An Executable Semantics for Synchronous Task
Graphs: From SDRT to Ada

Morteza Mohaqeqi®™), Jakaria Abdullah, and Wang Yi

Uppsala University, Uppsala, Sweden
{morteza.mohaqeqi, jakaria.abdullah,yi}@it.uu.se

Abstract. We study a graph-based real-time task model in which inter-
task synchronization can be specified through a rendezvous mechanism.
Previously, efficient methods have been proposed for timing analysis of
the corresponding task sets. In this paper, we first formally specify an
operational semantics for the model. Next, we describe a method for Ada
code generation for a set of such task graphs. We also specify extensions
of the approach to cover a notion of broadcasting, as well as global inter-
release separation time of real-time jobs. We have implemented the pro-
posed method in a graphical tool which facilitates a model-based design
and implementation of real-time software.

Keywords: Automated code generation - Ada programming language -
The synchronous digraph real-time task model - Schedulability analysis

1 Introduction

Safe, accurate, and efficient timing analysis of real-time applications is an impor-
tant requirement in safety-critical embedded systems design. To achieve this
goal, having formal models which can specify the structure and behavior of the
software in an expressive way is essential. At the same time, the models utilized
must be of a suitable level of abstraction, through avoiding unnecessary technical
details, such that the analysis can be carried out in a reasonable time.

In the past, several models have been proposed to specify real-time work-
loads, ranging from the periodic and sporadic task models [7] to more complex
graph-based ones [4,9,11]. These models are used to describe the computational
workload, and accordingly, to perform timing analysis of the software applica-
tion. While many studies concern theoretical methods for analyzing the task
sets specified by these models, less attention has been paid to implementation
issues. However, in practice, a designer needs to have a clear definition of the
relation between modeling components and the corresponding implementation
building blocks. Having such a knowledge, which helps in (automatically) gen-
erating executable programs from a set of formal models, is specially important
in the model-based development paradigm [6].

In this work, we consider one of the most expressive real-time task models,
i.e., Synchronous Digraph Real-Time (SDRT) [9]. SDRT extends the Digraph

© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 137-152, 2017.
DOI: 10.1007/978-3-319-60588-3_9

138 M. Mohageqi et al.

Real-Time (DRT) task model [11] by introducing inter-task synchronization
through a rendezvous mechanism. Efficient analysis methods for dynamic- and
fixed-priority scheduling of DRT tasks, and also for fixed-priority scheduling of
SDRT tasks, have been previously proposed [9,12]. In this work, we employ a
slightly extended version of SDRT and study automatic Ada code generation
for the model. We opt for the Ada programming language [8] since the language
primitives, specially the provided notions of task and synchronization, match
very well with the SDRT task semantics.

As it will be demonstrated, the SDRT task model allows non-deterministic
behavior. We attempt to resolve the non-determinism by confining the possible
behaviors of an SDRT task. The goal is then to produce source code implement-
ing the behavior such that the timing analyses (performed on (S)DRT task sets
[9,11]) remain valid. In summary, the key contributions include:

— Defining a formal operational semantics for SDRT;
— Proposing a code generation approach to implement the specified semantics;
— Showing how to model global inter-release time constraints using SDRT.

In the rest of the paper, we first review related work. The syntax, as well as
operational semantics, of SDRT is formally defined in Sect.3. We present our
approach for implementation of the SDRT behavior using the Ada programming
language in Sects.4 and 5. Some extensions of the method are demonstrated in
Sect. 6. Concluding remarks and future work are presented in Sect. 7.

2 Related Work

Implementation of real-time tasks using the Ada programming language has been
recently studied by Real et al. [10] with an emphasis on preserving release jitter
constraints. For this goal, it is proposed to implement jitter-sensitive tasks in a
time-triggered manner, running in the highest level of priority, combined with
a number of priority-scheduled jitter-tolerant tasks. A given time-triggered plan
is managed /scheduled by a protected type with the highest priority, which plays
the role of a scheduler. Time triggered tasks synchronize with this scheduler
via an entry call. In comparison, our approach can also be used to implement
the structure of a time-triggered plan with SDRT. Meanwhile, the SDRT model
provides more flexibility in the design of a real-time application, through, for
instance, allowing to model branches and inter-task synchronizations.

