
Semi-Federated Scheduling of Parallel Real-Time
Tasks on Multiprocessors

Xu Jiang1,2, Nan Guan1, Xiang Long2, Wang Yi3

1The Hong Kong Polytechnic University, Hong Kong
2Beihang University, China

3Uppsala University, Sweden

Abstract—Federated scheduling is a promising approach to
schedule parallel real-time tasks on multi-cores, where each heavy
task exclusively executes on a number of dedicated processors,
while light tasks are treated as sequential sporadic tasks and
share the remaining processors. However, federated scheduling
suffers resource waste since a heavy task with processing capacity
requirement x + ε (where x is an integer and 0 < ε < 1) needs
x+1 dedicated processors. In the extreme case, almost half of the
processing capacity is wasted. In this paper we propose the semi-
federate scheduling approach, which only grants x dedicated
processors to a heavy task with processing capacity requirement
x+ε, and schedules the remaining ε part together with light tasks
on shared processors. Experiments with randomly generated task
sets show the semi-federated scheduling approach significantly
outperforms not only federated scheduling, but also all existing
approaches for scheduling parallel real-time tasks on multi-cores.

I. INTRODUCTION

Multi-cores are more and more widely used in real-time
systems, to meet their rapidly increasing requirements in
performance and energy efficiency. The processing capacity
of multi-cores is not a free lunch. Software must be properly
parallelized to fully exploit the computation capacity of multi-
core processors. Existing scheduling and analysis techniques
for sequential real-time tasks are hard to migrate to the parallel
workload setting. New scheduling and analysis techniques are
required to deploy parallel real-time tasks on multi-cores.

A parallel real-time task is usually modeled as a Directed
Acyclic Graph (DAG). Several scheduling algorithms have
been proposed to schedule DAG tasks in recent years, among
which Federated Scheduling [1] is a promising approach
with both good real-time performance and high flexibility.
In federated scheduling, DAG tasks are classified into heavy
tasks (density > 1) and light tasks (density ≤ 1). Each heavy
task exclusively executes on a subset of dedicated processors.
Light tasks are treated as traditional sequential real-time tasks
and share the remaining processors. Federated scheduling not
only can schedule a large portion of DAG task systems that is
not schedulable by other approaches, but also provides the
best quantitative worst-case performance guarantee [1]. On
the other hand, federated scheduling allows flexible workload
specification as the underlying analysis techniques only require
information about the critical path length and total workload of
the DAG, and thus can be easily extended to more expressive
models, such as DAG with conditional branching [2], [3].

(a) Federated scheduling. (b) Semi-federated scheduling.

Fig. 1. Illustration of federated scheduling and semi-federated scheduling.

However, federated scheduling may suffer significant re-
source waste, since each heavy task exclusively owns a subset
of processors. For example, if a heavy task requires processing
capacity x + ε (where x is an integer and 0 < ε < 1), then
dx + εe = x + 1 dedicated processors are granted to it, as
shown in Figure 1-(a). In the extreme case, almost half of the
total processing capacity is wasted (when a DAG requires 1+ε
processing capacity and ε→ 0).

In this work, we propose the Semi-Federated Scheduling
approach to solve the above resource waste problem. In semi-
federated scheduling, a DAG task requiring x + ε processing
capacity is only granted x dedicated processors, and the
remaining fractional part ε is scheduled together with the light
tasks, as illustrated in Figure 1-(b).

The major challenge we face in realizing semi-federated
scheduling is how to control and analyze the interference
suffered by the fractional part, and its effect to the timing
behavior of the entire heavy task. The fractional part of
a heavy task is scheduled together with, and thus suffers
interference from the light tasks and the fractional parts of
other heavy tasks. Due to the intra-task dependencies inside
a DAG, this interference is propagated to other parts of the
DAG executed on the dedicated processors, and thus affects the
timing behavior of the entire DAG task. Existing scheduling
and analysis techniques for federated scheduling (based on the
classical work in [4]) cannot handle such extra interference.

This paper addresses the above challenges and develops
semi-federated scheduling algorithms in the following steps.

First, we study the problem of bounding the response time
of an individual DAG executing on a uniform multiprocessor
platform (where processors have different speeds). The results
we obtained for this problem serve as the theoretical founda-
tion of the semi-federated scheduling approach. Intuitively, we
grant a portion (< 1) of the processing capacity of a processor

Fig. 2. A DAG task example.

to execute the fractional part of a DAG, which is similar to
executing it on a slower processor.

Second, the above results are transferred to the realistic
situation where the fractional parts of DAG tasks and the light
tasks share several processors with unit speed. This is realized
by executing the fractional parts via sequential container tasks,
each of which has a load bound. A container task plays the
role of a dedicated processor with a slower speed (equals the
container task’s load bound), and thus the above results can
be applied to analyze the response time of the DAG task.

Finally, we propose two semi-federated scheduling algo-
rithms based on the above framework. In the first algorithm,
a DAG task requiring x + ε processing capacity is granted
x dedicated processors and one container task with load
bound ε, and all the container tasks and the light tasks are
scheduled by partitioned EDF on the remaining processors.
The second algorithm enhances the first one by allowing to
divide the fractional part ε into two container tasks, which
further improves resource utilization.

We conduct experiments with randomly generated work-
load, which show our semi-federated scheduling algorithms
significantly improve schedulability over the state-of-the-art
of, not only federated scheduling, but also the other types such
as global scheduling and decomposition-based scheduling.

II. PRELIMINARY

A. Task Model

We consider a task set τ consisting of n tasks
{τ1, τ2, ..., τn}, executed on m identical processors with unit
speed. Each task is represented by a DAG, with a period
Ti and a relative deadline Di. We assume all tasks to have
constrained deadlines, i.e., Di ≤ Ti. Each task is represented
by a directed acyclic graph (DAG). A vertex v in the DAG has
a WCET c(v). Edges represent dependencies among vertices.
A directed edge from vertex v to u means that u can only be
executed after v is finished. In this case, v is a predecessor of
u, and u is a successor of v. We say a vertex is eligible at some
time point if all its predecessors in the current release have
been finished and thus it can immediately execute if there are
available processors. We assume each DAG has a unique head
vertex (with no predecessor) and a unique tail vertex (with no
successor). This assumption does not limit the expressiveness
of our model since one can always add a dummy head/tail
vertex to a DAG with multiple entry/exit points.

We use Ci to denote the total worst-case execution time of
all vertices of DAG task τi and Li to denote the sum of c(v) of
each vertex v along the longest chain (also called the critical

path) of τi. The utilization of a DAG task τi is Ci

Ti
, and its

density is Ci

Di
. A DAG task is called a heavy task if it density

is larger than 1, and a light task otherwise.
Figure 2 shows a DAG task with 6 vertices. We can compute

Ci = 16 and Li = 8 (the longest path is {v1, v4, v5, v6}). This
is a heavy task since the density is 16

14 > 1.

