design tool.

3 Modeling Language

This section introduces the modeling language of our tool. In particular, we
describe the model used to represent independent real-time tasks and its exten-
sion with inter-task synchronization.

3.1 Task Model

The core of our modeling language is the Digraph Real-Time (DRT) task model
[3]. A DRT task T is represented by a directed graph G(T) with vertex and
edge labels. Each vertex v € G(T') represents a type of real-time job that T' can
release. Here a real-time job is a piece of recurrent sequential code. A vertex v
is labeled with worst-case execution time e(v) and relative deadline d(v) of the
corresponding job. Both values are assumed to be positive integers.

The graph structure of G(T') denotes the order in which jobs generated by
T is released. Each edge (u,v) is labeled with a positive integer p(u, v) denoting
the minimum job inter-release separation time. We assume a job deadline d(u)
is bounded by the minimal of p(u,v) for all outgoing edges (u,v). Finally, we
describe a system with a DRT task set 7 = {T1,...,Tn}.

We assume the execution of each DRT task to be independent of each other.
While DRT tasks can generate independent real-time jobs of a system, in reality
many systems contain jobs with inter-task dependencies. To support such inter-
task synchronization requirements we extend DRT task model to Synchronous
Digraph Real-Time (SDRT) task model [8]. An SDRT task has the same syntax
as a DRT task, except that an edge (u, v) may be labeled with an action a(u,v).
The actions are used to model synchronization among tasks. Two SDRT tasks
Ty and T5 are said to have a synchronization on action s if there exist some edges
(u,v) € G(Ty) and (v',v") € G(T») such that a(u,v) = s and a(u’,v") = s. To
model these actions as rendezvous synchronization primitives of programming
language we define two types of valid actions. We use s? ending with ? to rep-
resent a get/accept action in a pairwise rendezvous. At the same time, we use
s! ending with ! to denote the corresponding send/call action of s?. a(u,v) =[]
means that an edge (u,v) is not associated with any synchronization.

In a synchronous execution, the jobs of two SDRT tasks associated to a
common synchronization action must be released at the same time. If one of the
synchronizing jobs is ready to be released while the other one is not, the former
one will be blocked until the latter one becomes ready. This synchronization
behavior is a special case of rendezvous synchronization where synchronization
only happens when two synchronous jobs release together.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 627

(2,20) (1,10)
(a) SDRT task T1
10
(1,10) (w1 v2) (3,20)
30
10 (1120
(1,15) (oa) 523 @(2,20>

(b) SDRT task T2

Fig. 1. Two SDRT tasks with two synchronizations on actions s1 and sa.

Example 1. Figure 1 shows two SDRT tasks which have two synchronizations on
actions s; and so. Here, the release of job vz of task T'1 is synchronized with
the release of job v4 of task T2 on action ss. As a result, vs and v4 must be
released at the same time after satisfying their respective minimum job inter-
release separation times. The jobs that have no synchronization such as v; of
task T'1 can be released without considering release of any jobs of T2.

3.2 System Model

A CPS system model contains components which model software, hardware and
the surrounding physical environment. A software or hardware component may
be modeled with a set of discrete states and corresponding transitions among

628 J. Abdullah et al.

them. Continuous states of a physical component is usually expressed using dif-
ferential equations. A simple way to model such physical component is to adopt
a discrete time-step based approach where the continuous behavior is sampled
every time-step of length §. The granularity of such time-step § is chosen accord-
ing to the nature of modeled system and the differential equations involved.

A major challenge in CPS simulation is to integrate hardware, software, and
physical components so that their combined system behavior conforms to the
reality. The heterogeneity of their behaviors makes this integration difficult as
a discrete-time component may need to communicate with a continuous-time
component. A way to tackle this problem is to use assertions in component
interfaces that confirm certain component behaviors. These types of assertions
establish a clear interface of the component with precise obligations for caller,
callee and environment. This idea is similar to Design-by-contract [12] which
is a software engineering technique that exploits runtime assertions to define
precise verifiable interface specifications with so-called invariants and pre- and
post-conditions.