One of the most relevant models to SDRT is task automaton [5] for which
a code generation method is proposed in [2]. Compared to task automata, an
important feature of SDRT is that the job release times criteria is separated from
the application code logic. In terms of the operational semantics, unlike timed
automata, SDRT tasks are not allowed to manipulate the clock variables that
determine eligibility of a next job for release. In this way, minimum inter-release
times are decoupled from the functionality of the jobs. This is a crucial difference
which makes the schedulability analysis problem for the (S)DRT model feasible,

From SDRT to Ada 139

in contrast to that of task automata which can be even undecidable in the gen-
eral case [5]. The code synthesis algorithm provided for task automata in [2]
suggests to manage synchronizations and scheduling events by the generated
application code. In addition, the implementation of the method (integrated in
the TIMES tool [3]) is platform dependent. In contrast, we leverage Ada’s primi-
tives, including the synchronization mechanism, which inherently match with the
SDRT semantics. This leads to simpler and more intuitive codes. Furthermore,
the generated code is hardware independent.

A first attempt to generate Ada code from SDRT models has been carried
out by Abdullah et al. [1]. Compared to that work, in this paper we provide a
formal operational semantics for the model, and also cover a complete semantics
of SDRT including conditional branching. Moreover, we present a technique
to model/implement end-to-end inter-release separation times using the SDRT
synchronization mechanism.

3 Real-Time Task Graphs with Synchronization

In this work, we focus on the Synchronous Digraph Real-Time (SDRT) [9] task
model, which is a graph-based model extended with inter-task synchronizations.
Informally, an SDRT task is specified by a directed graph where each path of the
graph represents a possible execution path of the task. By means of this model,
a task which releases different types of jobs, i.e., with a variable behavior, can be
modeled. In what follows, we first present a number of definitions and notations
that are used throughout the paper. Then, the syntax and semantics of the
SDRT task model are formally defined.

3.1 Notations

We use X to denote a set of action labels used to specify inter-task synchroniza-
tions. X is assumed to contain a null action, denoted by L, which shows the
absence of a synchronization. Let Y denote a set of variables. A valuation over
Y is a function which maps each variable in Y to a value from its domain. Any
logical condition over the variables in Y is called a guard; the set of all guards
is denoted by G. For a given valuation ¢ and a guard g, both defined over a
variable set Y, we write 0 = ¢ to denote that o satisfies g (i.e., the guard is
evaluated to True). We also use N to denote the set of all non-negative integers.

3.2 Syntax

The syntax of an SDRT task is specified using a directed graph. More specifically,
considering a set of actions X, a set of variables Y, and a set of guards G defined
over Y, we define an SDRT task as follows.

Definition 1 (SDRT Task). An SDRT task is defined as a tuple (V, v, E),
where

140 M. Mohageqi et al.

-V is a set of vertices,
- vg € V is the initial vertex,
- ECVXNXxGxXxV isa set of edges.

Each vertex v € V represents a job type and is associated with a non-negative
integer, d(v), as its relative deadline. Each instance of a job type is called a job.
A task releases a (possibly infinite) sequence of jobs according to the constraints
specified by edges. Intuitively, an edge (v;,p,g,a,v;) € E indicates that if the
latest job of the task has been released at time ¢y and is of type v;, and also the
guard g is satisfied after the completion of the job, then the task can synchronize
on the action a at any time ¢ > ¢y + p, releasing a new job of type v;. Based on
this meaning, p is called the minimum inter-release time. The precise semantics
of an SDRT task is presented in the next subsection.

Here, we assume that exactly two tasks are involved in each synchronization,
that is, there is no action a € X appearing on the edges of more than two tasks.
We later relax this restriction in Sect. 6. In addition, throughout this paper, we
assume constrained deadlines. This means that, for any arbitrary vertex v € V,
it holds that d(v) < p for all p for which 3(v,p, g,a,u) € E.

It is worth noting that the syntax of an SDRT task has been originally
defined, in [9], in a more abstract level. In this work, as we are dealing with
code generation, we consider a more concrete definition. Particularly, in the
current work, the task syntax is supposed to specify an initial vertex, as well
as guards on edges. As this specification only restricts the behavior of a task,
the existing timing analysis methods still provide a safe (although maybe a
pessimistic) result.

