
Scheduling and Analysis of Real-Time OpenMP
Task Systems with Tied Tasks

Jinghao Sun1,2, Nan Guan2, Yang Wang1, Qingqing He1 and Wang Yi1,3

1Northeastern University, China
2The Hong Kong Polytechnic University, Hong Kong

3Uppsala University, Sweden

Abstract—OpenMP is a promising programming framework
to develop parallel real-time systems on multi-cores. Although
similar to the DAG task model, the OpenMP task systems are
significantly more difficult to analyze due to various constraints
posed by the OpenMP specification. An important feature in
OpenMP is the tied tasks, which must execute on the same
thread during the whole life cycle. Although tied tasks enjoy
benefits in simplicity and efficiency, it was considered to be not
suitable to real-time systems due to its complex behavior. In
this paper, we study the real-time scheduling and analysis of
OpenMP task systems with tied tasks. First, we show that
under the existing scheduling algorithms adopted by OpenMP,
tied tasks indeed may lead to extremely bad timing behaviors
where the workload of a parallel task system is sequentially
executed. To solve this problem, we propose a new scheduling
algorithm and we developed two response time bounds for the
new algorithm, with different trade-off between simplicity and
analysis precision. Experiments with both randomly generated
OpenMP task systems and realistic OpenMP programs show
that the response time bounds obtained by our new scheduling
algorithm and analysis techniques for tied task systems are
very close to that of untied tasks, which may also be a good
choice for real-time systems in many cases.

I. INTRODUCTION

Multi-cores are more and more widely used in real-time
systems to meet the rapidly increasing requirements in high
performance and low power consumption. To fully utilize the
computation power of multi-core processors, software must be
parallelized. OpenMP [1] is a popular parallel programming
framework, which is not only widely used in general and
high-performance computing, but also has drawn increasing
interests in embedded and real-time computing [2]–[5].

A fundamental problem in real-time system design is the
scheduling of the workload. A common way to model parallel
software system is using Directed Acyclic Graph (DAG).
OpenMP supports explicit task systems since version 4.0.
The execution semantics of OpenMP task systems are closely
related to the DAG task models, and this motivates many
theoretical work on scheduling and analysis of DAG task
models [5]–[12]. However, the OpenMP language framework
poses many constraints to the workload model and runtime
scheduling behavior, which cannot be fully captured by the
DAG task model. Therefore, the results with DAG task models
are often not applicable to realistic OpenMP task systems.

An important feature in OpenMP task systems is introduced
by the tied keyword, which enforces a task (which includes
several vertices in a DAG) to execute on the same thread
during its life cycle. The tied tasks enjoy the following
benefits [1], [4]: (1) tied task precludes migrations among
threads, which simplifies the implementation of the scheduling
algorithm and reduces context switch cost; (2) tied tasks
automatically reduce deadlocks in the presence of critical
sections. In OpenMP, all tasks are tied by default, unless an
untied keyword is explicitly added when the task is created.

However, tied tasks and related constraints in OpenMP
bring significant challenge to the real-time scheduling and
analysis of OpenMP task systems. A recent work [4] showed
that the scheduling algorithms adopted by OpenMP are work-
conserving if all tasks are untied, to which the classical
response time bound [13] for DAG task model is applicable.
However, when the task system contains tied tasks, the
scheduling algorithms in OpenMP are not work-conserving,
and consequently “a timing analysis for tied tasks, besides
being conceptually very difficult to achieve, would require to
address sources of inherent complexity that would lead to
unacceptably pessimistic response-time bounds” [4]. So far,
the problem of scheduling OpenMP task systems containing
tied tasks with guaranteed response time bounds is open.

In this paper, we address the above open problem. First, we
show that under the existing algorithms adopted by OpenMP,
tied tasks not only make the response time analysis difficult,
but indeed may lead to extremely bad timing behavior: almost
all the workload of a parallel task system is tied to a single
thread, and thus has to be executed sequentially. Therefore,
the existing algorithms in OpenMP are indeed not suitable to
real-time systems where guaranteed worst-case response time
bounds are required.

To solve this problem, we propose a new algorithm to
schedule OpenMP task systems, which at runtime uses simple
rules to avoid tying too much workload to the same thread.
Then we developed two response time bounds for the new
algorithm, with different trade-off between simplicity (effi-
ciency) and analysis precision. We conduct experiments with
both randomly generated OpenMP task systems and realis-
tic OpenMP programs to evaluate our proposed scheduling
algorithm and analysis techniques. Experiment results show

that in most cases the response time bounds obtained by our
new scheduling algorithm and analysis techniques for tied
task systems are very close to that of untied tasks, which
suggests that tied tasks can also be used in OpenMP-based
real-time systems.

II. RELATED WORK

Much work has been done on scheduling DAG-based
parallel real-time task systems [5]–[7]. The task models in
these papers are closely related to the workload model of
OpenMP, but missing many features in realistic OpenMP
programs. Recently, some of these features have been taken
into consideration. Motivated by Task Scheduling Point (TSP)
in OpenMP, some work has been done on the scheduling of
parallel tasks with limited preemption points [14].

Recently, Vargas et al [3] and Serrano et al [4] studied the
possibility to apply OpenMP to real-time systems mainly from
the real-time scheduling perspective. These work highlighted
some important features in OpenMP that are relevant to
real-time scheduling. In particular, they discussed how the
Task Scheduling Point (TSP) and Task Scheduling Constraints
(TSC) affect the real-time scheduling behaviour.

Serrano et al [4] studied the problem of bounding the
response time (makespan) of the (non-recurring) task system
generated by an OpenMP application on multi-cores. [4]
developed response time bounds for the case containing only
untied tasks, and claimed that bounding the response time
in the presence of tied tasks is inherently hard. However,
in this paper we will show that for OpenMP programs that
contains tied, the response times can also be well bounded
as for the case having only untied tasks.

III. PRELIMINARY

In this section, we introduce the concepts and notations
related to the OpenMP task system and its runtime scheduling.
For simplicity of presentation, we focus on a single non-
recurrent OpenMP application. However, our results are also
applicable to a system with multiple recurrent OpenMP appli-
cations (with different periods) using the federated scheduling
framework, as discussed in a technical report [15].

A. An Overview of OpenMP Program

An OpenMP program starts with a parallel directive
(e.g., Line 1 in List. 1), which constructs the associated
parallel region including all code enclosed in the pair of
brackets following the parallel directive (e.g., Lines 2 to
23 in List. 1).

1) OpenMP Threads: The parallel directive also cre-
ates a team of n OpenMP threads (n being specified with the
num_threads clause). The OpenMP thread is an execution
entity which is able to execute the computation within the
parallel region. In the rest of the paper, the term “thread”
refers an OpenMP thread, and similar to previous work, each
thread is assumed to exclusively execute on a dedicated core.

Listing 1: An example OpenMP program
1 #pragma omp parallel num_threads (n) {
2 #pragma omp single { // τ1
3 part10; // P10

4 #pragma omp task { // τ2
5 part20; // P20

6 #pragma omp task { // τ3
7 part30; // P30

8 #pragma omp task depend(out:x){//τ4
9 part40; } // P40

10 part31; // P31

11 #pragma omp task depend(in:x){//τ5
12 part50; } // P50

13 part32; // P32

14 #pragma omp task depend(out:x){//τ6
15 part60; } // P60

16 part33; }// P33

17 part21; // P21

18 #pragma omp task { // τ7
19 part70; } // P70

20 part22; // P22

21 #pragma omp taskwait;
22 part23; } // P23

23 part11; }} // P11

2) OpenMP Tasks: The code in the parallel region has
a parallelism structure, which consists of a set of independent
parallel units, called OpenMP tasks. In the rest of the paper,
the term task refers an OpenMP task. A task is either implicit
or explicit. All explicit tasks are annotated by task directives
(e.g., τ2, Line 4 at List. 1). The body of a task includes the
code that is closely enclosed in the pair of brackets following
the task directive (e.g., the code in Lines 5, 6, 17, 18, 20, 21
and 22 belongs to task τ2). On the other hand, the code that is
not associated with any task directive belongs to an implicit
task (e.g., code at Lines 3, 4 and 23 in List. 1 is contained in
an implicit task τ1). For simplicity, we focus on the explicit
tasks annotated by task directives in this paper.

In the following we introduce some basic notations related
to tasks.

Task Relations
For any task τ , its associated task directive is assumed to

be closely enclosed in the body of a task τ ′. In this case, we
say τ is the child task of τ ′, and τ ′ is the parent task of τ .
Two tasks share the same parent task are siblings.

Moreover, a task τ is the descendant of τ ′ if τ is the
(grand)child of τ ′, and in this case, τ ′ is the ascendant of
τ . A task τ is the non-descendant task of τ ′ if τ is not the
descendant of τ ′.

For example, in List. 1, the task τ2 is the child of task τ1.
Tasks τ4, τ5 and τ6 are siblings, since they share the common
parent τ3. Moreover, task τ4 is a descendant of τ1. Task τ2 is
an ascendant of τ4.

Task Creation and Completion
A task τ is created when a thread is executing the parent

task of τ and encounters the task construct of τ . A task is
completed when its last code of its body is executed.

For example, in List. 1, τ2 is created when its parent task τ1
is executed (See in Line 4). Moreover, τ2 is completed when
the code at Line 23 is executed.

Task Synchronization
Tasks synchronize with each other via two different mech-

anisms below.
• taskwait clause. Parent task can synchronize with

its children via taskwait clauses. When encountering
taskwait, the parent task is blocked until all of its first
level children created beforehand have been finished.

• depend clause. Sibling task synchronize with each other
via depend clauses. The depend clause enforce an
order among the sibling tasks. If a task has an in
dependence on a variable, it cannot start execution until
all its previously created siblings with out or inout
dependences on the same variable have been completed.
On the other hand, if a task has an out or inout on a
variable, it cannot start execution until all its previously
created siblings with in, out or inout dependences on
the same variable have been completed.