A system model S in TIMES-Pro is a set of interacting components
C1,Cs,...,Cn. Each component C; is described by SDRT tasks with timing
and synchronization constraints. Tasks in two different components can be con-
nected/glued by a common synchronization action. Direction of communica-~
tion between two connected components is defined based on the type of inter-
component synchronization actions. This direction is from the component with
“send” action to the components with “accept” actions. We allow two types
of inter-component connections using synchronization in TIMES-Pro. In a con-
ditional (or branching) connection, a component connects with several other
components using the same synchronization action. As a result, communica-
tion can only happen with one component at a time, among those are ready
to communicate. This means different components can share a communication
channel to receive from/send to the same component. In multi-way connection,
a component connects with different components using different synchronization
actions. As a result, different components use different communication channels
to receive from/send to the same component.

For the purpose of analysis and simulation, a CPS system model needs all
types of components (software, hardware and physical environment). However,
only software components are required for code generation.

4 Analysis and Synthesis

In TIMES-Pro, a system design is represented by a DRT or SDRT task set.
Currently the tool offers two main functions: timing analysis of design models
and generation of executable code from the models. In this section, first we
describe the analysis techniques implemented in TIMES-Pro. Then we show the
code generation approach used in the tool to generate Ada code.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 629

4.1 Analysis

DRT/SDRT is supported by a rich theoretical foundation for timing analysis.
Efficient feasibility and schedulability analysis algorithms have been developed,
even for those problems that are generally intractable (from the computational
complexity point of view). The following analysis algorithms are currently imple-
mented as Python scripts in our tool:

1. Feasibility analysis (or EDF schedulability analysis) of DRT tasks in
uniprocessor. It is based on an iterative graph exploration procedure based
on a novel path abstraction technique [3].

2. Static priority (SP) schedulability analysis of DRT/SDRT tasks using com-
binatorial abstraction refinement techniques [5,8].

3. Exact response-time calculation of DRT tasks under SP and EDF scheduling.
It is also based on the combinatorial abstraction refinement framework to
achieve exact results from initial overapproximations [13].

4. DRT workload partitioning on multiprocessors for Partitioned SP and EDF
scheduling algorithm. The partitioning algorithms are based on bin-packing
algorithms for sporadic task in multiprocessors [14] but extended to support
DRT tasks. These algorithms must determine two criteria:

Task ordering criteria: Different measures can be used to determine the
order by which the tasks are selected to be assigned to a core. These ordering
criteria can be considered as either “increasing” or “decreasing”. Currently,
two ordering metrics have been used in TIMES-Pro:

Utilization: The utilization of each cycle in the DRT graph is defined as the
ratio between WCET sum of nodes in that cycle, and sum of their inter-
release times. The utilization of a task is defined as the maximum utilization
among all the (simple) cycles in the graph.

Density: The density of a job is obtained by dividing its execution time by
its relative deadline. Intuitively, the density of a job shows that how stringent
the deadline of a job is with respect to its execution demand. The density of
a task is the maximum density among all of its jobs.

Core selection criteria: Different bin-packing heuristics can be used to
select a core to test for the possibility to accommodate the selected task. Cur-
rently TIMES-Pro supports two bin-packing heuristics Best-Fit and Worst-
Fit [14]. In Best-Fit packing, cores are sorted according to the decreasing
utilization order while in Worst-Fit cores are sorted in the increasing utiliza-
tion order. Uniprocessor schedulability tests of DRT for SP and EDF are used
to decide where the selected task can be assigned to that core. In case of SP,
the priorities are assumed to be unspecified. Thus, the partitioning algorithm
is free to assign suitable priorities to the tasks for better schedulability.

4.2 Code Generation

The goal of code generation is to transform a design model to executable code
while preserving the execution behavior of the model. We use the Ada pro-
gramming language [15] for code generation, as it provides a run-time system

630 J. Abdullah et al.

suitable for executing real-time tasks. The following important behaviors of the
DRT/SDRT task model need to be handled carefully for code generation:

Synchronization in Job Release: In SDRT, release of jobs from two different tasks
can be synchronized based on an action. In Ada, rendezvous is a similar mecha-
nism for controlled synchronization between two tasks. Ada’s rendezvous is based
on a client-server model. A client task requests a rendezvous with a server task
by making entry calls just as if the server is a protected object. Server tasks indi-
cate willingness to accept a rendezvous on an entry by executing an accept state-
ment. For the rendezvous to take place, both the server and the client task must
have issued their requests. A task issuing a rendezvous request is blocked until
the rendezvous happens. As described earlier, we defined two types of actions
in SDRT. The send/call action s! directly maps to Ada rendezvous entry calls.
Similarly, the get/accept action s? of SDRT matches the Ada rendezvous accept
statement. However, in SDRT semantics, a rendezvous is only allowed during a
job release. If an SDRT job release has both timing and synchronization con-
straints, then the timing one must be satisfied first. This can be implemented
in Ada code by first waiting for a delay and then executing the respective ren-
dezvous operation. For the purpose of simplicity, we only use simple rendezvous
(without exchange of parameters) of Ada to implement this behavior. As we see
next, rendezvous behaviors can be combined with branching in job releases.

