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In the formal analysis of real-time systems, modeling of branching codes and modeling of intratask paral-
lelism structures are two of the most important research topics. These two real-time properties are combined,
resulting in the fork-join real-time task (FJRT) model, which extends the digraph-based task model with
forking and joining semantics. We prove that the EDF schedulability problem on a preemptive uniprocessor
for the FJRT model is coNP-hard in the strong sense, even if the utilization of the task system is bounded by
a constant strictly less than 1. Then, we show that the problem becomes tractable with some slight structural
restrictions on parallel sections, for which we propose an exact schedulability test with pseudo-polynomial
time complexity. Our results thus establish a borderline between the tractable and intractable FJRT models.
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1. INTRODUCTION

A number of modeling formalisms have been developed to model and analyze real-time
systems. Liu and Layland [1973] modeled a real-time system as a finite collection of in-
dependent recurrent tasks, each of which periodically generates an infinite sequence of
jobs. This seminal work developed a polynomial-time feasibility test on uniprocessors.
This model was then generalized in Ka and Mok [1983] to count sporadic tasks for which
relative deadlines are different from release periods. The multi-frame (MF) model
[Mok and Chen 1997] and generalized multi-frame (GMF) model [Baruah et al. 1999]
further generalize periodic and sporadic tasks. MF and GMF models define several dif-
ferent types of jobs that may be generated by the same task and are used for modeling
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recurrent processes composed of straight-line code. Recent developments focus on
nonlinear structures of the programming code. Specifically, modeling of the branch
(conditional) property and modeling of the intratask parallelism (Fork-join) structure
have become two of the most interesting research topics in the real-time community.

Conditional Real-Time Task Models. Several graph-based task models were pro-
posed to formulate the conditional code and offer a high degree of expressiveness
while maintaining pseudo-polynomial complexity. In the recurring real-time task (RRT)
[Baruah 2003] and noncyclic RRT [Baruah 2010a] models, each task is characterized
by a directed acyclic graph (DAG). Recurrent behavior is modeled by adding back edges
from sink vertices to the unique source vertex. These models cannot express local loop-
ing or task mode switches. The digraph real-time task (DRT) [Stigge et al. 2011] models
each task by an arbitrary digraph, for which the feasibility test is still tractable. The
DRT model is considered the most general tractable conditional task model currently
known, as it generalizes earlier tractable conditional task models.

Fork-Join Task Models. The trend of deploying real-time applications on parallel
processing platforms poses new challenges to the real-time scheduling theory, which
traditionally focuses on sequential tasks. There has been some recent work on the
real-time scheduling of parallel tasks. In synchronous models, each task consists of
a sequence of segments with synchronization points at the end of each segment. In
addition, each segment of a task contains threads of execution of equal length. Several
theoretical results have been provided for scheduling the synchronous parallel tasks
on multiprocessors [Lakshmanan et al. 2010; Saifullah et al. 2011; Ferry et al. 2013;
Chwa et al. 2013; Axer et al. 2013].

In this article, we aim to incorporate the conditional real-time model with the fork-
join task model and investigate a more general task model, namely, the fork-join real-
time task (FJRT) model, which allows parallel job compositions (fork-join structure)
within digraph-based tasks. At the time of writing this article, several graph-based
parallel task models have already been studied. Recently, Ejsing-Duun et al. [2013]
extended the DRT model to a parallel version, called the concurrent real-time task
(CRT) model. They defined the CRT model inductively and restricted it to models
with well-formed structures (the formal definition is introduced in Section 2.2). For
the noncyclic and well-formed CRT model, Ejsing-Duun et al. [2013] noted that the
uniprocessor feasibility can be determined in pseudo-polynomial time. Stigge et al.
[2013] introduced a more flexibly defined model than the CRT model, which is also
an extension of the DRT model combined with fork-join structures and is called the
fork-join real-time task (FJRT) model. Stigge et al. [2013] considered whether there
exists an exact EDF schedulability test for the FJRT model, defined on uniprocessor
systems with a pseudo-polynomial bound of its runtime, and left it as an open problem:

CONJECTURE 1.1 [STIGGE ET AL. 2013]. For an FJRT task system T with a utilization
not exceeding a constant c (c < 1), feasibility can be decided in pseudo-polynomial time.

The open problem listed in this conjecture will be closed in this article. We first
investigate the expressiveness of the FJRT model and claim that there exist some
FJRT models that can produce job release scenarios that cannot be produced by any
CRT model. We then separately study the FJRT model by considering whether it can
be expressed by a CRT model. For the general FJRT model, which exceeds the CRT
model’s expressiveness, we prove the feasibility problem to be strongly coNP-hard
even if the utilization is bounded by a constant strictly less than 1. We also consider
the FJRT model with some slight structural restrictions on parallel sections, which
can be viewed as the equivalence of the general CRT model that does not need to be
well formed. For this restricted FJRT model, we propose a pseudo-polynomial algo-
rithm for testing the feasibility. This article thus extends the theoretical results for the
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well-formed CRT models in Ejsing-Duun et al. [2013] to those that are not well formed,
and establishes a borderline between the intractable and tractable FJRT models.

1.1. Related Work

There are two main branches in the schedulability research: uniprocessor systems and
multiprocessor systems. Liu and Layland [1973] investigated the periodic task model
for the feasibility analysis of uniprocessor real-time systems. They formulated a nec-
essary and sufficient criterion for uniprocessor feasibility and a utilization bound that
required knowledge of execution times and unique periods of each task. As previously
mentioned, this work was later extended to the sporadic task model [Ka and Mok
1983; Baruah et al. 1990]. For its analysis, Baruah et al. [1990] introduced a concept
that was later called the demand bound function (DBF), and derived a closed-form
expression to determine DBF(t) for a given time interval length t. Moreover, Baruah
et al. [1990] also proposed a pseudo-polynomial bound T of time-interval lengths by
using the concept of the utilization bound. The feasibility problem then can be solved
by iteratively calculating DBF(t) for t < T . The concept of the demand bound func-
tion and the utilization was adapted to the GMF model [Baruah et al. 1999] and the
algorithm for DBF computing is not as simple as it is for the sporadic task model.
Baruah et al. [1999] presented a polynomial-time dynamic programming algorithm to
compute DBF by using a skillful data structure that was called the “demand pair” in
later work [Stigge et al. 2011]. This demand-pair structure was further applicable to
the DAG- and DRT-based models [Baruah 2010b; Stigge et al. 2011]; the complexity of
the demand computation algorithm increases from linear time to pseudo-polynomial.
Ejsing-Duun et al. [2013] extended the DRT model to the CRT model and argued that
the pseudo-polynomial feasibility test for the DRT model can also be applied to the
well-formed CRT model, in which each job is strictly restricted to being dependent on
at most one other job in the system. For the parallel tasks without this restriction, this
article presents a pseudo-polynomial feasibility test.

Recently, a few analytic methods have been proposed for schedulability of parallel
tasks on multiprocessor platforms. These methods broadly fall into two categories: di-
rect and indirect. Indirect analysis methods [Lakshmanan et al. 2010; Saifullah et al.
2011; Nelissen et al. 2012; Ferry et al. 2013] share a principle of task decomposition.
Each single parallel task is transformed into multiple independent sequential subtasks
such that each individual subtask is assigned its own intermediate deadline. Schedu-
lability analysis is then performed over intermediate deadlines after task decomposi-
tion at the expense of potentially incurring some nontrivial decomposition overheads.
On the other hand, direct analysis methods [Kato and Ishikawa 2009; Baruah et al.
2012; Saifullah et al. 2012] performed analysis without task decomposition. Kato and
Ishikawa [2009] considered only a certain type of intratask thread-level parallelism
(i.e., gang scheduling), which allowed a fixed degree of parallelism: all threads run or
none does. Baruah et al. [2012] and Saifullah et al. [2012] considered a more general
DAG-based parallel task model.

Because our focus is strictly on uniprocessor scheduling, we will not consider multi-
processors for the remainder of this article. It should also be noted that, although the
work of this article is conducted with a uniprocessor setting, the investigated feasibility
analysis represents the fundamental problem of calculating the workload of the FJRT
model. This is also necessary for any more complex problem settings, for example, in
the scheduling of FJRT tasks on multiprocessor platforms.

1.2. Structure

This article is organized as follows. Section 2 presents the FJRT model and investigates
its expressiveness. Section 3 presents a reduction from the 3SAT problem to prove that
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the feasibility problem for the FJRT model is coNP-hard in the strong sense even if
the utilization is bounded by a constant strictly less than 1. Section 4 focuses on a
tractable FJRT model and analyzes its feasibility. Section 5 presents a case study of
an Intelligent Traffic Control System (ITCS) to illustrate the usage of the FJRT model.
Sections 6 and 7 offer discussions and conclusions, respectively.

2. TASK MODEL AND RELATIVE NOTATIONS

The task model is defined as first proposed in Stigge et al. [2013]. An FJRT task system
T = {τ1, . . . , τN} consists of N independent tasks. A task τ is represented by a directed
hypergraph D = (Vτ , Aτ ) with vertex and arc labels. A vertex vi ∈ Vτ represents the
type of jobs that τ can release and is labeled with the ordered pair [e(vi), d(vi)], denoting
the worst-case execution time e(vi) and the relative deadline d(vi). The hyperarcs of D
represent the order in which jobs generated by τ are released. A hyperarc (U, V ) is a
sequence arc, with U and V being singleton sets of vertices, a fork arc with U being
a singleton set, or a join arc with V being a singleton set. In all cases, the arcs are
labeled with a nonnegative parameter p(U, V ) denoting the minimum job interrelease
separation time. Note that this contains the DRT model as a special case if all hyperarcs
are sequence arcs.