3.3 Operational Semantics

We first make a set of assumptions based on which the SDRT semantics will be
defined.

Assumption 1 (Local Access to the Variables). Each task’s variables can
be accessed and updated only by the task itself (and by none of the other tasks).
As a result, between the finish time of a job and the start of the next one, the
value of the guards are not changed.

We also assume that the functionality of a job of type v is specified by a
function F,(.) which manipulates the task’s variables. More specifically, given
a current valuation o of the task variables, F}, (o) denotes the valuation of the
variables immediately after the execution of the job. Further, given a set of n
tasks, we assume that the first job of the i-th task, for 1 < ¢ < n, initializes
task’s variables to a valuation o ;.

The operational semantics of the SDRT task model is defined using a labeled
transition system. Let {(V1,vo.1, E1), ..., (Va, vo.n, En)} denote a set of n SDRT
tasks. A semantic state of the system is then defined as a triple (7,7, ¢), where

— 0= {(v1,...,0,), with v; € V;, for 1 < i < m, is a vector of vertices (job types),
which keeps track of the type of the latest released jobs,

From SDRT to Ada 141

— 7 = {01,...,0,) is a vector of valuations, where o; denotes a valuation over
the variables of the ¢-th task,
— ¢ = {c1,...,cn) denotes a vector of n non-negative integers, referred to as

clock variables. The value of ¢; shows the time which has passed after the
release of the last job of the i-th task.

Before defining the transition rules, we introduce a number of notations.
Take an arbitrary vector of job types ©. By @[v; /v}] , we denote the vector of job
types obtained by replacing v; with v} in ¥, while the other entries of ¥ remain
unchanged. Additionally, for a vector of clocks ¢ and a set of clock variables 7,
¢[r — 0] denotes the vector derived from ¢ after resetting those clock variables

of ¢ that are in r to 0. Also, for a clock vector ¢ = (cy,...,c¢,), we define ¢+ 1
as ¢ after incrementing each entry by one, that is ¢4+ 1 = (¢ + 1,...,¢, + 1).
Additionally, for a valuation & = {01,...,0,) and a job type v; € V;, we define

Fy, (o) = (01,...,0,), where o] = F,,(0;), and 0} = o; for j # i. Using these
definitions, we now present the SDRT semantics.

Definition 2 (SDRT Operational Semantics). Consider a set of SDRT
tasks 7 = {(V1,v0,1, E1), -, (Vs von, En)}. Also, define 99 = (vo1,-..,00.n),
g0 = (00,1,---,00m), and & = (0,...,0). The operational semantics of T is
defined by a labeled transition system with an initial state of (vg, g, Co), and two
types of transitions:

1. Delay transitions, denoted by (U,7,¢) 2, (0,5, + 1), which represent the
progress of time;
2. Release transitions, which are associated with the release of new jobs, and
include two types:
- (9,0,¢) 5 (@[vi/vg],Fvg (7),¢[{c:} — 0]) if 3(vi, p,g, L,v}) € E; such that
p<ciando; =g,
~(m,0) 5 (olos/vlllos /v]), Foy (Fuy (0), eli{eis 5} > 0]) if there eaist
edges (vi,p1,91,a,v;) € E; and (vj,p2,g2,a,v;) € E; with a #L1 and
i # j such that p1 < ¢;, p2 < ¢j, 0; = g1, and 0 = ga.

In this definition, the release transition rules are written assuming that a job
takes its effect on the task variables immediately after its release (by applying
the function F, () with no delay), while in practice, it would take some duration
to execute the job. Nonetheless, this does not compromise the correctness of
the semantics. The reason is that, as we consider constrained deadlines, the
execution of a job is always finished before the corresponding minimum inter-
release times are passed, given that the job meets its deadline. As a result, the
guard conditions, which may depend on the task variables, are evaluated only
after the job is completed, and its influence on the variables have taken place.
Therefore, the variables are not used before the completion of the job, and thus,
it does not matter when they are updated (i.e., at the beginning, or at any time

! Recall that ¢; and o; denote the i-th entries of ¢ and &, respectively.

142 M. Mohageqi et al.

during the execution of the job). Based on this, we can also argure that, the
defined initial state corresponds to the instant exactly after the first job of each
task has been released and also taken its effect.