Branching in Job Release: A DRT/SDRT task can release jobs sporadically, i.e.,
after the release of a job, the next job can only arrive after waiting for the
minimal inter-release separation time. This sporadic behavior may be combined
with the branching of jobs in the sense that different types of jobs can be released
if their respective inter-release times after the predecessor job are satisfied. To
generate code for this behavior, we have two options.

In branching based on condition, the next job to be released is determined
according to the satisfaction of some conditions. It is assumed that the conditions
are checked in an if-then-else structure which, at run-time, deterministically
determines which path the program should follow. For example, in Fig. 1(b) the
job v has two successors v; and vs. We illustrate corresponding Ada branching
code in Listing 1.1. However, this interpretation of branching can not handle
job release constrained by a synchronization action where blocking is needed.
Therefore this type of branching is only preferable in DRT tasks.

1| case Current_job is

2 when v2 =>

v2_code;

4 if Branch_condition then

5 Current_job := vi;

6 Next := Next + v2_vl_del;
delay until Next;

8 else

9 Current_job := v3;

10 Next := Next + v2_v3_del;
11 delay until Next;

12 end if;

Listing 1.1. Branching Ada code for job v of Fig. 1(b).

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 631

In branching based on synchronization, the next job to be released is decided
non-deterministically based on satisfaction of both timing and synchronization
constraints. Here we observe three cases: (a) releases of all branch jobs that
have both timing and synchronization constraints, (b) some of the branch jobs
have release constrained by synchronization constraints but not the rest and
(c) releases of branch jobs that are only constrained by timing constraints.
Case (¢) can be implemented using branching based on condition as described
earlier. An example of situation (b) is depicted for job vy in Fig. 1(a). Here vy has
two successors v and vg. The release of v3 has to be synchronized with action s
while v; can be released upon expiration of minimum inter-release separation.

To implement this behavior, we use selective accept feature of Ada. As men-
tioned earlier, we allow a synchronization action to be either a call or an accept
action. In selective accept of Ada, branching of code is only allowed using accept
action of rendezvous. For the case of entry call synchronization action, we assume
it to be executed once the timing requirement of the job is satisfied. This behav-
ior is implemented in the following steps: first, we sort all outgoing transitions or
edges from a job in increasing order of their inter-release times. After observing
the smallest possible delay, we insert a selective accept (which means now we
can accept an synchronization action and release the branch with the smallest
inter-release time) with a delay alternative until the time point when it is also
possible to release the next branch. These selective accept blocks are iteratively
generated until there is a branch which can be immediately released. The imme-
diate release of a job satisfying both its timing and synchronization constraints
is similar to an urgent transition in timed automata. We illustrate Ada branch-
ing code for job ve in Fig. 1(a) using selective accept in the code segment in
Listing 1.2.

1| case Current_job is
2 when v2 =>

3 v2_code;

4 Next := Next + v2_v3_del;
5 delay until Next;

6 Next := Next + v2_vl_del;
7 select

8 accept s2;

9 Current_job := v3;

10 Next := Clock;
11 goto end_of_case;

12 or
13 delay until Next;
end select;

Listing 1.2. Branching Ada code for job v of Fig. 1(a).

5 Tool Overview

In this section, we present the main features of TIMES-Pro, the tool architecture
and the main components in the implementation. Architecture of our tool is
shown in Fig. 2.

632 J. Abdullah et al.

Analysis Engine

GUI
Java Front End Python Back End
| Task Editor | | Simulator ‘ | Code generator |

ij

XML File Ada source
files

Multicore Partitioning

Fig. 2. Tool architecture of TIMES-Pro.

