
Benchmarking OpenMP Programs for Real-Time
Scheduling

Yang Wang1, Nan Guan2, Jinghao Sun1, Mingsong Lv1, Qingqiang He1, Tianzhang He1, Wang Yi1,3

1Northeastern University, China
2Hong Kong Polytechnic University, China

3Uppsala University, Sweden

Abstract—Real-time systems are shifting from single-core to
multi-core processors. Software must be parallelized to fully uti-
lize the computation power of multi-core architecture. OpenMP is
a popular parallel programming framework in general and high-
performance computing, and recently has drawn a lot of interests
in embedded and real-time computing. Much recent work has
been done on real-time scheduling of OpenMP-based parallel
workload. However, these studies conduct evaluations with ran-
domly generated task systems, which cannot well represent the
structure features of OpenMP workload. This paper presents
a benchmark suite, ompTGB, to support research on real-time
scheduling of OpenMP-based parallel tasks. ompTGB does not
only collect realistic OpenMP programs, but also models them
into task graphs so that the real-time scheduling researchers can
easily understand and use them. We also present a new response
time bound for a subset of OpenMP programs and use it to
demonstrate the usage of ompTGB.

I. INTRODUCTION

Multi-cores are more and more widely used in real-time
systems to meet the rapidly increasing requirements in high
performance and low power consumption. To fully utilize the
computation power of multi-core processors, software must
be parallelized. OpenMP [1] is a parallel programming frame-
work widely used in general and high-performance computing.
Recently, there have been increasing interests to use OpenMP
in embedded and real-time computing [2]–[5].

A fundamental problem in real-time system design is how
to schedule the workload to satisfy the timing constraints.
A common way to model parallel software system is using
graphs, and there have been much work in the area of real-
time scheduling for graph-based parallel task models [5]–
[12]. The execution semantics of OpenMP are closely related
to the graph-based task models, and this motivates many
recent work in real-time scheduling of parallel workload. In
particular, some work has extended the traditional graph-based
task models to include some unique features introduced by the
OpenMP semantics. For example, recent work on real-time
scheduling of conditional DAG models [13] is motivated by
the branching structures (e.g., if-else) in OpenMP programs.
Another example is the concept of TSP (Task Scheduling
Points) in OpenMP, which motivates the work on real-time
scheduling of DAG models with limited preemption points
[14].

As real-time scheduling of OpenMP-based parallel work-
load becomes a hot research topic, we are facing a significant
problem: how to evaluate the scheduling algorithms and anal-
ysis techniques. The real-time scheduling research community
has a tradition to use randomly generated task sets for perfor-
mance evaluation, for not only the simple periodic/sporadic
task models, but also more complex graph-based task models
where both the timing parameters and the graph structures are
randomly generated [15]. Unfortunately, this is not suitable
when we are scheduling OpenMP-based workload. OpenMP
is a programming framework, and the corresponding task
graph models should have certain structure features, which
cannot be well captured by randomly generated task graphs.
Performance evaluations with randomly generated tasks can
be very biased: a scheduling/analysis algorithm performing
well in evaluations with randomly generated task sets may
not be suitable to realistic OpenMP programs. Without a
fair performance evaluation methodology, it will be difficult
to conduct meaningful research on real-time scheduling of
OpenMP programs.

The target of this work is to provide a benchmark suite,
ompTGB (OpenMP Task Graph Benchmarks), to fill the
gap between theoretical real-time scheduling research and the
OpenMP software reality. ompTGB is not a simple collection
of OpenMP programs. Instead, it is prepared in a way that
the real-time scheduling researchers can easily understand and
use them to evaluate their scheduling and analysis algorithms.
More specifically, in ompTGB we

• model OpenMP programs as task graphs annotated with
information relevant to real-time scheduling,

• develop a tool to transfer OpenMP programs into DAGs,
and

• provide a collection of task graphs generated from real-
istic OpenMP programs.

Apart from introducing ompTGB, this work also develops
new response time bounds for a subset of OpenMP programs
and use these results to demonstrate the usage of ompTGB.
In previous work, the response time of these programs are
considered as unbounded [4]. In this paper, we illustrate how
the task graph modeling provided by ompTGB helps us to
find the key features of their workload structures and thus
bound their response times, and how the benchmarks are used978-1-5386-1898-1/17/$31.00 c© 2017 IEEE

to evaluate our theoretical results.

II. RELATED WORK

Much work has been done on scheduling DAG-based par-
allel real-time task systems on multi-core processors [5]–[12].
The task models in these papers are closely related to the
workload model of OpenMP, but missing many features in
realistic OpenMP programs. Recently, some of these features
have been taken into consideration. Motivated by the concept
of Task Scheduling Points (TSP) in OpenMP, some work has
been done on the scheduling of parallel tasks with limited
preemption points [14]. Motivated by the branching structures
of OpemMP programs, the parallel real-time task models
have been extended to combine the fork-join and conditional
semantics [13], [16].

Very recently, [3], [4] studied the possibility to apply
OpenMP to real-time systems mainly from the real-time
scheduling perspective. These work highlighted some im-
portant features in OpenMP that are relevant to real-time
scheduling. In particular, they discussed how Task Scheduling
Points (TSP) and Task Scheduling Constraints (TSC) affect the
real-time scheduling behavior. However, [3], [4] didn’t con-
sider the branching structures when modeling OpenMP-based
workload. In contrast, the modeling of OpenMP programs in
our paper includes the branching structures (and the final
and if directives that leads to branching semantics).

