
Synthesis of Ada Code from Graph-Based Task Models

Jakaria Abdullah
Uppsala University

P.O. Box 337
751 05 Uppsala, Sweden

jakaria.abdullah@it.uu.se

Morteza Mohaqeqi
Uppsala University

P.O. Box 337
751 05 Uppsala, Sweden

morteza.mohaqeqi@it.uu.se

Wang Yi
Uppsala University

P.O. Box 337
751 05 Uppsala, Sweden

wang.yi@it.uu.se

ABSTRACT
Software for safety-critical applications must provide high-
confidence behavior through predictable timely executions.
The Synchronous Digraph Real-Time (SDRT) task model is
a graph-based model for safety-critical software, for which
efficient timing analysis techniques exist. In this work, we
present a software synthesis method to generate Ada source
code from SDRT models verified by timing analysis. We
also explore how the expressiveness of SDRT can be utilized
in synthesizing real-time simulation code of systems with
complex behavior through a heart/pacemaker case study.

CCS Concepts
•Computer systems organization → Embedded soft-
ware; Real-time system specification;

Keywords
Embedded software synthesis; Graph-based Task model;

1. INTRODUCTION

1.1 Motivation
The development of software for safety-critical applica-

tions is a complex process due to the tight requirement
of predictable execution beahvior. To ensure it, software
designers express timing requirements of the software com-
ponents in high-level models (often visual) and use timing
analysis tools such as MAST [14]. Implementation of such
timing analysed components is currently limited to either
time-triggered (TT) [13] or event-triggered (ET) [22] real-
time tasks with single job type.

Graph-based task models [21] such as SDRT [16] offer fea-
tures like multiple job types and job release patterns based
on a graph structure. We may require several simple TT
or ET tasks to implement the complex execution behavior
that a graph-based task can exhibit. [21] shows that a vari-
ant of SDRT without synchronization feature is one of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco
c© 2017 ACM. ISBN 978-1-4503-4486-9/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3019612.3019681

most expressive task models for independent real-time tasks.
Timing analysis of SDRT tasks is also shown to be efficiently
doable for large task sets [16]. However, there is no tool that
can generate software from graph-based task models such as
SDRT. In this paper, we present a software synthesis tech-
nique to generate executable source code from SDRT task
models. Our synthesis technique generates source code in
Ada [3], which is a well-established programming language
for developing safety-critical software.

1.2 Related Work
Exisitng state of the art code generators like Simulink em-

bedded coder [15], SCADE KCG [12] and QGen [4] provide
periodic and sporadic task synthesis from Synchronous Fi-
nite State Machine (FSM) blocks. Each FSM block has a
set of trigger events that, when active, may result in the ex-
ecution of a set of actions. Each of these events is associated
with a period, and it is common for an FSM to have multi-
ple activation events with different periods. To make sure it
will not miss any trigger event, the task is executed at the
greatest common divisor (GCD) of the periods of its trig-
ger events. This idea is optimized in [18, 11] by generating
multiple tasks according to a partitioning of the FSM based
on the periods of the trigger events to improve the system
schedulability. MAST [14] has an Ada code generator for
UML Marte profile [19] that can utilize schedulability anal-
ysis of periodic tasks with static and dynamic offsets. In
contrast, our focus is not in transforming functional models
into simplified real-time tasks but rather to consider expres-
sive graph-based task models for code synthesis that are not
periodic.

Timed automata [6] is one of the most expressive task
model which is considered for code generation and imple-
mentation [2, 5, 7, 23]. In [7], C code is synthesized from a
deterministic semantics of timed automata. In [20], timed
automata model of a pacemaker-heart system is translated
into Simulink Stateflow model and C/C++ code is gener-
ated from it using Simulink Coder [15]. In our work, we
are generating Ada code from SDRT which is a less expres-
sive workload model compared to timed automata but is
amenable to more efficient timing analysis.

The rest of the paper is organized as such, first we briefly
introduce the syntax and semantics of the graph-based task
model that we use in this paper. Next, we discuss the im-
portant aspects of this model in code synthesis followed by
the choice of programming language. Then we describe the
details of our synthesis algorithm. Finally, we present a case
study involving a pacemaker and a random heart model.