For example, in List. 1, task τ2 synchronizes with its
children τ3 and τ7 via taskwait clause at Line 21. More
specifically, a thread cannot execute τ2 (the code at Line 22)
unless τ3 and τ7 are completed. Moreover, the siblings τ4,
τ5 and τ6 synchronize with each other via depend clauses.
More specifically, τ5 waits for the completion of τ4. τ6 waits
for the completion of τ4 and τ5.

3) Schedule and Scheduling Rules: Given a set of tasks
and a team of threads, a schedule is an assignment of tasks
to threads, so that each task is executed until completion. In
OpenMP, a feasible schedule must fulfil the following three
constraints.

Task Scheduling Points
The body of a task is sequentially executed. The execution

of a task can only be interrupted at task scheduling points
(TSP). TSP occurs upon task creation and completion, as
well as at task synchronization points such as taskwait
directives, explicit and implicit barriers1. For example, TSPs
divide the program in List. 1 into several parts (e.g., part10,
part11, ect.), and the TSP exists between any two adjacent
parts. More specifically, the parts of an OpenMP program
divided by TSPs are non-preemptive.

tied and untied Tasks
In OpenMP, a task is either tied or untied.
The tied task forces the code in its body to be executed

on the same thread. More specifically, If a tied task starts
execution on a thread, then it will only execute on this thread
in its whole life cycle. In particular, if the execution of a tied
task is interrupted, later it must be resumed on the same thread.

In contrast, the code in the body of an untied task can
be executed on different threads. More specifically, when an
untied task is resumed, it can be can be executed on any
idle thread.

By default, OpenMP tasks are tied, unless explicitly
specified as untied.

1Additional TSPs are implied at constructs target, taskyield,
taskgroup that we do not consider in this paper for simplicity.

Task Scheduling Constraint
The OpenMP specification enforces the following con-

straints, namely the task scheduling constraint (TSC) [1]:
“In order to start the execution of a new tied task, the

new task must be a descendant of every task that is currently
tied on the same thread.”

More formal definition of TSC and detail illustrations are
given in Sect. III-B2.

B. OpenMP System Model

1) Task System : An OpenMP task system T consists of
n tasks {τ1, · · · , τn}, and each task τi comprise a set of
sequentially ordered parts {Pi0, Pi1, · · · }. The task system
T can be represented as a directed acyclic graph (DAG) 2

G = (V,E), where V represents the set of vertices, and E
represents the set of edges. Each vertex vix in V is associated
with a worst-case computation time Cix and corresponds to
the x-th part Pix of task τi. For convenience, we also say
vix belongs to τi. As shown in Sect. III-A3, each vertex in
V is non-preemptive. The edge (vix, vjz) in E denotes the
precedence constraint between vertices vix and vjz , indicating
that vix cannot be executed unless vjz has been completed.
As shown in Sect. III-A2, there are three types of edges in a
DAG, i.e., E = E1 ∪ E2 ∪ E3:

v10 v11

v20 v21 v22 v23

v30 v31 v32

v40 v50 v60

v70τ1 τ7

τ2

τ3

τ4

τ5

τ6

control flow edge

task creation edge

synchronization edge

Fig. 1: DAG graph of OpenMP program in List. 1.

• Control Flow Edges (E1), denoted by dotted-line arrows
in Fig. 1, which model the control flow dependencies.
More specifically, the control flow edges represent the
sequential order of the vertices belonging to one task,
i.e., for any task τi, there is a control flow edge between
its vertices vix and vi,x+1 (x = 0, 1, · · ·).

Rule E1: The control flow edges connect vertices
within the same task.

2An OpenMP task system should be modelled as a DAG with conditional
branching since the fork-join structures may be nested with the branching
structures (e.g., the if-else structure). Including conditional branching seman-
tics will the make the abstract model rather complicated (e.g., a part may be
divided into several vertices in the graph). For simplicity of presentation, we
assume a DAG model without conditional branching to focus on the main
point of this paper, i.e., how to handle the tied tasks in the scheduling
and analysis. The results of this paper can be extended to include conditional
branching structures, the details of which is provided in technical report [15].

• Task Creation Edges (E2), denoted by dashed-line
arrows in Fig. 1. A parent task points its child tasks via
this type of edges. In Fig. 1, (v31, v50) is a task creation
edge.

Rule E2: The destination vertex of a task creation
edge must be the first vertex of a task. The source
and destination vertices must be in different tasks.

• Synchronization Edges (E3), denoted by solid-line ar-
rows in Fig. 1. There are two subtypes of synchronization
edges, corresponding to the taskwait and depend
directives, respectively:
– taskwait Edges: We assume that the vertex vix of
τi corresponds to a task part following a taskwait
directive, and that τj is a child task of τi, which is
created beforehand. Then there is a taskwait edge
from the last vertex of τj to vix. In Fig. 1, (v32, v23)
and (v70, v23) are taskwait edges.

Rule E3.1: A taskwait edge connects a
child task to its parent task. The source must
be the last vertex of the child task, and the
destination can be any vertex in the parent task
after creating this child.

– depend Edges: a depend edge connect two sibling
tasks. For any task τi that has an in dependence on a
variable and its previously created sibling τj that has
an out or inout dependence on the same variable,
there is a depend edge from the last vertex of τj
to the first vertex of τi. Moreover, for any task τi
that has an out or inout dependence on a variable
and its previously created sibling τj that has an in,
out or inout dependence on the same variable, there
is a depend edge from the last vertex of τj to the
first vertex of τi. In Fig. 1, (v40, v50), (v50, v60) and
(v40, v60) are depend edges.

Rule E3.2: The source of a depend edge must
be the last vertex of a task, and the destination
must be the first vertex of its sibling task.

Particular Structure of DAG

From Rules E1 to E3.2, the DAG model of an OpenMP
program does not have a general topology structure. We know
that generality can be a drawback from the point of view of
computational efficiency, which may be typically improved
by avoiding generality and exploiting particular structures.
Hence in the following we investigate the particular topology
structure derived by OpenMP semantics.

Lemma 1. For any task τ , there is no edge between the non-
descendant of τ and the descendant of τ .

Proof. It is trivial to prove Lem. 1 by enumerating the three
types of edges: E = E1 ∪ E2 ∪ E3. By Rule E1, the edge
in E1 connects the vertices belonging to the same task. By
Rule E2, an edge in E2 connects a task τ to its child task.
By Rules E3.1 and E3.2, an edge in E3 connects a task τ to
its non-descendent (e.g., the parent of τ or the sibling of τ).
In sum, none of the edges in E connects the non-descendant
of τ to the descendant of τ .

Lemma 2. For any task τ and its descendant τ ′, if a vertex
v′ of τ ′ is the predecessor of the vertex v of τ , then the last
vertex of τ ′ must be the predecessor of v of τ .

Proof. It is sufficient to prove that any path from v′ to v must
travel the last vertex of τ ′. Suppose not, there is a path λ from
v′ to v that does not travel the last vertex of τ ′.

Let u be the first vertex of λ such that u belongs to neither
τ ′ nor the descendent of τ ′. It indicates that the immediate
predecessor u′ of u in λ belongs to either τ ′ or a descendant
of τ ′.

Since u belongs to a non-descendant of τ ′, and there is an
edge between u′ and u, u′ cannot belong to a descendant of
τ ′ according to Lem. 1. Therefore, u′ can only belong to τ ′.
Thus, the original vertex u′ of (u′, u) belongs to τ ′, and the
destination vertex u of (u′, u) belongs to a non-descendant of
τ ′. We know that only the edge in E3 can connect a task to its
non-descendant. Thus, (u′, u) ∈ E3, and u belongs to either
the parent of τ ′ or a sibling of τ ′. In both of the two cases,
u′ must be the last vertex of τ ′ according to Rules E3.1 and
E3.2. This contradicts to the assumption.

Lemma 3. For any task τ and its non-descendant τ ′, if a
vertex v′ of τ ′ is the predecessor of the vertex v of τ , then v′

of τ ′ must be the predecessor of the first vertex of τ .

Proof. It is sufficient to prove that any path from v′ to v must
travel the first vertex of τ . Suppose not, there is a path λ from
v′ to v that does not travel the first vertex of τ .

Let u′ be the last vertex of λ which belongs to neither τ or
the descendent of τ . It implies that the immediate successor u
of u′ in λ belongs to either τ or a descendant of τ . We know
that u′ belongs to a non-descendant of τ and that there is an
edge (u′, u). According to Lem. 1, u cannot belongs to any
descendant of τ . Therefore, u belongs to τ . More specifically,
the original vertex u′ of (u′, u) belongs to a non-descendant
of τ , and the destination vertex u of (u′, u) belongs to τ . We
know that only the task creation edge in E2 and the depend
edge can connect a non-descendant of τ to τ . Thus, (u′, u) is
either a task creation edge or a depend edge, and u′ belongs
to either the parent of τ or a sibling of τ . In both cases, u is
the first vertex of τ according to Rules E2 and E3.2.

Additional Notations
In the following we introduce some additional notations

related to the DAG task model, which will be used in analysing
the response time of OpenMP task systems.

Definition 1. A vertex vix is the taskwait vertex of τi if
there is a taskwait edge (vjz, vix) ∈ E.

From Rule E3.1, the original vertex vjz of the taskwait
edge (vjz, vix) must be the last vertex of task τj , which implies
that the taskwait vertex cannot start its execution unless τj
is finished. For convenience, we say τj joins to the taskwait
vertex vix.

Definition 2. A task τj is the depending task of τi if there is
a taskwait edge from τj to τi.

From Rule E3.1, the taskwait edge can only from a
child task to the parent task. Thus, a depending task τj of τi
implies that τj is a child of τi.

Depending Sequence. For any task sequence κ =
(τ1, τ2, · · ·), we say κ is a depending sequence if τi+1 is the
depending task of τi, for any adjacent tasks τi and τi+1 in κ.
Moreover, we say a depending sequence κ is maximum if it
cannot be extended to a larger sequence, i.e., the first task of
κ is not a depending task of any other task, and the last task
of κ has no depending tasks.