[4] also studied the problem of bounding the response time
(makespan) of the (non-recurring) task system generated by an
OpenMP application on multi-cores. [4] developed response
time bounds for the case containing only untied tasks, and
claimed that bounding the response time in the presence of
tied tasks is inherently hard. However, in this paper we will
show that for a subset of OpenMP programs that contains
tied, the response times can also be well bounded as for the
case having only untied tasks.

There are several source-code level benchmark suits for real-
time systems [17]–[21], which are all with sequential programs
and serve for the purpose of WCET analysis. To the best of
our knowledge, the opmTGB benchmark suite presented in
this paper is the first one oriented to real-time scheduling of
parallel software.

III. OVERVIEW

We first introduce our tool to transform OpenMP program
source codes into task graph models, then brief the OpenMP
program collection in ompTGB.

A. Transformation Tool

Figure. 1 shows the architecture of the transformation tool.
The light blue boxes are existing tools utilized by us, and the
dark blue boxes are functionalities developed by us. Currently
our transformation tool can only process OpenMP programs
written in C.

For lexical and parsing analysis of OpenMP programs,
we use Lex & Yacc [22], which is embedded in ompi, a
lightweight, open source OpenMP compiler system for C

Fig. 1. Architecture of the transformation tool.

programs. The output of the parser are abstract syntax trees
(AST), which store useful abstract syntactic structures of the
programs. The AST is used (1) by the Drawer to construct
the task graph models of individual functions, and (2) by the
Call Analyzer to generate call-graphs. The integrator combines
both of them to generate the task graph models of the whole
application, which are stored in the DOT formate [23] and
are visualized by Graphviz [24]. Details about the task graph
model will be presented in the next section.

Besides the topology of task graphs, the weight of each
vertex, representing its worst-case execution time (WCET), is
also important information when studying scheduling prob-
lems. The WCET of a vertex heavily depends on the underly-
ing hardware architecture. However, ompTGB is a hardware
independent benchmark, so it is impossible to provide pre-
cise WCET information of OpenMP programs in ompTGB.
Nevertheless, to reduce the burden of users for whom the
precise WCET estimation is not a critical issue, we provide
reference weight values for each vertex. We do not claim these
reference values to be able to precisely characterize the WCET
on any particular hardware platform, and expect the users to
estimate the WCET values by themselves whenever necessary.
We provide two types of reference weight values obtained by
the following two approaches:

• Static Analysis. The first type of reference values are
obtained using the static WCET analysis tool Chronos
[25]. Chronos uses the SimpleScalar as the underlying
processor architecture, and safely bounds the WCET of
a C program executing on SimpleScalar simulator with
modeling and analysis the timing effect of hardware com-
ponents such as caches and pipelines. We use Chronos to
compute a safe WCET bound for the codes in each indi-
vidual vertex. The strength of this approach is to provide
safe WCET estimations, while the weakness is assuming
oversimplified underlying hardware architecture.

• Measurement. We also measure the execution time
for the vertices by executing the programs on the real
hardware. We instrument the OpenMP programs with
instructions reading the timer at the beginning and end
of each vertex, and the execution time of the vertex is
the difference between the two time stamps. Although
this approach cannot provide strictly safe WCET bounds,
these reference WCET values give a rough idea of the
workload of each vertex. In particular, currently the
reference values provided by this approach are obtained
on an Intel i7-4770 CPU with 3.5GHZ and 8192KB cache

size.

B. Benchmarks

We collected C based OpenMP applications from several
benchmarks that consist of task directives. Table. I sum-
marizes these applications and shows their structure features.
Note that ompTGB does not provide the source codes of these
OpenMP programs1. Instead, we only provide the correspond-
ing task graph models and the reference WCET values.

The first column in Table. I gives the name of each applica-
tion, and the second column shows which benchmark suite an
application belongs to. The third column reports the code size,
i.e., the lines of code (LOC). Here we use the Unified Code-
Count tool (UCC) [26] and report the logical SLOC. Columns
4 to 9 show whether or not a application contains certain
structure features. Columns 4 to 8 are OpenMP directives,
and column 9 is the keyword in the base language C.

All the applications in Table. I contain tied tasks. These
applications are categorized into two types:
• The first type of applications implement task synchroniza-

tion using taskwait directive. These applications are
from benchmarks spec2012, bots-1.1.2, dash-1.0m, ect,
which are developed for OpenMP version 3.0.

• The second type of applications implement task synchro-
nization using data dependency. These applications are
from kastors-1.1, which is recently developed and based
on OpenMP 4.0. (See Section. V-D for details)

The last three columns show the conditional branching
structures in the applications. Some applications use if and
final clauses to restrict the execution behavior of tasks as
listed in columns 7 and 8 (see in Section. IV-B for details).
Moreover, as shown in the last column of Table. 1, almost four-
fifths(78%) of the applications contain the condition branches
(i.e., if-else structure) that are nested with the creation of
and synchronization among tasks.

Apart from the benchmark programs listed in Table. 1, we
are currently working on collecting more OpenMP programs,
especially those are oriented to embedded and real-time sys-
tems. In particular, we provide an “one-click” service for code-
to-graph transformation on our ompTGB website [23], so that
users can upload their own OpenMP program source codes and
then download the generated task graph models. These user-
uploaded programs will be included in our benchmark suite
under a specific category.

IV. MODELING

A. Basic Structures

An OpenMP program is modeled as a directed acyclic task
graph G = (V,E) with some extra annotations. Each vertex
v in V represents a piece of codes, and is associated with a
WCET c(v). Several vertices may belong to a task, which is
represented by the red rectangle in Fig. 2. Each task contains
a unique entry vertex and several exit vertices. The vertices

1As the benchmarks are proprietary, we do not own the right to distribute
these source codes.

