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Abstract—Real-time Calculus (RTC) is a non-stochastic queu-
ing theory to the worst-case performance analysis of distributed
real-time systems. Workload as well as resources are modelled as
piece-wise linear, pseudo-periodic curves and the system under
investigation is modelled as a sequence of algebraic operations
over these curves. The memory footprint of computed curves
increases exponentially with the sequence of operations and RTC
may become computationally infeasible fast. Recently, Finitary
RTC has been proposed to counteract this problem. Finitary RTC
restricts curves to finite input domains and thereby counteracts
the memory demand explosion seen with pseudo periodic curves
of common RTC implementations. However, the proof to the
correctness of Finitary RTC specifically exploits the operational
semantic of the greed processing component (GPC) model and
is tied to the maximum busy window size. This is an inherent
limitation, which prevents a straight-forward generalization. In
this paper, we provide a generalized Finitary RTC that abstracts
from the operational semantic of a specific component model
and reduces the finite input domains of curves even further. The
novel approach allows for faster computations and the extension
of the Finitary RTC idea to a much wider range of RTC models.

I. INTRODUCTION

Real-time Calculus (RTC) is a non-stochastic queuing the-
ory. It is based on (min,+) and (max,+) algebra and models
the data entry to the network and the service of resources by
bounding curves in the interval time domain. This modelling
promises to achieve accurate bounds on an event stream’s end-
to-end delay and components’ buffer requirement whilst keep-
ing the runtime of analysis relatively small; especially opposed
to stochastic queueing theories, state-based model-checking,
and discrete event simulation techniques. The efficiency is of
great importance when the design of a system is optimized
with a design space exploration.

Increasing the accuracy of RTC comes at a price: the
curves bounding data and service are implemented as piece-
wise linear, pseudo-periodic functions. They allow accurate
descriptions of complex data arrival and processing patterns,
e. g., sporadic arrival with bursts or time-triggered resource
arbitration. An RTC analysis is a sequence of (min,+)- and
(max,+)-algebraic operations on these curves. When succes-
sively stepping forward in the analysis, the output curve of
an operation usually possesses a periodic tail of the size of
the hyperperiod of the input curves. This yields a significant
increase in the computation’s memory demand run-time of
down-streamed RTC-operations.

Fig. 1 illustrates an example to this on the simple plus
operation of two curves. The two input curves consist of

Fig. 1. Red segments of each curve need to be stored to fully characterize
the whole curve. This part can increase vastly by the plus operation.

periodic parts only, with period 4 and 5, respectively. Hence,
the output curve has period 20, defined by a total of 8
segments. An analysis usually consists of many components
that, in turn, define a large sequence of operations. Then,
the number of segments of the involved curves increases
exponentially, as does the analysis run-time. This phenomenon
is called period explosion. It is the major reason why the
analysis of large-scale systems in RTC can become prohibitive.
An industrial example can be found in [13] where an avionic
onboard communication system is analyzed with RTC and this
limitations become apparent.

The idea of Finitary RTC [4] is to overcome this obstacle
by making complete tail descriptions of curves obsolete. Yet,
it still guarantees the same analysis results as with the original
curves. To do so, [4] formally derives prefix bounds for the so
called Greedy Processing Component (GPC) model of RTC.
The bounds rely on the busy period concept which the authors
of [4] borrowed from classical real-time scheduling theory [9].
Therefore, we call this approach component-finitary RTC.

For many other commonly used RTC component models,
the greedy processing semantic does not apply or the busy
period is not well-defined. Therefore, we develop a generalized
form of Finitary RTC in this paper. We provide rules for
bounding the length of input curve prefixes for each individual
(min,+)- and (max,+)-algebraic operator rather than an entire
component model. We call this novel concept the generalized
operator-finitary RTC. It yields the following advantages:
• Universality. Finitary RTC can be made accessible to

a general class of component models that are ascribed
by RTC operators. Particularly, we demonstrate how our
theorems can be applied to the AND component models
[5], Greedy Traffic Shapers [16], [17], as well as the end-
to-end analysis principles Pay Burst Only Once (PBOO)
[8] and Pay Multiplexing Only Once (PMOO) [12].

• Methodological Closure. Bringing fintiary RTC to the
operator level makes it independent of the GPC’s op-
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erational semantic. This eliminates the need to borrow
concepts from real-time feasibility theory. We exploit
geometric properties of RTC’s stair-case curves and their
linear approximations. Therefore, the solution is closed
within the RTC modeling and analysis framework and
we do not need to refer to scheduling theory.

• Efficiency Improvements. Unlike the prefix bounds of
[4] resembling the maximum busy period size (MBS) of a
component, our bounds are based on two novel concepts:
(a) under- and overapproximating functions that bound
the stair-case input curves with much simpler curves
(b) a lower bound on their maximum vertical distance.
Hence, our prefix bounds are commonly smaller than the
MBS and the analysis efficiency is further improved.

The remainder of this paper is structured as follows: Sec. II
presents the related work, in Sec. III we present standard RTC
and Sec. IV presents finitary RTC together with its open issues.
Sec. V presents our generalization of finitary RTC, followed by
application to the important analysis principles and component
models in Sec. VI. Sec. VII evaluates our contributions and
Sec. VIII concludes the paper.

II. RELATED WORK

Complementing traditional queuing theoretic approaches,
there exists a branch of analysis techniques which base their
reasoning on the time-interval domain. These techniques use
different notions of Network Calculus [8] and exploit oper-
ations rooted in the (min,+) and (max,+) algebra. The most
prominent methods and tools of this branch of real-time system
theory are Real-time Calculus [15] and its MATLAB-based
implementation “Modular Performance Analysis” (MPA) tool-
box [17], the “SymTA/S toolsuite” [6] and the “Disco Deter-
ministic Network Calculator” (DiscoDNC) [1].

