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Abstract—Real-time task graphs are used to describe complex
real-time systems with non-cyclic timing behaviors. The workload
of such systems are typically bursty, which may degrade their
schedulability even with sufficient resource in the long term.
In this paper, we propose to use task graph transformation to
improve system schedulability. The idea is to insert artificial
delays to the release times of certain vertices of a task graph to
get a new graph with a smoother workload, while still meeting
the timing constraints of the original task graph. Delaying the
release time of a vertex may smoothen the workload of some paths
of the task graph, but at the same time make the workload of
other paths even more bursty. We developed efficient techniques
to search for an appropriate release time delay for each vertex.
Experiments with randomly generated task systems show that the
proposed transformation method can make a significant number
of task systems that was originally unschedulable to become
schedulable, and the transformation procedure is very efficient
and can easily handle large-scale task graph systems in very short
computation time.

I. INTRODUCTION

Traditionally, real-time task systems are modeled as col-
lections of periodically repeating computational requests [15].
Behaviors that are not entirely periodic cannot be expressed
accurately with this simple periodic task model. Instead, a
natural representation of these processes is a task graph: a
directed graph in which each vertex represents a code block
and each edge represents a control flow. Over years, there have
been many efforts to study more and more general graph-
based real-time task models to precisely represent complex
embedded real-time systems [4], [2], [17], [3], [23], [24], [25].
These graph-based task models can accurately express timing
characterizations of expressive computation models such as
Finite State Machines (FSM) [7], [19], [31], which is adopted
in common modeling and code synthesis tools like Simulink
Stateflow [5].

The system designer must guarantee a real-time system
to be schedulable, i.e., at run time the timing constraints are
respected under any circumstance. Complex real-time systems
typically exhibit bursty behaviors, in some short time periods
incurring workload much higher than the average. Therefore,
timing constraints may still be violated even though in the
long term the available resource is enough to process all the
computation requests.

In this paper, we propose a method to improve schedula-
bility of task graph systems with static-priority scheduling,
by transforming task graphs to new ones with smoother
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workload. Graph transformation is done by adding extra delay
to activations of certain vertices in the graph, and adjusting
the parameters of related vertices/edges to guarantee that the
resulting new graph fully complies with the timing behavior
specification of the original graph.

The number of possible run-time activation sequences
incurred by a task (corresponding to the paths in the graph)
explodes exponentially. Delaying the activation of a vertex
may smoothen the workload of certain paths, at the cost of
making the workload of other paths potentially more bursty.
It is computationally intractable to explicitly enumerate all the
paths of a graph to decide how to transform a graph to get
smoother workload and better system schedulability.

We develop techniques to efficiently transform an un-
schedulable task graph system into a schedulable one. Using
our techniques, task set transformation is performed by mod-
ifying the parameters related to each vertex in task graphs
step by step. We explore interesting properties and use proper
abstractions to guide an efficient yet effective transformation
procedure. Our transformation technique provides monotonic
schedulability improvement guarantees at each step of the
transformation procedure, in the sense that it can only make
individual unschedulable tasks to become schedulable, but
will not cause any task that was originally schedulable to
become unschedulable. This property can guide the overall
transformation procedure to quickly converge to a high-quality
solution. Although our efficient technique in general does
not guarantee to find the optimal solution, in practice it is
very effective in successfully transforming unschedulable task
systems to schedulable ones.

We evaluate the proposed technique by experiments using
randomly generated real-time task graph systems. Experiment
results show that our proposed method can significantly im-
prove system schedulability: a significant number of task sys-
tems that were originally unschedulable becomes schedulable
after the transformation. On the other hand, the transformation
procedure is very efficient and can easily handle realistic-size
task graph systems in very short time.

This work is presented in the context of the Digraph Real-
Time (DRT) task model [23], which is a generalization of most
existing graph-based real-time task models, such as GMF [17],
RRT [2], and non-cyclic RRT [3]. All the results in this paper
are directly applicable to these more restricted models as well.
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A. Related Work

Much work has been done on the schedulability analysis
of various graph-based real-time task models, including the
multiframe (MF) task model [16], generalized multiframe
(GMF) task model [4], non-cyclic GMF task model [17],
recurring branching (RB) task model [1], recurring real-time
(RRT) task model [2] et al. A generalization of the above
models is the Digraph Real-Time (DRT) task model, which
allows to model task release patterns by arbitrary directed
graphs. It has been proved that the static-priority schedulability
analysis problem of these graph-based models are strongly
coNP-hard [26]. While previous work focuses on how to
analyze the schedulability of task graph systems, this paper
is the first work to study how to improve their schedulability
to the best of our knowledge.