Fig. 2. An example OpenMP program.

in one task are forced to be executed by the same thread
unless additionally specified (See tied and untied tasks
in Section. IV-C for more details). There are three types of
edges in a graph, i.e., E = E1 ∪ E2 ∪ E3, as detailed in the
following.

Control Flow Edges (E1), denoted by dotted-line arrows
in Figure. 2, which model the control flow dependencies, and
only connect vertices within the same task.

Task Creation Edges (E2), denoted by dashed-line arrows
in Figure. 2. In OpenMP, a new task is created by the task
directive (e.g., Line 3 in the code of Figure. 2). The destination
vertex of a task creation edge must be the entry vertex of a
task. If a vertex in task Ti points to the entry vertex of task Tj

with a task creation edge, then Ti is the parent of Tj and Tj is
a child of Ti. Two tasks sharing the same parent are siblings.

Synchronization Edges (E3), denoted by solid-line arrows
in Figure. 2. The source vertex of a synchronization edge
must be the exit vertex of a task. There are two subtypes of
synchronization edges, corresponding to the taskwait (e.g.,
Line 13 in the code of Figure. 2) and depend (e.g., Lines 7
and 10 in the code of Figure. 2) directives, respectively:
• taskwait blocks the parent task until all of its children

created beforehand have been finished. The source of an
edge of this type must be the exit vertex of a child task of
itself, and the destination can be any vertex in the parent
task after creating these children, e.g., edge (v4, v23) in
Figure. 2.

• depend imposes an order between two sibling tasks. If
a task has an in dependence on a variable, it cannot start
execution until all its sibling tasks with an out or inout
dependence on the same variable have been completed.
The source of an edge of this type must be the exit vertex
of a task, and the destination must be the entry vertex of
its sibling task, e.g., edge (v3, v4) in Figure. 2.

B. Branching Structures

OpenMP programs commonly contain two types of branch-
ing structures. One corresponds to the statement of base
languages, such as if-else. The other one is induced from

TABLE I
SUMMARY OF THE BENCHMARK PROGRAMS CURRENTLY INCLUDED IN OMPTGB.

Applications Source LOC tied taskwait depend if final if-else (C/C++)

botsspar� 209
√ √

× × ×
√

botsalgn∗ spec2012 [27] 1277
√

× × × ×
√

kdtree� 1132
√ √

×
√

×
√

poisson2D∗� 474
√

×
√

× ×
√

sparseLU∗� kastors-1.1 [28] 405
√

×
√

× ×
√

strassen∗ 736
√

×
√

× ×
√

fft� 4447
√ √

× × ×
√

fib 118
√ √

×
√ √ √

floorplan� bots-1.1.2 [29] 365
√ √

× ×
√ √

nqueens� 274
√ √

×
√ √ √

sort 237
√ √

× × × ×
sparseLU� 218

√ √
× × ×

√

strassen 735
√ √

×
√

×
√

health� 455
√ √

×
√

×
√

dense_algebra∗ 1479
√

× × × × ×
finite_state_machine∗ dash-1.0 [30] 641

√
× × × × ×

nbody_methods� 5478
√ √

× × ×
√

sparse_algebra∗ 971
√

× × × × ×

pt_to_pt_pingpong� openmpmpi [31] 309
√ √

× × ×
√

pt_to_pt_overlap� 313
√ √

× × ×
√

cpp_sortOpenMP ompSCR_v2.0 [32] 785
√ √

× × × ×
taskbench� ompbench_C_v31 [33] 167

√ √
×

√
×

√

Fig. 3. An example with if-else branches.

OpenMP clauses, e.g., if and final contained in the task
construct.

if-else Structures
If the if-else structures are nested with the creation of

and synchronization among tasks, it is necessary to explicitly
model these branching structures to precisely represent the
workload. The if-else structures contained in a single
vertex are not needed to be represented in the task graph.
Figure. 3 gives an example of OpenMP DAG with conditional
branches.

The if-else structure from Lines 6 to 14 in the program
of Figure. 3 contains task creations and thus is explicitly
modeled so that the corresponding DAG has a branching

structure starting with v01 and ending at v04. In contrast, the
if-else structure from Lines 9 to 10 (in v2) is not explicitly
modeled, since this code segment does not contain any task
creation or synchronization point.

For convenience, in order to distinguish the conditional
structure, we use a diamond to represent the entry vertex of
a conditional structure, e.g., vertex v01 as shown in Figure. 3.
We call such diamond vertices as conditional vertices, which
are defined more formally as follows.

Definition 1. A vertex v is a conditional vertex if v (1) has
more than one outgoing edges in E1 and (2) does not have
any outgoing edge in E2 or E3.

In our model, for any conditional vertex v, at most one
successor of v can be executed. In contrast, For any non-
conditional vertex v, all the successors of v must be executed
if v has been executed.

Previous work on real-time scheduling of conditional paral-
lel task graphs all assume the branching structures and the
fork-join structures are well-nested (i.e., there is no edge
between a vertex in a conditional branch and another vertex
outside that branch) [13], [16]. Unfortunately, this is not nec-
essarily the case for realistic OpenMP programs. For example,
in Figure. 3, task T2 is created within the branching structure
between v00 and v04, but joints with a vertex v05 after this
branching structure. More than half (59%) of applications in
Table. I, which are marked with diamond, contain non-well-
nested branching structures. Motivated by this observation, our
proposed new response time analysis technique in Section. V
will be able to handle cases where branching and fork-join
structures are not well-nested.

Fig. 4. An example OpenMP program with if.