Depth of Graph. For any maximum depending sequence
κ, we count the number Ntied(κ) of tied tasks from all the
tasks of κ except the last task of κ. We define the depth of
DAG G by checking all the maximum depending sequences
of G:

dep(G) = max{Ntied(κ)|κ is maximum}.

For example, in Fig. 1, there are two depending se-
quences κ1 = (τ2, τ3) and κ2 = (τ2, τ7), and Ntied(κ1) =
Ntied(κ2) = 1. The depth of G: dep(G) = 1. It should be
emphasized that the depth dep(G) only depends on the type
of task τ2. For example, if τ2 is untied, then Ntied(κ1) =
Ntied(κ2) = 0 no matter whether τ3 and τ7 are tied or not.

The calculation of dep(T) can be found in Appendix A.
Longest Path to a taskwait vertex. For any taskwait

vertex vix of τi, we denote by λix the longest path such that:
• the last vertex of λix is an immediate predecessor of vix;
• λix does not travel any vertex of τi.

The length of λix is denoted as len(λix), and the calculation
of len(λix) is given in Appendix B.

2) Schedule: Given a set of tasks T = {τ1, · · · , τn} and a
team of threads S = {s1, · · · , sm}, a schedule can be defined
as a m-dimension vector of functions σ = (σ1, · · · , σm), and
each function σk : R+ → N such that ∀t ∈ R+, σk(t) = i,
with i > 0, means that the thread sk is executing task τik at
time t, while i = 0 means that sk is idle (k = 1, · · · ,m).
Furthermore, by considering that a task τi comprises a set of
vertices {vi0, vi1, · · · } in the DAG graph, we also define each
function σk as follows. ∀t ∈ R+, σk(t) = (i, x), with i > 0,
means that the thread sk is executing the vertex vix of task
τi at time t, while i = 0 means that sk is idle no matter
what x equals. In the rest of the paper, we use both versions
of schedule function σk, and without leading to confusion, we
use the bold symbol σk to denote the schedule function which
only returns the task index. Moreover, for convenience, σk

(and σk) also represents the sequence of vertices (and tasks)
executed by the thread sk, i.e., vix ∈ σk means that vertex vix
is executed by sk, and τi ∈ σk means that some vertex of τi
is executed by sk.

Useful Notations
Timing parameters of a vertex. By given a schedule σ,

for any vertex vix of task τi, we define the associated timing
parameters as follows.
• beginning time of vix:

bix = min{t|σk(t) = (i, x),∀t ∈ R+, k ∈ [1,m]}.

• finishing time of vix, for any ∆→ 0+:

fix = max{t+ ∆|σk(t) = (i, x),∀t ∈ R+, k ∈ [1,m]}.

The finishing time fix is no more than bix + Cix.
• eligible time of vix:

eix = max{fjz|∀(vjz, vix) ∈ E}. (1)

The eligible time eix of vix equals to the maximum fin-
ishing time among all the predecessors of vix. Moreover,
at a time instant t, we say a vertex vix is eligible if
eix ≤ t and bix > t. Note that the beginning time bix
of vix should not be less than the eligible time eix. In
particular, for any vertex vix ∈ V , we say the execution
of vix is delayed if bix > eix.

Current tied tasks for a thread. For a given time instant
t and a thread sk, we denote by Γk(t) the set of tasks that are
tied on sk and which have not been finished at time t:

Γk(t) = {τi|tied τi ∈ σk ∧ ∃vix ∈ τi, with fix > t}.

For any τi ∈ Γk(t), we say τi is suspended at time t if
σk(t) 6= i. In this case, there must exist a vertex vix of τi,
with x ≥ 1, such that bix > t and fi,x−1 ≤ t. We say vix is
the suspending vertex of τi at time t, denoted as υi(t) = vix.

Response time. Finally, the response time of a task DAG
G = (V,E) is defined as

R(G) = max{fix|vix ∈ V }.

We know that σk(t) = 0 and Γk(t) = ∅, for any k ∈ [1,m]
and t ≥ R(G).

Key paths. For a given time instant t and a vertex vix of τi,
with bix ≥ t, the schedule σ derives the associated key path
λkey(vix, t) as follows.
• All the vertices of λkey(vix, t) do not belong to τi.
• For any edge (vjz, vly) of λkey(vix, t), vjz is a vertex

with the latest finishing time among all the predecessors
of vly, and moreover, vjz is completed at or after t, i.e.,
fjz ≥ t. In particular, the last vertex of λkey(vix, t) is the
one with latest finishing time among all the predecessors
of vix which is completed at or after t.

It should be emphasized that the key path λkey(vix, t) is a
path whose last vertex is the immediate predecessor of vix and
which does not travel any vertex of τi. Recall that we have

used λix to denote the longest one among such kind of paths.
Thus, we have:

len(λkey(vix, t)) ≤ len(λix), ∀t ∈ [0, R(G)] (2)

In some special cases, we do not predefine the target vertex
vix, (i.e., i = 0) and moreover, let t = 0. The corresponding
key path λkey(v0x, 0) is defined as follows.
• The last vertex of λkey(v0x, 0) is one with the lasted

finishing time in the schedule σ.
• For any edge (vjz, vly) of λkey(v0x, 0), vjz is a vertex

with the latest finishing time among all the predecessors
of vly.

We call λkey(v0x, 0) as the key path of the whole schedule
σ, and for convenience, we redefine it as λkey in the rest of
the paper.

Task Scheduling Constraints
A feasible schedule σ satisfies the following constraints.

Cons SE: ∀t ∈ R+, and ∀k, k′ ∈ [1,m], σk(t) 6=
σk′(t) if σk(t) > 0 or σk′(t) > 0.

Cons SE ensures that any two different threads cannot
execute the same task simultaneously. In the other words, a
task should be Sequentially Executed.

Cons PC: For any (vjz, vix) ∈ E, bix ≤ fjz .

Cons PC ensures the Precedence Constraints defined by the
edges in E, i.e., a vertex vix cannot start its execution unless
its predecessor vjz is completed.

Cons TSP: For any vix ∈ V , if vix ∈ σk, then σk(t) =
(i, x), ∀t ∈ [bix, fix).

Cons TSP ensures that the vertex in V is non-preemptive.
More specifically, the constraint enforce that once a thread
sk begins to execute vertex vix at time bix, then sk always
executes vix during interval [bix, fix).

Cons TIED: For any vertex vix of a tied task τi ∈ T ,
with x ≥ 1, σk(t) = (i, x) only if τi ∈ Γk(t).

Cons TIED ensures that a tied task should be executed
by one thread during its life cycle. More specifically, at any
time t, thread sk can execute the vertex vix of tied task τi
(x ≥ 1) only if τi has been tied on sk before time t (See the
definition of Γk(t)).

Cons TSC: For a new tied task τi, σk(t) = (i, 0) if
∀τj ∈ Γk(t), τi is a descendant of τj .

Cons TSC gives a formal definition of the Task Scheduling
Constraint (TSC) introduced in Sect. III-A3. This constraint
enforces that a new tied task τi can be executed by thread

sk at time t only if (1) there is no unfinished task tied on
sk at time t, i.e., Γk(t) = ∅; or (2) τi is the descendant of
every unfinished task that is tied on sk. Example 1 illustrates
Cons TSC.

In contrast, the execution of an untied task needs not to
fulfil Cons TIED and TSC.

Example 1. In Fig. 2, suppose that task τ1 is untied and
the other tasks τ2, · · · , τ5 are tied. At time t1, the currently
tied task set of s1 is Γ1(t1) = {τ3}, and the tasks τ4 and
τ5 are both eligible at time t1 since e40 = f12 < t1 and
e50 = f11 < t1. Under Cons TSC, τ5 can be executed by s1
and τ4 is delayed since τ5 is the child of τ3, but τ4 is not.

v10 v11 v12 v13

v20

v30 v31

v50

v40

τ1

τ2 τ4

τ3

τ5

t

t0 t1

s1

s2

v10 v11 v12 v30 v50 v31 v13

v20 v40

Fig. 2: An example schedule agrees with TSC.

IV. PROBLEMS WITH EXISTING SCHEDULING POLICIES

Most OpenMP implementations support two scheduling
policies: Work First Scheduling (WFS) [16] and Breadth First
Scheduling (BFS) [17]. Roughly speaking, WFS prefers to
execute newly created tasks, while in BFS a thread tends
to execute tasks that have been tied on them. When tied
tasks are used, BFS is the only choice in practice, as WFS
leads to a complete sequentialization of task executions when
nested parallelism (found, for example, in programs that use
recursion) is adopted. In this work, we investigate how to
scheduling OpenMP programs in the presence of tied tasks,
and thus we only focus on BFS and its extensions.

The pseudo-code of BFS is shown in Alg. 1. The algorithm
is invoked at any time t when a vertex vix of τi completes
its execution (Line 2). If τi has tied on a thread sk and the
immediate successor vi,x+1 of vix is eligible (Line 3), then
the scheduler assign vi,x+1 to sk. In this case, sk continues
the execution of τi (Line 4).

After that, if there is any vertex vjz of τj that is eligible
and which has not been executed at time t, the scheduler find
a thread sk for executing vjz . There are two possible cases.
• τj is a new tied task (Line 7). It indicates that vjz is

the first vertex of τj . A thread sk can execute vix only if
sk is idle (Line 9) and Cons TSC is fulfilled (Line 10).

• τj is untied or has been tied on a thread sk (Line 14).
In this case, sk can execute vjz if sk is idle (Line 13).

As we know that scheduling anomalies may occur when the
DAG-based task set is executed in a multiprocessor environ-
ment [13]. To void the anomalies, it is sufficient to assume
that every vertex is executed a worst-case computation time.

Algorithm 1 BFS

1: At the current time t:
2: while any vix of τi with fix = t do
3: if ei,x+1 = t and τi ∈ Γk(t) then
4: assign vi,x+1 to sk;
5: end if
6: for any unexecuted vjz of τj with ejz ≤ t do
7: if τj is a new tied task then
8: assign vjz to sk only if
9: σk(t) = 0; and for any τl ∈ Γk(t):

10: τj is a descendant of τl;
11: else
12: assign vjz to sk only if
13: σk(t) = 0; and
14: τj is untied or τj ∈ Γk(t);
15: end if
16: end for
17: end while

Based on this assumption, the assignment of a vertex vix to a
thread sk is defined as follows.