As an extension of the DRT model, the FJRT task system releases independent jobs,
allowing concepts such as the utilization U (T ) and the demand bound function to be
defined just as before (in, e.g., Stigge et al. [2011]), which are formally given next.

Definition 2.1 (Demand Bound Function). For an FJRT task τ and an interval length
t, DBFτ (t) denotes the maximum cumulative execution requirement of jobs of τ with
both the release time and deadline within an interval of length t over all job sequences
generated by τ . Furthermore, for a task set T ,

DBF(t) :=
∑
τ∈T

DBFτ (t).

Definition 2.2 (Utilization). For an FJRT task τ and a task set T , we define their
utilizations:

U (τ ) := lim
t→∞

DBFτ (t)
t

; U (T ) :=
∑
τ∈T

U (τ ).

Semantics: A task executes by following a path through the hypergraph, trigger-
ing releases of associated jobs each time a vertex is visited. Whenever a fork arc
({u}, {v1, . . . , vm}) is taken, m independent paths starting from v1 to vm, respectively, will
be followed in parallel until joined by a corresponding join arc. In order for a join arc
({u1, . . . , un}, {v}) to be taken, all jobs associated with vertices u1, . . . , un must have been
released and sufficient time must have passed to satisfy the join arc label. Forking
can be nested, that is, the m paths can lead to further fork arcs before being joined.
Additionally, joining can also be nested, that is, the m parallel paths can be partially
joined before they are totally joined together.

2.1. Structural Restrictions on the FJRT Model

In this article, we assume that the meaningful FJRT model has to satisfy the structural
restriction that each fork vertex (say vi) must match with a corresponding join vertex
(say, v j) such that once vi has been visited, it cannot be revisited unless all paths that
have been forked from vi are eventually joined together by the matching join vertex
v j . Otherwise, the FJRT task system might be unfeasible because there always exists
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Fig. 1. A fork arc cannot be joined by a matching
join.

Fig. 2. The modified FJRT from Example 2.3.

an unbounded workload increase caused by an unmatched fork. To illustrate this, we
construct a nonrestricted models, as follows.

Example 2.3. Figure 1 shows an FJRT task τ defined on the hypergraph D = (V, A).
There are five vertices in V ; the ordered pair associated with each vertex is [1, T ]. The
arc set A consists of a fork arc, (v1, {v2, v3, v4}), a join arc, ({v3, v4}, v5), and two sequence
arcs, (v2, v3) and (v5, v1). The corresponding period of each (hyper) arc is T .

As shown in Figure 1, three parallel paths can be forked from v1: two visiting v3 and
the other visiting v4. These parallel paths must be eventually joined by v5 because v5
is the only join vertex in D. It is easy to show that the two paths visiting v3 might
not be joined simultaneously. In other words, we can choose one of the paths visiting
v3, together with the path visiting v4, to be joined by v5, and leave the other path
waiting at v3. Without loss of generality, we assume that the path chosen to be joined
by v5 is (v1, v3) and the path that waits to release jobs is (v1, v2, v3). Accordingly, the
two paths forked from v1, (v1, v3) and (v1, v4), are joined into v5 and further re-visit the
vertex v1. By repeating these steps, we can travel along the loop path (v1, {v3||v4}, v5, v1)
periodically, where {v3||v4} represents the parallel composition in the loop. Note that
one more path (v1, v2, v3) is generated each time the loop path is traversed. If all the
new generated paths (v1, v2, v3) do not release any jobs and continue to wait at v3 until
the loop path is traversed T times, the number of jobs waiting to be released at v3 will
exceed T + 1. We will release these T + 1 jobs simultaneously. Because these jobs have
a common deadline T , it is easy to show that there must exist at least one job that will
miss the deadline. Thus, the task τ is unfeasible.

Example 2.3 would be restricted if the arcs entering into v3 were join arcs, as shown
in Figure 2. It is easy to see that each path forked from one vertex (e.g., v1 in Figure 2)
will not revisit v1 unless it is joined together with all other paths that are forked from
the same vertex. From this, we conclude that there is a sufficient condition for checking
the unfeasible task system, provided next.

PROPOSITION 2.4. The task is unfeasible if a fork vertex defined on the corresponding
hypergraph can be visited before all paths forked from that vertex are eventually joined
together.

In the rest of this article, we consider only meaningful task systems, in which the
counterfactual condition in Proposition 2.4 is excluded.

2.2. Expressiveness of the FJRT Model

Ejsing-Duun et al. [2013] recently proposed the CRT model, which can be viewed as
the most related work to this article. In this section, we consider the CRT model to
compare its expressiveness to that of our FJRT model and assert that any CRT task
can be converted into an FJRT task. However, there exist some FJRT models that
cannot be expressed by the CRT models. To show this, we first introduce the formal
definition of the CRT model, then transform each atomic grammar rule of the CRT
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Fig. 3. An example CRT task τ . Fig. 4. An example FJRT task that cannot be ex-
pressed by a CRT model.

model into a regular substructure of the hypergraph, which can subsequently be used
to construct an equivalent FJRT model for the original CRT model. Finally, we present
the counterexample of the parallel task that can be expressed by the FJRT model but
cannot be expressed by the CRT model.

Definition 2.5 (Concurrent Real-Time Task System [Ejsing-Duun et al. 2013]). A
Concurrent Real-Time Task System (CRT) S is a tuple S = (τ, J, e, d), where

—J is a finite set of jobs,
—e: J → N is a mapping from jobs to worst-case execution times,
—d: J → N is a mapping from jobs to relative deadlines, and
—τ is a configuration defined by the following grammar.

—Configuration: τ ::= T | T ‖τ
—Task: T ::= j | T1〈x〉T2 | S1‖S2 | T1 + T2 | T ω

—Subtask: S ::= j | S1〈x〉S2 | S1‖S2 | S1 + S2

Here, j ∈ J is a job and x ∈ N, T1〈x〉T2 is the sequential composition of tasks T1 and
T2, with interrelease time x, T1 + T2 is the choice between tasks T1 and T2, S1‖S2 is
the parallel composition of subtasks S1 and S2, and T ω is one or more iterations of T .

In contrast to the definition of our FJRT model, the CRT model is inductively defined
by some regular grammar. The grammar of the configuration defines the task system,
which can be viewed as a composition of arbitrarily many independent tasks running in
parallel (intertask parallelism). Moreover, a nondeterministic choice between different
execution paths or subtasks running in parallel can be expressed by the grammar of
tasks and subtasks. Note that the subtasks defined in the CRT are restricted to not
include any cycles. This article considers only acyclic parallel subtasks in the FJRT
model.

Example 2.6. Figure 3 represents the CRT task τ = ( j1〈30〉(( j2〈40〉 j3)‖( j4 + j5)))ω,
where e( j1) = 1, d( j1) = 20; e( j2) = 4, d( j2) = 25; e( j3) = 6, d( j3) = 25; e( j4) =
2, d( j4) = 25; and e( j5) = 4, d( j5) = 25. As shown in Figure 3, the vertices in the
graph represent jobs, each labeled with an execution time and a deadline. The arcs in
the graph represent dependencies between jobs and are labeled with their minimum
interrelease time.

The combination of Theorem 2.7 and Example 2.8 proves that our digraph-based
FJRT model is more expressive than the CRT models.

THEOREM 2.7. The FJRT model is at least as expressive as the CRT model.

PROOF. We prove by induction that each grammar rule listed in Definition 2.5 can
be fully expressed by a substructure of the hypergraph. We do this by first introducing
the prefix and suffix operations for tasks, as follows.
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—For each job j ∈ J, we let prefix( j) = suffix( j) = j.
—For each T := p1〈x〉T ′, where p1 is the first job released in T , we let prefix(T ) = p1;

similarly, for each T := T ′〈x〉pm, suffix(T ) = pm, where pm is the last job of T .
—For two arbitrary tasks T1 and T2, to define the prefix and suffix of T1 + T2, we first

define two auxiliary virtual jobs v and u with an execution time of 0. The original
task T1 + T2 is then equivalent to v〈0〉(T1 + T2)〈0〉u. We let prefix(T1 + T2) = v and
suffix(T1 + T2) = u.

—For two arbitrary subtasks S1 and S2, we focus on the prefix and suffix of S1‖S2. To
this end, we also define two auxiliary virtual jobs v and u with an execution time of 0.
The original subtask S1‖S2 is equivalent to v〈0〉(S1‖S2)〈0〉u. We let prefix(S1‖S2) = v
and suffix(S1‖S2) = u.

—prefix(T ω) = prefix(T ), and suffix(T ω) = suffix(T ).

We now propose an approach for expressing each atomic grammar rule by the sub-
structure of the hypergraph.

—For each j ∈ J, we define a corresponding vertex v j ;
—For two arbitrary T1 and T2, let the subgraphs associated with T1 and T2 be D(T1)

and D(T2), respectively.
—To construct the subgraph of T1〈x〉T2, we combine D(T1) and D(T2) by connecting

suffix(T1) to prefix(T2). The additional arc from suffix(T1) to prefix(T2) is labeled
with an interrelease time x.