1467

http://dx.doi.org/10.1145/3019612.3019681

2. TASK MODEL
This section specifies the syntax, semantics and timing

analysis methods of the Synchronous Digraph Real-Time
task model used for code synthesis in this paper.

2.1 Syntax
We consider a real-time application to be composed of

a task set τ = {T1, . . . , TN} with N Synchronous Digraph
Real-Time (SDRT) [16] tasks. An SDRT task T is specified
by a directed graph G(T) = (V (T), E(T)), where V (T) and
E(T) denote the set of vertices and edges of G. Each vertex
v ∈ V (T) represents a type of real-time job that T can re-
lease. Here a real-time job is a piece of recurrent sequential
code. A vertex v is labeled with an ordered pair 〈e(v), d(v)〉
which denotes the worst-case execution-time e(v) and rela-
tive deadline d(v) of the corresponding job. Both values are
assumed to be positive integers.

The graph structure ofG(T) determines the order in which
jobs generated by T are released. Each edge (u, v) is labeled
with a positive integer p(u, v) denoting the minimum inter-
release time between two consecutive job releases. Addition-
ally an edge (u, v) in SDRT may be labeled with an action
which is denoted by a(u, v). The actions are used to denote a
synchronization between the tasks. Two SDRT tasks Ti and
Tj are said to have a synchronization on action s if there
exist some edges (u, v) ∈ G(Ti) and (u′, v′) ∈ G(Tj) such
that a(u, v) = s and a(u′, v′) = s. To model these actions as
rendezvous synchronization primitives we define two types
of valid actions. We use an action s? ending with ? to indi-
cate it as a get/accept action in a pairwise rendezvous. At
the same time, we use s! ending with ! symbol to denote the
corresponding send/call action of s?. We use the notation
a(u, v) = [] to show that an edge (u, v) is not associated with
any synchronization. Finally, we assume a job deadline d(u)
is bounded by p(u, v) for all outgoing edges (u, v).

2.2 Semantics
We define the semantics of SDRT based on the set of job

releases which can be generated by the respective tasks. Job
releases of an SDRT task are specified by a job sequence.
A job sequence together with the scheduling policy and job
priorities determine the execution order of the software code
modeled by the SDRT tasks.

Definition 2.1 (Job Sequence [16]). Let (Ri, ei, vi)
represent release of a job instance of task T , in which Ri, ei,
and vi denote the job release time, job execution time, and
the job type, respectively. A job sequence σ = [(R0, e0, v0),
(R1, e1, v1), . . .] is generated by T , if (v0, v1, . . .) is a path in
the task’s graph G(T), and for all i ≥ 0:

• Ri+1 −Ri ≥ p(vi, vi+1), and

• ei ≤ e(vi),

A job sequence may be finite or infinite.

The jobs of two SDRT tasks which are associated to a com-
mon synchronization action must be released at the same
time. If one of the synchronizing jobs is ready to be released
while the other one is not, it will be blocked until the other
job becomes ready. This synchronization behavior forces
SDRT tasks to generate only Synchronous Job Sequences.

Definition 2.2 (Synchronous Job Sequences [16]).
Two job sequences σ = [(R0, e0, v0), (R1, e1, v1), . . .] and σ′ =
[(R′0, e

′
0, v
′
0), (R′1, e

′
1, v
′
1), . . .] generated by two arbitrary SDRT

tasks Tp and Tq are said to be synchronous if for all i ≥
0, j ≥ 0: Ri = R′j if a(vi−1, vi) = a(v′j−1, v

′
j).

Consider an SDRT task and an arbitrary path π = (v0, v1, . . . , vl)
in the respective graph. Then, the most dense job sequence
generated via π is defined as σπ = [(R0, e0, v0), . . . , (Rl, el, vl)],
where

• R0 = 0,

• Ri =
∑i−1
j=0 p(vj , vj+1), for 0 < i ≤ l,

• ei = e(vi), for 0 ≤ i ≤ l.