B. Federated Scheduling

In federated scheduling [1], each heavy task exclusively
executes on a subset of dedicated processors. Light tasks
are treated as traditional sequential real-time tasks and share
the remaining processors. As a heavy task exclusively owns
several dedicated processors and its workload must be finished
before the next release time (due to constrained deadlines),
the response time of a heavy task can be bounded using the
classical result for non-recurrent DAG tasks by Graham [4]:

Ri ≤ Li +
Ci − Li
mi

(1)

where mi is the number of dedicated processors granted to
this heavy task. Therefore, by setting Ri = Di, we can
calculate the minimal amount of processing capacity required
by this task to meet its deadline Ci−Li

Di−Li
, and the number of

processors assigned to a heavy task τi is the minimal integer no
smaller than

⌈
Ci−Li

Di−Li

⌉
. The light tasks are treated as sequential

sporadic tasks, and are scheduled on the remaining processors
by traditional multiprocessor scheduling algorithms, such as
global EDF [5] and partitioned EDF [6].

III. A SINGLE DAG ON UNIFORM MULTIPROCESSORS

In this section, we focus on the problem of bounding the
response time of a single DAG task exclusively executing on a
uniform multiprocessor platform, where processors in general
have different speeds. The reason why we study the case of
uniform multiprocessors is as follows. In the semi-federated
scheduling, a heavy task may share processors with others.
From this heavy task’s point of view, it only owns a portion
of the processing capacity of the shared processors. Therefore,
to analyze semi-federated scheduling, we first need to solve the
fundamental problem of how to bound the response time in the
presence of portioned processing capacity. The results of this
section serve as the theoretical foundation for semi-federated
scheduling on identical multiprocessors in later sections (while
they also can be directly used for federated scheduling on
uniform multiprocessors as a byproduct of this paper).

A. Uniform Multiprocessor Platform

We assume a uniform multiprocessor platform of m
processors, characterized by their normalized speeds
{δ1, δ2, · · · , δm}. Without loss of generality, we assume
the processors are sorted in non-increasing speed order
(δx ≥ δx+1) and the fastest processor has a unit speed i.e.,
δ1 = 1. In a time interval of length t, the amount of workload
executed on a processor with speed δx is tδx. Therefore, if
the WCET of some workload on a unit speed processor is c,
then its WCET becomes c/δx on a processor of speed δx.

Fig. 3. A work-conserving scheduling sequence on uniform multiprocessors.

B. Work-Conserving Scheduling on Uniform Multiprocessors

On identical multiprocessors, a work-conserving scheduling
algorithm never leaves any processor idle while there exists
some eligible vertex. The response time bound for a DAG
task in (1) is applicable to any work-conserving scheduling
algorithm, regardless what particular strategy is used to assign
the eligible vertices to available processors.

However, on uniform multiprocessors, the strategy to assign
eligible vertices to processors may greatly affect the timing
behavior of the task. Therefore, we extend the concept of
work-conserving scheduling to uniform multiprocessors by
enforcing execution on faster processors as much as possible
[7]. More precisely, a scheduling algorithm is work-conserving
on m uniform processors if it satisfies both of the following
conditions:

1) No processor is idled when there are eligible vertices
awaiting execution.

2) If at some time point there are fewer than m eligible
vertices awaiting execution, then the eligible vertices are
executed upon the fastest processors.

Figure 3 shows a possible scheduling sequence of the DAG
task on three processors with speeds {1, 0.5, 0.25}. Vertex v2

migrates to the fastest processor at time 5 and v5 migrates
to the fastest processor at time 9. These two extra migrations
are the price paid for satisfying the second condition of work-
conserving scheduling in above.

If we disallow the migration from slower processors to faster
processors, there may be significant resource waste. In the
worst case, a DAG task will execute its longest path on the
lowest processor, which results in very large response time. In
Appendix-A we discuss the response time bound and resource
waste when the inter-processor migration is forbidden.

C. Response Time Bound

In the following we derive response time bounds for a single
DAG task executing on a uniform multiprocessor platform
under work-conserving scheduling. Although the task is re-
current, we only need to analyze its behavior in one release
since the task has a constraint deadline. We first introduce the
concept uniformity [7]:

Definition 1 (Uniformity). The uniformity of m processors
with speeds {δ1, · · · , δm} (δx ≥ δx+1) is defined as

λ
∆
=

m
max
x=1

{
Sm − Sx

δx

}
(2)

Fig. 4. Illustration of αx and βx.

where Sx is the sum of the speeds of the x fastest processors:

Sx
∆
=

x∑
j=1

δj (3)

Now we derive the response time upper bound:

Theorem 1. The response time of a DAG task τi executing on
m processors with speeds {δ1, · · · , δm} is bounded by:

R ≤ Ci + λLi
Sm

(4)

where λ and Sm are defined in Definition 2.

Proof. For simplify of presentation, we assume that each
vertex v executes exactly for its WCET c(v)1. Without loss
of generality, we assume the task under analysis releases an
instance at time 0, and thus finishes the current instance at
time R. During the time window [0, R], let αx denote the
total length of intervals during which the xth processor (with
speed δx) is busy. By the work-conserving scheduling rules in
Section III-B, we know if the xth processor is busy in a time
interval then all faster processors (with index smaller than x)
must also be busy. Therefore, we know R = α1. We define

βx =

{
αx − αx+1, 1 ≤ x < m

αx, x = m

Figure 4 illustrates the definition of αx and βx. So we can
rewrite R = α1 as

R =

m∑
x=1

βx (5)

The total workload executed on all the processors in [0, R]
is (β1S1 + · · · + βmSm), which equals the total worst-case
execution time of the task:

Ci =

m∑
x=1

βxSx (6)

Let π be an arbitrary path in the DAG starting from the head
vertex and ending at the tail vertex. We use χ(π, δx) to denote
the total amount of workload executed for vertices along path
π in all the time intervals during which both of the following
conditions are satisfied:
• at least one processor is idle
• the slowest busy processor has speed δx.

1It is easy to show that the response time bound in (4) still holds if some
vertices execute for shorter than its WCET.

The total length of such time intervals is βx. Since at least
one processor is idle, π must contain a vertex being executed
in this time interval (since at any time point before R, there
is at least one eligible vertex along any path). So we have

χ(π, δx) ≥ βxδx

⇒
m−1∑
x=1

χ(π, δx) ≥
m−1∑
x=1

βxδx (7)

Let lπ denote the total workloadalong path π, so we know
m−1∑
x=1

χ(π, δx) ≤ lπ

Since Li is the total workload of the longest path in the DAG,
we know lπ ≤ Li. In summary, we have

m−1∑
x=1

χ(π, δx) ≤ Li (8)

Combining (7) and (8) gives

Li ≥
m−1∑
x=1

βxδx ⇒ λLi ≥
m−1∑
x=1

βxδxλ (9)

By the Definition of λ in (2) we know

∀x :
Sm − Sx

δx
≤ λ

Therefore, (9) can be rewritten as

λLi ≥
m−1∑
x=1

βx(Sm − Sx)

and by applying (6) we get

Ci + λLi ≥
m−1∑
x=1

βx(Sm − Sx) +

m∑
x=1

βxSx

⇔ Ci + λLi ≥ βmSm +

m−1∑
x=1

βxSm

⇔ Ci + λLi ≥ Sm
m∑
x=1

βx

and by applying (5), the theorem is proved.