Shaping is a well-known technique in the area of network-
ing, which delays datagrams to bring them into compliance
with a desired traffic profile [8], [21]. By appropriate shaping
one can smoothen the bursty traffic flows, to optimize the
buffer requirement, improve latency, and/or increase usable
bandwidth for some kinds of packets by delaying other kinds.
The idea of shaping has been applied to the design of real-
time embedded systems. Wandeler et al. [29], [30] extended
the greedy shaper from network calculus [14] to modular
performance analysis of real-time systems. Richter et al. [22]
introduce a restricted kind of traffic shaping through so-called
event adaption functions (EAFs). Phan and Lee [20] designed
a new shaper for periodic tasks with jitters to smoothen
the workload and improve schedulability. At a high level,
task graph transforming has the same aim as shaping: they
both smoothen the workload by forcing the original workload
sequence to comply with certain extra regulations. However,
in the problem of shaping real-time workload that has been
studied in previous work, all the computation requests are
identical (in terms of their worst-case execution times and rel-
ative deadlines), while in our problem a task releases different
types of jobs corresponding to different vertices in the graph.
Therefore, previous shaping techniques are not applicable to
the task graph model considered in this paper.

II. PROBLEM MODEL

In this section, we introduce the task model considered
in this paper and some basic notions. The digraph real-time
(DRT) task model [23] describes the workload of a system
by a task set τ = {T1, T2, · · · , TN} of N independent tasks.
Each task T is depicted by a directed graph G(T ) which
contains vertex set {v1, v2, · · · , vn} characterizing the various
run-time job types and edge labels denoting the minimum
job inter-release separation time. Each vertex v is labeled
with an ordered pair 〈e(v), d(v)〉 characterizing the worst-
case execution-time e(v) and the relative deadline d(v) of
the corresponding job, respectively. Both values are defined
in the domain of non-negative integers. The directed edges
of G(T ) indicate the release order of jobs generated by T .
Each directed edge (u,v) is labeled with a non-negative integer
p(u, v) denoting the minimum job inter-release separation time
from u to v. In particular, we assume constrained deadlines,
i.e., for each vertex u, its relative deadline d(u) is no greater
than the minimal p(u, v) among all edges outgoing from u.
We use Prod(v) and Succ(v) to denote the set of predecessor

v1〈1, 5〉

v2

〈3, 7〉

v3

〈4, 10〉

v4 〈3, 6〉

v5 〈2, 8〉
15

7
10

12
15

15

15

8

Figure 1: An example task containing five different jobs.

and successor vertices of v, respectively. Further, we define
Prod−(v) � Prod(v) \ {v} and Succ−(v) � Succ(v) \ {v}
to denote the predecessor and successor sets excluding the
vertex v itself if included.

Semantics: The actual run-time behavior of each task
T corresponds to a potentially infinite path through G(T ).
Each visit to a vertex along that path causes a run-time job
released with parameters labeled on the vertex. The inter-
release separation times between successively released jobs
through that path are constrained by the edge labels. Formally,
we use a 3-tuple (r, e, d) to denote a job that is released at
(absolute) time r, with execution time e and absolute deadline
at time d. We assume dense time, i.e., r, e, d ∈ R≥0. A job
sequence φ = [(r1, e1, d1), (r2, e2, d2), · · · ] is generated by
T , if and only if there is a path π = (v1, v2, · · · ) in G(T )
satisfying for all i:

1) ri+1 − ri≥p(vi, vi+1),
2) ei ≤ e(vi),
3) di = ri + d(vi).

For a task set τ , a job sequence φ is generated by τ , if it is a
composition of sequences φT , which are individually generated
by tasks T of τ .