While the most dense job sequence of a path is unique,
infinite number of job sequences can be associated to each
path. Figure 1 shows two SDRT tasks which have two syn-
chronizations on actions s1 and s2. Here, the release of job
v3 of task T1 is synchronized with the release of job v4 of task
T2 on action s2. As a result, v3 and v4 must be released at
the same time after satisfying their respective minimum job
inter-release separation times. The jobs that have no syn-
chronization on release such as v1 of task T1, can be released
without considering release of any jobs of T2.

v1 v2

v3

〈2, 20〉 〈1, 10〉

〈2, 15〉

25

40

1815

s1?

[]

[] s2?

(a) SDRT task T1

v1 v2

v4 v3

〈1, 10〉 〈3, 20〉

〈2, 20〉〈1, 15〉

10

30

20

25

15

s1!

[]

[][]

s2!

(b) SDRT task T2

Figure 1: Two SDRT tasks with two synchronizations on
actions s1 and s2.

2.3 Timing Analysis
A Static Priority (SP) schedulability analysis for SDRT

tasks in uniprocessor is presented in [16]. The algorithm
uses two abstraction refinement techniques based on over-
approximation and under-approximation of the workload to

1468

deal with combinatorial explosion of path combinations in
SDRT.

3. DESIGN DECISIONS
The goal of code synthesis is to transform a model to

an executable code while preserving the execution behavior
of the model. As we mentioned in the model semantics, a
path in an SDRT task can generate infinite number of job
sequences which can be different from each other. In the
next subsections we describe challenging model properties
of SDRT and our design decisions regarding the implemen-
tation of SDRT task using a programming language.

3.1 Non-determinism in the Model
There are two main sources of non-determinism in SDRT

models:

3.1.1 Minimum inter-release time
An SDRT task can release a job as soon as the minimum

inter-release time after the release of its previous job ex-
pires. The idea of minimum inter-release time introduced
in Sporadic tasks [17] is to model real-time jobs/interrupts
generated by external events. It is not possible to guaran-
tee schedulability of jobs released to handle interrupts that
occur arbitrarily frequently. However, when a minimum in-
terval between successive invocations is guaranteed by the
environment, schedulability becomes possible [8]. Clearly,
the concept of minimum inter-release time is a property of
SDRT which is important for timing analysis and should be
implemented by the execution of the code generated from
this model. An SDRT job can be released immediately after
the expiration of the relevant minimum inter-release time to
execute like a time-triggered job. To execute like an event-
triggered job, an SDRT job can be released by an event any
time after the expiration of the minimum inter-release time.
This event can be generated by another task of the system
or a hardware interrupt.

3.1.2 Branching behavior in job release
The second source of non-determinism in SDRT execution

is rooted in the feature of branching in job release. Branch-
ing in job release can happen in SDRT task in two ways:

Branching based on synchronization: In this case, the next
job to be released is determined based on satisfaction of both
timing and synchronization constraints. Here we observe
two sub-cases, namely (a) releases of all branch jobs have
both timing and synchronization constraints and (b) some
of the branch jobs have release constrained by synchroniza-
tion constraints but not all. An example of situation (b) is
depicted for job v2 in Figure 1(a). Here v2 has two successor
jobs namely v1 and v3. The release of v3 has to be synchro-
nized with respect to action s2 while v1 can be released upon
expiration of minimum inter-release delay.

Branching without synchronization: The next job to be re-
leased can be determined based on the satisfaction of some
conditions. These conditions only depend on local variables
of the task. As a result, between finish time of a job and start
of the next one the value of the conditions is not changed.
Therefore, if we evaluate the conditions after a job is fin-
ished, that evaluation remains valid until the next job is
released. It is assumed that the conditions are checked in
an if-then-else structure which, at runtime, determines the
path that the program should follow.

1 loop
2 −−− wait f o r r e l e a s e event
3 Event Object . Wait (D) ;
4 −−− update d e l a y upon r e l e a s e
5 Next := Clock + I n t e r R e l ;
6 −− e x e c u t e j o b code −−
7
8 delay until Next ;
9 −− ensures i n t e r r e l e a s e time

10 end loop ;

Figure 2: Ada implementation of a sporadic task

3.2 Choice of Programming Language
From the discussion on SDRT model features it is evident

that the programming language to be used for synthesiz-
ing SDRT code should support features such as the notion
of tasking and absolute delay, rendezvous based inter-task
communication and selective branching based on synchro-
nization.