When δ1 = · · · = δm = 1, we have λ = m−1 and Sm = m,
so the bound in Theorem 1 perfectly degrades to (1) for the
case of identical processors.

IV. RUNTIME DISPATCHER OF EACH DAG

The conceptual uniform multiprocessor platform in last
section imitates the resource obtained by a task when sharing
processors with other tasks. A naive way to realize the con-
ceptual uniform multiprocessors on our identical unit-speed
multiprocessor platform is to use fairness-based scheduling,
in which task switching is sufficiently frequent so that each
task receives a fixed portion of processing capacity. However,
this approach incurs extremely high context switch overheads
which may not be acceptable in practice.

In the following, we introduce our method to realize the
proportional sharing of processing capacity without frequent
context switches. The key idea is to use a runtime dispatcher
for each DAG task to encapsulate the execution on a concep-
tual processor with speed δp into a container task ϕp with a
load bound δp. The dispatcher guarantees that the workload
encapsulated into a container task does not exceed its load
bound. These container tasks are scheduled using priority-
based scheduling algorithms and their load bounds can be used
to decide the schedulability.

As will be introduced in the next section, in our semi-
federated scheduling algorithms, most of the container tasks
used by a DAG task have a load bound 1, which correspond
to the dedicated processors, and only a few of them have
fractional load bounds (< 1). However, for simplicity of pre-
sentation, in this section we treat all container tasks identically,
regardless whether the load bound is 1 or not.

Suppose we execute a DAG task through m container tasks
{ϕ1, ϕ2, · · · , ϕm}. Each of the container task is affiliated with
the following information ϕp = (δp, dp, exep):

• δp: the load bound of ϕp, which is a fixed value.
• dp: the absolute deadline of ϕp, which varies at runtime.
• exep: the vertex currently executed by ϕp, which also

varies at runtime

At each time instant, a container task is either occupied
by some vertex or empty. If a container task is occupied
by vertex v, i.e., exep = v, then this container task is
responsible to execute the workload of v and the maximal
workload executed by this container task executes before the
absolute deadline dp is c(v). A vertex v may be divided into
several parts, and the their total WCET equals c(v), as will be
discussed later when we introduce Algorithm 1. Note that an
occupied container task becomes empty when time reaches
its absolute deadline.

Algorithm 1 The dispatching algorithm (invoked at time t).
1: v = an arbitrary eligible vertex in S (S stores the set of

vertices that have not been executed yet);
2: Remove v from S;
3: ϕp = the empty container task with the largest load bound;
4: d′ = the earliest deadline of all occupied container tasks

with load bound strictly larger than δp;
5: if (all container tasks are empty) ∨ (d′ > t+ c(v)

δp
) then

6: dp = t+ c(v)/δp
7: exep = v
8: else
9: dp = d′

10: Split v into v′ and v′′ so that

c(v′) = (dp − t)× δp and c(v′′) = c(v)− c(v′)

11: exep = v′

12: Put v′′ back to the head of S;
13: Add a precedence constraint from v′ to v′′;
14: end if

Fig. 5. A scheduling sequence on container tasks.

The pseudo-code of the dispatcher is shown in Algorithm
1. At runtime, the dispatcher is invoked when there exist both
empty container tasks and eligible vertices. The target of the
dispatcher is to assign (a part of) an eligible vertex to the
fastest empty container task.

The absolute deadline dp of a container task ϕp mimics the
finishing time of a vertex if it is executed on a processor with
the speed δp. When the container task starts to be occupied by
a vertex v at time t, dp is set to be dp = t+c(v)/δp. Therefore,
we have the following property of Algorithm 1. First, the
dispatcher guarantees the execution rate of a container task
is consistent with the corresponding uniform processors:

Property 1. If ϕp starts to be occupied by v from t1 and
becomes empty at t2, the maximal workload executed by ϕp
in [t1, t2) is (t2 − t1)δp.

Another key point of Algorithm 1 is always keeping the
container task with larger load bounds being occupied, which
mimics the second work-conserving scheduling rule on uni-
form multiprocessors (workload is always executed on faster
processors). This is done by checking the condition in line 5:

d′ > t+ c(v)/δp (10)

where d′ is the earliest absolute deadline among all the
container tasks currently being occupied and δp is load bound
of the fastest empty container task which will be used now.
If this condition does not hold, putting the entire v into ϕp
may lead to the situation that a container task with a larger
load bound becomes empty while ϕp is still occupied. This
corresponds to the situation on uniform processors that a faster
processor is idle while a slower processor is busy, which
violates the second work-conserving scheduling rule. To solve
this problem, in Algorithm 1, when condition (10) does not
hold, v is split into two parts v′ and v′′, so that ϕp only
executes the first part v′, whose deadline exactly equals to the
earliest absolute deadline of all faster container tasks (line 10).
The remaining part v′′ is put back to S and will be assigned
in the future, and a precedence from v′ to v′′ is established to
guarantee that v′′ become eligible only if v′ has finished. In
summary, Algorithm 1 guarantees the following property:

Property 2. The eligible vertices are always executed upon
the container tasks with the largest load bounds.

Figure 5 shows a possible scheduling sequence of the
example DAG task in Figure 2 executed on three container

tasks with load bounds δ1 = 1, δ2 = 0.5 and δ3 = 0.25. An
upwards arrow represents an empty container task becoming
occupied and a downwards arrow represents an occupied
task becoming empty. Algorithm 1 is invoked whenever there
exist both eligible vertices and empty container tasks. This
scheduling sequence corresponds to the scheduling sequence
of the same task on uniform processors with speeds δ1 = 1,
δ2 = 0.5 and δ3 = 0.25 in Figure 3. We can see that the
amount of workload executed between any two time points at
which Algorithm 1 is invoked, is the same in both scheduling
sequences. An step-by-step explanation of this example is
given in Appendix-B.

In general, if each container task always finishes the work-
load of its assigned vertex before the corresponding deadline,
the scheduling sequence resulted by Algorithm 1 on container
tasks with load bounds {δ1, · · · , δm} corresponds to a work-
conserving scheduling sequence of the same DAG task on
uniform multiprocessors with speeds {δ1, · · · , δm}. Therefore
the response time bound in Theorem 1 can be applied to bound
the response time of the DAG task executed on container tasks
using Algorithm 1. By the above discussions, we can conclude
the following theorem.

Theorem 2. Suppose a DAG task τi executes on m container
tasks with load bounds {δ1, · · · , δm} and each container task
always finishes its assigned workload before the corresponding
absolute deadline, then the response time R of τi is upper
bounded by:

R ≤ Ci + λLi
Sm

(11)

V. SEMI-FEDERATED SCHEDULING ALGORITHMS

In this section, we propose two semi-federated scheduling
algorithms based on container task and runtime dispatcher
introduced in last section. In the first algorithm, a DAG task
requiring x + ε processing capacity is granted x dedicated
processors and one container task with load bound ε, and
all the container tasks and the light tasks are scheduled by
partitioned EDF on the remaining processors. The second
algorithm enhances the first one by allowing to divide the frac-
tional part ε into two container tasks, which further improves
resource utilization.