σk(t) := (ix),∀t ∈ [bix, t+ Cix); (3)
fix := bix + Cix; (4)

Any schedule σBFS derived by BFS (Alg. 1) fulfils all the
five constraints in Sect. III-B2, which is proved in Appendix D.

Note that Cons SE, PC and TSP are constraints for both
of tied and untied task, while other constrains, e.g., Cons
TIED and TSC, only restrict the scheduling behaviour of
tied tasks. If all tasks are untied, only the constraints
Cons SE, PC and TSP need considering. In this case, the
problem degenerates to a scheduling problem on the DAG
with vertex-level non-preemption (See in [13] for example).
Serrano et al [4] showed that BFS is work-conserving when
scheduling untied tasks, i.e., ∀σk ∈ σBFS , σk(t) = 0
implies that there is no eligible vertex at time t. Based on the
work-conserving property, Serrano et al [4] proved that BFS
algorithm derives a response time bound for an OpenMP-DAG
task graph as follows.

RBFS(G) ≤ len(G) +
vol(G)− len(G)

m
(5)

where len(G) is the length of critical path in DAG G, and
vol(G) is the total worst-case computation time of all the
vertices in G, as well as m is the number of threads.

Unfortunately, the bound in (5) is not applicable to tied
tasks since more complicated constraints Cons TIED and
TSC are considered, which makes BFS a non-work-conserving
algorithm.

Nevertheless, BFS is a better choice for scheduling tied
tasks in practice. Compared to WFS, when encountering newly
created tasks, BFS does not force the thread to suspend the
parent task for executing the newly encountered child task,
but has a better chance to distribute tied tasks to different

threads, which avoids a complete sequentialization of task
executions. It leaves an open problem in [4] about how to
bound the response time of OpenMP application with tied
task under BFS.

v10

v11

v20 v30

v31

v32

v40

v41

v50

v51

τ1τ2 τ3 τ4 τ5

Fig. 3: An OpenMP-DAG with tied tasks.

In order to answer this open problem, we first give an
example to show that in some cases, BFS performs as bad
as WFS does. In the other words, BFS may also execute the
parallel workload sequentially, and thus the general response
time bound for tied tasks under BFS is the volume of DAG,
i.e., vol(G).

t0

t

t1 t2 t3

s1

s2

v10 v11 v30 v31 v50 v51 v32

v20 v40 v41

Fig. 4: The schedule σBFS for DAG in Fig. 3.

The counterexample for BFS is given in Fig. 3, where all
the tasks are tied. The tasks τ3 and τ5 both have a “heavy”
vertex (marked red) with WCET l, and all the other vertices
are “light”, whose WCETs are much smaller than l. Fig. 4
shows the schedule σBFS derived by Alg. 1. Note that thread
s1 is the only idle thread when τ3 and τ5 become eligible
(at t1 and t2 respectively). As a result, τ3 and τ5 are tied on
s1. Consequently, the schedule σBFS has two phases. In the
first phase, from t0 to t2, tasks are tied to s1 and s2. In the
second phase, the “heavy” vertices execute sequentially. When
the execution time of all the light vertices approaches 0, the
response time of this OpenMP application approaches its total
workload vol(G) = 2l.

From the above example, we observe that under BFS a
task (e.g., τ5) that is newly tied on a thread (e.g., s1) will
block the tasks that have been currently tied on the same
thread (s1) in the future, which, in the worst case, leads to
a sequentialization of task executions. This motivates us to
design a new scheduling policy to avoid this resource waste.

V. NEW SCHEDULING POLICY: BFS∗

Last section showed that BFS may also lead to a complete
sequentialization of task executions in the presence of tied
tasks. In this section, we develop a new scheduling policy
BFS∗ to mitigate the resource waste problem caused by
tied tasks. BFS∗ is similar to BFS in the sense of first
executing currently tied tasks. But BFS∗ uses an enhanced

TSC constraint to prevent tying too many tasks on the same
thread.

Cons E-TSC: For any vertex vix belonging to a new
tied task and a untied task τi, σk(t) = (i, x) if the
last vertex of τi is a predecessor of vj(t), ∀τj ∈ Γk(t).

Cons E-TSC ensures that the vertex newly assigned to a
thread must not block the tasks that have been tied on the same
thread in the future. Thus, any vertex of the task that has been
tied on a thread is executed as soon as it becomes eligible.
In this case, once a task has been tied to a thread, its vertices
cannot be delayed. We only provide the main conclusions here,
and the more formal analysis is given in Sect. V-A.

Algorithm 2 BFS∗

1: At the current time t:
2: while any vix of τi with fix = t do
3: if ei,x+1 = t and τi ∈ Γk(t) then
4: assign vi,x+1 to sk;
5: end if
6: for any unexecuted vjz of τj with ejz ≤ t do
7: if τj is a new tied task or an untied task then
8: assign vjz to sk only if
9: σk(t) = 0; and for any τl ∈ Γk(t),

10: the last vertex of τj is a predecessor of υl(t);
11: else
12: assign vjz to sk only if
13: σk(t) = 0; and τj ∈ Γk(t);
14: end if
15: end for
16: end while

The pseudo-code of BFS∗ is presented in Alg. 2, where we
use Cons E-TSC (Line 10 in Alg. 2) instead of Cons TSC
(Line 10 in Alg. 1). Using similar techniques in Pro. 1 to 4,
we can prove that a schedule σBFS∗ derived by BFS∗ satisfies
Cons SE, PC, TSP and TIED. The following lemma shows
that σBFS∗ also fulfils Cons TSC.

Lemma 4. σBFS∗ fulfils Cons TSC.

Proof. It is equal to prove that ∀σk ∈ σBFS∗ , σk(t) = (i, 0)
(by assuming a tied task τi) if τi is the descendant of each
task in Γk(t). For any task τj ∈ Γk(t), we know that τj is
suspended at time t since σk(t) = i and i 6= j. According to
Line 10 of Alg. 2, the last vertex of τi is the predecessor of
υj(t), the suspending vertex of τj at time t. We consider the
following two cases:

Case 1. τi is a descendant of τj . In this case, Cons TSC
is fulfilled.

Case 2. τi is a non-descendant task of τj . As we assumed
that the last vertex of τi is the predecessor of υj(t) of
τj , according to Lem. 3, the last vertex of τi must be the
predecessor of the first vertex of τj . It indicates that τj
cannot start the execution unless τi has been completed. This

contradicts to the assumption that τj is suspended and τi is a
new tied task.

t0
t

t1 t2 t3

s1

s2

v10 v11 v30 v31

v50

v32

v51v20 v40 v41

Fig. 5: The schedule σBFS∗ for DAG in Fig. 3.

Fig. 5 shows the resulting schedule σBFS∗ of the example
in Fig. 3. At time t1, τ3 is suspended and s1 becomes idle.
However, the newly created task τ5 cannot be assigned to
s1 since τ5 is not the predecessor of τ3 (so ESC-(c) is not
satisfied). After a short idle period [t1, t2], the depending task
τ4 of τ3 is finished and v32 becomes eligible. s1 continues to
execute τ3, and meanwhile, s2 starts the execution of τ5. In
this example, the “heavy” vertices v32 and v51 are distributed
to different threads.

A. Properties of BFS∗

In the following we introduce some properties of BFS∗,
which will be useful to derive the response time bounds in
the next section.

The first one is about delayed vertices. Recall that a vertex
vix is delayed if bix > eix. The following lemma implies that
once a tied task starts the execution, none of its vertices can
be delayed during the following scheduling process.

Lemma 5. For any tied task τi, vertex vix is the first vertex
of τi if bix > eix in a schedule σBFS∗ .

Proof. This is proved by contradiction. Suppose that the vertex
vix which is not the first vertex of a tied task τi, has a
beginning time bix > eix in a schedule σBFS∗ . There must be
a time instant t ∈ (eix, bix), and the tied task τi is suspended
at time t. Let τi ∈ σk, we have τi ∈ Γk(t), with υi(t) = vix.
We consider the following two cases.

If σk(t) = 0. vix is not eligible at t since we have assumed
that vix is not executed by the idle thread sk that has tied τi
at t. More specifically, eix > t.

Otherwise. suppose that σk(t) = (j, z), We know that bjz ≤
t ≤ bix and bjz ≥ fi,x−1. Thus, τi ∈ Γk(bjz). σk(bjz) = (j, z)
implies that the last vertex of τj is the predecessor of vix as
Cons E-TSC is fulfilled. It indicates that vix is not eligible at
t, since τj has not been completed at t. Thus, eix > t.

The above cases both contradict with the assumption that
eix < t, which completes the proof.

The second property of BFS∗ is about suspended tasks.
Recall that a tied task τi ∈ Γk(t) is suspended at time t if
σk(t) 6= i, and τi will resume at its suspending vertex υi(t).
Moreover, recall that the taskwait vertex of a task if it is
pointed by taskwait edges. The following lemma shows
that a tied task can only be suspended at its taskwait
vertices.

Lemma 6. In a schedule σBFS∗ , with τi ∈ Γk(t) and σk(t) 6=
i, υi(t) = vix only if vix is a taskwait vertex.

Proof. Suppose that vix of τi is not a taskwait vertex, i.e.,
only edge (vi,x−1, vix) points to vix. At time t, the tied
task τi is suspended, with υi(t) = vix. Let σk(t) = (j, z),
with i 6= j. We know that the execution of vjz begins after
the completion of vi,x−1 and completes before the start of vix,
i.e., fi,x−1 ≤ bjz ≤ bix. Thus, τi ∈ Γk(bjz).

On the one hand, σk(bjz) = (j, z) implies that the last
vertex of τj is the predecessor of vix as Cons E-TSC is
fulfilled.

On the other hand, since bjz ≥ fi,x−1, the last vertex of τj
is not the predecessor of vi,x−1.