—The subgraph of T1 + T2 can be constructed by respectively adding arcs from
prefix(T1 + T2) to prefix(T1) and prefix(T2) and arcs from suffix(T1) and suffix(T2)
to suffix(T1 + T2). The additional arcs are labeled with interrelease times of 0.

—Similarly, the subgraph of S1‖S2 can be obtained by adding the fork arc
(prefix(S1‖S2),{ prefix(S1), prefix(S2)}) and the join arc ({ suffix(S1), suffix(S2)},
suffix(S1‖S2)). The additional hyperarcs are labeled with interrelease times of 0.

—We can construct the subgraph of T ωw by adding the arc from suffix(T ω) to prefix(T ω).

In summary, each atomic grammar rule can be fully expressed by a subgraph. Thereby,
all the configurations induced by the grammar can be expressed by a hypergraph. That
is, the task system modeled as a CRT can also be modeled as an FJRT, which completes
the proof.

We also note that there exist some FJRT models that cannot be expressed by CRTs.
This can be demonstrated through the following example, shown as a graph in Figure 4.

Example 2.8. The hypergraph D = (V, A) in Figure 4 consists of ten vertices, three
fork arcs, and three join arcs, defined as follows.

—Set of vertices: V = {v1, . . . , v10};
—Fork arcs: (v1, {v2, v3}), (v2, {v4, v5}), (v3, {v6, v7});
—Join arcs: ({v4, v6}, v8), ({v5, v7}, v9), ({v8, v9}, v10).

The parallel task defined in this example cannot be modeled as a CRT because
some parallel paths forked from different vertices need to be joined into one vertex.
For example, the paths (v2, v4) and (v3, v6) forked, respectively, from vertices v2 and v3
should be joined into the vertex v8.

We also give some tractable FJRT models. Note that only some well-formed CRTs,
in which any job in J occurs in the configuration at most once, have been shown to be
tractable in Ejsing-Duun et al. [2013]. In this article, we focus on the parallel tasks
that do not need to be well formed. Two examples of these nontrivial parallel tasks are
shown here.
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Fig. 5. Two example FJRT tasks that can be modeled by the CRTs without the well-formed structure.

Example 2.9. The hypergraph associated with the task τ1 is given in Figure 5(a),
and the hyperarcs are defined here.

—Fork arc: (v1, {v2, v3});
—Sequential arcs: (v2, v4), (v3, v4), (v4, v5), (v4, v6);
—Join arc: ({v5, v6}, v7).

Here, all the hyperarcs are labeled with interrelease times of x, and each vertex v j
corresponding to the job j is labeled with [1, x]( j = 1, . . . , 7). This FJRT task can be
expressed by the CRT configuration τ1 = 1〈x〉((2〈x〉4〈x〉(5 + 6))‖(3〈x〉4〈x〉(5 + 6)))〈x〉7.

Example 2.10. The FJRT task τ2 can be expressed by the hyper-graph in Figure 5(b),
which consists of five vertices, one fork arc, (v1, {v2, v3}), and two join arcs, ({v2, v3}, v4)
and ({v2, v3}, v5). Here, all the hyper-arcs are labeled with inter-release times of x,
and all the vertices are labeled with [1, x]. The corresponding CRT model for τ2 is
1〈x〉(((2‖3)〈x〉4) + ((2‖3)〈x〉5)).

It is easy to show that both examples can be expressed by CRTs but neither is well
formed. In Section 4, we show that the feasibility problem for the CRT that is not well
formed can be solved in pseudo-polynomial time.

3. HARDNESS OF ANALYSIS OF THE FJRT MODEL

To show the strong coNP-hardness of the feasibility problem for the FJRT model, we
provide a reduction from the 3SAT problem that is known to be NP-Complete in the
strong sense [Cook 1971]. We first introduce the 3SAT problem.

Let X = {x1, . . . , xm} be a finite set of variables taking values in the set {true, false}.
Let C be a collection of disjunction clauses on the variables of X such that ∀Cj ∈ C,
Cj = ∨3

k=1c jk, where each c jk is a distinct literal, that is, either a variable or the
negation of a variable. Without loss of generality, we assume that no clause contains
both a variable and its negation and |C| = n. Let E be a conjunction of all clauses in C
(i.e., E = C1 ∧ C2 ∧ · · · ∧ Cn). The problem of deciding whether there exists at least one
assignment of values to each variable in X such that E is satisfiable is called the 3SAT
problem.

The intuitive idea of our construction is as follows. Given an instance E of 3SAT, we
construct a task set T with the following properties:

(1) A witness of the falsity of the condition DBF(t) ≤ t for an unfeasible task T will
give a satisfying assignment for E, and vice versa.

(2) The number of vertices in the task of T and all involved values need to be polyno-
mially bounded in the size of E.

(3) Given a constant c < 1, we must be able to construct T such that U (T ) ≤ c.

The second requirement is necessary to establish the coNP-hardness in the strong
sense. The last requirement is also necessary because we usually restrict ourselves to
a class of task sets with a utilization bounded by a constant c < 1. We want to show
that, for any choice of c, the problem stays strongly coNP-hard.
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Fig. 6. Subgraphs are constructed to cooperate with the variable xi and its negation.

A more formal construction is introduced as follows. We first define c as a constant
strictly less than 1 and let p be a constant integer greater than 1. We now define a
fixed time interval length T such that T mod p = 0. Furthermore, we also define a
parameter u as follows.

u = c′ + ε
T

n
. (1)

Here, n is the number of conjunctions of clauses in C, and

c′ + ε

T
≤ c (2)

ε = min
{

T
nT − 1

c′, T (c − c′),
T

T + 1
(1 − c′)

}
. (3)

For each variable xi ∈ X (or its corresponding negation x̄i), we construct a subgraph
gxi (or gx̄i ), as shown in Figure 6. There is a starting vertex va in gxi (or gx̄i ). Starting
from va, we traverse vb and enter into vc, corresponding to an assignment of true to xi
(or x̄i), or directly enter into vc without passing through the vertex vb, corresponding
to an assignment of false to xi (or x̄i). Moreover, the parameters pxi and px̄i used in
graphs gxi and gx̄i are defined as follows. Note that pxi is a nonnegative integer because
T mod p = 0.

—pxi = T mod p − 1;
—px̄i = T mod p.

As shown in Figure 6(a), in the graph gxi , the vertex vb is labeled with an ordered
pair [u, 1], and the associated arc from vb to vc is labeled with a period of 1. The vertex
vxi is labeled with [upxi , pxi ], and the vertex vd is labeled with [up, p]. Moreover, the
arc from vxi to vd is associated with a period pxi , and the self-loop arc of vd is labeled
with a period p. Without special definition, the remaining vertices and arcs in gxi are
all labeled with an ordered pair [0, 0] and a period of 0, respectively. Additionally, the
subgraph gx̄i corresponding to x̄i has the same topology as gxi , as shown in Figure 6(b).
The only difference for gx̄i is that the vertex vx̄i is labeled with [upx̄i , px̄i ] and the arc
(vx̄i , vd) is labeled with px̄i .

Now, consider a clause c j1 ∨ c j2 ∨ c j3; we construct three subgraphs gcjk, 1 ≤ k ≤ 3,
one corresponding to each of the three literals in the clause. Denoting the maximum
demand requirement of the job sequence generated from the subgraph gcjk for a time
interval T as DBFc jk(T ), the relationship between the literal c jk and its corresponding
subgraph gcjk is given in the following lemma.
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LEMMA 3.1. For a given time interval length T , DBFcjk(T ) = uT if c jk = true.
Otherwise, DBFcjk(T ) ≤ uT − u.

PROOF. For each literal c jk (k = 1, 2, 3), we will separately consider two possibilities:
that c jk corresponds to either a variable or the negation of a variable.

(1) If c jk is a variable, without loss of generality, we assume that c jk = xi. Then, the
corresponding subgraph gcjk is the same as gxi , as shown in Figure 6(a). Additionally,
we consider that xi = true, which makes c jk true. In this case, the corresponding
path in gcjk is π = (va, vb, vc, vxi , vd, vd, . . .). Accordingly, for a given T , the maximum
demand of π can be calculated as:

DBFc jk(T ) = u + u(T mod p − 1) + up
⌊

T − (T mod p − 1) − 1
p

⌋

= u(T mod p) + up
⌊

T − T mod p
p

⌋

= u(T mod p) + uT − u(T mod p) = uT .

In contrast, when xi = false, c jk = false. Then, the corresponding path is π =
(va, vc, vxi , vd, vd, . . .), and the demand of π can be bounded by:

DBFc jk(T ) = u(T mod p − 1) + up
⌊

T − (T mod p − 1)
p

⌋

= u(T mod p − 1) + up
⌊

T − T mod p + 1
p

⌋

= u(T mod p − 1) + up
(

T − T mod p
p

)
+ up

⌊
1
p

⌋

= u(T mod p) − u + uT − u(T mod p) (∵ p ≥ 2)
= uT − u.