Although the different tools are based on the same dioid
algebra, they strongly differ in the component-level of abstrac-
tion. On the one hand, there are tools like the MPA toolbox or
SymTA/S which handle each component of a system explicitly.
On the other hand, there is the DiscoDNC which puts its focus
on a specific data or communication flow within a system. In
its flow-oriented analysis, it exploits principles like Pay Bursts
Only Once (PBOO) or Pay Multiplexing Only Once (PMOO)
in order to obtain tighter end-to-end delay bounds.

The technique of this paper aims at simplifying periodic
tail description of curves of the RTC. The initial idea to this is
presented in the technical report [14], but lacked the definition
and proofs of the tightness preserving bound on the lengths
of prefixes as presented here. In consequence, [14] stayed at
the level of an approximation technique and can be seen as
preliminary work.

The prefix bound for the input curves of finitary RTC [4]
relates to the bound on the busy periods of a greedy processing
component [9]. In consequence, the proofs provided in [4]
are tied to the operational semantic of a greedy processing
component (GPC) of RTC [17] or component models alike.
This dependency limits the applicability of finitary RTC; it ex-
cludes flow-oriented analyses and models with synchronization

primitives and traffic shaping elements entirely. In this paper,
we tackle this shortcoming by making finitary RTC accessible
for these types of analyses and principles.

III. BACKGROUND THEORY: RTC-BASED ANALYSIS

A. Event Model and Resource Model

With RTC, event streams or task activations are abstractly
described by a pair α(∆) = [αu(∆), αl(∆)] of curves. The
curve providing an upper bound on arrivals is αu(∆) and
αl(∆) denotes the lower arrival curve bound. Let R(s, t) be a
cumulative counting function associated with an event stream.
Upper and lower curve bound the number of events in any
time interval of length T : αl(t − s) ≤ R(s, t) ≤ αu(t − s),
with s < t and αl(0) = αu(0) = 0.

By scaling the event related arrival curves with the worst
and best-case resource demand of the associated events, they
can be transferred into workload-based arrival curves.

With RTC, the availability of a processing or communi-
cation resource units is modelled in a similar way, namely
by a pair of upper an lower strict service curves β(∆) =
[βu(∆), βl(∆)]. These curves bound the availability of re-
source units for any time interval [s, t): βl(t− s) ≤ C(s, t) ≤
βu(t− s), where function C(s, t) gives the number of service
units available from a resource with s < t and βl(0) =
βu(0) = 0.

The presented curves cumulatively count data and service,
i.e., it holds that ∀∆ ≥ 0 : α{u,l}(∆) ≥ 0 and β{u,l}(∆) ≥ 0.

B. RTC-based System Analysis

With RTC one describes a (distributed) real-time system
as a network of asynchronously interacting components C :=
{C1, ...., Cn}. Components are assumed to be connected via
unbounded FIFO channels. In a modelled system, directly
connected component Ci and Cj interact via the forwarding
of events or the left-over service curve.

With RTC this relation is captured by piping the arrival
curve αi,j (or service curve βk,i) as input curve(s) into the
flow equations of the directly downstreamed component. In
this paper, we annotate curves with pairs of lower indices:
the first position addresses the source component, i. e., the
component which produces the respective curve as output. The
second element of the pair addresses the component which
consumes the respective curve as input. For αi,j , component
Ci is the source putting out an event stream bounded by αi,j
and component Cj is the receiver of it. Accordingly, βk,i
denotes the left-over service curve after component Ck served
the event stream crossing it. This service is then available at
the downstream component Ci.

For being generic, we replace individual indices with an
asterisk if suitable, e. g., α∗,j refers to some input curve fed
into component Cj and service curve βk,∗ refers to the left-
over service curve of component Ck.

In line with the above discussion, RTC components can be
understood as transformers of arrival or service curves. The
respective transformation either precisely reflects or at least
overapproximates the operational semantic of the modelled
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entity, e. g., a synchronization element could be modelled by
an AND-component [5].

Curve transformations of a component model are expressed
as flow equations that employ (min,+) and (max,+) operators.

1) RTC-operators: RTC-operators are common (min,+)
and (max,+) operators like minimum, sum and difference
of curves, together with more involved operators like the
(min,+) and (max,+) convolution and deconvolution. Whereas
the common operators are defined as expected, the convolution
and deconvolution operators are more evolved.

(a ⊗ b)(∆) = inf0≤λ≤∆{a(∆− λ) + b(λ)}
(a � b)(∆) = supλ≥0{a(∆ + λ)− b(λ)}
(a⊗ b)(∆) = sup0≤λ≤∆{a(∆− λ) + b(λ)}
(a� b)(∆) = infλ≥0{a(∆ + λ)− b(λ)}

(1)

The symbols ⊗ and � denote the (min,+) convolution,
deconvolution operator and the symbols ⊗ and � denote
the (max,+) convolution, deconvolution operator respectively.

With piece-wise linear curves, which are pseduo-periodic,
the potentially infinite number of function pairings from input
curve a and b is reduced to a finite number of pairs, namely
one value for each linear segment and their combinations.
With the deconvolution operators, the number of relevant pairs
might become very large, as for the computation of a specific
function value one needs to iterate over all possible pairs of
linear segments a(∆ +λ) and b(λ) [3]. This follows from the
above definitions of � and � . It makes a restriction of input
curves to a finite domain and w. r. t. these operators non-trivial.

The above RTC-operators are used in flow equations for
computing a bound on the outgoing events of a component or
the left-over service of a component.