Besides if-else, the loop keywords in the base language
C, such as for-loop and while-loop, also indicate
conditional structures. Similarly, we only need to model the
loop structures that are nested with the creation of and
synchronization among tasks. A loop body that only contains
sequentially executed codes is formulated into a vertex, and
does not need be explicitly modeled in the task graph.

We assume that the number of iterations of each loop can
be bounded by a constants, and the loops are unrolled (so
the task graphs are acyclic). The bounded loop is a common
assumption in real-time system design [34], since the timing
analysis for program with unbounded loops is very difficult
and even impossible. Many works devoted to bounding loop
iterations [35]–[38].

if/final Structures
Besides the if-else statements, OpenMP task con-

structs following the if and final clauses may also create
conditional branches in a DAG graph.

Figure. 4 gives an example of an OpenMP program which
contains an if clause. Different evaluations of the associated
expression corresponds to two conditional branches. If the if
clause expression evaluates to false, the associated task (T1

in Figure. 4) is not deferred with respect to its parent task
(T0 in Figure. 4). More specifically, the parent task T0 should
be suspended until T1 is completed. A synchronization edge
from v11 to v01 can express this dependency between the child
and its parent due to the false evaluation of the if clause.
In contrast, a true evaluation of if clause does not result
in any additional restriction to the execution of corresponding
tasks, and there is no synchronization edge added to the true-
evaluation related branch containing vertex v12 in Figure. 4.

Figure. 5 shows a task construct following a final
clause. If the associated expression of T0 evaluates to true,
T0 and its (grand)children T1 and T2 must be executed by the
same thread. Moreover, for any (grand)child of T0, denoted
by T ′, the parent task of T ′ should be suspended until
T ′ is completed. This indicates that task T0 and all of its
(grand)children should be executed sequentially as if they
are integrally united as a task (called virtual task), which is
represented by branch (v03, · · · , v07) in Figure. 5. Otherwise,
T0, T1 and T2 cannot be seen as forming a virtual task (See
branch (v01, v02) of T0 in Figure. 5).
C. Concepts Related to Scheduling

In OpenMP, the execution entity for executing tasks is called
thread. Scheduling OpenMP tasks is to assign tasks (or the

Fig. 5. An example OpenMP program with final.

vertices of tasks) onto threads ensuring that the scheduling
constraints are satisfied. In the following we briefly introduce
the OpenMP tasks scheduling constrains.

Task Scheduling Points
In OpenMP, a Task Scheduling Point (TSP) is a program

point at which the execution can be interrupted and schedul-
ing may be triggered. TSPs often occur upon task creation
and completion, and at task synchronization points such as
taskwait directives. Following the convention in previous
work [3], [4], we call the code segment between two TSPs a
part.

Note that in [3], [4] which didn’t consider branching struc-
tures, each task has a linear structure and each part corresponds
to a vertex in the task graph. Therefore, the TSPs exist after
each vertex, implying that the execution of each vertex should
not be interrupted, and a context switch may occur when a
vertex completes its execution.

However, in our model which contains branching structures,
a part may correspond to more than one vertices. For example,
in Figure. 3, the TSPs exist in front of the vertices v00, v3 and
v2. There is no TSP after the vertex v01. Therefore, either v01
and v02 or either v01 and v03 form a part.

In our model, a TSP may exist in two cases:
• A TSP may exist after a vertex that has at least one

outgoing edge of type E2. In this case, a new part is
released at this TSP.

• A TSP may exist before a vertex that has at least one
incoming edge of type E3. In this case, the current part
completes at this TSP.

Eligibility
In the following, we will introduce conditions for a part to

be eligible for execution. We first introduce some auxiliary
concepts.

A vertex u is a trigger vertex of v if (u, v) ∈ E1 ∪E2. For
example, in Figure. 3, v00 is the trigger vertex of v01. Vertices
v04 and v2 share the same trigger vertex v02. The conditional
vertex v01 is the trigger vertex of its successors v03 and v02,
both of which are the trigger vertices of v04.

If a trigger vertex u is conditional (See in Definition. 1), u
can only trigger one of its immediate successors. For example,
in Figure. 3, only one of v02 and v03 is triggered by v01.
Otherwise, if u is a non-conditional vertex, the completion of
u must trigger all of its immediate successors. For example,

in Figure. 3, the vertices v04 and v2 should be triggered at the
same time when v02 is finished.

A task Tj is a depended task of vertex v if u is the exit
vertex of Tj and (u, v) ∈ E3. Suppose that the depended task
Tj of v has been created before v is triggered, v should not
be executed until Tj is finished. For example, in Figure. 3, T1

is the depended task of vertices v2 and v3. We know that T1

must be created before either v2 or v3 is triggered. Thus, the
vertex v2 as well as v3 should wait for the completion of task
T1. Moreover, vertex v05 has two depended Tasks T2 and T3,
and only one of them can be created. If T2 is created, v05 will
be executed after T2 is finished.

Now we are ready to introduce the conditions for a part to
be eligible:

Let v be the first vertex of a part P . P is eligible for
execution iff v is triggered but has not been executed, and
none of v’s depended task is being executed or suspended.

For example, in Figure. 3, the single vertex v05 forms a
part of task T0, which becomes eligible when its trigger vertex
v04 and one of its depended task T2 or T3 are both finished.
Another example is the part that consists of a single vertex
v3, which becomes eligible when the trigger vertex v03 and
the depended task T1 of v3 are both finished.

Tied and Untied Tasks
A task in OpenMP is either tied or untied. If a tied

task starts execution on a thread then it will only execute on
this thread in its whole life cycle. In particular, if a tied task
is suspended, later it has to be resumed on the same thread.
In contrast, a untied task is not tied to any thread and so in
case it is suspended it can later be resumed by any thread.