Ada is a programming language that embeds the timing
requirements within the program syntax as well as provides
library routines to the programmers to express the needs of
timing requirement. Ada provides all SDRT features listed
above and most of the existing theories of real-time schedul-
ing can be applied to it [9]. Ada uses a runtime system for
real-time tasks that can be easily ported to different plat-
forms. However, state of the art implementation of the Ada
programs are limited by timing analysis of periodic/sporadic
tasks [10] which we intend to extend through our current
work. Figure 2 is a sample implementation of a sporadic
task in Ada.

In SDRT, release of jobs from two different tasks can be
synchronized based on an action. In Ada, the rendezvous
is a similar mechanism for controlled synchronization be-
tween two tasks. Ada’s rendezvous is based on a client-
server model. A client task requests a rendezvous with a
server task by making entry calls just as if the server is a
protected object. Server tasks indicate willingness to accept
a rendezvous on an entry by executing an accept statement.
For the rendezvous to take place, both the server and the
client task must have issued their requests. A task issuing
a rendezvous request is blocked until the rendezvous hap-
pens. As described earlier, we defined two types of actions
valid in SDRT. Among these actions, the send/call action
s! directly maps to the Ada rendezvous entry calls. Simi-
larly, the get/accept action s? of SDRT matches the Ada
rendezvous accept statement. However, in SDRT seman-
tics, a rendezvous is only allowed during a job release. This
can be implemented in Ada code by first waiting for a de-
lay and then executing the respective rendezvous operation.
For the purpose of simplicity, we only use simple rendezvous
(without exchange of parameters) of Ada to implement this
behavior. As we see next, rendezvous behaviors can be com-
bined with branching in job releases.

SDRT allows branching based on synchronization. To im-
plement this behavior, we use the selective accept feature of
Ada. As we mentioned earlier we allow a synchronization
action to be either a call or an accept action. In selective
accept of Ada, branching of code is only allowed using accept
action of rendezvous. For the case of entry call synchroniza-
tion action, we assume it to be executed once the timing
requirement of the job is satisfied.

1469

1 loop
2 case Current Job i s
3 when Job Name1 =>
4 Job Name1 procedure ;
5 −−− r e l e a s e l o g i c −−−
6 when Job Name2 =>
7 Job Name2 procedure ;
8 −−− r e l e a s e l o g i c −−−
9

10 end case ;
11 <<end labe l>>
12 end loop ;

Figure 3: Ada implementation of an SDRT task

4. CODE SYNTHESIS

4.1 Synthesis algorithm
In our current synthesis algorithm we assume that if an

SDRT job release has both timing and synchronization con-
straints then first it needs to satisfy the timing one. For the
case of job release without synchronization we release the
job in time-triggered manner and do not allow branching
without synchronization. Branching based on user specified
conditions will be integrated in our future work. Addition-
ally we fix one of the jobs of each task as an initial job of that
task. We use the following steps during Ada code synthesis
from an SDRT task:

1. We sort all outgoing edges from a job type according to
their inter-release times in a non-decreasing order.

2. At the beginning, the smallest inter-release time is in-
serted in the code as delay. Subsequently, differences be-
tween the inter-relase times are inserted as additional de-
lays.

3. After initial delay if a valid edge contains an accept action,
we insert a selective accept (means that now we can accept
a synchronization action and release that branch) block
with a delay alternative where the delay is the time when
it is also possible to release the next branch.

4. These selective accept blocks are iteratively generated un-
til there is a branch which can be immediately released.
The immediate release of a job satisfying both its timing
and synchronization constraints is similar to the urgent
transition of timed automata.

5. For a sending action, a task entry call is added immedi-
ately after the code selecting the next job.

We implemented this synthesis algorithm as code genera-
tion feature of our tool MASI.