We use the example in Figure 1 to illustrate the semantics
of DRT task systems. When the system starts, T releases its
first run-time job by an arbitrary vertex. Then the released
sequence corresponds to a particular directed path through
G(T ). Consider the job sequence φ = [(5, 2, 13, ), (15, 3, 22),
(25, 3, 31)] which corresponds to path π = (v5, v2, v4) in
G(T ). Note that this example demonstrates the “sporadic”
behavior allowed by the semantics of the DRT model. The
first job in φ (corresponding to v5) is released at time 5, and
the second job in φ (corresponding to v2) is released 2 time
units later than its earliest possible release time, while v4 is
released as early as possible after v2.

We assume that the run-time job sequences are executed
on a uniprocessor system and scheduled by a static-priority
(SP) preemptive scheduler. Given a task set τ , a static priority
assignment P : τ → N assigns a unique priority value to each
task T , denoted by P(T ). Following the convention in real-
time scheduling literatures, a smaller value represents a higher
priority. For implicity we also use P(v) to denote the priority
of the task containing vertex v. At run-time, the SP scheduler
allocates the processor only to the job with the highest priority
(the smallest P(v)), among all the active jobs (those have been
released by not finished yet).
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A task set is schedulable if in all of its possible job
sequences, all the released jobs finish execution before their
absolute deadlines.

III. BASIC IDEA OF TASK GRAPH TRANSFORMATION

In the following we explain the basic idea of the method
proposed in this paper, namely, how can a DRT task be trans-
formed to reduce its interference to lower-priority tasks and
thus improve the schedulability. First consider the DRT task
in Figure 2-(a) and a particular job sequence corresponding
to path π = (v2, v3, v2, v3, · · · ) as shown in Figure 2-(c).
If we artificially postpone the release time of each instance
of v2 by one time unit, the resulting job sequence is shown
in Figure 2-(d). The workload of the resulting job sequence
becomes “smoother”, which is potentially beneficial to the
schedulability of lower-priority tasks.

The above modification equals to transforming the DRT
task in Figure 2-(a) into the form of Figure 2-(b). The release
separation of edge (v2, v3) is increased by 1. Since v3 still has
to meet its original deadlines, the distance between its delayed
release time and its absolute deadline should be decreased by
1. The release separations on the edges outgoing from v32 are
both decreased by 1 to comply with the original job release
time separation constraints.

Now we define formal notations to describe the above
transformation of a DRT task. We introduce a non-negative
parameter release delay δ(v) for each vertex v. For each
transformed vertex v, the release separation of each incoming
edge is increased by δ(v), and its relative deadline d(v) and
the edge length of each outgoing edge is decreased by δ(v).
In order to distinguish the release separations and relative
deadlines before and after the transformation, we define the
following notations

Definition 1. The transformed inter-release separation

pp(u, v) � p(u, v)− δ(u) + δ(v) (1)

denotes the inter-release separation from u to v after transfor-
mation, and the transformed relative deadline

dd(v) � d(v)− δ(v) (2)

denotes the adjusted relative deadline due to release delay of
the transformed vertex v.

The target of graph transformation is to assign the δ(v)
value for each vertex v of each task, to make the task
set schedulable if it was not originally. In the following
we illustrate why this is not a trivial problem by a small
task set of three simple DRT tasks, with the priority order
P(T1) < P(T2) < P(T3).

1) Consider the original task set and a job sequence in
Figure 3-(a).

All tasks release their first run-time jobs (corresponding
to v1, v2, v5 respectively) at time 0 simultaneously. Then v3
releases a job at 2. The accumulated workload during [0, 3)
is e(v1) + e(v2) + e(v5) + e(v3) = 4 which is greater than
d(v5) = 3, so job v5 misses its deadline at time 3. The task
set τ shown in Figure 3 is not schedulable by SP scheduling
algorithm with the given priority order.

v3

〈1, 3〉

v4

〈1, 3〉
v2

〈1, 2〉

6

4

5

2

(a) original DRT task

v3

〈1, 2〉

v4

〈1, 3〉
v2

〈1, 2〉

5

3

5

3

(b) new DRT task

v2 v3 v2 v3

0 1 2 3 4 5 6 7 8 9 10 11 12

(c) job sequence from the original task

v2 v3 v2 v3

0 1 2 3 4 5 6 7 8 9 10 11 12

(d) job sequence from the new task

Figure 2: Illustration of DRT task transformation
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(a) δ(v3) = 0 (original task), v5 misses its deadline
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(b) δ(v3) = 1, no deadline miss
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T2

T1 v1 v1

T2 v3 v4×

T3

0 1 2 3 4 5

v5×

(c) δ(v3) = 2, v3 and v5 miss their deadlines

Figure 3: Schedulability with different values of δ(v3)
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2) Transform task T2 as shown in Figure 3-(b).