A. The First Algorithm: SF[x+1]

By Theorem 2 we know a DAG task is schedulable if the
load bounds {δ1, · · · , δm} of the container tasks satisfy

Ci + λLi
Sm

≤ Di (12)

where λ is the uniformity and Sm is the sum of {δ1, · · · , δm},
defined in Definition 1. There are difference choices of the
container tasks to make a DAG task schedulable. In general,
we want to make the DAG task to be schedulable with as little
processing capacity as possible. The load bound of a container
task actually represents its required processing capacity, and
thus Sm represents the total processing capacity required by
all the container tasks of a DAG task. In the following, we

will introduce how to choose the feasible container task set
with the minimal Sm.

We first show that the total load bound of any container task
set that can pass the condition (12) has a lower bound:

Definition 2. The minimal capacity requirement γi of a DAG
task τi is defined as:

γi =
Ci − Li
Di − Li

(13)

Lemma 1. A DAG task τi is scheduled on m container
tasks with load bounds {δ1, δ2, · · · , δm}. If condition (12) is
satisfied, then it must hold

Sm ≥ γi

Proof. Without loss of generality, we assume the container
tasks are sorted in non-increasing order of their load bounds,
i.e., δp ≥ δp+1. By the definition of λ we have

λ ≥ Sm − δ1
δ1

and since the load bounds are at most 1, i.e., δ1 ≤ 1, we know

λ ≥ Sm − 1

Applying this to (12) yields

Ci + (Sm − 1)Li
Sm

≤ Di ⇒ Sm ≥
Ci − Li
Di − Li

so the lemma is proved.

Next we show that the minimal capacity requirement is
achieved by using only one container task with a fractional
load bound (< 1) and x container tasks with load bound 1:

Lemma 2. A DAG task τi is schedulable on x container tasks
with load bound of 1 and one container task with load bound
δ, where x = bγic and δ = γi − bγic.

Proof. By the definition of λ, we get

λ= max

(
γi − 1

1
, · · · , γi − bγic

1

)
= γi − 1

and we know Sm = x+ δ = γi. So by (11) the response time
of τi is bounded by

R ≤ Ci + (γi − 1)Li
γi

In order to prove τi is schedulable, it is sufficient to prove

Ci + (γi − 1)Li
γi

≤ Di

which must be true by the definition of γi.

In summary, by Lemma 1 and 2 we know using x container
tasks with load bound 1 and one container task with a frac-
tional load bound requires the minimal processing capacity,
which motivates our first scheduling algorithm SF[x+1].

The pseudo-code of SF[x+1] is shown in Algorithm 2. The
rules of SF[x+1] can be summarized as follows:

Algorithm 2 The first semi-federated algorithm: SF[x+1].
1: for each heavy task τi do
2: γi = Ci−Li

Di−Li

3: if less than bγic avaiable processors then
4: return failure
5: end if
6: assign bγic dedicated processors to τi
7: create a container task with load bound γi−bγic for τi
8: end for
9: Ω = the set of remaining processors

10: S = the set of container tasks ∪ the set of light tasks
11: if Sched(S, Ω) then return success else return failure

• Similar to the federated scheduling, SF[x+1] also clas-
sifies the DAG tasks into heavy tasks (density > 1) and
light tasks (density ≤ 1).

• For each heavy task τi, we grant bγic dedicated proces-
sors and one container task with load bound γi−bγic to
it where γi = Ci−Li

Di−Li
(line 2 to 7). The algorithm declares

a failure if some heavy tasks cannot get enough dedicated
processors.

• After granting dedicated processors and container tasks to
all heavy tasks, the remaining processors will be used to
schedule the light tasks and container tasks. The function
Sched(S, Ω) (in line 11) returns the the schedulability
testing result of the task set consisting of light tasks and
container tasks on processors in Ω.

Various multiprocessor scheduling algorithms can be used to
schedule the light tasks and container tasks, such as global
EDF and partitioned EDF. In this work, we choose to use
partitioned EDF, and in particular with the Worst-Fit packing
strategy [8], to schedule them.

More specificly, at design time, the light tasks and container
tasks are partitioned to the processors in Ω. Tasks are parti-
tioned in the non-increasing order of their load (the load of
a light task τi equals its density Ci/Di, and the load of a
container task ϕp equals its load bound δp). At each step the
processor with the minimal total load of currently assigned
tasks is selected, as long the total load of the processor after
accommodating this task still does not exceed 1. Sched(S,
Ω) returns true if all tasks are partitioned to some processors,
and returns false otherwise.

At runtime, the jobs of tasks partitioned to each processor
are scheduled by EDF. Each light task behaves as a standard
sporadic task. Each container task behaves as a GMF (general
multi-frame) task [9]: when a container task ϕp starts to be
occupied by a vertex v, ϕp releases a job with WCET c(v) and
an absolute deadline dp calculated by Algorithm 1. Although
a container task ϕp releases different types of jobs, its load is
bounded by δp as the density of each of its jobs is δp.

Appendix-C presents an example to illustrate SF[x+1].
Recall that in the runtime dispatching, a vertex may be split

into two parts, in order to guarantee a “faster” container task is
never empty when a “slower” one is occupied. The following

theorem bounds the number of extra vertices created due to
the splitting in SF[x+1].

Theorem 3. Under SF[x+1], the number of extra vertices
created in each DAG task is bounded by the number of vertices
in the original DAG.

Proof. Let N be the number of vertices in the original DAG.
According to Algorithm 1, a vertex will not be split if it
is dispatched to a dedicated processor (i.e., a container task
with load bound 1). The number of vertices executed on these
dedicated processors is at most N . A vertex my be split when
being dispatched to the container task with a fractional load
bound, and upon each splitting, the deadline of the first part
must align with some vertices on the dedicated processors, so
the number of splitting is bounded by N .

B. The Second Algorithm: SF[x+2]

In partitioned EDF, “larger” tasks in general lead to worse
resource waste. The system schedulability can be improved if
tasks can be divided into small parts. In SF[x+1], each heavy
task is granted several dedicated processors and one container
task with fractional load bound. The following examples shows
we can actually divide this container task into two smaller ones
without increasing the total processing capacity requirement.

Consider the DAG task in Figure 2, the minimal capacity
requirement of which is

γi =
Ci − Li
Di − Li

=
16− 8

14− 8
=

4

3

Accordingly, SF[x+1] assigns one dedicated processor and one
container task with load bound 1

3 to this task.
Now we replace the container task with load bound 1

3 by
two container tasks with load bounds 1

4 and 1
12 . After that,

the total capacity requirement is unchanged since 1
3 = 1

4 + 1
12 ,

and the DAG task is still schedulable since the uniformity of
both {1, 1

3} and {1, 1
4 ,

1
12} is 1

3 .
However, in general dividing a container task into two

may increase the uniformity. For example, if we divide the
container task in the above example into two container tasks
both with load bound 1

6 , the uniformity is increased to 1 and
the DAG task is not schedulable. The following lemma gives
the condition for dividing one container task into two without
increasing the uniformity:

Lemma 3. A heavy task τi with minimal capacity require-
ment γi is scheduled on bγic dedicated processors and two
container tasks with load bounds δ′ and δ′′ s.t.