2) Flow-equations of the GPC: The Greedy Processing
Component (GPC) model [17] is the major component model
of RTC. It is characterized by the following flow equations:

αui,∗ = min{(αu∗,i ⊗ βu∗,i) � βl∗,i, β
u
i,∗}

αli,∗ = min{(αl∗,i � βu∗,i) ⊗ βl∗,i, β
l
∗,i}

βui,∗ = (βu∗,i − αl∗,i)� 0
βli,∗ = (βl∗,i − αu∗,i)⊗ 0

(2)

The GPC-oriented analysis is a straight forward mapping of
the network’s structure to a network of GPCs. It demands to
compute a set of input curves for each component on the basis
of the above flow equations. They enable RTC to compute
bounds on the delay and the backlog experienced at that
component. By summing up delay bounds over a sequence of
GPCs, the end-to-end bound for the events of a specific stream
is obtained. Delay and backlog bounds of each component
are calculated as the least upper bound on the vertical and
horizontal distance of the upper arrival and lower service input
curves to a GPC [17]. The exact definitions follow below.

3) Computing bounds on delays and buffer sizes: For con-
venience, we assume the presence of a function v dist(a, b)
which returns the least upper bound on the vertical distance
of two curves a and b:

v dist(a, b) = sup
∆≥0
{a(∆)− b(∆)} (3)

This translates into the backlog bound of a GPC Ci as follows:

backlogi ≤ v dist(αu∗,i, β
l
∗,i) (4)

For convenience, we already define the pseudo-inverse of
the above function and refer to it with v dist−1(a, b, v). We
define it as follows:

v dist−1(a, b, v) = sup {∆ ≥ 0 : a(∆)− b(∆) > v} (5)

This pseudo-inverse is the largest value λ such that the vertical
distance of a and b and ∀λ′ > λ is smaller than v.

In analogy to the vertical distance, one may define functions
h dist(a, b) and h dist−1(a, b, h) as follows:

h dist(a, b)=supλ≥0{inf{h ≥ 0 : a(λ) ≤ β(λ+ h)}}
h dist−1(a, b, h)=sup{∆ ≥ 0 : a(∆) ≤ b(∆ + h)}. (6)

This gives the upper bound on the (positive) horizontal dis-
tance h of curve a and b and its pseudo-inverse.

For an upper arrival curve αu∗,i and a lower service curve
βl∗,i serving as input to a GPC Ci, the above definition of
h dist(a, b) directly translates into the GPC’s delay bound:

delayi ≤ h dist(αu∗,i, β
l
∗,i) (7)

IV. COMPONENT-FINITARY RTC AND ITS LIMITATION

A. Component-Finitary RTC

Finitary RTC [4] tackled the scalability problem of original
RTC for one particular RTC-component type, the GPC. It
borrowed the busy period concept from real-time feasibility
theory [9]. A busy period is a maximum interval in time during
which the processor / server is continuously busy. Instead of
analyzing the scheduling behavior along the infinite time line,
it is possible to restrict the analysis to individual busy periods.
What has happened before the last idle time instant, does not
affect the current scheduling behavior. For any system where
the long-term overall resource requirement rate is smaller
than 1, the maximum length of the busy period is pseudo-
polynomially bounded. In practice, this bound is much smaller
than the curves’ hyperperiods that arise during the analysis
which is the insight to the efficiency improvement for RTC.

Component-Finitary RTC applies the idea of a busy period
to the GPC. Thereby it is limited to GPC those long-term
resource requirement rate is smaller than 1. In this setting it
shows the following key points:
• Delay bound and backlog bound of a single GPC can

be safely derived within the maximum busy period size
(MBS) of this component. The involved arrival curve and
service curve can both be reduced to a prefix of size MBS.

• For the output curves of a GPC, namely the output arrival
curve and the left-over service curve, the maximally
computable prefix depends on the input curves. Let them
have prefixes of size x, then we can compute output
curves of prefix size up to x−MBS.

Analyzing a GPC network with prefixed initial input curves
thus reduces the computable output prefix by each crossed
component’s MBS. However, the curves fed into the last
component must still possess a prefix of this GPC’s MBS.
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Otherwise, the delay bound and the backlog bound cannot be
safely computed. Deriving sufficiently large initial prefixes is
one of the main problems for finitary RTC. In [4], this is solved
with two-step procedure:

1) An entire analysis is executed with overapproximated
curves. At the end of this step, each GPC can upper
bound its MBS.

2) The network is traversed in opposite direction of the
paths taken by event streams and resources. During this
backtracking, the upper bounds on all crossed GPCs’
MBS are summed up.

The backtracking terminates as soon as all initial input
curves to the system are reached. Each initial curve can be
safely prefixed to the sum of MBS bounds reaching it. In
a final step, the RTC analysis is executed with the prefixed
curves in order to attain the accurate bounds of original RTC.

B. Limitation of Component-Finitary RTC

The procedure consisting of an approximate analysis and
backtracking of prefix requirements is generally applicable to
any component model. However, with prefix sizes based on
the sum of MSBs for each traversed component, this step with
component-Finitary RTC may still lead to initial input curves
of significant size.

The core of current Component-Finitary RTC prevents a
generalization. The MBS derivation, based on the busy period
concept from real-time feasibility theory, is natural to the GPC
as it essentially models preemptive fixed-priority scheduling.
The proofs given in [4], therefore, only apply to the GPC,
i. e., a different component model requires novel proofs con-
sidering its operational semantics. However, these need not
guarantee for a bounded busy period. The foremost example
to this is the AND-component. At each point in time, at least
one of its two input port buffers is not empty. Therefore, the
busy period cannot be bounded and neither can the history
to consider. In summary, current Component-Finitary RTC
only applies to the resource consuming component models
that follow a greedy processing, fixed-priority semantic.

In RTC, components are ascribed with flow equations –
sequences of (min,+) and (max,+) operations. We generalize
finitary RTC by relating it to these RTC-operators rather than
providing proofs for individual component models. Without
borrowing concepts from related theories, we achieve a generic
solution within the RTC methodology. The provided proofs
are independent of any operational semantic and thus the
properties they establish are universally valid for an operator.
Moreover, our novel Operator-Finitary RTC also achieves
tighter prefix bounds and thus faster computation run-times.