(2) Suppose that c jk is the negation of the variable xi, that is, c jk = x̄i; then, the corre-
sponding subgraph gcjk is equal to gx̄i , as shown in Figure 6(b). If xi = true, then c jk =
false. In this case, the corresponding path in gcjk is π = (va, vb, vc, vx̄i , vd, vd, . . .), and
the associated demand can be bounded by:

DBFc jk(T ) = u + u(T mod p) + up
⌊

T − (T mod p) − 1
p

⌋

= u + u(T mod p) + up
(

T − T mod p
p

− 1
)

= u + u(T mod p) + uT − u(T mod p) − up
= uT − up + u ≤ uT − u. (∵ p ≥ 2).

Otherwise, c jk = true if xi = false. The corresponding path in gcjk is π =
(va, vc, vx̄i , vd, vd, . . .), and the associated demand can be calculated as follows.
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Fig. 7. The subgraph Gj that corresponds to the clause C j contains three conditional subgraphs.

DBFc jk(T ) = u(T mod p) + up
⌊

T − T mod p
p

⌋

= u(T mod p) + up
(

T − T mod p
p

)

= u(T mod p) + uT − u(T mod p) = uT .

In summary, for a given T , if c jk = true, then DBFc jk(T ) = uT ; otherwise, DBFc jk(T ) ≤
uT − u.

For each clause Cj ∈ C, the corresponding structure Gj is given in Figure 7. The
starting vertex v j splits into three parallel paths, each of which starts at the vertex
rk (1 ≤ k ≤ 3) and contains two conditional branches. The first is composed of the
subgraph gcjk. The second consists of one fork vertex, fk, which is associated with a
fork arc connecting the other two subgraphs, that is, gcjk and gcjk (we have k = 2, k = 3
if k = 1). Moreover, the vertex va in each subgraph gcjk has a join arc ({rk, fk, fk}, va).
All additional vertices and arcs in Gj are labeled with zero parameters. This structure
ensures that the maximum path demand DBF j(T ) of Gj can be bounded by uT for a
given time interval length T , as shown in the following lemma.

LEMMA 3.2. For a given time interval T and a graph Gj, DBFj(T ) = uT if at least
one literal in the corresponding clause Cj is true. Otherwise, DBFj(T ) ≤ uT − u.

PROOF. We first show that there is at most one subgraph that should be traversed in
C j . Otherwise, without loss of generality, suppose that gcj1 and gcj2 are both chosen to
be traversed. For the subgraph gcj1 , we observe that there are three join arcs entering
into the vertex va, one of which is from the branch (r2, f2). Obviously, the conditional
structure associated with r2 precludes entrance into the vertex va of gcj2 if the arc (r2, f2)
is passed through. That is, the subgraph gcj2 will not be chosen because gcj1 has been
chosen for traversal, which contradicts the assumption. Thus, we can choose only one
subgraph to be traversed.

According to Lemma 3.1, if there is a literal, denoted as c jk, that is true, Cj = true.
We can traverse the corresponding subgraph gcjk and obtain a path demand uT as the
maximum path demand of Gj . Otherwise, all three literals in Cj are false (Cj = false),
and then, traversing any one of the three subgraphs in Gj will lead to a maximum
demand bounded by uT − u. This completes the proof.
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Fig. 8. Example for the construction of the task τ2 from a given 3SAT instance E.

We construct the task set T from a 3SAT, E, with m variables and n clauses, as
follows. The task set contains two tasks:

—The first task τ1 contains just one vertex, labeled with [T (1 − c′), T ], without any
arcs.

—The second task τ2 consists of n substructures, Gj , ( j = 1, . . . , n), each of which
corresponds to a clause in C. The vertex v0 is labeled with [0, 0]; the associated fork
arc (v0, {v1, . . . , vn}) is labeled with an interarrival time of 0 (see Figure 8).

By now, the task set T cannot be considered yet as a complete reduction from an
instance E of the 3SAT problem. We consider two literals c jk and clk′ within different
clauses Cj and Cl, which correspond to the same variable or its negation. Without
loss of generality, we let c jk = xi and clk′ = x̄i. The assignments of the values to the
variables xi in literals c jk and clk′ should be consistent with each other. Accordingly,
the paths in subgraphs gcjk and gclk′ should make the same decision on whether to visit
their corresponding vb. For expression convenience, we further use gcjk.vx and gclk′ .vx

to designate, respectively, the vertices vx of subgraphs gcjk and gclk′ (x = a, b, c). Here,
a consistent decision means that the vertices gcjk.vb and gclk′ .vb must be visited when
xi = true; otherwise, both of these vertices should not be visited when xi = false.
Meanwhile, the inconsistent decision is not forbidden in the current version of τ2. For
example, to obtain the maximum path demands for both subgraphs gcjk and gclk′ , we
should visit gcjk.vb and not visit gclk′ .vb at all. In this case, the path demands of subgraphs
gcjk and gclk′ are both equal to uT , which indicates that c jk = clk′ = true and further
leads to a contradiction: xi = x̄i = true.

To preclude this inconsistent case, we add a new vertex ok into the subgraph gcjk of
Gj and generate one fork arc from gcjk. fk to ok and another fork arc from gcjk.vc to ok, as
shown in Figure 9. We also modify the structure Gl with the same operations. Finally,
we add a join arc from ok to vclk′ and its symmetric join arc from ok′ to vc jk. All the
vertices and arcs are labeled with zero parameters. With this modification, the paths of
the subgraphs corresponding to the same variable or its negation will not collide with
each other, as shown in Lemma 3.3.

LEMMA 3.3. For the subgraphs corresponding to the same variable or its negation, the
paths on these subgraphs must make the same decision on whether to visit their own
vertices vb if at least one of these subgraphs is chosen for the maximum demand.
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Fig. 9. Modification of subgraphs gc jk and gclk′ to preclude the inconsistent case.

PROOF. Without loss of generality, we consider only two subgraphs, gcjk and gclk′ , and
assume that gcjk corresponds to xi and that gclk′ corresponds to x̄i. We can distinguish
among three possibilities concerning the subgraphs gcjk and gclk′ , depending on whether
none, one, or both are chosen for traversal. We now consider each possibility separately.

(1) If the subgraphs gcjk and gclk′ are both chosen to be traversed, without loss of gen-
erality, we assume that the decisions on how to traverse these two subgraphs are
inconsistent. For example, we should visit gcjk.vb and not visit gclk′ .vb. As shown in
Figure 9, it is easy to see that we can pass through (glk′ .va, glk′ .vc) and enter
into the vertex vclk′ at the time instant of 0. However, there is another join
arc (ok, vclk′ ); thus, we cannot further generate a job from vclk′ until the path
π = (gcjk.va, gcjk.vb, gcjk.vc, ok) from gcjk enters into vclk′ by passing through the join
arc (ok, vclk′ ). Observe that the earliest time at which the path π can reach vclk′ is 1.
This implies that we have to wait for one time unit at the vertex vclk′ if we do not
visit gclk′ .vb. In this case, it is better to visit gclk′ .vb, which leads to no waiting time
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and an extra demand u. Therefore, this contradicts the maximum demand if the
paths associated with gcjk and gclk′ are inconsistent.

(2) Suppose that there is only one subgraph chosen to be traversed; without loss of
generality, we assume that gcjk is traversed in Gj and gclk′ is not chosen for traversal
in Gl. In this case, the path of gclk′ is not important to gcjk because the branch ( fk′ , ok′ )
is traversed instead of the vertex gclk′ .va. Thus, it is necessary to ensure that the
path in Cl will not affect the choice of the path prefix in gcjk. Observe that the path
from rk′ of gclk′ to vc jk costs no time. Then, the path from gclk′ can reach vc jk at the time
instant of 0. This indicates that the earliest time at which the job can be generated
from vc jk depends only on the path from rk to gcjk.vc.

(3) None of the subgraphs gcjk and gclk′ are chosen for traversal. In this case, the
vertices vc jk and vclk′ will not be traversed. It is not necessary to consider this trivial
case.

In summary, the modified task model of τ2 can preclude the inconsistent path prefixes
of the subgraphs that correspond to the same variable or its negation. This completes
the proof.

After the modification for the subgraphs associated with each variable xi and its
corresponding negation, we now show that the task set T is unfeasible if and only if E
is satisfiable.

LEMMA 3.4. If E is satisfiable, then DBF(T ) > T .

PROOF. Let E be satisfiable and consider some satisfying assignment. The task set
T contains two tasks, in which τ1 has only one vertex with [T (1−c′), T ] and τ2 consists
of n substructures, each of which corresponds to a clause in C. Considering each clause
Cj formed as the disjunction of three logical variables or the negations of the variables,
such as c j1 ∨ c j2 ∨ c j3, there exists at least one variable in the clause evaluating as
true. Without loss of generality, we assume that c jk = is true. In the execution of
τ2, the corresponding subgraph Gj implies a conditional structure such that only one
subgraph can be chosen for traversal. Suppose that we choose gcjk for traversal. Note
that, for a given time interval length T , according to Lemma 3.2, the demand of the
path generated from gcjk is uT because the corresponding c jk is true. Therefore, the total
demand of the parallel paths associated with all the substructures is equal to nuT for
a given T . That is, DBFτ2 (T ) ≥ nuT . Moreover, we also have that DBFτ1 (T ) = T (1−c′).
The demand bound function of T is DBF(T ) ≥ T (1− c′)+nuT = T + ε. This completes
the proof.