4.2 Code Structure
The structure of the code is very simple. We have an Ada

implementation file (adb extension) with a main procedure
containing all the SDRT tasks. A task declaration block in-
cludes entry definitions related to synchronization. The task
body is divided into two parts: declaration and main body.
In the declaration part of the task body a local procedure
is implemented for each of the job types. The main body
of the task contains an infinite loop and the graph structure
capturing the release pattern which is encoded in a switch-
case statement. Each case of this switch-case statement is

1 when Job1 =>
2 Job1 Procedure ;
3 −−− Next uses a b s o l u t e time v a l u e
4 −−− I n t e r r e l 1 i s the s m a l l e s t
5 Next := Next + I n t e r r e l 1 ;
6 delay until Next ;
7 −−− I n t e r r e l 2 >= I n t e r r e l 1
8 Next := Next + I n t e r r e l 2 −

I n t e r r e l 1 ;
9 select

10 accept S igna l1 ;
11 Next Job := Job1 ;
12 goto e n d l a b e l ;
13 or
14 delay until Next ;
15 end select ;
16 −−− I n t e r r e l 3 >= I n t e r r e l 2
17 Next := Next + I n t e r r e l 3 −

I n t e r r e l 2 ;
18 select
19 accept S igna l1 ;
20 Next Job := Job1 ;
21 goto e n d l a b e l ;
22 or
23 accept S igna l2 ;
24 Next Job := Job2 ;
25 goto e n d l a b e l ;
26 or
27 delay until Next ;
28 end select ;
29 −−− When t h e r e i s a v a l i d t r a n s i t i o n
30 −−− wi thout accep t a c t i o n
31 Next Job := Job Name ;
32 −−− entry c a l l f o r send a c t i o n
33 Callee Task Name . entry name ;

Figure 4: Example of release logic implementation for an
Ada SDRT task

related a job of the corresponding task. The execution of
a job involves a call to the local procedure containing the
job code followed by the code for releasing the next job. A
skeleton Ada code of an SDRT task is presented in Figure 3.
Figure 4 shows an example implementation of SDRT release
logic in Ada generated by our synthesis approach.

5. CASE STUDY

5.1 Pacemaker-Heart Model
We use timed automata representation of a dual chamber

DDD pacemaker with a simplified random heart model [20]
as a representative case study. The primary function of a
pacemaker is to maintain an adequate heart rate. The pace-
maker paces the heart when the desired heart rate is below a
lower rate limit but it does not pace it above an upper rate
limit. In DDD mode, the pacemaker monitors the Atrial
and Ventricular events in the heart and generates required
pacing actions based on the state of the heart.

We assume a closed-loop system with two main compo-
nents which are models of a pacemaker and a human heart.
The pacemaker receives Aget (Vget) Atrial (Ventricular)
events generated by the heart. These are internally rec-
ognized as the signals AS (Atrial Sense) and VS (Ventricu-
lar Sense) which are used to synchronize different states of
the different components of the pacemaker. The pacemaker
generates AP (Atrial pacing) and VP (Ventricular pacing)
action signals on the heart model.

1470

Init

PVAB PVARP

VP?

VS?

t >= t_PVAB

tempAS!

Aget?

 t >= t_PVARP

 t = 0

 t = 0

 t <= t_PVAB t <= t_PVARP

(a) PVARP Automata

Init

PVAB PVARP

VP?

VS?

 t_PVAB

tempAS!

Aget?

 t_PVARP - t_PVAB

(b) PVARP SDRT
Figure 5: Timed Automata and SDRT models of PVARP
Component of the pacemaker

The pacemaker has five software components capturing
different timing requirements based on input from the heart.
Timed automata model of each of these components can
be found in [20]. These automata communicate with each
other using broadcast channels and shared variables. Here
we briefly describe each of these components.

LRI (Lower Rate Interval) keeps the heart rate above
the desired minimum value. If no AS is received after t_TLRI
- t_TAVI time period following a Ventricular event then AP
is delivered by LRI.

AVI (Atrio-Ventricular Interval) maintains the delay
between the Atrial and Ventricular activations. If no VS
has been sensed within t_TAVI after an Atrial event (AS,
AP), then AVI will generate VP. The task should maintain
an interval of t_TURI between two Ventricular events (VP,
VS).