We set δ(v3) = 1, i.e., postpone the release of v3 by
one time unit. The resulting transformed relative deadline of
v3 and the transformed released separation of edges con-
nected to v3 is computed according to Definition 1. After
the transformation, the workload released by path (v2, v3, · · · )
becomes “smoother”. The total released workload during [0, 3)
is e(v1) + e(v2) + e(v5) = 3, so v5 can finishes its exe-
cution by its deadline 3. On the other hand, although v3’s
relative deadline is decreased by 1, it is still schedulable as
e(v1) + e(v3) = 2 = dd(v3).

3) Transform task T2 as shown in Figure 3-(c).

If we set δ(v3) = 2, then pp(v2, v3) = pp(v3, v2). The
workload released by v2 and v3 becomes even “smoother”
than the above case. However, now v3 becomes unschedulable
since its own relative deadline becomes too short (dd(v3) =
3 − 2 = 1). Moreover, setting δ(v3) = 2 not only makes v3
unschedulable, but also causes T3 to misses its deadline. This
is because, although setting δ(v3) = 2 makes the workload
alternatively released by v2 and v3 “smoother”, it makes the
workload of another path (v3, v4, v2, · · · ) even more busty and
causes v5 to misses its deadline, as shown in Figure 3-(c).

The above example demonstrates that postponing the re-
lease time of a vertex v may have both positive and negative
effects to the system schedulability:

• On the positive side, it may smoothen the workload
released by some paths of the task graph and improve
the schedulability of lower-priority tasks.

• On the negative side, it may make the workload
released by some paths more bursty and impair the
schedulability of lower-priority tasks.

• On the negative side, it decreases the vertex v’s own
relative deadline and makes itself more difficult to be
schedulable.

Given a non-trivial task graph, it is not clear whether
delaying the release time of a vertex by a certain amount is
beneficial to the system schedulability or not. The problem
becomes even more complex when setting δ(v) for multiple
vertices. The general complexity of deciding whether there
exists an assignment of δ(v) for each v to make the task set
schedulable is coNP-hard in the strong sense1. A naive solution
would be enumerating all the possible combinations of all the
possible candidate values of δ(v) for each vertex v and check
the schedulability, which is computationally intractable. The
target of this paper is to develop efficient techniques to do
task graph transformation to improve system schedulability.
Although our techniques do not guarantee to find the optimal
assignments of all δ(v), they can quickly come to high-quality
solutions, which make a significant portion of task sets that
was originally unschedulable to become schedulable.

1Even the simpler problem of verifying the schedulability of a task set with
a particular assignment of δ(v) for each v is strongly coNP-hard [26]

IV. EFFICIENT TRANSFORMATION ALGORITHM

A. Algorithm Overview

Since the exact schedulability test of a fixed DRT task
set is already highly intractable, it is not affordable to use
exact schedulability tests in the transformation procedure,
which needs to repetitively analyze the system schedulability
(explicitly or implicitly) to guarantee that the transformation is
towards the right direction of improving system schedulability.

Instead, we will use the abstraction request bound function,
rbf T (t), to perform sufficient schedulability tests efficiently.
Section IV-B will introduce the definition of request bound
function and the method to efficiently compute it. Intuitively,
request bound function rbf T (t) bounds from above the inter-
ference of task T to lower-priority tasks in any time interval
of length t.

Our algorithm transforms individual tasks from the highest
to the lowest priority, i.e., the task with the smallest P first.
With each task, the target is to decrease its interference to
lower-priority tasks as much as possible, while not violating
its own schedulability. If the transformation procedure returns
true, it implies that the transformed task set is schedulable.
However, if the algorithm returns false, it does not mean the
task set is unschedulable. Instead, it only means the trans-
formation procedure, which employs sufficient schedulability
tests based on the request bound function abstractions, cannot
guarantee the schedualbility of the task set. So after the
transformation procedure, we shall apply the exact analysis
in [27] to finally decide the schedulability of the task set.