Moreover, a tied task can only be suspended by its (grand)
children or by untied tasks. Therefore, at any time, if a
tied task T can be assigned to a thread S, we should
guarantee that all the unfinished tasks which have been tied
to S have a child or a grand child T . In contrast, a untied
task or any part of a untied task can be executed on any
available thread.

In OpenMP, tasks are by default tied, unless explicitly
specified as untied. A untied task T becomes tied if a
(grand)parent of T or T itself follows final and the final
clause expression evaluates true [1]. In this case, T and its
(grand)children are forced to be executed by the same thread,
which can be seen as forming a virtual tied task, denoted
by T ′. The execution order of the parts in T ′ is defined as
follows. For any two parts P and P ′ of T ′, P is executed
before P ′ if P is not the successor of P ′ and there is a
path from a predecessor of P ′ to P . For example, if exp in
Line 1 of Figure. 5 evaluates true, the untied clauses are
ignored, and three untied tasks T0, T1 and T2 are combined
into a virtual tied task containing vertices v03, · · · , v07 in
Figure. 5. Any part of T1 (v04 and v06) is executed before
the last part of T0 (v07), and any part of T2 (v05) is executed
before the last part of T1 (v06).
Tied tasks enjoy the following benefits: (1) tied task pre-

cludes immigrations among threads, which simplifies the im-

plementation of the scheduling algorithm and reduces context
switch cost; (2) tied task automatically prevent deadlocks
in the presence of critical sections [1], [4], [39]. However,
the extra scheduling constraints of tied tasks make it more
difficult to analyze their timing behaviors. It is an open
question of how to bound the response time of programs
containing tied tasks. Previous work [4], gives a negative
answer to this question: their response times are in general
unbounded. In the next section we will report some positive
results regarding this problem.

V. A CASE STUDY

In this section, we present new theoretical results for analyz-
ing the worst-case timing behavior of a subclass of OpenMP
programs. On one hand, our results are obtained by a better
understanding of the workload structure of OpenMP programs
with the task graph models in ompTGB as presented in last
section. On the other hand, we use benchmark programs in
ompTGB to evaluate our theoretical results.

In [4], a response time bound is derived for OpenMP
programs exclusively executing on a parallel platform of m
processing units, in which all tasks must be untied. For
OpenMP programs containing tied tasks, [4] claimed that
a timing analysis, besides being conceptually very difficult to
achieve, ... would lead to unacceptably pessimistic response-
time bounds. However, in the following we will show that for
many OpenMP programs containing tied tasks, we can still
well bound their response times.

A. Breadth First Scheduling (BFS)

The runtime environments in most OpenMP implementa-
tions supports two scheduling policies BFS (Breadth First
Scheduling) [40] and WFS (Work First Scheduling) [41].
Roughly speaking, BFS creates all child tasks before executing
them, while WFS executes new tasks immediately after they
are created.

WFS is not suitable for scheduling tied tasks [4]. By WFS,
a thread always suspends the current task and executes the
child task immediately after it is created. Therefore, the parent
task and its children are both tied to the same thread, and
thus the parallel program will be executed sequentially, which
makes the parallel programming meaningless.

Therefore, in the following we focus on how to bound the
response time under BFS for tied tasks. Similar to previous
work [4], [42], we assume each thread is statically allocated
to and exclusively occupies one processing core.

Algorithm. 1 shows the pseudo-code of BFS. For any time
when a thread S finishes the execution of a part Pi,z (which
is in task Ti), the routine in Algorithm. 1 is called to select
from existing eligible parts to execute on idle threads.

We assume that the next part of Ti to be executed is Pi,z+1.
If Pi,z+1 is eligible, S prefers to continue the current task Ti

as shown in Lines 1 to 3.
After that, there may still exist some new eligible parts and

idle threads due to the completion of Pi,z . For any eligible
part Pj,w of task Tj and idle thread S′, if Tj is untied, then

Algorithm 1 Pseudo-code of BFS
1: if Pi,z+1 is eligible then
2: execute Pi,z+1 on S;
3: end if
4: for any eligible part Pj,w and idle thread S′ do
5: execute Pj,w on S′ iff
6: (a) Tj is untied; or
7: (b) Tj has been tied to S′; or
8: (c) Pj,w is the first part of Tj and any unfinished task

Ti that has been tied to S′ has a (grand) child Tj .
9: end for

Pj,w can be assigned to S′ (Line 6: condition (a)). Otherwise,
S′ can execute Pj,w if Tj is tied to S′ (Line 7: condition (b))
or Pj,w is the first part of Tj and any unfinished task Ti that
has been tied to S′ has a (grand) child Tj . (Line 8: condition
(c)).

It should be emphasized that a tied task may be a real
OpenMP task or a virtual task corresponding to several tasks
that are forced to be executed by the same thread due to
the final clauses. In the following context, without any
confusion, the tied task by default is a real OpenMP task,
and we will give additional specification when we mention
virtual tied tasks.

B. Response Time Analysis

In this section we will show that the response time
of OpenMP programs containing tied tasks can also be
bounded, as long as any tied task T does not contain
taskwait and any child of T does not follow the if clause.

Definition 2 (Work-Conserving Scheduling). A scheduling
algorithm is work-conserving iff it never idles threads when
there exist eligible parts waiting for execution.

The following response time bound of a task graph is known
for work-conserving scheduling algorithms [4].