5.1 Features

— Editor (see Fig.3) to graphically model a system and its associated timing,

execution resource and synchronization requirements. A system description
consists of either a DRT or SDRT task set. The list of all tasks with their
assigned priorities is shown in the left side of the main graphical editor. Tim-
ing properties of the jobs of a selected task is presented in a table below the
task set. All the properties (including the names) of both the task set and
jobs properties table are editable.
In the main graphical editor, a task is described by its directed cyclic graph
structure. User can define a jobtype by assigning its WCET, relative deadline
and associated execution code segment. Different job types are connected by
edges where the user can specify the minimum inter-release time between
the two jobs. As an incoming edge denotes release constraints of the job, a
synchronization action relevant to this job is also specified as the edge prop-
erty. In the first option, the system designer explicitly states the branching
condition variable together with the job code. Branching conditions are also
allowed inside a job.

Fig. 3. System modeling using SDRT tasks in TIMES-Pro editor.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 633

— Simulator (see Fig.4) to dynamically visualise the execution behavior and
the resource utilization of a system model. The simulator generates possible
execution traces with zero or random initial phase. This trace is displayed
either stepwise or continuously up to the first deadline miss. It is possible
to configure the speed of visual simulation within a scale of 1 to 10. System
utilization is dynamically displayed below the main simulation. Currently
the simulator supports fixed priority and EDF scheduling simulation on a
uniprocessor.

W[Ep o

Fig. 4. Visualization of job execution simulation in TIMES-Pro simulator.

— Analyzer to check that the tasks associated to a system model satisfy their
timing requirements. The analysis suite includes schedulability analysis of
tasks under Fixed Priority and EDF scheduling, computation of worst-case
response times of tasks and partitioning of workload into multiprocessors. To
help testing the algorithms, analyzer has a configurable random task genera-
tor which can generate task sets of different size and utilization. Additionally,
analyzer provides visualization data of different abstractions used for analysis
like request functions.

— Code Generator to generate executable Ada code from task sets. The code
generator realises a subset of the behavior specified in the DRT/SDRT task
model and assumes Ada runtime system will ensure proper execution of the
generated code.

5.2 Implementation
Current implementation of the tool is logically divided into three parts:

— Graphical User Interface consists of the editor, simulator, visualization
of analysis and code generator. It also includes an abstraction visualization
tab to visualize workload abstractions to be used in analysis (see Fig. 5). It is
possible to check syntax of the model before analysis and the whole system
model can be load from or save to an XML file. Currently, the complete GUI
has been implemented using JAVA.

634 J. Abdullah et al.

Fig. 5. Workload abstraction

— Analysis Engine implements analysis algorithms using Python scripts.
Schedulability analysis and WCRT calculation algorithms for DRT tasks are
included in a Python library called libdrt. All these algorithms are available
for both preemptive Fixed Priority and EDF scheduling algorithms. Analysis
engine has a set of workload partitioning algorithms for multiprocessors. Cur-
rently implemented algorithms include Best-Fit and Worst-Fit bin-packing
algorithms [14] using density or utilization criterion for both partitioned Fixed
priority and EDF scheduling. Figure 6 shows different options available in cur-
rent implementation of the analyzer integrated with GUI. A random task set
generator is implemented for creating task sets with different utilizations, size

Task Editor | Smulstor | Abstraction | Anabss | synhesis |
rme B |

vax Tme; B | I
DBF MRE "l

[B8m SNNE

=
R
Rar
R
Rar

fo =t

and timing constraints (see Fig. 7).

f Task EditorT Simulator T Abstraction TAnaIysis T Synthesis]

visualization in TIMES-Pro abstraction tab.

Setting
Tasks Tasks Tasks
Task Model: DRT o Task Name | Util. || | Task Name | util. Task Name | Util. |
Sched. Policy: [SP ™= RandomTask8 0.217 RandomTaskS 0.2 RandomTask2 0.222
RandomTask6 0.208 RandomTaskl 0.212 RandomTask3 0.205
Platform: O single-core RandomTask4 0.103 RandomTask7 0.363
@® Multicore
Cores: 2 B
Bin-Packing: | BF)
Criterion: density v
Statistics
Total Util.: 1.732
Unalloc. Util.: 0.791 Utilization = 0.529 Utilization = 0.412 Utilization = 0.791

Fig. 6. A sample analysis scenario in TIMES-Pro analyzer using Best-Fit bin-packing

in dual core multiprocessor.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 635

Configuration
- . As.