In sum, vix is reachable from the last vertex of τj via a
path λ that does not travel any vertex in τi. Let (vly, vix) be
the last edge in λ, we have vly 6= vi,x−1, which contradicts
with the assumption.

VI. RESPONSE TIME BOUNDS

For any DAG G, we use BFS∗ algorithm to schedule
it, and let R(G) be the response time of G derived by a
schedule σBFS∗ . Without loss of generality, we assume that
the schedule σBFS∗ begins at time 0. For any time instant
t ∈ [0, R(G)] and any thread sk ∈ S, the value of schedule
function σk(t) equals either 0 or not 0. We construct the
corresponding index functions as follows.

For any time t ∈ [0, R(G)] and k ∈ [1,m]:

fkbusy(t) =

{
1 σk(t) 6= 0
0 else

;

Moreover, we let fkidle(t) = 1 − fkbusy(t). The cumulative
values of these functions are defined as follows.

F kbusy =

∫ R(G)

0

fkbusy(t)dt; F kidle =

∫ R(G)

0

fkidle(t)dt

where F kbusy and F kidle respectively define the busy and idle
time of thread sk. Moreover, Fbusy =

∑m
k=1 F

k
busy and

Fidle =
∑m
k=1 F

k
idle respectively denote the total busy and

idle time of all the threads.
The response time R(G) can be represented as follows.

R(G) =
Fbusy + Fidle

m
. (6)

We know that
Fbusy ≤ vol(G) (7)

In the following we focus on the upper bound of Fidle.
By given a key path λkey of the schedule σBFS∗ , we define

the index function below:

g(t) =

{
1 a vertex of λkey is executing at t
0 else

Then the total idle time Fidle can be rewritten as follows.

Fidle =

m∑
k=1

∫ R(G)

0

fkidle(t)dt

=

m∑
k=1

∫ R(G)

0

[g(t) + (1− g(t))]fkidle(t)dt

Let h(t) = (1− g(t)), we rewrite Fidle as summation of two
parts:

Fidle = F keyidle + Fnokeyidle (8)

where

F keyidle =

m∑
k=1

∫ R(G)

0

g(t)fkidle(t)dt (9)

Fnokeyidle =

m∑
k=1

∫ R(G)

0

h(t)fkidle(t)dt (10)

Since g(t) and fkidle(t) are both non-negative for any t ∈
[0, R(G)], and from (9), the first item of RHS in (8) has an
upper bound below.

F keyidle ≤
∫ R(G)

0

g(t)

m∑
k=1

fkidle(t)dt (11)

Note that g(t) equals either 1 or 0, and when g(t) = 1,∑m
k=1 f

k
idle(t) ≤ m−1 as at least one thread at time t is busy

for executing the vertex in the key path λkey . Therefore, (11)
can further derives the following inequality.

F keyidle ≤ (m− 1)

∫ R(G)

0

g(t)dt (12)

We know that
∫ R(G)

0
g(t)dt equals the length len(λkey) of the

key path λkey . Thus, from (12), we have:

F keyidle ≤ (m− 1)len(λkey) (13)

In the following we derive the upper bound for Fnokeyidle ,
the second item of RHS in (8), by two different methods,
using which we can finally obtain two response time bounds.
Before enter into the details, we first introduce a frequently
used expression below.

“at time t when h(t) = 1” |= “at time t when none
of the vertices in key path λkey is being executed”.

According to the definition of the index function h(t), the
LHS and RHS of the above expression equals each other.

A. First Upper Bound for Fnokeyidle

Since h(t) and fkidle(t) are both non-negative for any t ∈
[0, R(G)], and from (10), an upper bound of Fnokeyidle is as
follows.

Fnokeyidle ≤
∫ R(G)

0

h(t)

m∑
k=1

fkidle(t)dt (14)

We know that h(t) is either 1 or 0 at any time t, and we
denote by mnokey

idle the maximum value of
∑m
k=1 f

k
idle(t) for

all the time t when h(t) = 1. Then (14) can further derive the
following inequality.

Fnokeyidle ≤ mnokey
idle

∫ R(G)

0

h(t)dt (15)

Moreover, since
∫ R(G)

0
h(t)dt = R(G)− len(λkey), and from

(15), we have:

Fnokeyidle ≤ mnokey
idle (R(G)− len(λkey) (16)

Note that mnokey
idle denotes the maximum number of idle threads

at all the time when no vertex of key path λkey is being
executed. The following theorem gives an upper bound of
mnokey
idle .

Theorem 1. For any task DAG G scheduled by BFS∗,

mnokey
idle ≤ dep

1 + dep
m (17)

where dep = min{dep(G),m− 1}.

To prove this theorem, it is sufficient to show that at a time
t when h(t) = 1, the idle threads can be divided into at least
m

1+dep disjoint subsets, such that: each subset of idle threads
corresponds to a dedicated busy thread. In the following we
show such a division of idle threads as follows. We first show
the property of an idle thread (See in Lem. 7).

Lemma 7. At time t when h(t) = 1, Γk(t) 6= ∅ for any idle
thread sk.

The proof of Lem. 7 is given in Appendix E.
Lem. 7 shows that at time t when h(t) = 1 any idle thread

sk has a non-empty Γk(t), and all the tasks in Γk(t) are
suspended. For any idle thread sk, we denote by τ(sk) the
last tied task suspended on sk (before t):

τ(sk) = arg max{t′|σk(t′) ∈ Γk(t), t′ < t}.

In order to obtain a division of all the idle threads, we define
a relation H as follows.

Definition 3. For any two idle threads sk and sl, skHsl if
there is a depending sequence from τ(sk) to τ(sl).

H divides the idle threads into several disjoint subsets
H = {H1,H2, · · · }3 such that ∀sk, sl ∈ Hi, skHsl or slHsk.
Moreover, Hi can also be represented as a sequence of threads
Hi = (s1, s2, · · ·) such that for any sl, sk ∈ Hi, l < k if
slHsk. We denote by s(Hi) the last thread in the sequenceHi.
Furthermore, we denote Ti the task set that contains the last
suspended tasks of all the threads in Hi. We denote by κ(Hi)
the depending sequence that ends at τ(s(Hi)) and which
contains all the tasks of Ti. We say κ(Hi) is the depending
sequence corresponding to Hi.

The following lemma shows that each subset Hi corre-
sponds to at least one busy thread.

3For convenience, the division of idle threads is also denoted by H.

Lemma 8. At time t when h(t) = 1, for each Hi ∈ H and
any sk ∈ Hi, the last suspended task τ(sk) of sk must has a
created descendant τl such that:
• there is a depending sequence from τ(sk) to τl4.
• τl is being executed by a busy thread at time t.

Proof. Suppose not, every created descendant of τ(sk) is
either unexecuted or suspended at time t. Among all the
created descendant of τ(sk), we focus on the one, denoted
as τj such that:
• there is a depending sequence from τ(sk) to τj .
• τj is neither pointed by its created siblings nor has any
taskwait vertex.

There are two possible cases.
Case 1. τj is unexecuted at time t. Since τj has been created

and no created sibling of τl points to τl, we know that τl is
eligible at time t. In the following we show that the assignment
of τj to sk does not violate Cons E-TSC.

We have assumed that there is a depending sequence κ
from τ(sk) to τj , and without loss of generality, we assume
that τ(sk) and τj are adjacent in κ, i.e., τj is the depending
task of τ(sk). In this case, τ(sk) should be suspended unless
τj is completed. It implies that the last vertex of τj is the
predecessor of the suspending vertex of τ(sk). Moreover, since
τ(sk) is the last suspended task of sk at or before t, according
to Line 10 of Alg. 2, the last vertex of τ(sk) is the predecessor
of the suspending vertex of any task τl in Γk(t′), where t′ is
the beginning time of the vertex of τ(sk) that is last completed
before t. It further indicates that the last vertex of τj is the
predecessor of the suspending vertex of any task in Γk(t′).
Finally, since Γk(t) = Γk(t′)∪{τ(sk)}, we know that the last
vertex of τj is the predecessor of the suspending vertex of any
task in Γk(t), which coincides with Cons E-TSC.

Therefore, the assignment of τj to sk does not violate Cons
E-TSC. According to Line 10 of Alg. 2 τj can be executed
at time t, which leads to a contradiction.

Case 2. τj is suspended at time t. Since τj has no
taskwait vertex, τj cannot be suspended according to
Lem. 6. This leads to a contradiction.

In sum, at least one created descendant of τ(sk) is being
executed at time t, which completes the proof.

For any Hi ∈ H, we focus on the last thread s(Hi) of
Hi, and let s(Hi) = sk. According to Lem. 8, at time t
when h(t) = 1, the last suspended task τ(sk) of sk has a
created descendant τl which is executed by a busy thread sl.
For convenience, we say sl is the busy thread corresponded
to Hi.

Lemma 9. At time t when h(t) = 1, eachHi ∈ H corresponds
to a dedicated busy thread.

Proof. Suppose not, H contains two subsets Hi and Hj which
shares the same corresponding busy thread. More specifically,

4Such τl must exist. Otherwise, τ(sk) has no depending tasks, implying
that there is no taskwait vertex in τ(sk), and thus τ(sk) cannot be
suspended according to Lem. 6. This contradicts with the fact that τ(sk)
is suspended on sk .

by τq we denote the task that is executed by this busy thread.
Moreover, we respectively denote by sk and sl the last threads
of Hi and Hj , i.e., sk = s(Hi) and sl = s(Hj). The last
suspended tasks of sk and sl are τ(sk) and τ(sl) respectively.
According to Lem. 8, we know that:
• τq is the descendant of τ(sk) and τ(sl);
• there is a depending sequence κk from τ(sk) to τq;
• there is a depending sequence κl from τ(sl) to τq .
Moreover, we denote by κ(Hi) and κ(Hj) the depending

sequences corresponding to Hi and Hj respectively. Since Hi
and Hj are disjoint, we have κ(Hi)⊕ κ(Hj) 6= ∅ (some task
contained in κ(Hi) does not belong to κ(Hj), and vice versa).