Theorem 1. [4] The response time Rub(G) of a task graph
G under any work-conserving scheduling algorithm on m
threads is bounded by the following:

Rub(G) = len(G) +
vol(G)− len(G)

m
(1)

where len(G) is the length of the longest path in G and vol(G)
is the maximal makespan of G executing on a uniprocessor.

Unfortunately, as discussed in [4], when a task graph
contains tied tasks, BFS is not work-conserving, and thus the
response time bound in (1) is not valid. An counter-example
given in [4] indicates that the pessimistic scheduling may occur
when a tied task is required to synchronize with its children.

A tied task T may synchronize with its children only if:
(1) T contains taskwait clauses; or (2) a child of T follows
a if clause; or (3) T contains a final clause. In cases (1)
and (2), the child of T that needs to be synchronized with T
only comes from the first level children of T . In case (3), T

are required to synchronize with all of its (grand)children. By
preventing cases (1) and (2), in the following we will show that
BFS is still work-conserving even if tied tasks are present
and synchronize with their children.

Lemma 1. BFS is work-conserving if any tied task T does
not contain taskwait and no child of T contains if.

Proof. We will prove that if there exists an eligible part Pi,z

of Ti waiting for execution, then there cannot be an idle thread
at the same time. This is clearly true if Ti is an untied task,
since an eligible part of it can be executed on any idle thread.
In the following, we focus on the case that Ti is a tied task
2.

We will prove this by contradiction, assuming Pi,z , an
eligible part of a tied Ti that does not contain taskwait
and no child of Ti contains if, is waiting for execution while
there is an idle thread S.

First, we prove that Pi,z must be the first part of Ti. This
is because, otherwise, Pi,z will immediately start execution
on its tied thread as soon as it becomes eligible according to
Lines 1 to 3 in Algorithm. 1.

We consider an arbitrary task Tj that has been tied to S.
For two consecutive parts Pj,z and Pj,z+1, Pj,z+1 will become
eligible immediately after Pj,z unless one of the following two
cases is met:
• There is a taskwait in between3 .
• There is a child Tl of Tj in between, and Tl follows a
if and the associated expression evaluates false 4 .

Therefore, according to Algorithm. 1 (Lines 1 to 3), Pj,z+1

will continue to execute on the same thread S. So we can
conclude that for an idle thread S, any task tied to it must
have been finished.

In summary, we have proved that (1) Pi,z is the first part of
Ti and (2) any task tied to S has been finished. Therefore, the
condition (c) in Line 8 holds, and thus Pi,z will be executed
on S, which contradicts out assumption.

By combining Theorem. 1 and Lemma. 1, we can get the
following conclusion.

Theorem 2. The response time of a task graph G in which
any tied task T does not contain taskwait and no child
of T contains if clauses scheduled by BFS on m threads is
bounded by the upper bound in (1).

According to Theorem. 2, in any OpenMP program having
a response time bound in (1), a untied task can freely
synchronized with other tasks, and moreover, a tied task
T can freely synchronized with the other task T ′ if T ′ is not
a (grand)child of T . Otherwise, the synchronization between

2Note that a tied task may be a virtual task that is a combination of several
tasks due to final clauses.

3The other type of synchronization edges due to the depend directives
can only points to the first part (i.e., the entry vertex) of a task.

4The final clauses belonging to Tj and the (grand)parent of Tj force
all the children of Tj to be combined into Tj if the associated expression
evaluates true. In this case, there is no child in between any consecutive
parts Pj,z and Pj,z+1 of Tj .

T and its (grand)child T ′ should be caused by final clauses.
For any synchronization between a tied task and its children
due to taskwait and if clauses, it can be equivalently
transformed into a synchronization between a tied task and
its siblings by using depend clauses [28] (See the related
discussion in Section. V-D for details).

In Table. I, there are 7 applications fulfilling the condition
of Theorem. 2. All of them are marked with stars as shown
in the first column of Table. I.

C. Calculating len(G) and vol(G)

We can calculate len(G) recursively as follows. Let L(v)
denote the length of the subgraph of G consisting of vertices
reachable from v, which is calculated by:

L(v) = c(v) + max
(v,u)∈E

L(u).

Finally, len(G) = L(v0), where v0 is the vertex corresponding
to the entry point of the whole program (each program has
only one entry point).

In the following we calculate vol(G). We use V (v) to
denote the volume of the subgraph of G consisting of vertices
reachable from v, which is recursively computed as follows:

V (v) =


c(v) + max

(v,u)∈E1

⋃
E2

V (u), v is a conditional vertex;

c(v) +
∑

(v,u)∈E1

⋃
E2

V (u), otherwise.

Finally, vol(G) = V (v0), where v0 is the vertex corre-
sponding to the entry point of the whole program. The above
presented computation of both len(G) and vol(G) can be
implemented by dynamic programming in polynomial time.

In [13], a method was proposed to compute len(G) and
vol(G) for conditional DAG models with well-nested branch-
ing and fork-join structures (i.e., there is no edge between a
vertex in a branch of a conditional statement and another ver-
tex outside that branch). However, their method may overcount
the vol(G) for general cases with non-well-nested structures,
for example, the applications marked with diamond in Table. I.

The computation of vol(G) in [13] differs from ours in
that they use E, rather than E1 ∪ E2, in the subscript of the
max and

∑
operations, which may overcount the workload.

For example, according to their calculation, T2 and T3 in
Figure. 3, which are forked from different branches of the
same conditional statement at Line 6, both contribute to
vol(G). However, in reality, only one of them can be executed.