Figure 4 shows the pseudo-code of the transformation
algorithm. In the original DRT task set τ , the release delay δ(v)
of each vertex v is 0. Transformation is performed from the
highest- to the lowest-priority tasks. For each vertex v in the
current task, it first calculates an upper bound for v’s release
delay, denoted by Δslf , such that setting δ(v) by any value
below Δslf will not make v itself to become unschedulable
if it was originally schedulable. Δslf is computed by routine
Slf_Bound, which uses information of v itself and the request
functions of all higher-priority tasks. Section IV-C will intro-
duce Slf_Bound in detail. If Slf_Bound returns a negative
value, then v may be unschedulable (could be a pessimistic
decision), and the algorithm will not transform such vertices.

If Slf_Bound returns a positive Δslf , we can delay
v’s release time for up to Δslf time units to decrease the
interference from the current task T to lower-priority tasks,
without violating v’s own deadline. Then the algorithm will
decide another bound Δitf for δ(v) by routine Itf_Bound,
to as much as possible decrease the interference to lower-
priority tasks. Section IV-D will introduce Itf_Bound in
detail. The smaller one between the above two bounds is the
final choice of δ(v). After processing all the vertices of a task
T , we calculate its interference function rbf T , which will be
used in the transformation of lower-priority tasks in following
iterations. Finally, the algorithm is successful if it manages
to set δ(v) for all the vertices of all tasks, with which the
transformed task set is guaranteed to be schedulable.

In the following we will first introduce the formal definition
of request bound function rbf T (t) and its efficient computa-
tion method in Section IV-B, and routines Slf_Bound and
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Transform(τ )

1: result← true
2: ∀v ∈ τ : δ(v)← 0
3: for each T ∈ τ in increasing order of P(T ) do
4: for each v ∈ G(T ) do
5: Δslf = Slf_Bound(v, {rbf T ′ |P(T ′) < P(T )})
6: if Δslf ≥ 0 then
7: Δitf = Itf_Bound(v,Δslf )
8: δ(v)← min(Δslf ,Δitf )
9: else

10: result← false
11: end if
12: end for
13: Compute rbf T
14: end for
15: return result

Figure 4: Pseudo-code of the Transformation Algorithm.

Itf_Bound in Section IV-C and IV-D, respectively.

B. Request Bond Function rbfT

We first define the request function of a path in a task:

Definition 2 (Request Function of a Path). Given a DRT task
T , for a path π = (v0, · · · , vl) in graph G(T ), we define its
request function, denoted by rf π , as:

rfπ(t) � max {e(π′) | π′ is prefix of π and p(π′) < t}

where e(π) �
l∑

i=0

e(vi) and p(π) �
l−1∑
i=0

pp(vi, vi+1).

rf π(t) is a non-decreasing staircase function with respect
to t. Each horizontal segment is left-open and right-closed. In
particular, rf π(0) = 0.

Definition 3 (Request Bound Function). For a path set S =
{π1, · · · , πn}, we define its request bound function rbf S as:

rbf S(t) � max
πi∈S

{
rf πi

(t)
}
.

In particular, given a DRT task T , we define its request bound
function, denoted by rbfT , as:

rbf T (t) � max
π∈G(T )

{rf π(t)} .

A request bound function is also a staircase function and
has the similar properties as the request functions. rbf T (t) can
be computed in pseudo-polynomial time [9].

C. Routine Slf_Bound()

The idea of Slf_Bound() is to estimate an upper bound
Rv for the analyzed vertex v’s response time. Then d(v)−Rv

is a safe upper bound for the values of v’s release delay without
violating v’s own deadline, as stated in the following Lemma.