δ′ + δ′′ = γi − bγic

τi is schedulable if

δ′ ≥ max

(
γi − bγic

2
,
γi − bγic

γi

)
(14)

Proof. By Theorem 2 we know the response time of τi is
bounded by

R ≤ Ci + λLi
Sm

(15)

Since δ′ + δ′′ = γi − bγic and δ′ ≥ (γi − bγic)/2, we know
δ′ ≥ δ′′. So we can calculate λ of bγic dedicated processors
and two container tasks with load bounds δ′ and δ′′ by:

λ=
m

max
x=1

{
Sm − Sx

δx

}
= max

(
γi − 1

1
,
γi − 2

1
, · · · , γi − bγic

1
,
δ′′

δ′
,

0

δ′′

)
= max

(
γi − 1

1
,
δ′′

δ′

)
(16)

By δ′+ δ′′ = γi−bγic and δ′ ≥ γi−bγic
γi

we get δ
′′

δ′ ≤ γi− 1.
Applying this to (16) gives λ = γi − 1. Moreover, we know
Sm = bγic+ δ′ + δ′′ = γi. Therefore, we have

R ≤ Ci + λLi
Sm

=
Ci + (γi − 1)Li

γi

and by the definition of γi in (13) we know

Ci + (γi − 1)Li
γi

= Di

so we can conclude Ri ≤ Di, and thus τi is schedulable.

Based on the above discussions, we propose the second
federated scheduling algorithm SF[x+2]. The overall proce-
dure of SF[x+2] is similar to SF[x+1]. The only difference is
that SF[x+2] uses Sched∗(S, Ω) to replace Sched(S, Ω) in
line 11 of Algorithm 2. The pseudo-code of Sched∗(S, Ω) is
given in Algorithm 3. The inputs of Sched∗ are S, the set of
sequential tasks (including the generated container tasks and
the light tasks), and Ω, the remaining processors to be shared
by these sequential tasks.

There are infinitely many choices to divide a container
task into two under the condition of Lemma 3. Among these
choices, on one simply dominates others, since the quality of a
choice depends on how the tasks are partitioned to processors.
In Sched∗(S, Ω), the container tasks are divided in an on-
demand manner. Each container task ϕk of task τi, apart from
its original load bound δk, is affiliated with a δ∗k, representing
the minimal load bound of the larger part if ϕk is divided into
two parts. δ∗k is calculated according to Lemma 3:

δ∗k = max

(
γi − bγic

2
,
γi − bγic

γi

)
(17)

For consistency, each light task τj is also affiliated with a δ∗j
which equals to its density δj = Ci/Di.

Sched∗(S, Ω) works in three steps:
1) It first partitions all the input container tasks and light

tasks using the Worst-First packing strategy using their
δ∗k as the metrics. We use ϕ(Px) to denote the set of
tasks have been assigned to processor Px. If the sum
of δk of all tasks in ϕ(Px) has exceeded 1, we stop
assigning tasks to Px and move it to the set Ψ.

2) The total δk of tasks on each processor Px in Ψ is larger
than 1, therefore some of tasks on Px must be divided
into two, and one of them should be assigned to other
processors. On the other hand, the total δ∗k of some tasks

on Px is no larger than 1, which guarantees that we
can divide tasks on Px to reduce its total δk to 1. The
function Scrape(Px) divides container tasks on Px and
make the total load of Px to be exactly 1 and returns
the newly generated container tasks. The pseudo-code
of Scrape(Px) is shown in Algorithm 4.

3) Finally, Partition(S, Ω) partitions all the generated con-
tainer tasks in step 2) to the processors remained in Ω
using the Worst-Fit packing strategy. After the first step,
the total load of tasks on processors remained in Ω is still
smaller than 1, i.e., they still have remaining available
capacity and potentially can accommodate more tasks.
Partition(S, Ω) returns true if tasks in S can be suc-
cessfully partitioned to processors remained in Ω, and
returns false otherwise.

Algorithm 3 Sched∗(S, Ω) in SF[x+2].
1: Sort elements in S in non-increasing order of their δ∗i
2: Ψ = ∅
3: for each sequential task ϕk (including both container tasks

and light tasks) do
4: Px = a processor in Ω with the minimal

∑
ϕi∈ϕ(Px) δ

∗
i

and satisfying
δ∗k +

∑
ϕi∈ϕ(Px)

δ∗i <= 1

5: if Px = NULL then return failure;
6: ϕ(Px) = ϕ(Px) ∪ {ϕk}
7: if

∑
ϕi∈ϕ(Px) δi > 1 then move Px from Ω to Ψ

8: end for
9: S = ∅

10: for each core Px ∈ Ψ do
11: S = S ∪ Scrape(Px);
12: end for
13: if Partition(S, Ω) then return success else return failure

Algorithm 4 Scrape(Px).
1: SS = ∅
2: w =

∑
ϕk∈ϕ(Px) δk − 1

3: for each container task ϕk ∈ ϕ(Px) do
4: if δk − δ∗k > w then
5: divide ϕk into ϕ′k and ϕ′′k such that

δ′′k = w ∧ δ′k = δk − δ′′k
6: put ϕ′′k in SS (ϕ′k still assigned to Px)
7: return SS
8: else
9: divide ϕk into ϕ′k and ϕ′′k such that

δ′k = δ∗k ∧ δ′′k = δk − δ∗k
10: put ϕ′′k in SS (ϕ′k still assigned to Px)
11: w = w − δ′′k
12: end if
13: end for

Appendix-C includes an example to illustrate SF[x+2].

The number of extra vertices created by runtime dispatching
of each DAG task in SF[x+2] is bounded as follows.

Theorem 4. Under SF[x+2], the number of extra vertices
created in each DAG task is bounded by 2N , where N is the
number of vertices in the original DAG.

The intuition of the proof is similar to that of Theorem 3.
The difference is that SF[x+2] uses two container tasks, so the
number of splitting is doubled in the worst-case. A complete
proof of the theorem is provided in Appendix-D.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
semi-federated algorithms. We compare the acceptance ratio of
SF[x+1] and SF[x+2]with the state-of-the-art algorithms and
analysis methods in all the three types of parallel real-time
task scheduling algorithms:
• Decomposition-based scheduling: (i) The EDF-based

scheduling and analysis techniques developed in [10],
denoted by D-SAI. (ii) The EDF-based scheduling and
analysis techniques in [11], denoted by D-XU.

• Global scheduling: (i) The schedulability test based on
capacity augmentation bounds for global EDF scheduling
in [1], denoted by G-LI. (ii) The schedulability test based
on response time analysis for global EDF scheduling in
[3], denoted by G-MEL. G-MEL was developed for a
more general DAG model with conditional branching, but
can be directly applied to the DAG model of this paper,
which is a special case of [3].

• Federated scheduling: the schedulability test based on
the processor allocation strategy in [1], denoted by F-LI.