LEMMA 3.5. If E is not satisfiable, then ∀t ≥ 0 : DBF(t) ≤ t.

PROOF. Assume that E is not satisfiable; we want to show that DBF(t) ≤ t for all
t ≥ 0.

We first consider the case when t = T . Because E is not satisfiable, there must exist
at least one clause in C that is false. Without loss of generality, we assume that only
one clause of C, say C j , is false and the other n − 1 clauses in C are true. According to
Lemma 3.2, the path demand corresponding to Gj is at most uT −u, and the total path
demand corresponding to the other n − 1 clauses equals (n − 1)uT . Thus, the demand
bound of τ2 is given as follows.

DBFτ2 (T ) ≤ nuT − u. (4)

Moreover, we have that DBFτ1 (T ) = T (1 − c′). The demand of T = {τ1, τ2} can be
bounded as follows.
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DBF(T ) = DBFτ1 (T ) + DBFτ2 (T ) (5)
≤ T (1 − c′) + nuT − u (substitute Equation (4) into Equation (5)) (6)
≤ T + ε − u. (7)

Combining Equations (1), (3), and (7), DBF(T ) can be further bounded by T : DBF(T ) ≤
T because u = c′+ ε

T
n and ε ≤ T

nT −1 c′ holds.
For t ∈ [0, T ): The task τi does not count in such an interval because its deadline is

T . Furthermore, the task τ2 has the demand bounded by nut, as shown in the proof
of Lemma 3.2. Thus, DBF(t) = nut = t(c′ + ε/T ). According to Equation (3), we can
conclude that DBF(t) ≤ t because ε ≤ T (c − c′) holds.

For t ∈ (T ,∞): The task τ1 can release its job and contributes T (1 − c′) to DBF(t).
Furthermore, the demand of the task τ2 can be bounded by nut. We have DBF(t) ≤
nut+T (1−c′) = (c′ + ε

T )t+T (1−c′). According to Equation (3), we can further conclude
that DBF(t) ≤ t because ε ≤ T

T +1 (1 − c′) holds. This completes the proof.

Lemmas 3.4 and 3.5 indicate the first property we proposed earlier such that there
exists a proper reduction from the 3SAT problem. Furthermore, all the values in the
task system T that we constructed are bounded by a polynomial in the values in the
instance E of 3SAT. Finally, we will show that the utilization of the FJRT task set T
is bounded by a constant c. On the one hand, the utilization of τ1 is 0, with τ1 being
acyclic. On the other hand, the utilization of τ2 is at most nu = c′ + ε

T ≤ c because we
can traverse at most one subgraph gcjk in each substructure Gj , and the utilization of
each gcjk is exactly u, which can be calculated by considering the cyclic part of gcjk, as
shown in Figure 6. Therefore, the utilization of the entire task system is bounded by a
constant c. We now present the main result of this section in Theorem 3.6.

THEOREM 3.6. For any constant c < 1, the feasibility problem for the FJRT task set τ
with U (τ ) ≤ c is coNP-hard in the strong sense.

4. THE FJRT MODEL BASED ON HIERARCHY DIGRAPHS

In the previous section, we constructed a special FJRT system T and proved that the
associated feasibility problem is a coNP-hard problem in the strong sense. During the
construction phase, we noted that the fork arcs that come from different vertices can
be joined into one vertex. For example, as shown in Figure 7, the arcs separately forked
from fk and fk′ are joined into one vertex gcjk′′ .va (we have that k′′ = 3 if k = 1 and
k′ = 2). Intuitively, these arcs jump from one parallel section to the other and finally
join. We refer to this type of fork arcs as jumping arcs. Although the jumping arcs
that send important control information between the parallel sections can model the
communication behaviors of many concurrent parallel, real-time systems, we believe
that the jumping arc is one of the main factors that significantly affects the complexity
of the feasibility problem. In the rest of this article, we focus on a particular restricted
form of the FJRT model, in which the control is not allowed to jump between parallel
sections. In other words, the arcs forked from different vertices are forbidden to be
joined into one vertex. We first introduce the corresponding definition and relative
notations in the next section.

4.1. Hierarchy Task Graph and Relative Notations

A parallel task τ is characterized by a hierarchy task graph D = (Vτ , Aτ ), where the set
Vτ of vertices represents the types of jobs that can be released by the task τ , and the
arcs in Aτ indicate the order in which jobs generated by τ are released. The terminology
of hierarchy means that the vertex is allowed to embed a fork-join structure, which is
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Fig. 10. The equivalent transformation of τ1 defined in Example 2.9.

used to express parallel jobs. Thereby, we distinguish two types of vertices in Vτ by
using different notations:

—If the vertex contains a fork-join structure, we call it a generalized “vertex.” Obviously,
the generalized “vertex” is not a real vertex, but it can be viewed as a subgraph
embedded within D.

—Otherwise, the vertex that generates only one sequential job at one time is called a
simple vertex.

Because the simple vertex has been defined previously in Section 2, in what follows,
we will merely introduce the parameters associated with the generalized “vertex.”

The generalized “vertex” is specified as a DAG G = (V, E). Each vertex vi of G might
correspond to a sequential job that is released by τ if vi is a simple vertex; otherwise, a
generalized “vertex” vi will correspond to a parallel job. An example of the structure of
G is shown in Figure 10. We first denote a fork vertex v and a join vertex u of G, then
define several source and sink vertices in G. Note that the numbers of source and sink
vertices should be the same according to Proposition 2.4. Without loss of generality, we
assume that there are m source and sink vertices, which are separately denoted as si
and s′

i (i = 1, . . . , m). Specifically, the number m of source (sink) vertices in Figure 10
is 2. The fork and join arcs of G are separately represented as (v, S) and (S′, u), where
S = {s1, . . . , sm} and S′ = {s′

1, . . . , s′
m}. These hyperarcs are labeled, respectively, with the

nonnegative integers p(v, S) and p(S′, u), which denote the minimum job interrelease
separation times.

Moreover, for convenience of analysis, the DAG of the generalized “vertex” is further
restricted such that the fork, join, source and sink vertices in the DAG cannot be
generalized. We consider only this restricted generalized “vertex” in the rest of this
article. For the nonrestricted generalized “vertex,” we perform its transformation into
an equivalent (restricted) one. We illustrate this transformation by using very basic
examples, to follow.

Example 4.1. The example task τ1 in Figure 5(a) corresponds to a hierarchy task
graph D consisting of only one generalized “vertex.” The fork-join structure of this
generalized “vertex” is defined as a DAG G that contains a fork vertex v1 and a join
vertex v7. Moreover, vertices v2 and v3 can be viewed as two source vertices in G, and
vertices v5 and v6 are the sink vertices in G. The equivalent transformation of τ1 is
given in Figure 10.

We first add two simple vertices v and u as the new fork and join vertices, respectively,
then add two new arcs (v1, v) and (u, v7). We further add two simple vertices s1 and s2
as source vertices, then add arcs (s1, v2) and (s2, v3). We also add two simple vertices
s′

1 and s′
2 as sink vertices, then add arcs (v5, s′

1), and (v6, s′
2). All newly added vertices

are labeled with [0, 0]. The arcs (v1, v) and (u, v7) are labeled, respectively, with the
interreleased separations that used to correspond to the hyperarcs (v1, {v2, v3}) and
({v5, v6}, v7). All other added arcs are labeled with 0.
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Fig. 11. The equivalent transformation of τ2 defined in Example 2.10.

Example 4.2. The example task τ2 in Figure 5(b) is equivalent to the FJRT shown in
Figure 11. Simple vertices v and u are added as the fork and join vertices, respectively.
Simple vertices s1 and s2 are added as two source vertices, and simple vertices s′

1 and
s′
2 are added as two sink vertices. New arcs (s1, v2), (s2, v3), (v2, s′

1), and (v3, s′
2) are

added with an interreleased separation of 0. Moreover, the arc (v1, v) is added, which is
labeled with the interreleased separation p(v1, {v2, v3}). Two arcs (u, v4) and (u, v5) are
also added; their labels are p({v2, v3}, v4) = x and p({v2, v3}, v5) = x, respectively.

These two examples show that the tasks previously modeled as CRTs in Examples 2.9
and 2.10 can also be described by the FJRT models based on hierarchy digraphs (short
for the FJRT-HD model). This result is presented as the following theorem.

THEOREM 4.3. The FJRT-HD model is at least as expressive as the CRT model.

PROOF. The FJRT-HD model, which contains the DRT model as a special case if
there is no generalized “vertex,” is allowed to express the sequential, conditional, and
loop compositions of tasks. Thus, it is trivial to show that the atomic grammar rules
T1〈x〉T2, T1 + T2, and T ω can be expressed by the FJRT-HD model. Additionally, the
parallel composition of subtasks S1 and S2, that is, S1‖S2, can be modeled as a gen-
eralized “vertex,” where the fork and join vertices are prefix(S1‖S2) and suffix(S1‖S2),
respectively; the source vertices are prefix(S1) and prefix(S2); and the sink vertices are
suffix(S1) and suffix(S2). In summary, all atomic grammar rules can be expressed by
the FJRT-HD model. Therefore, the FJRT-HD model is at least as expressive as the
CRT model.