V. GENERALIZED, OPERATOR-FINITARY RTC
A. Preliminaries

1) Fast but approximate RTC-based System Analysis:
Backlog and delay bounds of components are obtained by
evaluating Eq. (4) and (7) for each resource consuming
component and w. r. t. some input curves αu∗,i and βl∗,i. In
case of complex curves fed from the environment into the

lower service curve: �(�)

linear approx. from below " �(�)

linear approx. from above # ↵(�)

linear approx. from below " ↵(�)
linear approx. from above # �(�)

upper arrival curve ↵(�)

Underapproxima,on:.

Overapproxima,ons.

Fig. 2. Arrival and service curve and their linear approximations

outer components and long sequences of computations for
determining all relevant curves, computational effort may
significantly increase. This stems from the fact, that output
curve tails are defined by the hyperperiod of input curve tails.

The efficiency of the computation within RTC can drasti-
cally be improved if the curves are simplified. Such simpli-
fications, however, need to be safe, i. e., computed delay and
backlog bounds need to be larger than with the original curves.

Conservativeness of delay and backlog bounds is guaranteed
by overapproximation: Upper curves are replaced by upper
bounds and lower curves are replaced by lower bounds. The
combination of upper and lower bounding of complex arrival
and service curves introduces a larger variety of behaviours
compared to the original set of curves. Underapproximation
refers to lower bounding of arrival curves and upper bounding
of service curves, reducing covered behaviours.

In this work, we use curve simplifications for efficiently
computing upper and lower bounds on the maximum vertical
distances of pairs of curves fed into RTC-operators. These
allow us to ultimately derive bounds on the relevant domains of
input curves w. r. t. the required domain size of an operation’s
output curve. We use the following definitions:
• Curve ↓γ is an upper bound on curve γ if ∀∆ ≥ 0 :
γ(∆) ≤↓γ(∆) holds.

• Curve ↑ γ is a lower bound on curve γ if ∀∆ ≥ 0 :
γ(∆) ≥↑γ(∆) holds.

The construction of linear upper or lower bounds that
consist of a single linear function appears straightforward:
RTC curves are either sub- or super-additive. According to
Fekete’s lemma for sub- and superadditive sequences, there
exists a finite long-term rate ρ = lim∆→+∞

γ(∆)
∆ . This allows

to derive the following linear approximations for a curve γ:
• ↓γ = max(0, Nu + ρ ·∆) and
• ↑γ = max(0, Nl + ρ ·∆) such that
• ↑γ(∆) ≤ γ(∆) ≤↓γ(∆) holds.

These curves are also known as affine curves. Fig. 2 illustrates
how they approximate from above or below.

When executing approximate system analysis, the exact
definition of an upper or lower bound becomes irrelevant,
e. g., instead of linear overapproximations, one could also
exploit approximations based on specific arrival patterns like
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pjd [11] or minimum and maximum combinations of linear
curves [7] etc. As far as the domain bounding is concerned,
we rely on linear approximations of the above kind. Similar to
Component-Finitary RTC, we stress the use of linear functions
which have the lowest feasible slopes in case of arrival curves
and the largest feasible slope in case of service curves.

Using (linear) upper and lower bounding on curves α and β
allows us to (efficiently) compute an upper and lower bound on
their maximum vertical and horizontal distance. The following
relations apply:

v dist(↓α, ↑β) ≥ v dist(α, β) ≥ v dist(↑α, ↓β)

and

v dist−1(↓α, ↑β, v) ≥ v dist−1(α, β, v) ≥
v dist−1(↑α, ↓β, v)

With α being an upper input arrival curve and β being a lower
input service curve, the vertical distance directly translates
into the backlog bound of the respective component. Thereby,
v dist(.) applied to the overapproximations delivers an upper
bound on the maximum backlog and its application to the
underapproximations yields the lower bound. This observation
and the above properties build the basis of our proofs.

For the delay bound, a respective reasoning holds
w. r. t. function h dist. Details are omitted for brevity.

B. Technical problem description

In the following, we rely on the these definitions.
• We call the fragment of a curve defined on the interval

[0, k] the (k-)prefix of a curve. Parameter k gives the size
or length of the prefix. The part of the curve defined on
the interval (k,+∞) is called tail. Note, that tools like
the MPA-toolbox implicitly support this definition.

• Let curves a and b be standard RTC curves defined on
the interval [0,+∞).

• Let curves a′ and b′ be their prefixed counterparts,
i. e., they are defined on the finite interval [0, ka] and
[0, kb], where for ∆ ∈ [0, ka] : a(∆) = a′(∆) and for
∆ ∈ [0, kb] : b(∆) = b′(∆) holds.

• Let � be an operator relevant for RTC, i. e.,

� ∈ {⊗,⊗,min,+,−, � , �}
For a finite constant k we need to clarify the condition on the
size of ka and kb w. r. t. to k and operator � such that

∀∆ ∈ [0, k] : (a� b)(∆) = (a′ � b′)(∆)

holds. Requesting that ka and kb are sufficiently large solves
the subtle problem that the operation (a′ � b′)(∆) is defined
only for ∆ ∈ [0, k] and not for ∆ ∈ (k,∞). Relating
prefix bounds to RTC operators allows us to ignore indices
to components, as well as the differentiation between upper
and lower input curves. The type of curves and the exploited
features will be made explicit upon need.

In the following we proceed by groups of RTC-operators
and employ a combination of upper and lower linear bounding
of curves as introduced in Sec. V-A1.

C. Operator-Finitary RTC for Common Operators
Operator group I is defined by the set {⊗,⊗,min,+,−}.
Lemma 1: Domain bounds with common RTC operators.