In our computation, we fix this problem by excluding E3

in the computation procedure (or equivalently, deleting all
the edges in E3 from the task graph). This is because, after
deleting all the edges in E3, tasks created in different branches
can only submit their costs to their common conditional
predecessors. In this case, only one of them contributes to
vol(G). On the other hand, the synchronization edges can
only delay the execution of a vertex, but does not decide
whether this vertex will be actually executed or not, so our
computation method will not miss any vertex in an actual

execution sequence of the program, and thus can compute
vol(G) correctly.

D. Evaluation

We use benchmark programs in ompTGB to evaluate the re-
sponse time bounds in Theorem. 2 for OpenMP programs with
no if clauses and with tied tasks containing no taskwait.
In particular, we use 7 benchmark programs that are marked
with stars in Table. 1. The inter-task synchronization in these
programs are realized by depend.

Fig. 6. Evaluation of the applications in KASTORS benchmark.

For each benchmark program, we compare the response
time bound obtained using Theorem. 2 and the measured
response time in simulations when executing on different
number of threads (each thread exclusively occupies a physical
core). The response time bound and the measured response
time are reported in the form of the speedup comparing with
the response time on a single thread, which equals vol(G).
The speedup for the response time bound is smaller than the
measured response time since the former is an upper bound
of and in general larger than the later. For example, suppose
vol(G) = 12, the response time bound is 8 and the measured
response time is 6, then the speedup for the response time
bound is 12/8 = 1.5 and the speedup for the measurement is
12/6 = 2.

Fig. 7. Evaluation of the applications in SPEC and DASH benchmarks.

Figures. 6 and 7 show the experiment results, in which each
curve “xxx-B” is the speedup of the response time bound
of program “xxx”, and each curve “xxx-M” is the speedup
of the measured response time of program “xxx”. The gap
between the speedup of the bounds and the measured values
first increases as the number of threads increases, until the

maximal parallelism of the program is achieved. After that
point, adding more threads will not improve its measured
response time, while then the response time bound continues
to improve as the number of threads increases, and eventually
approach to the measured values.

Discussions: depend vs. taskwait
Using Theorem. 2 we can bound the response time for

tied tasks that use depend instead of taskwait for inter-
task synchronization. However, from Table. I we can see that
most of the benchmark programs we have collected so far
use taskwait, while only the ones in “kastors-1.1” use
depend. This is mainly because depend is a feature newly
introduced in OpenMP 4.0 and most of the benchmarks are
presented before that.

Recently, some work has been done to compare the average-
case performance of different implementations (with depend
or taskwait) of OpenMP applications in both high perfor-
mance and embedded domains [2], [28], [43]. These stud-
ies show that using depend can increase the parallelism
and accelerate the execution of the programs compared to
their taskwait implementations. Moreover, [28] developed
techniques to transform programs with taskwait into their
equivalent depend implementations to achieve a higher per-
formance.

The result in Theorem. 2 echoes the above preference to
depend in the perspective of worst-case timing behaviors.
Therefore, we advocate to use depend for inter-task syn-
chronizations in the development of OpenMP based real-time
softwares, for both average-case and worst-case performance
reasons.

VI. CONCLUSIONS

Multi-cores are more and more widely used in real-time
systems. To fully utilize the power of multi-core processors,
we must parallelize the software. OpenMP is a popular parallel
programming framework in general and high-performance
computing and is also promising for real-time computing. To
support the research of real-time scheduling of OpenMP based
real-time workload, we present a benchmark suite, ompTGB,
which collects realistic OpenMP programs and transforms
them into task graph models, so that the real-time scheduling
researchers can easily understand and use them. We also
present a new response time bound for a subset of OpenMP
programs and use it to demonstrate the usage of ompTGB.
Currently, ompTGB only models explicit tasks. In the next
step, we will include the modeling of implicit tasks (due to the
directives such as worksharing). We will also continuously
collect more realistic OpenMP programs into ompTGB.

REFERENCES

[1] A. OpenMP, “Openmp application program interface version 4.0,” 2013.
[2] R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, and E. Quinones,

“A lightweight openmp4 run-time for embedded systems,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2016, pp. 43–49.

[3] R. Vargas, E. Quinones, and A. Marongiu, “Openmp and timing pre-
dictability: A possible union?” in Design, Automation & Test in Europe
Conference & Exhibition, 2015, pp. 617–620.

[4] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quinones, “Timing characterization of openmp4 tasking model,”
in Proceedings of the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. IEEE Press, 2015,
pp. 157–166.

[5] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu,
“A real-time scheduling service for parallel tasks,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE
19th. IEEE, 2013, pp. 261–272.

[6] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
vol. 49, no. 4, pp. 404–435, 2013.

[7] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global edf
scheduling for parallel real-time tasks,” Real-Time Systems, vol. 51,
no. 4, pp. 395–439, 2015.

[8] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st. IEEE, 2010, pp. 259–268.

[9] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[10] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic dag task systems,” in Real-Time Systems (ECRTS), 2014 26th
Euromicro Conference on. IEEE, 2014, pp. 97–105.

[11] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global edf
scheduling of directed acyclic graphs on multiprocessor systems,” in
Proceedings of the 21st International conference on Real-Time Networks
and Systems. ACM, 2013, pp. 287–296.

[12] M. Qamhieh, L. George, and S. Midonnet, “A stretching algorithm for
parallel real-time dag tasks on multiprocessor systems,” in Proceedings
of the 22Nd International Conference on Real-Time Networks and
Systems. ACM, 2014, p. 13.

[13] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in 2015 27th Euromicro Conference on Real-
Time Systems. IEEE, 2015, pp. 211–221.

[14] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones, “Response-
time analysis of dag tasks under fixed priority scheduling with limited
preemptions,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2016, pp. 1066–1071.