Lemma 1. A DRT task T is guaranteed to be schedulable
with release delay δ(v) satisfying δ(v) ≤ d(v)−Rv , where

Rv � min

⎧⎨
⎩t

∣∣∣∣∣∣e(v) +
∑

P(T ′)<P(T )

rbf T ′(t) ≤ t

⎫⎬
⎭ (3)

Proof: We prove the lemma by contradiction, assuming a
job of vertex v is released at time tr and misses its deadline at
time td with a release delay δ(v). So td−tr = dd(v) = d(v)−
δ(v). We use H(T ) to denote the set of tasks with priority
higher than T . By [26] we know the synchronous release
pattern leads to the critical instant [15] in SP scheduling of
DRT tasks. In other words, if there exists a job sequence where
a job of v misses its deadline, then one can construct a job
sequence where each task in H(T ) releases a jobs exactly at
tr. Therefore, without loss of generality, we assume in the
considered job sequence each of the tasks in H(T ) releases a

job at tr, and use πT ′
to denote the path of a task T ′ ∈ H(T )

corresponds to the job sequence released by T ′ in [tr, td].

Since the job of v misses its deadline, we know for each
time instant t1 ∈ [tr, td] there are unfinished active jobs of
tasks in H(T ) or task T itself. So we know that for any t ∈
[0, d(v)− δ(v)]

e(v) +
∑

T ′∈H(T )

rf πT ′ (t) > t

By the definition of request bound functions, we know that
∀t : rf πT ′ (t) ≤ rbf T ′(t), so the above can be rewritten as

e(v) +
∑

T ′∈H(T )

rbf T ′(t) > t

since δ(v) ≤ d(v)−Rv , the above inequality implies that

e(v) +
∑

T ′∈H(T )

rbf πT ′ (Rv) > Rv

which contradicts (3).

The computation of Rv can be finished in pseudo-
polynomial time since only the values in the range [e(v), d(v)]
need to be checked. If Rv does not exist in the range
[e(v), d(v)], then Slf_Bound returns a negative value, which
means that v may not be schedulable (by sufficient tests) even
with δ(v) = 0 and the algorithm in Figure 4 will discard
such vertex for further calculation of the release delay time.
The fixed-point iteration technique in standard response time
analysis [13] can be applied to further improve the efficiency
for computing Rv .

Using Lemma 1 we can easily conclude the following
theorem:

Theorem 1. Given a DRT task set τ , if the transform algorithm
in Figure 4 returns true, then the resulting new task set τ is
schedulable.

If the transformation algorithm returns false, it does not
necessarily mean that the resulting new task set is unschedula-
ble, since the schedulablility based on request bound functions
is not exact. In that case we use the exact analysis in [27] to
make final decision of its SP schedulablility.

D. Routine Itf_Bound()

Assigning δ(v) by any value below the bound derived
by routine Slf_Bound() in last section guarantees that the
considered vertex v itself is still schedulable. However, as we
discussed in Section IV-C, it is not clear which value is the
best for the schedulability of other tasks (with lower priority).
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v(d, e)

v2(2d, 2e)

Figure 5: Illustration of vertex domination.

In this section, we introduce routine Itf_Bound(), which
decides such a proper value for δ(v). The bound returned by
Itf_Bound() is not always optimal, but in most cases can
significantly improve lower-priority tasks’s schedulability.

Loosely speaking, the target of Itf_Bound() is to find a
δ(v) value to decrease the request bound function rbf T (t) as
much as possible. Clearly, it only makes sense to decrease
rbf T (t) up to a certain t that is relevant to lower-priority
tasks’ schedulability. To find such an upper bound of t, a
straightforward way is to get the maximal relative deadline
of all lower-priority vertices. Actually, it is only necessary
to consider the deadlines of the vertices that are “difficult to
schedule”, which can be formally defined based on the concept
of vertex domination:

Definition 4 (Vertex Domination). For two vertices v and v′
of the same task T , we say that v dominates v′, denoted by
v � v′, if at least one of the following condition holds:

(dd(v)− e(v)) · 
e(v′)/e(v)� ≤ dd(v′)− e(v′) (4)

We say that v strictly dominates v′, denoted by v � v′, if and
only if v � v′ ∧ v′ �� v.

Graphically, Figure 5 reveals the relationship under (4):
For each vertex v(d, e), we can draw series of regions {Ai |
i ∈ N

+} controlled by vi(i · d, i · e) respectively, such as the
shadow regions labeled by v(d, e) and (2d, 2e) in Figure 5.
Note that for i > 1, vi may be virtual vertices which don’t
belong to G(T ). If a vertex v′ satisfying (4) with v, it must
belong to some region controlled by vi. In other words, the
all vertices located in the union of regions ∪Ai are dominated
by the vertex v(d, e).