Other methods not included in our comparison are either theo-
retically dominated or shown to be significantly outperformed
(with empirical evaluations) by one of the above methods.

The task sets are generated using the Erdös-Rényi method
G(ni, p) [12]. For each task, the number of vertices is
randomly chosen in the range [50, 250] and the worst-case
execution time of each vertex is randomly picked in the
range [50, 100], and a valid period is generated according
to a similar method with [10]. The period Ti is set to be
(Li+

Ci

0.4m∗U)∗(1+0.25∗Gamma(2, 1)) where Gamma(2, 1)
is a random value by using gamma distribution and U is the
normalized utilization of the task set (total utilization divided
by the number of processors m). In this way, we can: (i)
make a valid period, (ii) generate a reasonable number of tasks
when the processor number and total utilization of the task sets
change. For each possible edge we generate a random value
in the range [0, 1] and add the edge to the graph only if the
generated value is less than a predefined threshold p. In general
the critical path of a DAG generated using the Erdös-Rényi
method becomes longer as p increases, which makes the task
more sequential. We compare the acceptance ratio of each
method, which is the ratio between the number of task sets
deemed to be schedulable by a method and the total number
of task sets in the experiments (of a specific group). For each
parameter configuration, we generate 10000 task sets.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0

2 0

4 0

6 0

8 0

1 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0

2 0

4 0

6 0

8 0

1 0 0

Ac
ce

pta
nc

e R
ati

o %

N o r m a l i z e d U t i l i z a t i o n

 S F [x + 2]
 S F [x + 1]
 D - X U
 D - S A I
 G - L I
 G - M E L
 F - L I

(a) m = 8

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0

2 0

4 0

6 0

8 0

1 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0

2 0

4 0

6 0

8 0

1 0 0

Ac
ce

pta
nc

e R
ati

o %

N o r m a l i z e d U t i l i z a t i o n

 S F [x + 2]
 S F [x + 1]
 D - X U
 D - S A I
 G - L I
 G - M E L
 F - L I

(b) m = 16

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0

2 0

4 0

6 0

8 0

1 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0

2 0

4 0

6 0

8 0

1 0 0

Ac
ce

pta
nc

e R
ati

o %

N o r m a l i z e d U t i l i z a t i o n

 S F [x + 2]
 S F [x + 1]
 D - X U
 D - S A I
 G - L I
 G - M E L
 F - L I

(c) m = 32

Fig. 6. Comparing SF[x+1] and SF[x+2] with the state-of-the-art with different number of processors.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
0

2 0

4 0

6 0

8 0

1 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

0

2 0

4 0

6 0

8 0

1 0 0

Ac
ce

pta
nc

e R
ati

o %

p

 S F [x + 2]
 S F [x + 1]
 F - L I

(a) Comparison with different p.

2 3 4 5 6 7
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0 2 3 4 5 6 7

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

No
ma

lize
d P

roc
es

so
r R

eq
uir

me
nt

A v e r a g e γi

 S F [x + 2]
 S F [x + 1]

(b) Comparison with different average se-
qeutial task load.

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
0 . 0

0 . 3

0 . 6

0 . 9

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

0 . 0

0 . 3

0 . 6

0 . 9

Ac
ce

pta
nc

e R
ati

o %

A v e r a g e S e q u e n t i a l T a s k L o a d

 S F [x + 2]
 S F [x + 1]

(c) Comparison with different average γi.

Fig. 7. Comparing SF[x+1] and SF[x+2] with federated scheduling in different dimensions.

Figure 6 compares the acceptance ratios of different meth-
ods with fixed p = 0.1 and different number of processors.
In each figure, the experiment results are grouped by the nor-
malized utilization task set (x-axis). We can see that our two
semi-federated scheduling algorithms significantly outperform
all the state-of-the-art methods in different categories.

Then we made in-depth comparison between federated
scheduling (F-LI) and our semi-federated scheduling algo-
rithms. Figure 7-(a) shows the acceptance ratio with m = 16
and different p values (x-axis). We can see that semi-federated
scheduling significantly outperforms federated scheduling ex-
cept when p is large, i.e., when tasks are very sequential.
In the extreme case, when tasks are all sequential, both
federated and semi-federated scheduling degrade to traditional
multiprocessor scheduling of sequential tasks.

Figure 7-(b) compares the minimal number of proces-
sors required by the federated scheduling and semi-federated
scheduling algorithms to make the task set schedulable. In
these experiments we set p = 0.1. The experiment results are
grouped by the average minimal capacity requirement γi of all
heavy tasks in a task set. A value x on the x-axis represents
range (x − 1, x]. The y-axis is the average ratio between the
minimal number of processors required by SF[x+1](SF[x+2])
and the minimal number of processors required by F-LI, to
make the task set schedulable. We can see the resource saving
by SF[x+1](SF[x+2]) is more significant when γi is smaller.

Figure 7-(c) compares our two semi-federated scheduling
algorithms, in which all task sets have a fixed total normalized

utilization 0.9, and we set m = 16 and p = 0.1. The
experiment results are grouped by the average load of the
sequential tasks (container tasks with fractional load bounds
and light tasks) participating the partitioning on the shared
processors (i.e., tasks in S for Sched(S, Ω) and Sched∗(S,
Ω)). A value x on the x-axis represents range (x − 0.1, x].
As expected, when the task sizes are larger, the performance
of SF[x+1] degrades. SF[x+2] maintains good performance
with large tasks since dividing a large container task into two
significantly improves resource utilization.

VII. RELATED WORK

Early work on real-time scheduling of parallel tasks as-
sume restricted constraints on task structures [13]–[22]. For
example, a Gang EDF scheduling algorithm was proposed in
[15] for moldable parallel tasks. The parallel synchronous task
model was studied in [16]–[22]. Real-time scheduling algo-
rithms for DAG tasks can be classified into three paradigms:
(i) decomposition-based scheduling [10], [11], [23], [24], (ii)
global scheduling (without decomposition) [3], [25], [26] , and
(iii) federated scheduling [1], [27]–[29] .

The decomposition-based scheduling algorithms transform
each DAG into several sequential sporadic sub-tasks and
schedule them by traditional multiprocessor scheduling algo-
rithms. In [10], a capacity augmentation bound of 4 was proved
for global EDF. A schedulability test in [23] was provided to
achieve a lower capacity augmentation bound in most cases,
while in other cases above 4. In [24], a capacity augmentation

bound of 3+
√

5
2 was proved for some special task sets. In [11],

a decomposition strategy exploring the structure features of the
DAG was proposed, which has capacity augmentation bound
between 2 and 4, depending on the DAG structure.

For global scheduling (without decomposition), a resource
augmentation bound of 2 was proved in [30] for a single DAG.
In [25], [31], a resource augmentation bound of 2− 1/m and
a capacity augmentation bound of 4−2/m were proved under
global EDF. A pseudo-polynomial time sufficient schedulabil-
ity test was presented in [25], which later was generalized
and dominated by [26] for constrained deadline DAGs. [31]
proved the capacity augmentation bound 3+

√
5

2 for global and
3.732 for global RM. In [32] a schedulability test for arbitrary
deadline DAG was derived based on response-time analysis.