Although Theorem 4.3 cannot imply that the FJRT-HD is strictly more expressive
than the CRT model, it is worth introducing the FJRT-HD model mainly because of the
following reasons. On the one hand, Ejsing-Duun et al. [2013] restricted themselves
to a well-formed CRT model, in which each job is forbidden to occur in the configura-
tion more than once. The existing pseudo-polynomial time result in Ejsing-Duun et al.
[2013] for the well-formed setting cannot reveal the conclusion that the general CRT
model is also tractable. On the other hand, Examples 4.1 and 4.2, together with Theo-
rem 4.3, conclude that each CRT model, regardless of whether it is well formed, can be
equivalently expressed by an FJRT-HD model. In this section, we will prove that the
FJRT-HD model is tractable, which implies that the CRT model is also tractable even
if it is not well formed.

4.2. Feasibility Analysis of the FJRT-HD Model

For our proposed parallel task model, we are concerned with the corresponding pre-
emptive uniprocessor feasibility problem:

Definition 4.4 (Feasibility). An FJRT-HD set T is preemptive uniprocessor feasible
if and only if all job sequences generated by T can be executed on a preemptive
uniprocessor platform such that all jobs meet their deadlines.
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We note that the feasibility problem for the DRT model can be solved within pseudo-
polynomial time. In what follows, we will show that this technique can be further
applied to the analysis of the FJRT-HD model, and the time complexity remains pseudo-
polynomial.

In attempting to adapt the approach in Stigge et al. [2011] to the FJRT-HD setting,
we propose a transformation method for each given FJRT-HD task to transform each
task into an equivalent DRT task with pseudo-polynomial size. The main challenge
that we may face in the transformation is how to deal with the generalized “vertex,”
which is hierarchically defined in a nested structure. In what follows, we are concerned
with the parallel path abstraction of the generalized “vertex” and keep this useful
information for further use (refer to Section 4.2.2).

4.2.1. Computing Parallel Path Demands in the Generalized “Vertex”. For a given generalized
“vertex,” we can distinguish among two possibilities concerning the associated DAG
G = (V, A), depending on whether or not it contains generalized “vertices.” We consider
each possibility separately here.

Case A. If the DAG G consists only of simple vertices. In the DAG G, we let v be
the fork vertex and u be the join vertex and assume that there are m source vertices
and m sink vertices, denoted as s1, . . . , sm and s′

1, . . . , s′
m, respectively. The remaining

vertices in G, which are connected between the source and sink vertices, are denoted
as v1, . . . , vn. Each job sequence generated in G corresponds to an execution path that
starts at the fork vertex v, then forks into m parallel paths starting from s1 to sm.
Denote by π (si,−) the parallel path that begins with the i-th source vertex si, such
as (si, v[1], . . . , v[l]). We further define the execution demand and deadline of π (si,−) as
follows.

—Execution demand: e(π (si,−)) := ∑l
j=1 e(v[ j]);

—Deadline: d(π (si,−)) := ∑l−1
j=1 p(v[ j], v[ j+1]) + d(v[l]).

For a fixed time-interval length t, we focus on the maximum execution demand of
the paths with a deadline of at most t. More formally, we further propose the concept
of the path demand as follows.

Definition 4.5 (Path Demand). For a given source vertex si, an arbitrary vertex vl
and a fixed time-interval length t, the path demand e(si, vl, t) denotes the maximum
cumulative execution demand of jobs generated along the path starting at si and ending
at vl, and the associated deadline is bounded by the length t:

e(si, vl, t) = max{e(π (si, vl))|π (si, vl) is an arbitrary path from si to vl, and
d(π (si, vl)) ≤ t}.

The path demand e(si, vl, t) can be calculated by using the following recursive formula:

e(si, vl, t) = max{e(si, v j, t − d(vl) − p(v j, vl) + d(v j)) + e(vl)|(v j, vl) ∈ A}. (8)

The correctness of this formula can be discussed in a twofold manner. First, we show
that there is a path with a deadline of at most t that starts at si and ends at vl. Let
t′ = t − d(vl) − p(v j, vl) + d(v j). It is known that the path demand e(si, v j, t′) corresponds
to at least one path π (si, v j) from si to v j with a deadline of at most t′. Because v j is
denoted as a predecessor vertex of vl, we now combine the path π (si, v j) and the arc
(v j, vl) into a new path π (si, vl) = (si, . . . , v j, vl). Obviously, the deadline of π (si, vl) can
be calculated as t = t′ + d(vl) + p(v j, vl) − d(v j), which implies that there is a path from
si to v j with a deadline of at most t.
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We now show that e(si, vl, t) is the maximum demand of the path from si to vl with
a deadline of at most t. Suppose that π∗(si, vl) is the optimal path with a deadline of
at most t, which begins with si and ends at vl, and e(π∗(si, vl)) is its demand. Then,
we have e(π∗(si, vl)) > e(si, vl, t). Additionally, let v j be such a predecessor vertex of
vl on the path π∗(si, vl). Let π∗(si, v j) be the subpath of π∗(si, vl) from si to v j with a
deadline of at most t′ = t − p(v j, vl) − d(vl) + d(v j). Therefore, by the induction, we
have e(π∗(si, v j)) ≤ e(si, v j, t′) because e(si, v j, t′) denotes the maximum demand of the
paths between si and v j with a deadline of at most t′. This means that e(π∗(si, vl)) =
e(π∗(si, v j)) + e(vl) ≤ e(si, v j, t′) + e(vl) ≤ e(si, vl, t). In summary, we have e(π∗(si, vl)) =
e(si, vl, t). This completes the discussion.

Furthermore, for a given source vertex si and a fixed time interval t, we denote
e(si, t) as the maximum cumulative execution demand of the paths starting at si with
a deadline of at most t:

e(si, t) = max{e(si, vl, t)|vl is an arbitrary vertex of the DAG G}.
This concept, used as an abstraction of the single path, can be further extended for

parallel paths. We now consider all parallel paths in the DAG G and define the parallel
path demand as follows.

Definition 4.6 (Parallel Path Demand). For a fixed time interval length t, the parallel
path demand e(t) denotes the maximum cumulative execution demand of jobs generated
along the parallel paths, respectively, starting from source vertices s1 to sm, and the
associated deadline is bounded by a length t, which can be calculated by:

e(t) =
m∑

i=1

e(si, t).

In particular, for the parallel paths that end at their corresponding sink vertices and
that finally need to be joined into join vertex u, the associated parallel path demand is
defined as e′(t) = ∑m

i=1 e(si, s′
i, t).

LEMMA 4.7. For each constant T ∈ N, the number of path demands e(si, vl, t), e(si, t)
and e(t) with t ≤ T is bounded polynomially in T , m, and n, which are the numbers of
the source vertices and simple vertices in the DAG G.

PROOF. The proof is trivial. All path demands e(si, vl, t) are in N≤m × N≤n × N≤T , all
path demands e(si, t) are in N≤m × N≤T , and all parallel path demands e(t) (e′(t)) are in
N≤T , leaving altogether O((nm+ m+ 1)T ) possibilities.

Case B. If the generalized “vertex” (say, ν) is defined as a nested structure, which
contains some generalized “vertices.” We will transform each generalized “vertex” vi
into a subgraph Gi that only contains simple vertices; the transformation procedure
Transform() is given in Algorithm 1. Before approaching this procedure, we first define
a parameter for each generalized “vertex” vi, namely, the diameter Di of vi, which is
denoted as the longest length of the paths from the fork vertex v to the join vertex u. It
is easy to see that the diameter Di is pseudo-polynomially bounded because Di is much
smaller than the summation of the interreleased separations labeled on the inner arcs
defined in vi. We then denote two sets of parallel path demands of vi as Ei = {e(t)|t ≤ Di}
and E′

i = {e′(t)|t ≤ Di}. For each generalized “vertex” vi, the equivalent subgraph Gi
contains |Ei| + |E′

i| + 2 vertices.
As shown in Algorithm 1, we define a source vertex μi in each subgraph Gi, which

accepts the arcs that formerly entered into vi, and denote a sink vertex μ′
i, from which

the outter arcs of vi leave. Vertices μi and μ′
i are labeled with an execution time of 0

and a deadline of 0. Without loss of generality, the elements of Ei and E′
i are sorted in
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ALGORITHM 1: Transform(ν)
Input: a generalized “vertex” ν that has a nested structure;
Output: an equivalence generalized “vertex” ν ′ that contains only simple vertices.
1: for each i in [1, n] do
2: if vertex vi is a generalized “vertex” then
3: Set predi := {vl|for each(vl, vi) the precedure arc of vi defined in ν};
4: Set succi := {v j |for each(vi, v j) the successor arc of vi defined in ν};
5: Generate two vertices μi and μ′

i labeled with an ordered pair [0,0];
6: while predi = ∅ do
7: predVertex := Pop(predi);
8: generate arc (predVertex, μi) labeled with a period 0;
9: end while
10: while succi = ∅ do
11: succVertex := Pop(succi);
12: Generate arc (μ′

i, succVertex) labeled with a period 0;
13: end while
14: j:=1;
15: while Ei = ∅ do
16: e(tj) = Pop(Ei);
17: Generate a new vertex v j labeled with [e(tj), tj];
18: Generate a new arc (μi, v j) labeled with tj ;
19: j++;
20: end while
21: j:=1;
22: while E′

i = ∅ do
23: e′(t′

j) = Pop(E′
i);

24: Generate a new vertex v′
j labeled with [e′(t′

j), t′
j];

25: Generate two arcs (μi, v
′
j) and (v′

j, μ
′
i) labeled with 0 and t′

j respectively;
26: j++;
27: end while
28: end if
29: end for

increasing order. We then denote the j-th element in Ei as e(tj), where tj is the time
interval length corresponding to the parallel path demand e(tj). Similarly, the j-th
demand in E′

i is denoted as e(t′
j), and t′

j is its corresponding time-interval length. For
each e(tj) ∈ Ei, we define a vertex v j in Gi, which is labeled with an execution time of e j
and a deadline of dj , where e j = e(tj) and dj = tj . We then add the arc (μi, v j) with an
interreleased separation of tj into Gi. Moreover, for each e(t′

j) ∈ E′
i, we define a vertex

v′
j in Gi, which is labeled with an execution time of e′

j = e′(t′
j) and a deadline of d′

j = t′
j .