Since τ(sk) is the last task of κ(Hi) and is the first task of
κk, we can connect these two sequences and obtain a larger
one κ1 = κ(Hi) + κk, where “+′′ is the symbol representing
the connection of two sequences. Likewise, we denote κ2 =
κ(Hj) +κl. Since κ(Hi)⊕κ(Hj) 6= ∅, we have κ1⊕κ2 6= ∅.
On the other hand, κ1 and κ2 end at the same task τq . We
let τp be the nearest task τq that is shared by both κ1 and
κ2. By τx we denote the immediate predecessor of τp in the
sequence κ1, and let τy be the immediate predecessor of τp
in the sequence κ2. We know that τp is the depending task
of two different tasks τx and τy . According to the definition
of depending tasks, we know that τp is the first level child of
both τx and τy , which leads to a contradiction.

Based on Lem. 8 and 9, we complete the proof of Thm. 1
as follows.

proof of Thm. 1. Suppose that at a time when the key path
λkey is not executed, the number of the idle threads is mnokey

idle .
We give a division H for these mnokey

idle idle threads, i.e.,∑
Hi∈H |Hi| = mnokey

idle .
For any Hi ∈ H, in the following we show that |Hi| ≤

dep(G). Let κ(Hi) be the depending sequence correspond-
ing to Hi, and we denote by κi the maximum depending
sequence that fully contains κ(Hi). Recall that the last task
of a maximum depending sequence has no depending task. It
implies that the last task of κi is not the last suspended task
of any thread in Hi. Thus, the number of threads in Hi is
no more than the number of the tied tasks in κi (except
the last task of κi), i.e., |Hi| ≤ Ntied(κi). Moreover, since
Ntied(κi) ≤ dep(G), we have |Hi| ≤ dep(G).

Since any Hi of H has at most min{dep(G),mnokey
idle }

threads, and
∑
Hi∈H |Hi| = mnokey

idle , we have:

|H| ≥
mnokey
idle

min{dep(G),mnokey
idle }

(18)

According to Lem. 8 and 9, each subset of H corresponds
to a dedicated busy thread. Thus, there are at least |H| busy
threads. We have:

mnokey
idle + |H| ≤ m (19)

Combine (18) and (19), we have

mnokey
idle ≤

min{dep(G),mnokey
idle }

1 + min{dep(G),mnokey
idle }

m (20)

Moreover, since mnokey
idle ≤ m − 1 (there is at least one busy

thread at any time t ∈ [0, R(G)]), (20) implies (17).

According to Thm. 1, and from (16), we derive the first
upper bound for Fnokeyidle below.

Fnokeyidle ≤ (R(G)− len(λkey))
dep

1 + dep
m (21)

B. Second Upper Bound for Fnokeyidle

By Wtied we denote the set of taskwait vertices that be-
long to tied tasks. For each taskwait vertex vix ∈Wtied,
and each thread sk, we denote an index function wkix(t), such
that at time t, wkix(t) = 1 if:
• sk is idle, i.e., fkidle(t) = 1; and
• τi is the last task of Γk(t), i.e., τi = τ(sk); and
• the suspending vertex of τi is υi(t) = vix.

Otherwise, wkix(t) = 0.
For any time t when h(t) = 1, according to Lem. 7, there

must be a tied task suspended on sk if sk is idle (or equally,
fkidle(t) = 1). Moreover, a tied task is suspended at its
taskwait vertex (Lem. 6). Thus, we have:

fkidle(t) =
∑

vix∈Wtied

wkix(t), ∀k ∈ [1,m] (22)

Combine (22) to (10), we have:

Fnokeyidle =

m∑
k=1

∫ R(G)

0

h(t)
∑

vix∈Wtied

wkix(t)dt (23)

Since h(t) and wkix(t) are non-negative, we have:

Fnokeyidle ≤
∫ R(G)

0

h(t)
∑

vix∈Wtied

wix(t)dt (24)

where wix(t) =
∑m
k=1 w

k
ix(t). We know that wix(t) = 1 if τi

is the last tied task suspended on some thread at t, and the
suspending vertex of τi is υi(t) = vix. Otherwise, wix(t) = 0.

Lemma 10. For any time t when h(t) = 1, wkix(t) = 0 if
vix ∈ λkey .

Proof. Suppose not. At time t when h(t) = 1, we let wkix(t) =
1 for a taskwait vertex vix that belongs to Wtied and which
is contained in the key path λkey . More specifically, at time t:
• a vertex vjz of the key path λkey is delayed;
• sk is idle, and τi is the last tied task suspended on sk;

and the suspending vertex of τi is υi(t) = vix;
• vix of τi is contained in λkey .

Since vjz and vix are both in λkey , there are two cases.
Case 1. vix is the predecessor of vjz . On the one hand,

since vix is unexecuted at time t, it implies that its successor
vjz is not eligible at time t, i.e., ejz > t. On the other hand,
vjz is delayed at time t, we know that bjz > t > eix. This
leads to a contradiction.

Case 2. vjz of τj is the predecessor of vix of τi.
• If τj is a descendant of τi, the last vertex of τj is

the predecessor of vix according to Lem. 2. Moreover,

according to Lem. 5, τj is a new tied task, or an
untied task. The assignment of vjz to sk does not
violate Cons E-TSC, and based on Lines 7 to 10 of
Alg. 2, vjz can be executed by sk at time t, which
contradicts with the assumption.

• Otherwise, τj is a non-descendant of τi. According to
Lem. 3, vjz is the predecessor of the first vertex of τi.
It implies that τi cannot start its execution unless vjz is
completed, i.e., bi0 > fjz > t. More specifically, τi has
not began its execution at time t, which contradicts with
the assumption that τi has been suspended at time t.

In sum, the above cases both lead to contradictions.

According to Lem. 10, we have: for any t ∈ [0, R(G)],

h(t)
∑

vix∈Wtied

wix(t) ≤
∑

vix∈Wnokey
tied

wix(t) (25)

where Wnokey
tied represents the set of taskwait vertices that

belong to tied tasks and which is not contained in the key
path λkey .

Combine (25) and (24), we have:

Fnokeyidle ≤
∫ R(G)

0

∑
vix∈Wnokey

tied

wix(t)dt (26)

=
∑

vix∈Wnokey
tied

Wix (27)

where Wix =
∫ R(G)

0
wix(t)dt, which equals the total amount

of the idle time associated with a thread when the last
tied task suspended on the idle thread is τi and when
the suspending vertex of τi is vix. Moreover, since for any
vix ∈ Wtied, wix(t) = 1 implies that t ∈ [fi,x−1, bix], we
have:

Wix =

∫ bix

fi,x−1

wix(t)dt (28)

For any continuous interval [t1, t2] ∈ [fi,x−1, bix], we say
[t1, t2] belongs to Wix if wix(t) = 1, ∀t ∈ [t1, t2]. Fig. 6
shows the idle intervals belonging to Wix. Note that Wi,x may
consist of a continuous time interval (e.g., [t1, t2] in Fig. 6(a)),
or several disjoint time intervals (e.g., [t1, t2] and [t3, t4] in
Fig. 6(b)).

vi,x−1 vix

t1 t2
(a) a continues idle interval

vi,x−1 vix

t1t1 t2 t3 t4
(b) disjoint idle intervals

Fig. 6: Idle intervals belonging to Wix.

The following lemma gives an upper bound for Wix. Recall
that λkey(vix, t) denotes the key path that ends at vix and
begins after t.

Lemma 11. Wix ≤ len(λkey(vix, fi,x−1)), ∀vix ∈Wnokey
tied .

Proof. Eq (28) indicates that the life time of the key path
λkey(vix, fi,x−1) which ranges from the beginning time fi,x−1

to the ending time bix fully covers all the idle time periods
belonging to Wix. Therefore, it is sufficient to prove Wix ≤
len(λkey(vix, fi,x−1)) by showing that: at any time t when
some vertex of λkey(vix, fi,x−1) is delayed, wix(t) = 0 always
holds.

Suppose not. At time t:

• a vertex vjz of τj that belongs to key path
λkey(vix, fi,x−1) is delayed;

• wix(t) = 1, implying that τi has been tied on a idle thread
sk, and moreover, τi is the last suspended task of Γk(t),
with suspending vertex υi(t) = vix.

From the definition of the key path λkey(vix, fi,x−1), vjz
is the predecessor of vix. In the following we show that τj
is the descendant of τi. Otherwise, we suppose that τj is
the non-descendant of τi. According to Lem. 3, vjz is the
predecessor of the first vertex of τi. Moreover, from the proof
of Lem. 3, we know that any path from vjz to vix must travel
the first vertex of τi, which contradicts with the definition of
λkey(vix, fi,x−1).

Therefore, τj is the descendant of τi. According to Lem. 2,
we have:

(s1) The last vertex of τj is the predecessor of vix.
Moreover, since τi is the last suspended task of Γk(t), and

the latest finished vertex of τi at or before t is vi,x−1, according
to Line 10 of Alg. 2 the assignment of vi,x−1 to sk implies
that:

(s2) The last vertex of τi is the predecessor of υl(bi,x−1),
∀τl ∈ Γk(bi,x−1).

From (s1) and (s2), we have:
(s3) The last vertex of τj is the predecessor of υl(bi,x−1),

∀τl ∈ Γk(bi,x−1).
During the interval [bi,x−1, t], sk does not execute any tied

task except τi. Thus, Γk(t) = Γk(bi,x−1) ∪ {τi} and υl(t) =
υl(bi,x−1) for any τl ∈ Γk(bi,x−1). From (s1) and (s3), we
have:

(∗) For any τi ∈ Γk(t), the last vertex of τj is the
predecessor of υi(t).

According to Lem. 5, τj is a new tied task or an untied
task. (∗) implies that the assignment of vjz to sk does not
violate Cons E-TSC. According to Line 10 of Alg. 2, vjz
can be assigned to sk at time t, which contradicts with the
assumption that vjz is delayed at time t.