Satisfaction of the relation k ≤ min(ka, kb) yields that for � ∈
{⊗,⊗,min,+,−} and ∆ ∈ [0, k] : (a� b)(∆) = (a′� b′)(∆)
holds.
The above lemma directly follows from the definition of the
operators of group I: when constructing output curve c(∆) =
(a � b)(∆) for ∆ ∈ [0, k = min(ka, kb)] one only needs to
use function values of curve a and b up to ka and kb.

For example, let c(∆) = a(∆) ⊗ b(∆) and let, c′(∆) =
a′(∆) ⊗ b′(∆). For 0 ≤ ∆ ≤ min(ka, kb) we truly have
a(∆) = a′(∆) and b(∆) = b′(∆). Therefore, for ∆ ∈
[0,min(ka, kb)]: c(∆) = c′(∆) has to hold.

Guideline for Prefix Construction 1: Assume that a com-
ponent’s flow equation only consists of operators of group I,
e. g., the OR-component of [5]. If it is required to deliver
output curves defined on [0, k], then the above lemma implies
that its input curves must have prefixes of at least k as well.

D. Operator-Finitary RTC for the (min,+)-Deconvolution
Handling of the (min,+) deconvolution is more complex and

restriction of curves to a finite prefix can only be achieved by
exploiting structural assumptions made on the input curves.

In the following, let c(∆) = a � b(∆) = supλ≥0{a(∆ +
λ)− b(λ)} and we exploit the following definitions.

1) Let ↓x be a linear upper bound and let ↑x be a linear
lower bound on curve x ∈ {a, b}, where we assume
that ↓x and ↑x have the same slope. This is justified as
we pick approximations with the lowest possible slope
for arrival curves and with the largest possible slope for
service curves.

2) We use the symbol ρ when referring to the slope of linear
approximations of curve a and we use the symbol σ in
case of curve b.

3) Component-Finitary RTC requests that the long-term
overall maximum resource utilization is smaller than 1,
i. e., , ρ < σ. With Operator-Finitary RTC we extend
to the case ρ ≤ σ. For ρ = σ, i. e., when facing
components with a long-term utilization of 1, we require
that the pseudo-inverse of v dist(↑a, ↓b) but w. r. t. the
overapproximations of input curve a and b exists. This
means ↓a− ↑b ≤ v dist(↑a, ↓b) has to hold; see also
discussion below.

4) Let Λ be the parameter to bound the prefix of curves
a′ and b′ serving as input to a (min,+) deconvolution.
Note, if Λ is a valid prefix bound w. r. t. the (min,+)
deconvolution, the definition of the latter already implies
that with kb ≤ Λ the relation ka ≤ Λ + k has to hold
in order to obtain the property a � b(∆) = a′ � b′(∆)
∀∆ ∈ [0, k].

We define a domain bound Λ as follows:

Λ=max(0, sup(λ :↓a(λ)− ↑b(λ) ≤ v dist(↑a, ↓b))) (8)

The above definition can be interpreted as follows: the right-
hand side of the above inequality, which is v dist(↑a, ↓b),
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delivers the lower bound on the least upper bound of the
vertical distance of curve a and b, see Eq. (3). The left-hand
side defines the pseudo-inverse of this value, but w. r. t. the
overapproximations of curve a and b, see Eq. (5). The maxi-
mum computation in the above definition solves the unusual
case that the second operand is negative.

Value Λ exists as a side effect of the requirement stated
above (number 3 of the listing). It yields that for all input
values λ > Λ, we know that ↓a(λ)− ↑b(λ) ≤ v dist(↑a, ↓b),
because, either (a) curve ↓ a grows slower than curve ↑ b,
which is the setting of components which are have a long-term
utilization below 1 or (b) the curves have the same slope, but
their tails have a vertical distance below v dist(↑a, ↓b).

In case requirement 3 form above does not apply, the
pseudo-inverse Λ does not exist and the following theorem
does not apply.

Theorem 1: Domain bounds with (min,+) deconvolution
Given a domain bound k, we guarantee a� b(∆) = a′ � b′(∆)
if ka = Λ + k and kb = Λ.

Proof 1: Let v = v dist(↑a, ↓b). The definition of the �
operator, put together with the (linear) underapproximations,
yields ↑a� ↓b(∆) = v + (σ − ρ)∆.

Moreover, v̄ = v dist(↓a, ↑b) provides a lower bound on
↓a� ↑b(∆) and in analogy to the above equation, we have
↓ a� ↑ b(∆) = v̄ + (σ − ρ)∆. This yields the following
property ↓a� ↑ b(∆)− ↑a� ↓ b(∆) = v̄ − v, which we
exploit as follows.

Let Λ = v dist−1(↓ a, ↑ b, v), which is equivalent to
the definition provided in Eq. (8). Together with the above
property, we get:

sup
λ′>Λ

(↓a(∆ + λ′)− ↑b(λ′)) <↑a� ↓b(∆) (9)

This holds because the rates of the over- and underapproxima-
tions are pairwise identical and for λ′ > Λ :↓a(λ′)− ↑b(λ′) <
v.

Due to the nature of underapproximation, we also have:
↑a� ↓b(∆) ≤ a � b(∆).

This can be put together with the property of Eq. (9), which
allows us to simply exchange the right-hand side of the above
equation. We obtain:

sup
λ′>Λ

(↓a(∆ + λ′)− ↑b(λ′)) ≤ a � b(∆)

This immediately implies that supλ≥0(a(∆ + λ) − b(λ)) is
found on the stretch λ ∈ [0,Λ], as the operator values found
beyond Λ are already smaller with the overapproximations.
Thus, for ka = Λ + ∆ and kb = Λ: a � b(∆) = a′ � b′(∆)
has to hold. �

The above theorem affects the computation of a component-
global prefix bound as follows.