PVARP (Post Ventricular Atrial Refractory Pe-
riod) receives Atrial events (Aget) and detects them as AS
for synchronizing other components. With each Ventricu-
lar event (VP or VS) there will be a period of t_PVAB +

t_PVARP when Agets are not recognized as AS. During the
period of t_PVAB all Agets will be ignored.

VRP (Ventricular Refractory Period) receives Vget
events from the heart and recognizes them as VS. After each
Ventricular event (VS or VP) the task should wait for a
period of t_TVRP to generate the next Ventricular event.

URI (Upper Rate Interval) works as a timer to limit
Ventricular pacing events. Two consecutive VPs should be

separated by an interval of t_TURI.
It is possible to validate the correct behavior of the pace-

maker by using a random heart model with two software
components, one for generating Atrial events and another
for generating Ventricular events. Both the components can
randomly generate a heart event within a range of valid in-
tervals.

5.2 SDRT Task Models
Timed automata is a modeling formalism that allows non-

determinism and it is the most expressive model for real-
time workload [21]. As our case study problem is originally
encoded in timed automata, we translate each of these au-
tomata to an SDRT task. However, this is not the general
procedure for translating timed automata model to SDRT.
A close inspection of automata used for modeling pacemaker
gives following major differences with the SDRT definitions:

Firstly, each of the automaton in timed automata model
uses separate clocks where all the SDRT tasks use a global
clock for timing. However, in the pacemaker timed au-
tomata models, the state from which a timing constraint
is checked is always preceded by the transitions that reset
its local clock. This makes our translation to SDRT easy
as it uses timing constraints relative to job (or state) re-
lease. The only exception is a pair of overlapping timing
requirements in the component PVARP where clock reset is
absent in a preceding transition. We resolved it by modify-
ing the timing requirement relative to the last job released
with a clock reset. Figure 5 shows PVARP automata and
its corresponding SDRT task.

Secondly, pacemaker automata communicate with each
other using broadcast synchronization while SDRT is only
defined for blocking pairwise rendezvous. To implement
this we made send part of a broadcast synchronization non-
blocking by using the timed entry call feature of Ada. An
Ada timed entry call lets a sender specify a maximum de-
lay before achieving rendezvous, failing which the attempted
entry call is withdrawn and an alternative sequence of state-
ments is executed. As a result the task which blocks with
a receiving action from broadcast will complete rendezvous
when it is ready before the sending action. We use 0.1 mil-
lisecond delay for the timed entry calls in broadcasting.

Finally, pacemaker automata use guard conditions in states
to make urgent transitions. In SDRT, we merge such clock <=
contraint (guard in state) and clock >= constraint (guard
in transition) conditions as a minimum inter-release time
constraint relative to the release of the job. In code syn-
thesis, it results in an immediate transition to the next job
when this timing requirement is true.

As the states in timed automata model of pacemaker have
no execution times, jobs of our translated SDRT tasks are
also initialized with zero execution times. Many transitions
of the timed automata model has only the synchronization
constraint but no timing constraint. In those cases, we as-
sume the corresponding SDRT task edge to have a zero min-
imum inter-release time.

5.3 Pacemaker Code Synthesis

5.3.1 Synthesized code
We synthesized Ada code from a SDRT taskset compris-

ing 7 tasks (5 of them modeling pacemaker components and
2 tasks generating random heart events). The code is gener-

1471

Figure 6: Simulation run from the pacemaker case study

ated for general Ada runtime system which can be compiled
to run over any Linux or Windows operating system. We
wrote a visualizer in Java to check the heart signals and
corresponding response signals of the pacemaker. The vi-
sualizer uses a TCP/IP socket to receive information about
the events from the running Ada executable. The generated
Ada program is instrumented to send release events of dif-
ferent tasks to the visualizer. The executables for this case
study is downlodable from [1].

5.3.2 Simulation
For simulation we use timing constraint values t_TAVI=150,

t_TLRI=1000, t_TPVARP=100, t_TVRP=150, t_TPVAB=50 and
t_URI=400 used in previous case study. Each of these val-
ues are in milliseconds. For generating heart events using a
random heart model we use millisecond range [248, 348] and
[435, 535] for Atrial and Ventricular events respectively. Fi-
nally, we did some simulation experiments using a 2.8 GHz
core i7 processor running 64 bit Windows 7 operating sys-
tem. In the sample runs pacemaker tasks are correctly gen-
erating pacing events when signals are missing from the ran-
dom heart tasks. In Figure 6 we present screenshot of such
a run.