For federated scheduling, [1] proposed an algorithm for
DAGs with implicit deadline which has a capacity augmenta-
tion bound of 2. Later, federated scheduling was generalized to
constrained-deadline DAGs [27], arbitary-deadline DAGs [28]
as well as DAGs with conditional branching [29].

The scheduling and analysis of sequential real-time tasks
on uniform multiprocessors was studied in [7], [33], [34].
Recently, Yang and Anderson [35] investigated global EDF
scheduling of npc-sporadic (no precedence constraints) tasks
on uniform multiprocessor platform. This study was later
extended to DAG-based task model on heterogeneous multi-
processors platform in [36] where a release-enforcer technique
was used to transformed a DAG-based task into several npc-
sporadic jobs thus eliminating the intra precedence constraints
and provide analysis upon the response time.

VIII. CONCLUSIONS

We propose the semi-federate scheduling approach to solve
the resource waste problem of federated scheduling. Experi-
ments results show significantly performance improvements of
our approach comparing with the state-of-the-art for schedul-
ing parallel real-time tasks on multi-cores. In the next step,
we will integrate our approach with the work-stealing strategy
[37] to support hight resource utilization with both hard real-
time and soft real-time tasks at the same time.

REFERENCES

[1] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
ECRTS, 2014.

[2] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global edf
scheduling of systems of conditional sporadic dag tasks,” in ECRTS,
2015.

[3] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in ECRTS, 2015.

[4] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
journal on Applied Mathematics, 1969.

[5] S. Baruah, “Techniques for multiprocessor global schedulability analy-
sis,” RTSS, 2007.

[6] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” RTSS, 2005.

[7] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” in RTSS, 2001.

[8] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on Computing, 1974.

[9] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, 1999.

[10] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel
real-time scheduling of dags,” Parallel and Distributed Systems, IEEE
Transactions on, 2014.

[11] X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-based
global edf scheduling of parallel real-time tasks,” in RTSS, 2016.

[12] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
ICST, 2010.

[13] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A new ap-
proach for scheduling of parallelizable tasks in real-time multiprocessor
systems,” Real-Time Systems, 1998.

[14] W. Y. Lee and L. Heejo, “Optimal scheduling for real-time parallel
tasks,” IEICE transactions on information and systems, 2006.

[15] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task systems,”
in RTSS, 2009.

[16] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS, 2010.

[17] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
2013.

[18] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study on a
self-driving car,” in ICCPS, 2013.

[19] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in ECRTS, 2012.

[20] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in
RTNS, 2014.

[21] B. Andersson and D. de Niz, “Analyzing global-edf for multiprocessor
scheduling of parallel tasks,” in OPODIS, 2012.

[22] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in ECRTS, 2013.

[23] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global edf
scheduling of directed acyclic graphs on multiprocessor systems,” in
RTNS, 2013.

[24] M. Qamhieh, L. George, and S. Midonnet, “A stretching algorithm for
parallel real-time dag tasks on multiprocessor systems,” in RTNS, 2014.

[25] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in ECRTS, 2013.

[26] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic dag task systems,” in ECRTS, 2014.

[27] ——, “The federated scheduling of constrained-deadline sporadic dag
task systems,” in DATE, 2015.

[28] ——, “Federated scheduling of sporadic dag task systems,” in IPDPS,
2015.

[29] ——, “The federated scheduling of systems of conditional sporadic dag
tasks,” in EMSOFT, 2015.

[30] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS, 2012.

[31] J. Li, K. Agrawal, C. Lu, and C. Gill, “Outstanding paper award:
Analysis of global edf for parallel tasks,” in ECRTS, 2013.

[32] A. Parri, A. Biondi, and M. Marinoni, “Response time analysis for g-edf
and g-dm scheduling of sporadic dag-tasks with arbitrary deadline,” in
RTNS, 2015.

[33] S. Funk and S. Baruah, “Characteristics of edf schedulability on uniform
multiprocessors,” ECRTS, 2003.

[34] S. Baruah and J. Goossens:, “The edf scheduling of sporadic task
systems on uniform multiprocessors,” RTSS, 2008.

[35] K. Yang and J. H. Anderson, “Optimal gedf-based schedulers that allow
intra-task parallelism on heterogeneous multiprocessors,” in ESTIMedia,
2014.

[36] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time bounds
for dag-based task systems on heterogeneous multicore platforms,” in
RTNS, 2016.

[37] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems,” in
RTSS, 2016.

APPENDIX-A: RESPONSE TIME BOUNDS WITHOUT
INTER-PROCESSOR MIGRATION

The work-conserving scheduling rules for uniform multipro-
cessors in Section III-B requires the vertices to migrate from
slower processors to faster processors whenever possible. If
such migration is forbidden, the resource may be significantly
wasted and the response time can be much larger. We say a
scheduling algorithm is weakly work-conserving if only the
first work-conserving rule in Section III-B is satisfied and a
vertex is not allowed to migrate from one processor to another.
The response time of a DAG task under weakly conserving
scheduling is bounded by the following theorem:

Theorem 5. Give m uniform processors with speeds
{δ1, δ2, ..., δm} (sorted in non-increasing order. The response
time of a DAG task τi by a weakly work-conserving scheduling
algorithm is bounded by

R ≤ Li
δm

+
Ci − Li∑m
i=1 δi

(18)

Proof. Without loss of generality, we assume the task under
analysis releases an instance at time 0, and thus R is the time
point when the currently release of π is finished. In the time
window [0, R], let α denote the total length of intervals during
which the at least one processor is idle and β denote the total
length of the intervals during which all processors are busy.
Therefore, we know R = α+β. Let π be an arbitrary path in
the DAG starting from the head vertex and ending at the tail
vertex. We use γ(π) to denote the total amount of workload
executed for vertices along path π in all the time intervals of
α. The total work done in all time interval of β is Ci− γ(π).
Since at least one processor is idle in time intervals of α, π
must contain a vertex being executed in these time intervals
(since at any time point before R, there is at least one eligible
vertex along any path) and δm is the speed of the slowest
processor. Therefore, we know:

α ≤ γ(π)

δm

As the total work been done in all time interval of β (where
all processors are busy) is at most Ci − γ(π), we have

βSm ≤ Ci − γ(π)

⇔ β ≤ C − γ(π)

Sm

Hence we have

R = α+ β ≤ γ(π)

δm
+
Ci − γ(π)

Sm
(19)

Let lπ denote the total workload (of all vertices) along path
π, so we know γ(π) ≤ lπ . Since Li is the total workload of
the longest path in the DAG, we know lπ ≤ Li, in summary
we have γ(π) ≤ Li and applying this to (19) concludes the
lemma.

Theorem 6. The response time bound in (18) is tight for
weakly work-conserving scheduling algorithms.

(a) A DAG task example. (b) Scheduling sequence.

Fig. 8. Scheduling of a DAG task without migration.

Proof. The tightness is witnessed by the example in Figure
8. Let R′ denote its actual response time of the task in the
scheduling sequence in Figure 8-(b), and R′′ the response time
bound in 18. R′/R′′ approaches 1 as X approaches infinity.