We point out that our focus is on the job release pattern of an SDRT task set.
Hence, in the system state, we do not keep track of the amount of the executed
workload of a job. Nevertheless, the defined semantics truly reflects the behavior
of the task set, from a release time perspective, as long as no deadline is missed.

Based on the original definition of SDRT [9] (and also DRT [11]), an edge
can be taken, and the corresponding job can be released, at any time after the
specified minimum inter-release time is passed (given that the other conditions
are met). This entails a non-deterministic release-time, while for the implemen-
tation, we need to determine release times deterministically. We resolve this issue
using the so-called mazimal progress assumption [2]. According to this, a job is
supposed to be released as soon as possible. In terms of the specified transition
system, this assumption is expressed as follows.

Assumption 2 (Maximal Progress). In the specified transition system in
Definition 2, whenever there are both delay transition and release transition(s)
doable, the system takes the release transition(s) first.

The presented operational semantics provides a basis for converting an SDRT
task set to an executable code. As code generation for the branching structures
plays a major role in implementing an SDRT task, we treat it separately in
Sect. 4. Next, in Sect. 5, we present our implementation approach for the whole
task graph.

4 Code Generation for Branching Structures

A branching structure can be specified in SDRT by a vertex with multiple out-
going edges. To decide which edge must be taken, the program needs to consider
the respective minimum inter-release times, guards, and also the synchronization
actions. In this section, after reviewing a number of assumptions, we demonstrate
our approach to implement the guard, minimum inter-release time, and synchro-
nization criteria of a set of edges comprising a branch. We exploit the rendezvous
mechanism of Ada for this goal. Then, we present an algorithm for implementing
the complete semantics of such structures.

4.1 Assumptions

In order to follow the semantics of the Ada rendezvous, which is used for inter-
task synchronization, we assume that the set of synchronization actions X' con-
tains two types of actions: any action a is either a sending action, denoted by a!,
or a receiving action, denoted by a?. As will be seen, when generating source
code for a task, sending actions are mapped to (implemented by) an entry
call, while receiving actions are mapped to the accept statement of the Ada
rendezvous.

From SDRT to Ada 143

While Ada provides a mechanism for a conditional accept (within a select
block), there is no analogous structure for conditional entry calls. Hence, we need
to slightly change the semantics of SDRT to comply with this restriction. For
this purpose, when the guard of an edge with a sending action is satisfied and
the associated minimum inter-release time is also passed, we will choose that
edge to be taken (although not immediately if the receiving task is not ready
at the moment), without checking the other edges any more. To formalize this,
consider an arbitrary edge e = (v,p,g,a,u), and an edge ¢ = (v,p’, ¢, b, u’)
with a sending action. Edge ¢’ is said to be enabled before e if p’ < p and
g’ is satisfied (irrespective of whether the rendezvous on b can be done at the
moment). Given this definition, the release transition rules in Definition 2 are
rewritten as:

- (v,0,¢) 5 (0vi V], For (), el[{e:} — 0]) if Je = (vi, p, g, L, v}) € E; such that
p < ¢ and o; = g, and there exists no edge outgoing from v; in E; with a
sending action which is enabled before e;

-~ (5,5,8) = (@[Ui/vg][vj S0, By (Fyy (), el{ei, e} v O]) if there exist edges
e; = (vi,p1,91,07,v;) € E; and e; = (vj,p2,g2,al,v}) € Ej with a #L and
i # j such that p1 < ¢;, p2 < ¢j, 0; = g1, and 0 |= g2, and there exists no
edge with a sending action outgoing from v; in F; enabled before e; and also

no such an edge from v; in F; enabled before e;.

4.2 Realizing Basic Blocks

In order to conform with the maximal progress assumption (Assumption 2), the
implemented task needs to be notified as soon as a release transition becomes
eligible. According to the specified semantics, release transitions depend on the
corresponding guards, minimum inter-release times, and synchronizations. In the
following, we specify that how each of these criteria can be checked at runtime
to trigger a release transition.

Guards. In edges with no synchronization, or with a sending action, the guard
condition can be checked by an if-then-else structure. If evaluated to True, the
transition will be chosen to take. However, if an edge is related to a receiving
action, we will use the “conditional accept” structure of Ada to restrict the
synchronization to be done only if the guard is satisfied and the edge with the
corresponding sending action is also ready to be fired. This case is elaborated
shortly.