With the domination relation, now we can formally define
the vertices that are “difficult to schedule”:

Definition 5 (Critical Vertex). A vertex v that is not strictly
dominated by any other vertices is called a critical vertex. The
maximal set of critical vertices of a DRT task set τ is called
the critical vertex set of τ , denoted by CS(τ).

We have the following property of critical vertices:

Lemma 2. A DRT task set τ is SP-schedulable if and only if
each of its critical vertices is schedulable.

Proof: It is clear that if τ is SP-schedulable, all of its ver-
tices (including the critical vertices) must be SP-schedulable.

For each DRT task T ∈ τ , by Definition 4, we can prove
that for any v ∈ G(T ) satisfying v /∈ CS(τ), ∃u ∈ CS(τ)
and ∃v1, · · · , vn /∈ CS(τ) hold that u � v1 � · · · � vn � v.
It is sufficient to show that, given a DRT task T ∈ τ , and two
vertices v, v′ ∈ G(T ) satisfying v � v′, v′ is schedulable as
long as v is schedulable. We prove it by contradictions.

Since v � v′, one of the conditions listed in Definition
4 must be satisfied. Assume v is schedulable but v′ is not
schedulable.

We use β(l) to denote the minimal accumulated amount of
time during which the processor is available for T to execute,
and we know that for any t1 ≤ t2 it holds

0 ≤ β(t2)− β(t1) ≤ t2 − t1 (5)

For simplicity of presentation, we let d = dd(v), d′ = dd(v′),
e = e(v) and e′ = e(v′).

Since v is schedulable but v′ is not, we have β(d′) < e′
and β(d) ≥ e. Acoording to (4), we have that

(d− e) · 
e′/e� ≤ d′ − e′

⇒ d ≤ d′


e′/e� + e− e′


e′/e�
⇒ β(d) ≤ β

(
d′


e′/e� + e− e′


e′/e�
)

⇒ β(d) ≤ β

(
d′


e′/e�
)
+ e− e′


e′/e�
⇒ β(d) ≤ β(d′)


e′/e� + e− e′


e′/e�
⇒ β(d) <

e′


e′/e� + e− e′


e′/e�
⇒ β(d) < e

It contradicts with the assumption that the verticle (d, e) is
schedulable. The contradiction proves the lemma.

Since the schedulability of a task is fully determined by
its critical vertices, when we choose δ(v) for a vertex v in a
higher-priority task T , we only need to decrease itf T (t) for
t up to the maximal deadline of critical vertices with priority
lower than T , called critical window size:

Definition 6 (Critical Window Size). The critical window size
of a task T is defined as:

ρT � max {dd(v)|v ∈ CS(τ),P(v) > P(T )} . (6)

Note that it is possible that when we decrease rbf T (t) for
t ≤ ρT , rbf T (t) may increase for some t > ρT . However, by
Lemma 2 we know this does not affect the schedulability of
any lower-priority vertices that are not in CS(τ), as long as
we can guarantee that the ones in CS(τ) are all schedulable.

Now we introduce another important concept, the domina-
tion relation among paths:

Definition 7 (Path Domination). Given two paths π and π′
derived from task graph G(T ) of a DRT task T , we say π
dominates π′ up to x, denoted by π �x π′ if and only if

∀t ∈ [0, x] : rf π(t) ≥ rf π′(t)
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We say two paths π and π′ are incomparable if and only if
neither π � π′ nor π′ � π holds.

As we discussed in Section III, delaying the release time of
a vertex v may decrease the interference to lower-priority tasks
along a path π, but increase the interference along another path
π′. However, if we can guarantee that after the transformation
it holds π �ρT

π′, then the increase of rf π′(t) will not cause
the worst-case interference of the task T ′, rf π′(T ), to increase
with any t ∈ [0, ρT ], and thus it will not hurt the schedulability
of any lower-priority task.

More specifically, delaying the release time of v will
potentially decrease (but not increase) rf π(t) for all t if π does
not start with v, and will potentially increase (but not decrease)
rf π(t) for all t if π starts with v. Therefore, we shall choose an
as-large-as-possible value for δ(v) to decrease the interference
of the paths that do not start with v as much as possible, as long
as their (decreased) interference still dominates the (increased)
interference of the v-started paths up to ρT . In the following
we will in detail introduce how to find an upper bound for
δ(v) to meet the above requirement.