Guideline for Prefix Construction 2: The Λ computed
for a component Ci and w. r. t. to its output bound k yields
that the component directly upstream of Ci needs to provide
a prefixed arrival curve α′∗,i of length Λ + k. Analogously, at
the component one-step upstream of Ci, w. r. t. the sharing of

a resource, we need to generate a left-over service curve β′∗,i
of length Λ.

It is also easy to see that for v dist(↑ a, ↓ b)) > 0 we
produce curves which have smaller prefixes than the MBS.
Hence our Operator-Finitary RTC is not only more general, it
is also likely to be more efficient.

Above, we required that ρ < σ. This is not a decisive
limitation: (a) ρ > σ implies that a � b(∆) = ∞ and
thus the respective computation produces a result which is
irrelevant for the analysis of a component. (b) The case
ρ = σ appears to either follow the handling of ρ < σ,
or needs to be manually eliminated. Such an elimination is,
however, only necessary in the rare case that the pseudo-
inverse v dist−1(↓a, ↑b, v dist(↑a, ↓b)) does not exist.

E. Operator-Finitary RTC for the (max,+)-Deconvolution

By swapping the arguments we obtain c(∆) = b� a(∆).
This allows us to exploit the definitions and properties
from above and derive a bound Λ beyond which the value
b(λ′ + ∆)− a(λ′) grows. For conciseness and as the (max,+)
deconvolution is of less importance for standard RTC-analysis,
we omit details.

F. Ensuring Enclosure of Backlogs and Delays

So far, we clarified the size of domains for input curves a′

and b′ w. r. t. a given domain bound k of an output curve c
and w. r. t. a given RTC-operator.

Assuming that at the very last component of a sequence of
components, input curve a′ and b′ are used for bounding the
delay and backlog, we also need to clarify the initial value
which we require for ka and kb at that component.

In the following we develop a new and tighter bound R for
guaranteeing backlog enclosure and a new and tighter bound
U for guaranteeing delay enclosure.

To formalize this idea, we use the following definitions.
• Let a = αu be an upper arrival curve, let b = βl be a

lower service curve at a component Ci and let a′ and b′

be their prefixed variants, with ka and kb as the domain
bounds.

• Let delay and backlog be the performance measures
computed with Eq. (4) and (7) and w. r. t. curve a and
b.

• Let delay′ and backlog′ be the performance measures
obtained from the prefixed curves a′ and b′ and let φ′ be
the value of ∆ such that Eq. (4) is satisfied. Also, let λ′

and h′ be the values such that relation Eq. (7) is satisfied.
For the above setting, we give the following lemma.

Lemma 2: Backlog and Delay enclosure

λ′ + h′ ≤ min(ka, kb) and φ′ ≤ min(ka, kb)
⇒ delay = delay′ and backlog = backlog′

Proof 2: Curve a′ coincides with the non-prefixed curve a
on [0, ka] and b′ coincides with the non-prefixed curve b′ on
[0, kb]. Thus, delay and backlog are identical to those of the
original curve model if they are contained in the prefixes. �
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The challenge is to find ka and kb such that the above lemma
applies. To do so, we introduce variables U and R.
• Let R := v dist−1(↓a, ↑b, v dist(↑a, ↓b)) and
• Let U := h dist−1(↓a, ↑b, h dist(↑a, ↓b)).
These are the pseudo-inverses of the lower bounds on the

delay and backlog bound, but w. r. t. the overapproximations
of a and b.

Theorem 2: For ka ≥ max(U,R) and kb ≥ max(R,U +
h dist(↓a, ↑b)), the domain bounds ka and kb are sufficiently
large such that delay and backlog bounds can be found in the
intervals [0, ka] and [0, kb], i. e., the above lemma applies.

Proof 3: In the following, we re-use the pseudo-inverse of
the delay and backlog bound, which we define as follows:

u∗ := v dist−1(a, b, v dist(a, b))
r∗ := h dist−1(a, b, h dist(a, b))

We proceed by a case distinction.
a) Delay bound enclosure: The definition of U gives that

∀∆ > U :↓a(∆) <↑b(∆ + h dist(↑a, ↓b)). As ↓a and ↑b
are linear overapproximations of a and b, this implies that
∀∆ > U : a(∆) < b(∆ + h dist(↑a, ↓ b)) has to hold as
well. Exploiting the relation h dist(↑a, ↓b) ≤ h dist(a, b) ≤
h dist(↓a, ↑b) yields that u∗ ≤ U holds. Thus, U is a safe
upper bound for the domain of a and U + h dist(↓a, ↑b) is
truly an upper bound for the domain of b. Enclosure of the
effective delay bound in their prefixes is guaranteed.

b) Backlog bound enclosure: This case follows the same
line of reasoning, but function h dist is replaced by function
v dist. For brevity we omit further details.

With r∗ being bounded by R and u∗ being bounded by
U , we obtain that delay bound and backlog bound can both
be found with a and b on the interval [0,max(U,R)], resp.
[0,max(R,U + h dist(↓a, ↑b))] – the definition provided in
the above theorem. �

VI. GENERALIZED, OPERATOR-FINITARY RTC FOR
STANDARD COMPONENT MODELS

Breaking up ties between finitary RTC and specific com-
ponent models has various practical advantages: universality,
simplicity and improved efficiency. In this section, we demon-
strate how the former two result in finitary RTC’s straight-
forward applicability for different purposes. Their common
prerequisite is the use of (min,+) and (max,+) operators of
Eq. (1) outside the context of flow equations ascribing the
GPC of Eq. (2). With the generalized finitary, proofs stay valid
for any combination of these operations in any context. First,
we discuss analysis principles that tighten the end-to-end delay
bound of event streams and then we demonstrate how to extend
finitary RTC to other component models.