6. CONCLUSION
In this paper, we presented a software synthesis algorithm

for generating Ada code from the SDRT task model. The
synthesis process is demonstrated with a pacemaker-heart
case study. In future, we want to extend this synthesis al-
gorithm in several directions. Firstly, branching without
synchronization in job release can be integrated with the
currently supported release logic. We also plan to develop a
formal proof of the correctness for our synthesis algorithm
and execute synthesized code on RTOS and bare metal plat-
form to verify the timing analysis of the model. Another
future work is to evaluate synthesized code with respect to
different code generation metrics such as code footprint.

7. REFERENCES
[1] Experiment package. https://www.dropbox.com/s/

snmko28mh1evx9s/PM ADA.tar.gz?dl=0.

[2] T. Abdellatif, J.Combaz, and J.Sifakis. Model-based
implementation of real-time applications. In Proc. of
EMSOFT, pages 229–238, 2010.

[3] Ada language. http://www.adacore.com/.

[4] QGen. http://www.adacore.com/qgen/.

[5] K. Altisen and S. Tripakis. Implementation of timed
automata: An issue of semantics or modeling? In
Proc. of FORMATS, pages 273–288, 2005.

[6] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[7] T. Amnell, E. Fersman, P. Pettersson, H. Sun, and
W. Yi. Code synthesis for timed automata. Nordic
Journal of Computing, pages 269–300, 2002.

[8] S. Baruah, A. Mok, and L. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one
processor. In Proc. of RTSS, pages 182–190, 1990.

[9] A. Burns. Why the expressive power of programming
languages such as ada is needed for future cyber
physical systems. In Proc. of Ada-Europe, pages 3–11,
2016.

[10] A. Burns, B. Dobbing, and G. Romanski. The
ravenscar tasking profile for high integrity real-time
programs. In Proc. of Ada-Europe, pages 263–275,
1998.

[11] P. Deng, Q. Zhu, M. D. Natale, and H. Zeng. Task
synthesis for latency-sensitive synchronous block
diagram. In Proc. of SIES, pages 112–121, 2014.

[12] KCG. http://www.esterel-technologies.com.

[13] H. Kopetz. Real-Time Systems-Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 1997.

[14] MAST toolset. http://mast.unican.es/.

[15] Simulink embedded coder. https:
//www.mathworks.com/products/embedded-coder/.

[16] M. Mohaqeqi, J. Abdullah, N. Guan, and W. Yi.
Schedulability analysis of synchronous digraph
real-time task. In Proc. of ECRTS, pages 176–186,
2016.

[17] A. Mok. Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment. MIT
Laboratory for Computer Science, 1983.

[18] M. D. Natale and H. Zeng. Task implementation of
synchronous finite state machines. In Proc. of DATE,
pages 206–211, 2012.

[19] MARTE profile. http://www.omg.org/spec/MARTE/.

[20] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and
R. Mangharam. From verification to implementation:
A model translation tool and a pacemaker case study.
In Proc. of RTAS, pages 173–184, 2012.

[21] M. Stigge and W. Yi. Graph-based models for
real-time workload: a survey. Real-Time Systems,
51(5):602–636, 2015.

[22] P. Tabuada. Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Transactions on
Automatic Control, 52(9):1680–1685, 2007.

[23] M. D. Wulf, L. Doyen, and J.-F. Raskin. Almost asap
semantics: From timed models to timed
implementations. In Proc. of HSCC, pages 296–310,
2004.

1472

https://www.dropbox.com/s/snmko28mh1evx9s/PM_ADA.tar.gz?dl=0
https://www.dropbox.com/s/snmko28mh1evx9s/PM_ADA.tar.gz?dl=0
http://www.adacore.com/
http://www.adacore.com/qgen/
http://www.esterel-technologies.com
http://mast.unican.es/
https://www.mathworks.com/products/embedded-coder/
https://www.mathworks.com/products/embedded-coder/
http://www.omg.org/spec/MARTE/