Configuration Panel L

Random Task Generation

Task Type Task Set Parameters Task Set Criteria

() small Tasks Min Max V) Tasks: | 8 @

O Medium Tasks VIR 7 13 [utilization: 0.5

Fan-out 1 5

() Large Tasks —— —
Inter-release 200 = 400
() Periodic WCET '1 1 8

(®) customized Deadline 100 = 400

0K Cancel

Fig. 7. Configurations for random task generation in TIMES-Pro.

— Code Generation is currently implemented with a separate editor. The
code generator translates the graphical model of a task set loaded in the
editor into a single Ada implementation file (with .adb extension). It allows
editing and syntax checking of auto-generated Ada code. The generated code
can be compiled to run on top of generic Ada runtime system.

5.3 Ongoing and Future Extensions

Currently we are working on following feature extensions for TIMES-Pro:

— We are developing novel timing analysis techniques to precisely model the
controller software driven by physical system behavior. As a first step, we
study an engine control application and present an exact timing analysis by
partitioning the state space of the engine behaviors [17]. In future, we intend
to generalize this result for any control software driven by physical process
and integrate the method to TIMES-Pro.

— We are extending the Code Generator for C code generation that can run
using the FreeRTOS [18] real-time operating system. In future, we will gener-
ate executable code for multicore platforms based on partitioned multiproces-
sor scheduling [14].

6 Case Study

We use the heart and dual chamber DDD pacemaker model used in [16] as a
case study to illustrate CPS system modeling with our tool.

636 J. Abdullah et al.

Aget!

| .
AP!

Pacemaker Heart
!
<« Vget!

B

VP!

Fig. 8. System-level view of the heart and pacemaker.

6.1 System Modeling

We deal with a closed-loop system with two main components, a pacemaker and
a human heart. A pacemaker monitors the Atrial and Ventricular events in the
heart and generates required pacing actions based on the state of the heart. The
system model is shown in Fig. 8.

The pacemaker receives Aget and Vget events from the heart. These are
internally recognized as the signals AS (Atrial Sense) and VS (Ventricular Sense)
which are used to synchronize different states of the different tasks of the pace-
maker. There is another internal signal called AR (Atrial refractory) which is
used for the monitoring purpose. The pacemaker generates AP (Atrial pacing)
and VP (Ventricular pacing) action signals to the heart model.

6.2 Component Modeling

The pacemaker has five main tasks capturing different timing requirements based
on inputs from the heart. Here we describe each of these tasks using SDRT
models:

— PVARP: Post Ventricular Atrial Refractory Period (PVARP) task receives
Atrial events (Agets) and detects them as AS for synchronizing the other
tasks. With each Ventricular event (VP or VS) there will be a period of
t_PVAB + t_PVARP when Agets are not recognized as AS. During the period
of t_PVAB all Agets will be ignored. However during the period of t_PVARP
the incoming Agets are recorded as AR signals.

— VRP (Ventricular Refractory Period): This task receives Vget events from the
heart and recognize them as VS. After each Ventricular event (VS or VP) the
task should wait for a period of t_TVRP to generate next Ventricular event.

— LRI (Lower Rate Interval): This task keeps the heart rate above desired min-
imum value. If no AS is received after t_TLRI — t_TAVI time period following
a Ventricular event then AP is delivered.

— AVI (Atrio-Ventricular Interval): This task maintains the delay between the
Atrial and the Ventricular activations. If no VS has been sensed within t_TAVI
after an Atrial event (AS, AP), the task will generate VP. The task should
maintain an interval of t_TURI between two Ventricular events (VP, VS).

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 637

— URI (Upper Rate Interval): This task works as a timer to limit Ventricular
pacing events. Two consecutive VPs should be separated by an interval of
t_TURI.

The simple version of the random heart model has two tasks, one for gener-
ating the Atrial events and another for generating the Ventricular events. Both
of these components can randomly generate an intrinsic heart event within a
range of valid intervals.

(0. 0) (0, 0)

50 [Vget?]

150]

Fig. 9. SDRT model of the VRP component in TIMES-Pro.