[15] M. Stigge and W. Yi, “Graph-based models for real-time workload: a
survey,” Real-Time Systems, vol. 51, no. 5, pp. 602–636, 2015.

[16] J. Sun, N. Guan, Y. Wang, Q. Deng, P. Zeng, and W. Yi, “Feasibility of
fork-join real-time task graph models: Hardness and algorithms,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 15, no. 1,
p. 14, 2016.

[17] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
wcet benchmarks: Past, present and future,” in OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[18] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. Sørensen, P. Wägemann, and S. Wegener, “Taclebench:
A benchmark collection to support worst-case execution time research,”
in Proceedings of the 16th International Workshop on Worst-Case
Execution Time Analysis (WCET16), 2016.

[19] H. Li, P. De Meulenaere, and P. Hellinckx, “Powerwindow: a multi-
component taclebench benchmark for timing analysis,” in International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
Springer, 2016, pp. 779–788.

[20] P. Wägemann, T. Distler, and et.al, “Gene: A benchmark generator for
wcet analysis,” in OASIcs-OpenAccess Series in Informatics, vol. 47.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[21] J. Harbin, T. Fleming, L. S. Indrusiak, and A. Burns, “Gmcb: An
industrial benchmark for use in real-time mixed-criticality networks-
on-chip,” Proc. WATERS, 27th ECRTS, 2015.

[22] V. V. Dimakopoulos and A. Georgopoulos, “The ompi openmp/c com-
piler,” in Proc of the 10th Panhellenic Conference on Informatics, 2005,
pp. 156–162.

[23] “ompTGB homepage. "http://www4.comp.polyu.edu.hk/˜csguannan/openmp".”

[24] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz¡xopen source graph drawing tools,” in International Sympo-
sium on Graph Drawing. Springer, 2001, pp. 483–484.

[25] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing
analyzer for embedded software,” Science of Computer Programming,
vol. 69, no. 1, pp. 56–67, 2007.

[26] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A sloc counting
standard,” in COCOMO II Forum, vol. 2007, 2007.

[27] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg,
R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux et al., “Spec
omp2012¡xan application benchmark suite for parallel systems using
openmp,” in International Workshop on OpenMP. Springer, 2012, pp.
223–236.

[28] P. Virouleau, P. Brunet, F. Broquedis, N. Furmento, S. Thibault, O. Au-
mage, and T. Gautier, “Evaluation of openmp dependent tasks with
the kastors benchmark suite,” in International Workshop on OpenMP.
Springer, 2014, pp. 16–29.

[29] A. Duran González, X. Teruel, R. Ferrer, X. Martorell Bofill, and
E. Ayguadé Parra, “Barcelona openmp tasks suite: A set of benchmarks
targeting the exploitation of task parallelism in openmp,” in 38th
International Conference on Parallel Processing, 2009, pp. 124–131.

[30] V. Gajinov, S. Stipić, I. Erić, O. S. Unsal, E. Ayguadé, and A. Cristal,
“Dash: a benchmark suite for hybrid dataflow and shared memory pro-
gramming models: with comparative evaluation of three hybrid dataflow
models,” in Proceedings of the 11th ACM Conference on Computing
Frontiers. ACM, 2014, p. 4.

[31] J. M. Bull, J. P. Enright, and N. Ameer, “A microbenchmark suite
for mixed-mode openmp/mpi,” in International Workshop on OpenMP.
Springer, 2009, pp. 118–131.

[32] A. J. Dorta, C. Rodriguez, and F. de Sande, “The openmp source code
repository,” in 13th Euromicro Conference on Parallel, Distributed and
Network-Based Processing. IEEE, 2005, pp. 244–250.

[33] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for
openmp tasks,” in International Workshop on OpenMP. Springer, 2012,
pp. 271–274.

[34] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-
case execution-time problem¡xoverview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, p. 36, 2008.

[35] G. Bernat, A. Colin, and S. Petters, pwcet: A tool for probabilistic worst-
case execution time analysis of real-time systems. University of York,
Department of Computer Science, 2003.

[36] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
derivation of loop bounds and infeasible paths for wcet analysis using
abstract execution,” in Real-Time Systems Symposium, 2006. RTSS’06.
27th IEEE International. IEEE, 2006, pp. 57–66.

[37] C. Healy, M. Sjodin, V. Rustagi, and D. Whalley, “Bounding loop
iterations for timing analysis,” in Real-Time Technology and Applications
Symposium, 1998. Proceedings. Fourth IEEE. IEEE, 1998, pp. 12–21.

[38] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. v. Engelen,
“Supporting timing analysis by automatic bounding of loop iterations,”
Real-Time Systems, vol. 18, no. 2, pp. 129–156, 2000.

[39] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of openmp tasks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 3,
pp. 404–418, 2009.

[40] G. J. Narlikar, “Scheduling threads for low space requirement and good
locality,” Theory of Computing Systems, vol. 35, no. 2, pp. 151–187,
2002.

[41] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the cilk-5 multithreaded language,” in ACM Sigplan Notices, vol. 33,
no. 5. ACM, 1998, pp. 212–223.

[42] E. Ruffaldi, F. Brizzi, G. Dabisias, and G. Buttazzo, “Soma: an openmp
toolchain for multicore partitioning,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing. ACM, 2016, pp. 1231–1237.

[43] P. Virouleau, A. Roussel, F. Broquedis, T. Gautier, F. Rastello, and J.-
M. Gratien, “Description, implementation and evaluation of an affinity
clause for task directives,” in IWOMP 2016, 2016.