A. The PBOO and PMOO analysis principles

Generalized finitary RTC allows for more accurate delay
bounds. This can be achieved by implementing the following
analysis principles that capture behavior observable in realistic
systems.

Pay Burst Only Once (PBOO, [8]): Analyzing a sequence
of GPCs crossed by an event stream demands the derivation
of its arrivals, αui,∗ and αli,∗, at the input of each component.
Both derivations within the GPC model apply the (min,+)
deconvolution to determine the previous component’s worst-
case output burstiness. The analyzed event stream’s burstiness
increases with every component it crosses and crucially im-
pacts delay bounding (Eq. (7)). An independent worst-case
setting is assumed at every component, i. e., the order of events
within the stream that determines the worst-case delay can
differ between subsequent components. Considering the entire
path of an event stream as a whole, however, shows that
the order of events is retained across subsequent hops. The
Pay Bursts Only Once (PBOO) analysis principle suggests
to convolve the service curves on a stream’s path before
bounding the delay with h dist. In contrast to the GPC
analysis, burstiness only appears once in the PBOO derivation,
guaranteeing for more accurate delay bounds.

Pay Multiplexing Only Once (PMOO, [12]): The PBOO
analysis principle solely reduces occurrences of the analyzed
event stream’s burst term to a minimum. The burstiness of
other event streams might still be considered multiple times.
They are found in the derivations of βui,∗ and βli,∗, the service
available to the analyzed event stream. From its point of view,
multiplexing is paid for more than once. Accordingly, the
analysis principle counteracting this situation is known as Pay
Multiplexing Only Once (PMOO). It states that service curves
should be convolved into as little curves as possible before
deriving the required βui,∗ and βli,∗ from them.

B. The AND-component model

The AND-component model is discussed in [5]. Its opera-
tional semantic is as follows.

The component solely produces and output event if there is
at least one input event in each input buffer. Upon output event
generation, the AND-component consumes exactly one event
from each input buffer and produces one output event, where
this activity is instantaneous. Therefore, the AND-component
models a synchronization primitive as commonly found in
distributed computing environments.

At an abstract level, the flow operation of the AND-
component is of the following form: αu = max(min(a �
b, d),min(. . .)); the lower output curve is constructed but by
swapping min and max. We skip the derivation for brevity.

With the upper arrival output curve, we see two min-plus
deconvolutions at the inner most level and each embedded
into a min computation. This is completed by an outer max
computation over the aforementioned min computations.

For the outer maximum and the inner minimum computa-
tion, Lemma 1 applies, i. e., for producing output curve c of
length k we need to ensure that the input curves a, b and d
are at least of length k. However, for the inner deconvolution,
this may not bet enough, i. e., the prefixes of curve a and b
may need to be longer. For deriving the prefix length of a and
b for obtaining a prefix of length k for curve c = a � b we
can apply a case distinction.
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(A) The 4 × 3 mesh of GPCs. (B) PBOO analysis. (C) PMOO analysis.

Delays
Linear RTC C-finit �-finit

GPC 71.424 21 21 21
PBOO 56.960 19 – 19
PMOO 22.044 15 – 15

Run-times
Linear RTC C-finit �-finit

GPC 0.137s 315.97s 0.240s 0.228s
PBOO 0.140s 35.67s – 0.148s
PMOO 0.035s 17.67s – 0.035s

(D) Delay bounds and run-times.

Fig. 3. Sample grid network [4] and analysis of event stream E4.

Let ρ and σ be the long-term rates of curve a, b respectively.
• ρ < σ. On the basis of Theorem 2, we are able to compute

a Λ and thereby bound the value of ka and kb
• ρ > σ. The result of the min-plus deconvolution becomes

irrelevant as a � b = ∞. It is absorbed by the inner
minimum computation.

• ρ = σ. In case the pseudo-inverse v dist−1(↓ a, ↑ b,
v dist(↑ a, ↓ b)) exists, Theorem 2 applies. Otherwise,
ka and kb are unknown and our generalization is not
applicable, presumingly to be resolved manually.

This is a clear extension of the component-finitary RTC,
since, our operator-finitary RTC features the handling of non-
resource consuming component models, e. g., , the AND-
component. In addition, it also covers the case ρ = σ,
given that the pseudo-inverse of v dist(↑a, ↓ b)) w. r. t. the
overapproximations exists.

C. Greedy Traffic Shapers

Traffic shaping is a technique for coping with the non-
determinism introduced by bursty workloads. The Greedy
Traffic Shaping (GTS) component model for RTC is discussed
in [16]. Its operational semantic is as follows.

A greedy shaper with a shaping curve s delays events of
an input event stream such that the output event stream has
s as an upper arrival curve. Its flow equations are based on
a min-plus convolution and a max-pus deconvolution. The
convolution is covered by Lemma 1. The max-plus deconvo-
lution is applied to the shaping curve s of the component:
s� s. This convolution targets at a transformation of the
shaping curve into a super-additive service curve. Assuming
that the shaping curve is not a left-over service curve from
an upstreamed component, yields that it is specified on the
complete domain of R+. Hence, a restriction to a subset [0, ks]
when computing β = s� s is not necessary and for the outer
min-plus convolution, we have a prefix available which is as
precise as the original curve model.