Two arcs, (μi, v
′
j) and (v′

j, μ
′
i), are added into Gi. The interreleased separations labeled

with (μi, v
′
j) and (v′

j, μ
′
i) are t′

j and 0, respectively.
Note that the parallel path demands in Ei and E′

i are assumed to be previously
calculated before Algorithm 1 runs. In fact, Ei and E′

i cannot be directly calculated by
the recursive formulas listed in Case A if the generalized “vertex” in ν also has a nested
structure. Note that Algorithm 1 can be used only for the generalized “vertex” nested
at a depth of 1. However, Algorithm 1 can be used as the core procedure to solve the
deeper problem for the transformation of the generalized “vertex” nested at arbitrary
depths. We will show this in Algorithm 2 in the next section.

4.2.2. Transformation of the FJRT-HD into the DRT Model. By inductively computing the
path demands in each generalized “vertex” vi and then forming the transformation of
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vi, an FJRT-HD task τ can be equivalently cast into a DRT task τ ′. The transformation
method is shown in Algorithm 2.

ALGORITHM 2: Transform the FJRT-HD task τ into an Equivalence DRT Task τ ′

Input: an FJRT-HD task τ defined in the hierarchy task graph D = (Vτ , Aτ );
Output: an equivalence DRT task τ ′ defined on the graph D′ = (Vτ ′ , Aτ ′ ).
1: Set stackGV := ∅;
2: for each vertex v in Vτ do
3: if v is a generalized “vertex” then
4: Push v to stackGV;
5: end if
6: end for
7: while stackGV = ∅ do
8: v := GetTop(stackGV);
9: furtherNested := false;
10: for each vertex ν in v do
11: if ν is a generalized “vertex” then
12: Push ν to stackGV;
13: furtherNested := true;
14: end if
15: end for
16: if furtherNested = false then
17: v := Pop(stackGV);
18: Transform(v);
19: end if
20: end while

The procedure in Algorithm 2 can be used to transform the FJRT-HD task that
contains the generalized “vertex,” which can be nested at arbitrary depths. In this
procedure, we use a stack stackGV to maintain the order in which the generalized
“vertices” should be transformed by procedure Transform(). It is easy to see that the
generalized “vertex” nested at a smaller depth has a higher priority to be transformed.
Thus, the generalized “vertex” nested at a depth of 1 will be transformed first; after that,
the nested depths of the other generalized “vertices” in stackGV might be decreased
accordingly. Note that the procedure Transform() can be used only for the generalized
“vertex” nested at a depth of 1 (See Line 18 in Algorithm 2). Moreover, we also note
that each generalized “vertex” in Vτ will not be pushed into stackGV more than twice.
Thus, the time complexity of Algorithm 2 is certainly pseudo-polynomial.

LEMMA 4.8. For an FJRT-HD task τ and its transformation τ ′, their demand bound
functions coincide, that is, ∀t ≥ 0 : DBFτ (t) = DBFτ ′(t).

PROOF. For a given time interval t, we assume that the demand bound function of
τ DBFτ corresponds to a path in the hierarchy graph D, denoted by π∗ = (v1, . . . , vl),
where the execution demand e(π∗) and the relative deadline d(π∗) of π∗ fulfill the
following: e(π∗) = DBFτ (t) and d(π∗) ≤ t. We iteratively construct a corresponding path
π ′ based on the following rules.

—The simple vertices in π∗ should stay in the same position of π ′ without any changes;
—If π∗ contains some generalized “vertices” vi, assume that the corresponding job triple

is (ri, ei, di), where ri is the starting time of traversal of vi, ei is the demand of the
parallel paths forked in vi, and di − ri is the deadline of vi, which can be computed as
the maximum length of the parallel paths forked in vi. In what follows, we separately
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consider the cases in which the generalized “vertex” vi is and is not the ending vertex
of π∗.
—If π∗ traverses vi as a middle vertex, vi corresponds to a sequential path (μi, v

′
t1 , μ

′
i)

of π ′, where t1 = max{t̃|e′(t̃) ∈ E′ ∧ t̃ ≤ di − ri}. The demand of the path (μi, v
′
t1 , μ

′
i)

can be calculated as e(μi)+e(v′
t1 )+e(μ′

i) = e′(t1) because the execution times assigned
to the vertices μi, μ′

i, and v′
t1 are e(μi) = e(μ′

i) = 0 and e(v′
t1 ) = e′(t1), respectively,

according to the procedure in Algorithm 1.
—Otherwise, if π∗ ends at vi, vi corresponds to a sequential path (μi, vt2 ) of π ′, where

t2 = max{t̃|e(t̃) ∈ E ∧ t̃ ≤ di − ri}. The demand of the path (μi, vt2 ) is e(μi) + e(vt2 ) =
e(t2).

Note that ei is the demand of the parallel paths that are forked in vi with a deadline
of at most di − ri, and according to Definition 4.6, e′(t1) and e(t2) are defined as the
maximum demands of these parallel paths. Thus, we have e′(t1) ≥ ei and e(t2) ≥
ei. Moreover, we also note that t1 ≤ di − ri and t2 ≤ di − ri hold. Therefore, the
sequential path in π ′ has a larger demand and a smaller length than its corresponding
generalized “vertex.”

In summary, the path π ′ of τ ′ will have a larger demand and a smaller length than its
corresponding path π∗ of τ because the generalized “vertices” of π∗ are replaced by the
corresponding sequential paths in π ′. That is, e(π∗) ≤ e(π ′). Moreover, it is easy to see
that DBFτ ′(t) ≥ e(π ′), and according to the assumption, we have that DBFτ (t) = e(π∗).
Thus, we can conclude that DBFτ (t) ≤DBFτ ′(t).

Additionally, we assume that the demand bound function DBFτ ′(t) of τ ′ corresponds
to the path π ′. If π ′ passes some subpaths, such as (μi, v

′
t′ , μ

′
i) (or (μi, vt′ )), we let these

subpaths be defined on the subgraph Gi, which is the transformation of the generalized
“vertex” vi. The corresponding path π∗ of τ will pass vi in the same position, and
the visit of vi corresponds to the set of parallel paths in vi with the total execution
demand e(t′) and the deadline t′. We note that such parallel paths always exist in vi
according to Definition 4.6. It is easy to show that the execution time and deadline
of the corresponding path π∗ can be restricted to being the same as those of the path
π ′. This implies that DBFτ (t) ≥DBFτ ′(t) for each given time-interval length t, which
completes the proof.

Given this lemma, the main theorem follows directly because the results from Stigge
et al. [2011] can be applied to the set of transformed tasks.

THEOREM 4.9. For a constant c < 1, the feasibility for all FJRT-HD task sets T based
on hierarchy digraphs with U (T ) ≤ c can be solved in pseudo-polynomial time.

PROOF. Given an FJRT-HD system T , we apply the described transformation to all
tasks to obtain the corresponding DRT system T ′. Lemma 4.8 guarantees that their
demand bound functions coincide, which implies that their utilizations are also the
same. Thus, we can apply the main result from Stigge et al. [2011], guaranteeing that
the demand computation problem will be solved for T ′ in pseudo-polynomial time if
the following two conditions hold:

—The number of vertices in T ′ and the values in T ′ (vertex and arc labels) are pseudo-
polynomially bounded in the description of T .

—The transformation itself runs in pseudo-polynomial time.

For the first property, Lemma 4.7 shows that the number of new vertices per generalized
“vertex” is pseudo-polynomially bounded. Moreover, all labels of the new vertices and
arcs associated with each generalized “vertex” vi are bounded by the diameter of vi,
which is much less than the summation of all the interreleased separations labeled on
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Fig. 12. Traffic flow in the ITCS case study.

the arcs nested in vi. The second property is trivially satisfied because creating each of
these vertices and arcs (and their labels) can be done in O(1) time, which can be seen
as an inexpensive operation.

5. MODELING WITH FJRT: A CASE STUDY

In this section, we demonstrate the usage of FJRT by modeling an Intelligent Traf-
fic Control System (ITCS). The ITCS was originally modeled by Simulink/Stateflow
[Angermann 2007]. As we will see, the Simulink/Stateflow model of the ITCS is rather
complicated and difficult to read. Then, we model the ITCS by FJRT, which gives a
much simpler and more intuitive representation of the system. From the FJRT model,
readers can easily understand the essential structure of the system.