As illustrated in Figure 8, if inter-processor migration is
forbidden, the response time is almost the same as executing
the critical path on the slowest processor, while the faster
processors are all wasted.

APPENDIX-B: DETAILED EXPLANATION OF THE EXAMPLE
IN FIGURE 5

• At time t = 0, the only eligible vertex v1 starts to occupy
the “fastest” container task ϕ1, and its absolute deadline
is set to be d1 = 0 + 1/1 = 1.

• At time t = 1, ϕ1 becomes empty, and v2, v3 and v4

become eligible. Suppose we first select v4 to execute
on ϕ1, with d1 = 1 + 4/1 = 5. After that, Algorithm
1 is invoked again to assign a container task to the next
eligible vertex v3. If we encapsulate the entire v3 into
ϕ2, then the resulting absolute deadline 1 + 3/0.5 = 7
is later than the absolute deadline of a “faster” container
task ϕ1’s deadline d1 = 5. Therefore, we must split v3

into v′3 and v′′3 , so that putting v′3 into ϕ2 results in the
same absolute deadline as ϕ1, and v′′3 is put back to S for
further consideration. Next, Algorithm 1 is invoked again
to assign the only eligible vertex v2 to the remaining
container task ϕ3. Similarly, v2 cannot be put into ϕ3

entirely, and we split it into v′2 and v′′2 so that d3 = 5.
• At time t = 5, all the container tasks reach their absolute

deadlines and thus becomes empty, and currently only
v′′2 and v′′3 are eligible. Suppose we first choose to put v′′2
into ϕ1 with d1 = 5 + 4/1 = 9, then put v′′3 into ϕ2 with
d2 = 5 + 1/0.5 = 7, which is smaller than d1.

• At time t = 7, ϕ2 reaches its absolute deadline and thus
become empty, and v5 become eligible and should be
put into ϕ2 (ϕ1 is still being occupied). v5 also needs
to be split into two parts c(v′5) = c(v′′5) = 1 to make
d2 = d1 = 9.

• At time t = 9, both ϕ1 and ϕ2 become empty and v′′5
become eligible, which is put into ϕ1 with d1 = 10.

• At time 10, the execution of v′′5 on ϕ1 is finished and the
last vertex v6 is put into the fastest container task ϕ1.

• At time 11, the entire task is finished.

APPENDIX-C: ILLUSTRATION OF SF[x+1] AND SF[x+2]
We use the following example to illustrate SF[x+1]. Assume

a task set consists of 4 DAG tasks, where the first three are
heavy, with the minimal capacity requirements γ1 = 1.6,
γ2 = 1.6 and γ3 = 1.5, and one light task with density
γ4 = 0.3. If scheduled by standard federated scheduling, each
of the three heavy tasks requires 2 dedicated processors, and
in total 7 processor are needed. If scheduled by SF[x+1], each
of the heavy task only requires one dedicated processors, and
they generate three container tasks, with load bounds 0.6, 0.6
and 0.5. These three container tasks, together with the light
tasks with density 0.3 is schedulable by partitioned EDF on
3 processors, so in total 6 processors are needed to schedule
the task set using SF[x+1].

We use the same task set as above to illustrate SF[x+2].
Now we assume the tasks are scheduled on 5 processors.
Since each heavy task is granted one dedicated processor, the
container tasks and light task share 2 processors. The load
bound of the three generated container tasks and the density
of the light tasks are

δ1 = 0.6, δ2 = 0.6, δ3 = 0.5, δ4 = 0.3

We can compute δ∗k for each task using (17):

δ∗1 =
3

8
, δ∗2 =

3

8
, δ∗3 =

1

3
, δ∗4 = 0.3 (20)

The algorithm Sched∗(S, Ω) works as follows:
1) ϕ1 is assigned to an empty processor P1.
2) ϕ2 is assigned to the other empty processor P2.
3) To assign ϕ3, both processors are holding a task with

the same load, so we choose any of them, say P1, to
accommodate ϕ3. Since δ∗1+δ∗3 = 3/8+1/3 < 1, we can
assign ϕ3 to P1. After that, since δ1+δ3 = 0.6+0.5 > 1,
P1 is moved from Ω to Ψ.

4) To assign ϕ4, since∑
ϕi∈ϕ(P1)

δ∗i = 3/8 + 1/3 >
∑

ϕi∈ϕ(P2)

δ∗i = 3/8

we try to assign ϕ4 to P2. Since δ∗2 +δ∗4 = 1/3+0.3 < 1,
we can assign ϕ4 to P2. After that, since δ2 + δ4 =
0.6 + 0.3 < 1, P2 remains in Ω.

5) After assigning all the four tasks, only P1 is in Ψ. So
we execute Scrape(P1). w = δ1 + δ3 − 1 = 0.1. Since
δ1− δ∗1 = 0.3−3/8 > 0.1, so we divide ϕ1 into ϕ

′

1 and
ϕ

′′

1 where δ
′′

1 = 0.1 and δ
′

1 = 0.6 − 0.1 = 0.5, and put
ϕ

′′

1 in SS.
6) There is only one processor P2 in Ω, since∑

ϕi∈ϕ(P1)

δi + δ
′′

1 = 0.6 + 0.3 + 0.1 = 1

we put ϕ
′′

1 is put in P2.
Therefore, the final result of Sched∗(S, Ω) is

P1 : δ
′

1 =
1

2
, δ3 =

1

2

P2 : δ2 =
3

5
, δ4 =

3

10
, δ

′′

1 =
1

10

APPENDIX-D: PROOF OF THEOREM 4

Proof. Let a task execute on several dedicated processors and
two fractional container tasks despite the unit containers with
density of δ

′
and δ

′′
, δ

′ ≥ δ
′′

. By the proof of Theorem 3
we know the number of splitting occurred on the container
task δ′ is at most N . In the following we prove the number
of splitting on the container task δ′′ is also at most N .

We use A to denote the set of vertices (including the parts of
the divided vertices) executed on dedicated processors, and use
B to denote the set of vertices (parts) executed on container
task δ′ with a deadline different from any deadlines of vertices
(parts) on the dedicated processors. If a vertex v is divided
into two parts, v′, executed on the container task δ′, and v′′,
executed on dedicated processors. The migration of v must
happens at a time point aligned with some deadline on the ded-
icated processors, so we know v′ must not be in B. Moreover,
according to Algorithm 1, the vertices assigned to dedicated
processors will not migrate to other processors. Therefore, the
total number of elements in A ∪ B is at most N . Therefore,
the number of time points aligned with deadlines of vertices
(parts) executed on the dedicated processors and container task
δ′ is bounded by N . Since a splitting on container task δ′′ only
occurs at time points aligned with deadlines of vertices (parts)
executed on the dedicated processors and container task δ′, we
can conclude the number of splitting on container task δ′′ is
also bounded by N .

In summary, the total number of vertices splitting all the two
container tasks is bounded by 2N . Since the vertices assigned
to dedicated processors will not migrate to other processors.
Therefore, the total number of newly generated vertices is
bounded by 2N .