VII. EVALUATION

A. Operator-Finitary RTC with PBOO and PMOO Principles

With a GPC-oriented style of analysis, the computation
of an end-to-end delay for a specific event stream is only
attainable by summing up the component-local delay bounds
along the stream’s path. We illustrate this on the sample

network from [4] in Fig. 3(A). The employed stair-case curves
allow for a tight linear overapproximation. It allows for a tight
linear overapproximation of the employed stair-case curves ,
i.e., the added pessimism has least possible impact. In our
evaluation, we are mainly concerned with the delay derivation:
the end-to-end delay experienced by any event of stream E4

is bound by delay10 + delay11 + delay12.
It is easy to show that a component-oriented computation of

the end-to-end delay is in general not tight. E. g., delay10 is de-
rived from the arrival curve αue4,10 and delay11 is derived from
αue1,11 = min

{(
αue4,10 ⊗ βu7,10

)
� βl7,10, β

u
7,10

}
. Both local

delay bound derivations consider arrival curves αue4,10 to its
full extent. Using the (min,+)-operations of RTC directly, we
can, however, create a flow-oriented RTC analysis that coun-
teracts this problem. The flow equation for the analyzed flow,
event stream E4, does not reveal the individual components
crossed by it anymore. Their service curves are convolved
to the end-to-end service (β7,10 ⊗ β8,11) ⊗ β9,12 before E4’s
delay is bounded in the (virtual) PBOO-component CPBOO.
This last component does not correspond to a real component
of the network, and we call it virtual.

The PBOO principle solely concerns the analyzed event
stream’s burstiness, i. e., Fig. 3(A) and Fig. 3(B) only differ
in the derivation on E4’s path. Thus, the same problem
still applies to the other streams, E1, E2 and E3. Their
arrivals appear multiple times in E4’s delay bound derivation.
Applying the convolution as early as possible changes the
analysis proceeding to Fig. 3(C). The analysis makes heavy
use of (min,+) operations outside the context of components:
service curves are convolved to βR1,1 ⊗ βR2,2 ⊗ βR3,3 before
subtracting the aggregated arrivals of the higher prioritized
event streams. Subtraction is provided by the virtual compo-
nent CPMOO,1 and delay bounding is provided by CPMOO,2.

1) Delay Bounds: End-to-end delay bounds of event stream
E4 are shown in Table 3(D), Delays. Delay bounds obtained
with any analysis that employs linearly approximated curves
are strictly larger than the RTC bounds; even the linear PMOO
analysis bound exceeds the GPC analysis result with stair-case
curves. As expected, C-finitary RTC preserves the delay bound
of the GPC analysis with stair-case curves in standard format.
Our operator-finitary RTC covers PBOO and PMOO analysis
and thereby delivers tighter delay bounds.

2) Analysis Run-times: For the evaluation of the analysis
run-times, we used the MPA toolbox [10] and Matlab R2015b
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on a 2.7 GHz Intel dual core processor model i5, with 3MB
shared level 3 cache, 8GB of onboard 1866MHz LPDDR3
SDRAM and running Mac OS 10.11.3. Table 3(D), Run-times,
depicts the time required to compute the according delay
bound. We can observe two distinct sources of improvements
that counteract the problem of growing hyperperiods:

1) PBOO and PMOO reduce the amount of RTC-operators.
2) Finitary RTC makes tail descriptions of curves obsolete.
The former is depicted in the RTC column of Table 3(D),

Run-times. With the original grid network of 12 GPCs and the
standard curve layout, the analysis takes 315.97s to complete.
The PBOO analysis reduces the run-time by nearly one order
of magnitude, to 35.67s, and PMOO computations finish
after 17.67s. However, a running time of almost 20s for
a model of trivial size clearly indicates the limitations in
the efficiency when reducing the numbers of RTC-operators
only. It seems that reasonably sized networks of distributed
real-time systems with complex communication patterns and
activities at different orders of the time scale remain out of
the reach of standard RTC-implementations. In such scenarios,
the components crossed by the analyzed event stream only
constitute a small part of the network. Then, efficiency gains
will be smaller [2].

Therefore, improvements of Operator-Finitary RTC are
highly desirable for PBOO and PMOO analysis. For both, we
achieve a reduction of run-times by more than two orders of
magnitude compared to standard RTC. The more interesting
fact is, however, that computing delay bounds with linear
approximated curves and with Operator-Finitary RTC takes
nearly the same time: PBOO finishes in 0.140s vs. 0.148s and
the PMOO delay bound computations both required 0.035s –
a difference could not be measured.

Finally, let us briefly address the difference in run-times
between Component-Finitary RTC and Operator-Finitary RTC.
In the GPC-based analysis scheme, run-times are nearly iden-
tical. This is for the following reason: for comparability, we
computed GPC-global prefixes with Operator-Finitary RTC
instead of a distinct prefix for every curve in Eq. (2). This
is, in fact, another aspect where our solution can excel the
previous one in order to better scale to larger networks.

B. Operator-Finitary RTC with the AND Component Model

Last, we evaluate a network that uses the AND-component
model as a synchronization primitive, the model can be found
in [5]. The arrival of jobs is modelled as before by pjd-arrival
curve, where the service follows once again a TDMA scb-
service pattern. Component-Finitary RTC does currently not
provide insight on the computable length of the output curve’s
prefix of the AND-components of this model.

The original RTC analysis with linearly approximated
curves required 0.0806s and with stair-case curves, it took
0.3313s – already four times as long in this small example.
We prefixed the curves with our Operator-Finitary RTC and
observed a run-time of only 0.1205s. Not only can we derive
prefixes for networks with AND components, they are also
vastly reducing the analysis run-time.

VIII. CONCLUSION

We eliminated the dependency of Finitary RTC on the
greedy processing component and the maximum busy period.
To do so, we bring Finitary RTC to the level of RTC-operators.
With this generalization, Finitary RTC can be applied to
common component models such as the PBOO, PMOO, AND
and the GTS-component. These models allow for tighter delay
and backlog bounds if compared with a pure GPC-driven
analysis approach.

With the extension of the Finitary RTC idea to a much
wider range of RTC models, we also developed alternative
bounds on required curve prefixes. Deriving these prefix sizes
from combinations of under and overapproximations of curves,
results in potentially smaller prefixes. They reduce the run-
time of RTC-based system analysis even further, making this
theory a good candidate for design space exploration.
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