1| when Init =>
2 Init_code;

3 Next := Next + Init_to_temp_delay;
4 delay until Next;

5 Next := Next + Init_to_VRP_delay;
6 select

7 accept Vget;

8 Current_State := temp;

9 Next := Clock;

10 goto end_of_case;

11 or

12 delay until Next;

13 end select;

14 select

15 accept Vget;

16 Current_State := temp;
17 Next := Clock;

18 goto end_of_case;

19 or

20 accept VP;

1 Current_State := VRP;
2 Next := Clock;

3 goto end_of_case;

| end select;

Listing 1.3. Partial view of the code generated for the component VRP by TIMES-
Pro.

638 J. Abdullah et al.

Currently we have modeled these pacemaker and heart components in our
tool using SDRT tasks. We generated Ada executable code from the model. For
example, Fig.9 shows the VRP component of pacemaker in TIMES-Pro and
Listing 1.3 partially shows the generated code. In future we would like to use
more complex heart models and visualize the simulation.

7 Conclusions and Future Work

This paper presents an integrated system design tool TIMES-Pro for the design
and implementation of CPS. Different design decisions are explained and moti-
vated; the tool architecture and the current state of implementation are pre-
sented. As future work, we will further develop the modeling language to support
continuous components of CPS, and abstraction techniques for the analysis of
combined behaviors by both types of components and generation of executable
code to simulate the behaviors in real-time.

References

1. Simulink. http://www.mathworks.com/products/simulink/

2. Modelica. http://modelica.org

3. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
Proceedings of RTAS, pp. 71-80. IEEE Press, New York (2011)

4. Stigge, M., Yi, W.: Hardness results for static priority real-time scheduling. In:
Proceedings of ECRTS, pp. 189-198 (2012)

5. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis.
In: Proceedings of RTSS, pp. 340-349. IEEE Press, New York (2013)

6. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES — a tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460-464. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0_32

7. Stigge, M., Yi, W.: Models of real-time workload: a survey. In: Audsley, N., Baruah,
S. (eds.) Real-Time Systems: The Past, the Present, and the Future, pp. 133-160
(2013)

8. Mohageqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of synchro-
nous digraph real-time task. In: Proceedings of ECRTS 2016, pp. 176-186 (2016)

9. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. Inf. Comput. 205(8), 1149-1172 (2007)

10. Stigge, M.: Real-time workload models: expressiveness vs. analysis efficiency. Ph.D.
dissertation, Uppsala University (2014)

11. Guan, N., Tang, Y., Abdullah, J., Stigge, M., Yi, W.: Scalable timing analysis
with refinement. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp- 3-18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_1

12. Meyer, B.: Applying “design by contract”. Computer 25(10), 40-51 (1992).
http://dx.doi.org/10.1109/2.161279

13. Stigge, M., Guan, N., Yi, W.: Refinement-based exact response-time analysis. In:
Proceedings of ECRTS, pp. 143-152 (2014)

http://www.mathworks.com/products/simulink/
http://modelica.org
http://dx.doi.org/10.1007/3-540-46002-0_32
http://dx.doi.org/10.1007/978-3-662-46681-0_1
http://dx.doi.org/10.1109/2.161279

14.

15.
16.

17.

18.

TIMES-Pro: Modeling, Analysis, Simulation and Implementation of CPS 639

Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35:1-35:44 (2011)

Ada programming language. http://www.adacore.com/

Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-
tion of a dual chamber implantable pacemaker. In: Flanagan, C., Konig, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 188-203. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5_14

Mohageqi, M., Abdullah, J., Ekberg, P., Yi, W.: Refinement of workload models
for engine controllers by state space partitioning. In: Proceedings of ECRTS (2017,
to appear)

FreeRTOS Real-time Operating System. http://www.freertos.org

http://www.adacore.com/
http://dx.doi.org/10.1007/978-3-642-28756-5_14
http://dx.doi.org/10.1007/978-3-642-28756-5_14
http://www.freertos.org

	Towards a Tool: TIMES-Pro for Modeling, Analysis, Simulation and Implementation of Cyber-Physical Systems
	1 Introduction
	2 Design Decisions
	3 Modeling Language
	3.1 Task Model
	3.2 System Model

	4 Analysis and Synthesis
	4.1 Analysis
	4.2 Code Generation

	5 Tool Overview
	5.1 Features
	5.2 Implementation
	5.3 Ongoing and Future Extensions

	6 Case Study
	6.1 System Modeling
	6.2 Component Modeling

	7 Conclusions and Future Work
	References