According to Lem. 11, and from (2) and (27), we have:

Fnokeyidle ≤
∑

vix∈Wnokey
tied

len(λkey(vix, fi,x−1)) (29)

≤
∑

vix∈Wnokey
tied

len(λix) (30)

where λix is the longest path that points to vix and which
does not travel any vertex of τi.

Moreover, we let W key
tied be the set of taskwait vertices

that belong to tied task and which are contained in the key

path λkey . Then we have: Wnokey
tied = Wtied −W key

tied. Eq (30)
can be rewritten as follows.

Fnokeyidle ≤
∑

vix∈Wtied

len(λix)−
∑

vix∈Wkey
tied

len(λix) (31)

Response Time Bounds

Theorem 2. Rub(G) is a response time bound of a OpenMP-
DAG G scheduled by BFS∗ on m threads:

Rub(G) = len(G) +
1 + dep

m
(vol(G)− len(G)) (32)

where dep = min{dep(G),m− 1}.

Proof. Combine (7), (13) and (21) into (6) and (8), we have:

R(G) ≤ 1 + dep

m
vol(G) + (1− 1 + dep

m
)len(λkey) (33)

Since 1+dep
m ≤ 1 and len(λkey) ≤ len(G), inequality (33)

implies inequality (32).

The bound in (32) is simple, but may grossly overestimate
the response time. In the following we derive a more precise
response time bound. Before enter into details, we first define
a virtual computation time for each vertex vix in G:

Cvix =

{
(m− 1)Cix − len(λix) vix ∈Wtied

(m− 1)Cix else
(34)

By Λ we denote the set of paths in G that start with a vertex
without ingoing edges and which ends at a vertex without
outgoing edges. The virtual length of G is defined as follows.

lenv(G) = max{
∑
vix∈λ

Cvix|λ ∈ Λ} (35)

The calculation of lenv(G) is given in Appendix C.

Theorem 3. Rub(G) is a response time bound of a OpenMP-
DAG G scheduled by BFS∗ on m threads:

Rub(G) =
vol(G) + lenv(G) +

∑
vix∈Wtied

len(λix)

m
(36)

Proof. Combine (13) and (31) into (8), we have:

Fidle ≤ (m− 1)len(λkey)−
∑

vix∈Wkey
tied

len(λix)

+
∑

vix∈Wtied

len(λix)

According to the definition of virtual computation times, the
first and second items of RHS in the above inequality can be
rewritten as follows.

lenv(λkey) =
∑

vix∈λkey

Cvix

As the key path λkey starts with a vertex without ingoing
edges and ends at a vertex without outgoing edges, we have
lenv(λkey) ≤ lenv(G). Then,

Fidle ≤ lenv(G) +
∑

vix∈Wtied

len(λix) (37)

Combine (37) and (7) into (6), we obtain (36).

Complexity of computing bounds. We know that the
volume vol(G) and len(G) can be respectively calculated
within O(|V |) and O(|E|) times. According to Appendix A,
the calculation of dep(G) terminates within O(n) times, where
n is the number of tasks. Thus, the bound in (32) can be
calculated within O(n+ |V |+ |E|) times. Moreover, the cal-
culation of len(λix) terminates within O(|V |) times, and the
calculation of lenv(G) terminates within O(|E|) times (See in
Appendixes B and D respectively). Therefore, the calculation
of bound in (36) terminates within O((|Wtied|+1)|V |+2|E|)
times. In general, the task number n is usually much smaller
than the number of edges, i.e., n ≤ |E|. Thus, intuitively, the
bound in (32) is more complicated to be computed. In the next
section, we will evaluate the tightness of these two bounds,
and show that the bound in (36) is much tighter, and is more
applicable for realistic benchmarks.

VII. EVALUATION

In this section, we evaluate the tightness of the two response
time bounds with both randomly generated task sets and
realistic OpenMP programs. For each task set, we calculate the
first response time bounds in (32) and (36), and then compare
them with the response time bound in (5) derived by Serrano
et al [4] by assuming all the tasks in the program are untied.
In our experiments, R0 represents the baseline response time
bound in (5); R1 represents the first response time bound in
(32); R2 represents the second response time bounds in (36).
The bounds R1 and R2 are normalized with respect to R0.

A. Randomly Generated Tasks

We generate the DAG G with n tasks {τ1, · · · , τn}, and
for any task τj (j ∈ [2, n]), randomly assign a task Ti (i ∈
[1, j − 1)) to be the parent of τj . We consider three types of
tasks, namely, small, medium, and large tasks, with parameter
ranges given in Table I. For each task, one of these types is
randomly selected. Then the task parameters are chosen from
the corresponding intervals with a uniform probability.

TABLE I: Task set parameters

Task Type Small medium large

Vertex Number [3,5] [5,9] [7,13]
Execution Time [1,2] [1,4] [1,8]

For any parent task τi, any vertex vix of τi is a taskwait
vertex with pwait probability if a predecessor of vix has an
outgoing (task creation) edge of type E2. For any task τi, the
last vertex of τi points to one of its siblings that are created
after τi through depend edges with pdep probability.

In our experiments, all the tasks are set to be tied. For
each data point, 100 random experiments have been run.

We evaluate the response time bounds with different m (the
number of threads) and different n (number of tasks), the depth
dep(G) and the probabilities pwait and pdep as shown in Fig. 7
and 8. In Fig. 7, we set pwait = pdep = 0.5, and set m = 16

2 4 8 16 24 32 48 56 60 64
0

0.5

1

1.5

2

2.5

3

no
rm

al
iz

ed
bo

un
ds

threads

R0 R1 R2

(a) n = 50

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

no
rm

al
iz

ed
bo

un
ds

tasks

R0 R1 R2

(b) m = 16

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

no
rm

al
iz

ed
bo

un
ds

dep(G)

R0 R1 R2

(c) n = 50, m = 16

Fig. 7: Average bounds for random tasks (pwait = pdep = 0.5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

no
rm

al
iz

ed
bo

un
ds

pwait

R0 R1 R2

(a) pdep = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

no
rm

al
iz

ed
bo

un
ds

pdep

R0 R1 R2

(b) pwait = 0.5

Fig. 8: Average bounds for random tasks (n = 50, m = 16)

for Fig. 7(b) and (c), and set n = 50 for Fig. 7(a) and (c).
Moreover, we set m = 16 and n = 50 for Fig. 8, set pdep =
0.5 for Fig. 8(a), and set pwait = 0.5 for Fig. 8(b).

The response time bound R2 is consistently close to the
baseline bound R0 with different parameter settings. However,
the difference between R1 and R0 is much larger. As shown
in Fig. 7a, both of the bounds R1 and R2 decrease as the
number of threads increases. Moreover, as shown in Fig. 7c
and Fig. 8a, the bounds increase as the depth dep(G) and the
probability pwait increase, while the growth of R2 is very slow.
In Fig. 7b, the bound R1 tends to increase as the number of
tasks increases. In Fig. 8b, both of the bounds do not change
significantly as the probability pdep increases.

B. Realistic Benchmarks

We collect 18 OpenMP programs based on C language from
several benchmarks (See in Table. II) and transform them
to DAGs by a tool, called ompTG [18]. Columns 3-7 show
whether the applications contain a certain structure feature,
where T stands for tied tasks, W stands for taskwait
clauses, D stands for depend clauses.

In ompTG, we parse programs by Lex & Yacc [25], which
is embedded in ompi, a lightweight open source OpenMP
compiler system for C programs. The output of the parser are
abstract syntax trees (AST), which store useful abstract syn-
tactic structures of the programs. We use AST to generate the
DAG models which contain the basic topology information,

TABLE II: Summary of OpenMP programs in ompTGB.
program benchmark T W D dep(G)
botsspar(br) spec

√ √
× 1

botsalgn(bn∗) [19]
√

× × 0
poissons2D(pd∗)

√
×

√
0

sparseLU(su∗) kastors
√

×
√

0
strassen(sn∗) [20]

√
×

√
0

dense algebra(da∗)
√

× × 0
FSM(fm∗) dash

√
× × 0

nbody method(nd) [21]
√ √

× 1
sparse algebra(sa∗)

√
× × 0

fft(ft)
√ √

× 3
fib(fb)

√ √
× 9

nqueens(ns) bots
√ √

× 5
sort(st) [22]

√ √
× 3

sparseLU(su)
√ √

× 1
strassen(sn)

√ √
× 2

pingpong(pg) ompmpi
√ √

× 1
overlap(op) [23]

√ √
× 1

taskbench(th) ompb [24]
√ √

× 1

and furthermore, measure the execution time of each vertex
by executing the programs on the real hardware.

We instrument each program with instructions reading the
timer at the beginning and end of each vertex, and the
execution time of the vertex is the difference between the two
time stamps. Although this approach cannot provide strictly
safe WCET bounds, these reference WCET values give a
rough idea of the workload of each vertex. In particular,
currently the reference values provided by this approach are
obtained on an Intel i7-4770 CPU with 3.5GHZ and 8192KB
cache size, 4GB RAM size.

Some benchmarks provide the default input data for their
programs. However, since these benchmarks are designed for
parallel computing regions, the scale of the suggested input
data is too huge for our analytical work. For example, the
scale of task graph of “nqueens” exceeds 1.8G tasks when
using their default input data. Therefore, we adjust the input
data to keep the number of tasks generated by each program
below 500.

Fig. 9 shows the response time bounds for the programs

bn∗pd∗su∗sn∗ad∗fm∗sa∗ br nd op pg th su sn st ft ns fb
0

1

2

3

4

5
no

rm
al

iz
ed

bo
un

ds

pdep

R0 R1 R2

Fig. 9: Response time bounds for the benchmarks in Table. II.

in Table II by with thread number m = 16. (1) The first
seven programs (marked with ∗) have tied tasks that contain
no taskwait vertex. Each of these programs has a depth
dep(G) = 0. (2) The next six programs (from br to sn) are
non-recursive. As shown in Table II, these programs have
small depths, which are 1 or 2. (3) The last four programs
(from st to fb) are all from the BOTS benchmark, which
contains recursive functions. The depths of these programs
are large. Especially, the nested depth of fib equals 9.