In the ITCS of urban road networks, traffic signal lamps work in collaboration for cer-
tain optimization targets, for example, minimum energy consumption and emissions.
For simplicity, we focus on two adjacent crossings C1 and C2 to illustrate the traffic flow
control problem. Without loss of generality, traffic flows only in the west-east direction
are considered, as shown in Figure 12.

The traffic flow control system periodically produces global control decisions in real
time depending on the traffic flow observed at both crossings C1 and C2, then sends
them to the lamp at each crossing. To decide the color of the traffic signal lamp at
a crossing for the next period, the control system needs to analyze and predict the
traffic flows in both directions. Traffic control at each crossing consists of the following
parts:

—Preprocessing. Sensors are settled at each crossing to acquire real-time raw data
of traffic flow information. Preprocessing of the sensor data is conducted as the first
step of the traffic-control routine, in order to improve the data quality (including, e.g.,
filtering, normalization, and cleansing). With the preprocessed data, it also decides
whether the current traffic flow at this crossing is heavy or light. If it is heavy, then
the next period of signal control will be triggered after a relatively longer delay since
a more frequent switching of traffic signal causes higher overhead. Otherwise, the
delay for triggering the next period of signal control decision is shorter (there are
4 traffic levels in the original system design, but for simplicity we consider only 2
levels, light and heavy, in this case study).

—Heavy Traffic Control. If heavy traffic is recognized in the earlier step, the traffic
flow data after preprocessing is then submitted to heavy traffic analysis. We use C1
as an example to explain the Heavy Traffic Analysis component at each crossing.
The traffic of both directions is analyzed:
—West-to-East Heavy Traffic Analysis (WtoE-H). The analysis of this direction

depends on the preprocessed data of dW E
1 . The analysis program WtoE-H is finished

in at most 3s relative to its trigger time (considering the competition of CPU time
by workload of other functionalities), that is, the relative deadline is 3s.

—East-to-West Heavy Traffic Analysis (EtoW-H). The analysis of this direction
depends on the preprocessed data of dEW

1 and the west-to-east analysis results at
crossing C2 (based on dEW

2 ). The analysis program EtoW is triggered when input
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from the preprocessed data from both crossings is ready. Similar to West-to-East
Heavy Traffic, the preprocessing program at each crossing is required to finish
in at most 3s, thus data from the preprocessing program of crossing C1 is set to
be ready 3s after the preprocessing program is triggered. On the other hand, the
WtoE-H program at each crossing is required to be finished at most 4s after it is
triggered (the relative deadline is 4s). The EtoW-H program also takes at most 4s
and has a relative deadline of 4s.

—Signal Decision. The traffic flow analysis results of both directions are merged
to make the final traffic signal decision. After the control decision program is
triggered, the system will wait for 120s to trigger data preprocessing for the next
period.

—Light Traffic Control. The analysis for light traffic is similar to the heavy-traffic
case. Both the West-to-East Light Traffic Analysis (WtoE-L) and East-to-West Light
Traffic Analysis (EtoW-L) are conducted, and the analysis results are merged to make
the final traffic signal decision. The WtoE-L and EtoW-L programs are also finished
in at most 4s. However, there are two differences from the case of heavy traffic: (1) the
delay for triggering the next period of signal control is 60s (instead of 120s). (2) The
EtoW-L analysis does not depend on the analysis results of the west-to-east traffic
at C2, since the delay for triggering the next period of signal control is shorter, and
there is not enough time for the traffic at C2 to propagate to C1 in the current control
period.

Figure 13 shows the Simulink/Stateflow model of the ITCS described earlier. We
assume that 100000 ticks corresponds to 1s. Note that the Simulink/Stateflow model
does not explicitly express the relative deadline constraints of each program. These con-
straints are annotated as auxiliary information in the model. (A detailed explanation
of this Simulink/Stateflow model is omitted due to space limit.)

Figure 14 shows the modeling of the ITCS by a single FJRT task. The task contains
two parts, G1 and G2, which models the control of crossing C1 and C2, respectively.
The dashed vertices are dummy job types with both WCET and relative deadline being
0, which are merely used to help to model certain graph structures. All other vertex
(solid circles) have implicit deadlines, that is, the relative deadline of a vertex equals
the minimal interrelease separation among all its outgoing edges. The WCET of each
vertex is also omitted in the figure for simplicity. Since two subgraphs are symmetrical,
in the following, we explain only G1, and use v j to denote G1.v j .

First, v1 corresponds to the preprocessing functionality, which has two out-going
edges as it decides whether the traffic is heavy or light. If the traffic is light, it takes
the branch to the dummy vertex v2, which forks the analysis functionality of both
directions (v4 corresponds to EtoW-L and v5 corresponds to WtoE-L). The final control
decision for light traffic (v8) is made based on the analysis results of both EtoW-L and
WtoE-L, so the outgoing edges from v4 and v5 join to trigger v8. A delay of 60s is inserted
before triggering the next control period in the case of light traffic, so the edge between
v8 and v1 is marked with 60. If the traffic is heavy, among the two outgoing edges, the
branch to v3 is taken. v3 forks the analysis functionality of both directions for heavy
traffic (v7 corresponds to EtoW-H and v6 corresponds to WtoE-H). Two edges from v6
and v7 join to trigger the control decision for heavy traffic v9, and after a delay of 120s,
v1 in the next control period is triggered. The EtoW-H functionality needs input of both
the preprocessed data from v1 and the east-to-west traffic analysis result from the other
crossing C2. On the other hand, the west-to-east traffic (either heavy or light) analysis
results are sent to C2 for the same reason. The dummy node v10 is triggered by edges
from either v5 (analysis of light traffic) or v6 (analysis of heavy traffic). The outgoing
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Fig. 13. Simulink/Stateflow Model of the ITCS.

Fig. 14. The FJRT model of the ITCS system.

edge of v10 goes into the other subgraph G2, joining with the edge from G2.v3 to trigger
G2.v6, the heavy west-to-east traffic analysis at C2.

Note that the introduced model is a simplification of the realistic ITCS. Particularly,
we assume that the workload of the whole ITCS (including both crossings) is executed
on a uniprocessor platform (the analysis center). In reality, the data preprocessing is
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performed on a dedicated processor at each crossing and the preprocessed data are
then uploaded to the analysis center.

6. DISCUSSIONS

6.1. Fixed-Priority Scheduling

In this article, we focus on the EDF schedulability analysis of the FJRT models, which
is based on the demand bound functions (DBF). The insight of this article can also be
used for the analysis of fixed-priority scheduling. The major difference is that, while
the analysis of EDF is based on DBF, the analysis of fixed-priority scheduling is based
on request bound functions (RBF) [Stigge and Yi 2013]. RBF is defined in a similar way
as DBF, but includes the released workload immediately (instead of at the deadline of
the workload as in DBF). The techniques developed for DBF in this article can be very
well reused to calculate RBF, and thus support schedulability analysis of fixed-priority
scheduling. However, it should be noted that fixed-priority scheduling is strongly coNP-
hard for even the most simple graph-based task models, and the RBF-based analysis
is inherently overapproximated with graph-based task models.

Moreover, we prove that the FJRT model is untractable in most general cases. How-
ever, we also show that a restricted form of the FJRT model based on hierarchy di-
graphs, called FJRT-HD, permits a tractability of the feasibility problem. In this arti-
cle, the feasibility problem of the FJRT-HD model is solved through a transformation
from FJRT-HD to DRT, and then the schedulability test method for DRT can be di-
rectly reused. Note that the FJRT-HD can be equivalently cast to a DRT, and the
schedulability test for DRT proposed by Stigge et al. [2011] is an exact one. Therefore,
the schedulability test approach for FJRT-HD proposed in this article is exact, which
can produce the exact bound for the demand of an FJRT-HD model and can exactly
determine whether a given FJRT-DH task system is schedulable.

6.2. Multiprocessor Scheduling

Multiprocessor platforms are more suitable to explore the parallelism of FJRT task
systems. The major effort in the analysis is to calculate the DBFs of the graphs,
and the uniprocessor EDF schedulability analysis can be viewed as a byproduct of
the DBF calculation. Existing analysis techniques of multiprocessor EDF scheduling
(for both simple sporadic tasks and advanced parallel tasks) are also based on DBFs
[Saifullah et al. 2011; Lakshmanan et al. 2010; Baruah 2014; Baruah and Baker 2008;
Baruah and Fisher 2005]. Therefore, the analysis techniques of this article can be
viewed as a starting point toward the analysis of the FJRT model on multiprocessor
platforms.

7. CONCLUSIONS

In this article, we have investigated a new DRT-based fork-join task model that allows
high expressiveness in the modeling of conditional programming codes and intratask
parallelism in task-level parallel embedded systems. The new model overcomes the
restrictions of the previous models, which mostly focused on the sequential program-
ming code. This article first investigated the most general FJRT model, previously
introduced by Stigge et al. [2013]. The feasibility problem of this model has been stated
in Stigge et al. [2013] as an open problem. We constructed a reduction from 3SAT to
show that this problem is coNP-hard in the strong sense even if the system utilization
is bounded by a constant that is strictly less than 1. Moreover, we also studied the FJRT
model based on the hierarchy digraph and showed that the corresponding feasibility
can be determined within pseudo-polynomial time. Thus, we presented a borderline
between the intractable and tractable FJRT models.
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