Minimum Inter-release Times. To respect a minimum inter-release time
between two jobs, we use the delay until statement of Ada, which provides a
way to wait until a (absolute) time instant. As an example, consider the branch-
ing structure shown in Fig. 1a, where p; and py denote the minimum inter-release
times assuming p; < py. Further, assume g; and g5 to denote the corresponding

144 M. Mohageqi et al.

b2

(a) A choice with two edges (b) A choice with three edges with synchronization
Fig. 1. Sample branching structures in SDRT.
guards. The Ada code generated for this part of the model is seen in Listing 1.2

In this example, the release time of the current job, which is of type s, has been
assumed to be 0.

1 -- After completion of the last released job
2 delay until p;3;

3 if g1 then

4 next_state := u;

5 goto loop_start; -- Skipping the rest
6 end if;

7 delay until po;

8 if g then

9 next_state := v;

10 goto loop_start;

11 end if;

Listing 1. Implementing the branching structure shown in Fig. 1a

Synchronization. An edge with a receiving action can be fired only if the task
sending that action is ready to synchronize. If there are multiple such edges having
the required minimum inter-release time passed, the program needs to wait until
one of the synchronizations becomes doable. We use the selective accept structure
to implement this semantics. For example, consider the branch structure shown
in Fig. 1b, where p1, po2, and ps denote the minimum inter-release times, with
p1 < p2 < ps. Further, let g1, g2, and g3 denote the corresponding guards. The
code presented in Listing 2 implements this structure. As seen in Lines 1 to 9,
when p; expires, the program attempts to evaluate guard ¢;, and if satisfied, syn-
chronize on action A. If such a synchronization cannot be accomplished until po,
then the guard g is checked. If it is satisfied, the program takes the second edge
(Lines 10 to 14). Otherwise, synchronization on A is tried again until ps. If it is not
performed by that time, then both the first edge and the third edge are eligible,
which are tried using a selective accept block (Lines 20 to 27).

2 We use goto to avoid lengthy and redundant codes. The same logic can be easily
implemented without this statement.

From SDRT to Ada 145

1 delay until p;3;

2 select

3 when g1 =>

4 accept A;

5 next_state := u;
6 goto loop_start;
7 or

8 delay until po;
9 end select;

10 if g2 then

11 Task_2.B; -- Entry call to Task_2
12 next_state := v;

13 goto loop_start;

14 end if;

15 select

16 -- Repetition of the code appeared in Lines 3 to 6
17 or

18 delay until ps3;
19 end select;
20 select -- A selective accept

21 -- Repetition of the code appeared in Lines 3 to 6
22 or
3 when g3z =>
24 accept C;
2 next_state := w;
26 goto loop_start;
27 end select;

Listing 2. Ada implementation of the branching structure shown in Fig. 1b.

4.3 Implementation Algorithm for Branching Structures

Our method for generating Ada code for the semantics of a branching structure
is shown in Algorithm 1.

In Algorithm 1, the input F is the list of all outgoing edges from a certain
vertex, where E[i] denotes the i-th entry of E. Also, Fi].p and E[é].a denote the
associated minimum inter-release time and synchronization action, respectively.
For simplicity and without loss of generality, in the presented pseudo-code, it is
assumed that the latest job has been released at time zero.

The algorithm iterates over the set of edges E. If an edge is not marked
with a receiving action, then the decision for taking that edge will be made only
based on the guard through the code printed by Lines 7 to 9. Otherwise, the
edge is added to the set R. As a result, R contains all edges with a receiving
action whose minimum inter-release time has been passed. After examining the
edge, if R is empty, then the program needs to just wait until the minimum
inter-release time of the next edge (if any) is passed; see Lines 13 to 16. Besides,
if R is not empty, i.e., if there are pending receiving actions, the selective accept
structure of Ada is used (as shown in Algorithm 2, which is called in Line 18 of
Algorithm 1). In this case, the program waits for the first entry call to one of
the pending accept statements, until a new edge becomes eligible, if any.

146 M. Mohageqi et al.

Algorithm 1. Generating Ada code for a branching structure
Input: E: List of edges sorted by inter-release times ascendingly.