As seen, the three bounds of the first seven programs
(marked with ∗) are the same. For each of the next seven
programs (from br to sn), the response time bounds R1 and
R2 are very close to the baseline bound R0. For each of the last
four programs, the difference between the response time bound
R2 and R0 remains an acceptable bound, i.e, the largest gap is
no more than 0.5 (with fib. However), the difference between
R1 and R0 becomes very large due to the large depths.

VIII. CONCLUSION

Multi-cores are more and more widely used in real-time
systems. To fully utilize the power of multi-core processors,
we must parallelize the software. OpenMP is a popular parallel
programming framework in general-purpose/high-performance
computing, and is also promising for real-time computing.
Previous work has studied the timing analysis of OpenMP
task systems, but existing techniques cannot handle tied
tasks. In this paper we propose a new algorithm to schedule
OpenMP task systems with tied tasks, and derive response
time bounds under the new scheduling algorithm. Experiments
with both realistic OpenMP programs and randomly generated
workload show the effectiveness of our proposed scheduling
algorithm and analysis techniques.

REFERENCES

[1] Openmp application program interface version 4.5, 2015.
[2] R.E. Vargas, S. Royuela, and et.al. A lightweight openmp4 run-time for

embedded systems. In ASP-DAC, 2016.
[3] R. Vargas, E. Quinones, and A. Marongiu. Openmp and timing

predictability: A possible union? In DATE, 2015.
[4] M.A. Serrano, A. Melani, and et.al. Timing characterization of openmp4

tasking model. In CASES, 2015.
[5] D. Ferry, J. Li, and et.al. A real-time scheduling service for parallel

tasks. In RTAS, 2013.
[6] A. Saifullah, J. Li, and et.al. Multi-core real-time scheduling for

generalized parallel task models. Real-Time Systems, 2013.
[7] J. Li, Z. Luo, and et.al. Global edf scheduling for parallel real-time

tasks. Real-Time Systems, 2015.

[8] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time
tasks on multi-core processors. In RTSS, 2010.

[9] A. Saifullah, D. Ferry, and et.al. Parallel real-time scheduling of dags.
IEEE Trans on PDS, 2014.

[10] Sanjoy Baruah. Improved multiprocessor global schedulability analysis
of sporadic dag task systems. In ECRTS, 2014.

[11] M. Qamhieh, F. Fauberteau, and et.al. Global edf scheduling of directed
acyclic graphs on multiprocessor systems. In RTNS, 2013.

[12] M. Qamhieh, L. George, and S. Midonnet. A stretching algorithm for
parallel real-time dag tasks on multiprocessor systems. In RTNS, 2014.

[13] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal, 1966.

[14] M.A Serrano, A. Melani, and et.al. Response-time analysis of dag tasks
under fixed priority scheduling with limited preemptions. In DATE,
2016.

[15] N Guan, J.H. Sun, and et.al. Scheduling of openmp tasks. technical
report, Hongkong Polytechnic University, 2016.

[16] M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the
cilk-5 multithreaded language. In ACM Sigplan Notices, 1998.

[17] G.J. Narlikar. Scheduling threads for low space requirement and good
locality. Theory of Computing Systems, 2002.

[18] He TZ Guan N and et.al. omptg: From openmp programs to task graphs.
RTSS Workshop, 2016.

[19] M.S. Müller, J. Baron, and et.al. Spec omp2012?xan application
benchmark suite for parallel systems using openmp. In IWOMP, 2012.

[20] P. Virouleau, P. Brunet, and et.al. Evaluation of openmp dependent tasks
with the kastors benchmark suite. In IWOMP, 2014.

[21] V. Gajinov, S. Stipić, and et.al. Dash: a benchmark suite for hybrid
dataflow and shared memory programming models: with comparative
evaluation of three hybrid dataflow models. In ACCF, 2014.

[22] Duran G.A., X. Teruel, and et.al. Barcelona openmp tasks suite: A set
of benchmarks targeting the exploitation of task parallelism in openmp.
In ICPP, 2009.

[23] J.M. Bull, J.P. Enright, and N. Ameer. A microbenchmark suite for
mixed-mode openmp/mpi. In IWOMP, 2009.

[24] J.M. Bull, F. Reid, and N. McDonnell. A microbenchmark suite for
openmp tasks. In IWOMP, 2012.

[25] Xianfeng Li, Yun Liang, and et.al. The worst-case execution-time
problem - overview of methods and survey of tools. ACM TECS, 2008.

[26] Sanjoy Baruah and Nathan Fisher. The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems. IEEE Trans-
actions on Computers, 2006.

APPENDIX A: COMPUTING DEPTH dep(T)

In order to calculate the depth dep(T), we construct a task
tree F = (T , E) as follows. For any tasks τi and τ2 in T , there
is an edge (τi, τj) ∈ E if τj is a depending task of τi. Each
path in F corresponds to a depending sequence of T . Thus,
computing dep(T) is equally to find a path in T such that
it contains the maximum number of tied non-leaves. This
problem can be solved by the following recursive functions.

For any leaf τi ∈ T , let Ntied(τi) = 0, and for any non-leaf
τi ∈ T :

Ntied(τi) =

{
max{Ntied(τj)|(τi, τj) ∈ E}+ 1 τi is tied
max{Ntied(τj)|(τi, τj) ∈ E} else

where Ntied(τi) denotes the maximum number of tied
non-leaves contained in all the paths of F that start at τi.
Let dep(T) = max{Ntied(τi)|τi ∈ T }, this calculation is
terminated within O(n) times.

APPENDIX B: COMPUTING LENGTH len(πix)

We know that the the last vertex of path λix is the prede-
cessor of a taskwait vertex vix of τi and does not travel
any vertex of τi. From Rules E1 and E3.1, the taskwait
vertex vix of τi can only be connected by the vertex in τi or
the vertex in the child of τi. Moreover, according to Lem. 1,
there is no path that connects a non-descendant of τi to the
descendant of τi and without travelling any vertex in τi. Thus,
λix can only travel the descendants of τi.

By Dix we denote the subgraph consisting of the descendant
τj of τi such that vix is reachable from the vertex of τj . More
formally, Dix is defined as follows.

Any task τj ∈ Dix if:
• τj is a depending task of τi which joins to vix; or
• τj is a depending task of a task in Dix.

For any τj and τl in Dix, all the edges between τj and τl
belong to Dix.

Calculating len(λix) is equally to find the longest path in
Dix. This problem is calculated by the following recursive
functions.

L(vjz) = max{L(vly)|(vjz, vly) ∈ Dix}+ Cjz, ∀vjz ∈ Dix.

where L(vjz) denotes the length of the longest path
in Dix with the starting vertex vjz . Let len(λix) =
max{L(vjz)|vjz ∈ Dix}, this calculation is terminated within
O(|V |) times.

APPENDIX C: CALCULATION OF lenv(G)

Given the graph G with virtual computation times, the
virtual length of G can be recursively computed as follows.
Denote by Gix the subgraph consisting of vertices reachable
from vix. The virtual length of Gix is calculated by:

lenv(Gix) = Cvix + max{lenv(Gjz)|(vix, vjz) ∈ E} (38)

Finally, we calculate lenv(G) = max{lenv(Gi0)|vi0 has no
ingoing edges }. This calculation procedure terminates within
O(|E|) times.

APPENDIX D: SATISFIABILITY OF CONSTRAINTS

Proposition 1. σBFS fulfils Cons PC.

Proof. Under BFS, every vertex is executed after it is eligible
(Lines 3 and 6). σBFS implicitly fulfils PC because of the
definition of the eligible time in Eq.(1): for any vertex vix ∈ V ,
the eligible time of vix: eix ≥ fjz , ∀(vjz, vix) ∈ E, which
coincides with Cons PC.

Proposition 2. σBFS fulfils Cons TSP.

Proof. For any vix ∈ V , we suppose that vix ∈ σ, and the BFS
scheduler assigns vix to sk at time t, i.e., bix = t. According
to Eq.(4), fix = t + Cix, and according to Eq.(3), we have
σk(t′) = (i, x), ∀t′ ∈ [bix, fix), which coincides with Cons
TSP, and thus completes the proof.

Proposition 3. σBFS fulfils Cons SE.

Proof. σBFS fulfils Cons SE if it fulfils Cons PC and TSP.
This is because, in our DAG model, for any two vertices of
one task, one is the predecessor of the other, and according to
Cons PC, these two vertices should be sequentially executed.
Moreover, Cons TSP requires each vertex of a task to be
executed by one thread. In sum, a task cannot be executed
by more than one thread simultaneously. Finally, according to
Pro. 1 and 2, σBFS does fulfil Cons PC and TSP. It completes
the proof.

Proposition 4. σBFS fulfils Cons TIED.

Proof. Under BFS, a vertex vix of a tied task τi, with x ≤ 1,
is assigned to a thread sk at time t, only if τi ∈ Γk(t) (Lines
3 and 14), which coincides with Cons TIED.

Proposition 5. σBFS fulfils Cons TSC.

Proof. Under BFS, when assign a new tied task τi on sk,
i.e., σk(t) = (i, 0), τi is required to be the descendant of all
the tasks in Γk(t) (Line 10 of Alg. 1), which coincides with
Cons TSC.

APPENDIX E: THE PROOF OF LEM. 7

Suppose that there is no vertex of key path λkey is bing
executed at time t.

We first show that some vertex of λkey is delayed at time
t. Let vjz be the vertex of λkey which is the latest finished
at or before t, and the next vertex of λkey to be executed is
denoted by vix. From the definition of key path, we know
that vjz is the one with the latest finishing time among all the
predecessors of vix. It indicates that vix of λkey is eligible but
delayed at time t, i.e., bix > t ≥ eix. According to Lem. 5, vix
belongs to an untied task, or is the first vertex of a tied
task.

Then, the delayed vertex of λkey implies that Γk(t) 6= ∅ for
any idle thread sk. Otherwise, the assignment of vix to sk at
time t does not violate Cons E-TSC. This implies that vk can
be executed at time t, which contradicts with the assumption.
This completes the proof.