1: procedure BRANCHCODE(E)
n «— |E| > Number of entries in F
3 R—{} > Used to keep edges which have a receiving action
4 print(“delay until ” + E[l].p + “;”)

5: for i — 1 ton do
6

7

8

if E[i] is not labeled with a receiving action then
print(“if 7 + E[i].g + “ then 7)
print code for taking edge E[i]

9: print(“end if;”)

10: else

11: R — RU{E[i]}

12: end if

13: if R={} then

14: if i #n then

15: print(“delay until ” + Efi+ 1].p + “;7)
16: end if

17: else

18: SELECTIVEACCEPT(E, R, i, n);
19: end if

20: end for
21: end procedure

Algorithm 2. Generating the selective accept code

1: procedure SELECTIVEACCEPT(E, R, i, n)
2: print(“select)

3: print(“when ” + R[1].g + ¢ => 7)

4: print(“accept ” + R[l].a + “;7)

5: for k — 2 to |R| do

6: print(“or)

7 print(“when ” + R[k].g + “ => ")
8: print(“accept 7 + R[k].a + “;7)
9: end for

10: if i <n then

11: print(“or)

12: print(“delay until ” + E[i+1].p + “;7)
13: end if

14: print(“end select; ”)

15: end procedure

5 Implementation of a Task Graph

Each SDRT task graph is implemented as a task in Ada, running an infinite loop.
Inside the loop, the graph structure is implemented by keeping track of the latest
released job, and realizing the branching structures. We demonstrate it through
a sample task graph shown in Fig. 2. Minimum inter-release times are assumed

From SDRT to Ada

p7,C?

Fig. 2. A sample SDRT task T1.

147

as p;1 = 100ms, ps = 200ms, ps = 500 ms, and py = ps = pg = pr = 100 ms.
Further, let g1, g2, and g3 denote the guards on edges from s to u, v, and w,

respectively. The guard of the other edges is assumed to be always True.

The Ada code realizing this task model is seen in Listing 3. In the task body,
first, a type State is defined which includes a distinct value for each vertex
(Line 14). The variable Current_State is defined of this type to store the latest
released job of the task. Also, the variable Last _Release is defined to keep the
release time of the latest released job. Additionally, minimum inter-release times
are declared as constants (Lines 17 to 20). The functionality of each job type
is also implemented as a procedure (Lines 22 to 31). As seen, the task priority
is dynamically changed before and after execution of the job code. We will talk

about priority assignment shortly.

1| -- Context clauses and pragmas omitted
2| procedure Taskset_1 is

3 ---- Task declaration ----

1 task T1 is -- A singleton task

5 pragma Priority(System.Priority’Last);
6 entry A;

7 entry C;

8 end T1;

10 ---- task body ----

11 task body T1 is

12 (IS Variable declaration -------

3 T1l_prio : System.Any_Priority := 20; -- Task priority
1 type State is (s, v, w, u, x);

5 Current_State : State := s; -- The first job
16 Last_Release : Ada.Real_Time.Time;

17 pl : constant Time_Span := Milliseconds (100);
18 p2 : constant Time_Span := Milliseconds (200);
19 p3 : constant Time_Span := Milliseconds (500);
0 -- p4, p5, p6, p7 are defined similarly

1
2 -- Procedures for the job types of Ti:
3 procedure s_code is

24 begin

25 Ada.Dynamic_Priorities.Set_Priority(Tl_prio);

26 -- The code for job type s goes here

27 Ada.Dynamic_Priorities.Set_Priority(System.Priority’Last);
28 end s_code;

30 -- Procedures for v, u, w, and x are specified as well

148 M. Mohageqi et al.

39
10

NN NN NN NN -
A W N

0 ~

--------------- Task logic --------------
begin
Last_Release := Clock;
loop
<<T1_loop>>
case Current_State is
when s =>
s_code;
delay until Last_Release + pi;
if gl then
Current_State := u;
Last_Release := Last_Release + pil;
goto T1_loop;
end if;
delay until Last_Release + p2;
select
when g2 =>
accept A;
Last_Release := Clock;
Current_State := v;
goto T1l_loop;
or
delay until Last_Release + p3;
end select;
if g3 then
T2.B; -- Entry call to task T2
Last_Release := Clock;
Current_State := w;
goto T1_loop;
end if;
select
-- Repetition of the code in Lines 49 to 53
end select;
when u =>
u_code;
delay until Last_Release + p4;
if True then
Current_State := x;
Last_Release := Last_Release + p4;
goto T1_loop;
end if;
-- Similar code is generated for v and w
when x =>
x_code;
delay until Last_Release + p7;
select
when True =>
accept C;
Last_Release := Clock;
Current_State := s;
goto T1_loop;
end select;
end case;
end loop;
end T1;
begin
null;
end Taskset_1;

Listing 3. Ada implementation of the task shown in Fig. 2

In the task implementation, the task first initializes Last _Release by the

current time (in Line 35), considered as the release time of the first job. Inside
the loop, Current_State is examined, through a case statement, to find the

From SDRT to Ada 149

type of the latest released job. For each job type, Algorithm 1 is employed to
implement the respective behavior. For instance, when the job type is s, a branch
with three edges must be treated. After the minimum inter-release time p; is
passed, if g1 is True, w is selected as the next job. In addition, the current time,
which would be equal to Last_Release plus pi, is assigned as its release time
(see Lines 41 to 44). If gy is not satisfied, the next edge must be tried. For this,
after waiting until p, is passed, a select statement is executed. If go is evaluated
to True and the rendezvous on entry A can be done before p3 is passed, the next
job will be of type v (Line 52). In this case, the release time of the job is not
calculated by adding p»s to the previous release time. Instead, it is obtained by
reading the current clock value (Line 51). The reason is that, in such a case,
the job is released when the synchronization is done, which is determined by the
other task involving in the rendezvous. The respective code for other situations
is similarly generated, as seen in Lines 57 to 85.

Priority Assignment: An important step in realizing each task is determining
the respective priority. For this, we note that, in our implementation, a task
consists of two different types of code: codes for controlling the release timings
of the jobs, and codes implementing the actual functionality of the jobs as defined
by the application. An essential requirement is that the release semantics of a
task must not be influenced by the execution of the jobs from other tasks. To
respect this, we opt to run the logic controlling release instants of the jobs in the
highest priority level. For this purpose, the initial priority of all tasks is set to
the highest priority level; see Line 5 in of Listing 3. The priority of a task is then
adjusted to its actual (user-defined) priority whenever it wants to execute the
functionality of a job. One such dynamic priority adjustment is seen in Lines 25
and 27.

6 Extensions

This section extends our approach to cover a broadcast semantics. Additionally,
we describe how an end-to-end inter-release separation time can be modeled by
SDRT tasks.

6.1 Broadcasting

Up to now, we have assumed that a synchronization involves no more than two
tasks. One can extend the model to include a broadcast semantics as well. In a
broadcast synchronization, there may be several tasks with the same receiving
action, while there is one task with the corresponding sending action. Whenever
the task with the sending action wants to take the respective edge, it will try
all the relevant tasks, but in a non-blocking way. For instance, consider a broad-
casting on an action A, where two tasks Taskl and Task2 contain the respective
receiving action. Then, the task associated with the sending action will execute
the following code:

150 M. Mohageqi et al.

select

Taskl.A;
else

null;
end select;
select

Task2.4;
else

null;
end select;

The else part lets the task continue its progress with no blocking if the other
task is not accepting the entry at the moment.

6.2 End-to-End Inter-Release Times

Basically, in an SDRT task, the minimum inter-release time constraint can be
specified only between two consecutive jobs. However, sometimes it is needed to
respect a minimum separation time between the release of two jobs which are not
necessarily released successively. As an example, in the task shown in Fig. 2, we
may need to add a minimum separation time constraint between any job of type
u and any subsequent job of type s. Such a constraint is called an end-to-end
minimum inter-release separation time. In [12], a method has been proposed
to transform a DRT graph with such a constraint to an ordinary DRT task.
However, the obtained DRT may contain pseudo-polynomially many number of
vertices compared to the original one. Instead, one can use the synchronization
mechanism of SDRT to allow putting this constraint with less effort (although
the computational complexity of the respective analyses may ultimately be the
same).

For instance, in the mentioned example, to preserve a minimum separation
time of pg between the jobs of type w and subsequent jobs of type s, we can

pg,F!

O,

0, F? p7, C?

(a) Task in Fig. 2 augmented with two vertices. (b) The auxiliary task.

Fig. 3. Modifying the task in Fig. 2 to respect an end to end inter-release time separa-
tion constraint.

From SDRT to Ada 151

add an auxiliary task with two vertices as seen in Fig. 3b. Also, we augment the
DRT task in Fig. 2 with two vertices, namely 5 and 4, seen in Fig. 3a. Whenever
a job of type w is released, the task sends a signal, through the action E!, to the
auxiliary task. On the other side, in order for a job of type s to be released, the
task synchronizes on the signal F. According to Fig.3b, this can be done not
earlier than pg time units after the release of w’s instance. In this way, a job of
type s may be released only if the intended delay after the last release of u is
observed.

7 Conclusion and Future Work

In this paper we defined an operational semantics for the SDRT task model
and provided a method for generating Ada code for this semantics. The method
has been implemented in a graphical tool.? Also, we discussed extensions of the
approach to cover a broadcast synchronization, as well as global and end-to-end
inter-release time constraints.

As a future work, we want to formally prove that the provided implementa-
tion conforms to the model, i.e., it does not generate a behavior not specified by
the SDRT semantics (when neglecting scheduling overheads). Another direction
of extending this work is to tackle the model non-determinism. The semantics
provided in this work does not specify a deterministic choice in the release of new
jobs when more than one are possible at the same time; the actual behavior of
the implemented program depends on the Ada run-time system. But, it may be
possible to assign a priority to the transitions, and then, utilizing existing mech-
anisms in Ada, such as pragma Queuing Policy, to preserve orderings enforced
by such priorities.

References

1. Abdullah., J., Mohaqeqi, M., Yi, W.: Synthesis of Ada code from graph-based task
models. In: 32nd Symposium on Applied Computing, pp. 14661471 (2017)

2. Amnell, T., Fersman, E., Pettersson, P., Yi, W., Sun, H.: Code synthesis for timed
automata. Nordic J. Comput. 9(4), 269-300 (2002)

3. Amnell, T., Fersman, E., Mokrushin, P., Pettersson, Yi, W.: TIMES - a tool for
modelling and implementation of embedded systems. In: 8th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 460-464 (2002)

4. Sanjoy, K.B.: The non-cyclic recurring real-time task model. In: Real-Time Systems
Symposium (RTSS), pp. 173-182 (2010)

5. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. J. Inf. Comput. 205(8), 1149-1172 (2007)

6. Kim, B., Feng, L., Sokolsky, O., Lee, I.: Platform-specific code generation from
platform-independent timed models. In: Real-Time Systems Symposium (RTSS),
pp. 75-86 (2015)

3 The tool is not publicly released at the moment of writing this work. A primary
version is available at http://user.it.uu.se/~mormo492/TimesPro.zip.

http://user.it.uu.se/~mormo492/TimesPro.zip

152

10.

11.

12.

M. Mohageqi et al.

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46-61 (1973)

McCormick, J.W., Singhoff, F., Hugues, J.: Building Parallel, Embedded, and Real-
Time Applications with Ada. Cambridge University Press, Cambridge (2011)
Mohaqgeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of syn-
chronous digraph real-time tasks. In: 28th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 176-186 (2016)

Real, J., Sédez, S., Crespo, A.: Combining time-triggered plans with priority sched-
uled task sets. In: 21st Ada-Europe International Conference on Reliable Software
Technologies, pp. 195-212 (2016)

Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
17th IEEE Real-Time and Embedded Technology and Applications Symposium,
pp. 71-80 (2011)

Stigge, M.: Real-time workload models: expressiveness vs. analysis efficiency. Ph.D.
thesis, Uppsala University (2014)

	An Executable Semantics for Synchronous Task Graphs: From SDRT to Ada
	1 Introduction
	2 Related Work
	3 Real-Time Task Graphs with Synchronization
	3.1 Notations
	3.2 Syntax
	3.3 Operational Semantics

	4 Code Generation for Branching Structures
	4.1 Assumptions
	4.2 Realizing Basic Blocks
	4.3 Implementation Algorithm for Branching Structures

	5 Implementation of a Task Graph
	6 Extensions
	6.1 Broadcasting
	6.2 End-to-End Inter-Release Times

	7 Conclusion and Future Work
	References