Definition 8 (Lifting Point). Given a staircase function f , its
lifting point p is defined as: f(p) < f(p+), where p+ � p+ ε
and ε indicates an arbitrary small positive value closing to 0.

Definition 9 (Dominating Point). Given two staircase func-
tions f and g, for any lifting point p on f , we say the lifting
point q on g is the dominating point of p iif:

0 ≤ q ≤ p ∧ g(q) < f(p+) ∧ g(q+) ≥ f(p+). (7)

If for each lifting point (in the time domain [0, ρ)) on f there
exists a dominating point on f ′, we say that f ′ dominates f
up to ρ, which is denoted by f ′ �ρ f .

Lemma 3. Given a concrete path π and a path set S =
{π1, · · · , πn}, it holds that rf π �ρ rbf S iif ∀πi ∈ S, π �ρ πi.

Proof: Necessity: Since ∀πi ∈ S, π �ρ πi, we have that
∀t ∈ [0, ρ] | rf π(t) ≥ rbf S(t). So for each lifting point p on
rbf S , we have that rf π(p

+) ≥ rbf S(p
+). By the definition,

rf π(0) = 0 < rbf S(p
+), so there must exists some p′ ∈ [0, p]

holds (7), i.e., p′ dominates p.

Sufficiency: We prove the sufficiency by contradiction.
Assume there exists some path πk ∈ S having π ��ρ πk. Thus
there must exist t0 ∈ (0, ρ) such that rf πk

(t0) > rf π(t0) ≥ 0.
By the definition of request bound function, we have that
rbf S(t0) ≥ rf πk

(t0) > rf π(t0). By the monotonicity of
rbf S , there must exist p ≤ t0 having rbf S(p) < rbfS(t0) ∧
rbf S(p

+) = rbf S(t0), i.e., p is a lifting point on rbf S before ρ.
Further, ∀t ≤ p ≤ t0 we have rf π(t) ≤ rf π(t0) < rbf S(p

+),
i.e., p cannot be dominated by any lifting points on rf π, which
contradicts the assumption.

Increasing the release delay of a vertex v is beneficial to
reduce the interference along its inclusive paths during [0, ρ+
Δ], but may cause increase of interference along paths started
with v. We will find the dominating paths to bound the impact
of the v-started paths.

In the following, we focus on computing an upper bound of
the release delay δ(v) for each candidate vertex v ∈ G(T ) by

GenerateGreedyPath(u, ρ)

1: π ← (u)
2: v ← u {use v indicating the last vertex of π}
3: while p(π) < ρ ∧Succ(v) �= ∅ do
4: from Succ(v) find v′ with the maximal e(v′)
5: append v′ to the end of π
6: v ← v′
7: end while
8: return π

Figure 6: Greedy algorithm for generating u-started path

checking the existence of dominating paths (up to ρT ) started
with each possible prefix (u, v).

To cover all the possible cases, we should compare each
v-started path with the all candidate non v-started dominating
paths. However, this is not computationally affordable since
the numbers of both v-started and predecessor vertex started
paths are exponential with respect to ρT .

To solve the above problem, we define the v-started request
bound function to bound the request of any v-started path as
below: ∀t ≥ 0

rbf vT (t) � max {rf π(t) | π ∈ G(T ) ∧ π starts at v} (8)

On the other hand, for each vertex u ∈ G(T ) ∧ u �= v, we
use a greedy approach to generate a concrete path π to check
path domination during [0, ρ]. At first we set the initial path π
to be (u). Then from the successive vertices of the last vertex
v of π we select the vertex v′ with largest e(v′) and append
it to the end of π. We repeat this procedure until p(π) ≥ ρ
or is exists no successive vertex of the last vertex of π. The
detailed procedure is depicted in the pseudo-code of Figure 6.

With the two ideas introduced above, we introduce how
to calculate the release delay time, as stated in the following
lemma.

Lemma 4. Given a v-started request bound function rbf vT
which is dominated by rf π of a u-started path π (u �= v) up
to ρ + δ, and for each lifting point p on rbf vT we use pd to
denote its dominationg point on rf π. If we increase δ(v) by
δ, such that δ ≤ dd(v)− e(v) < dd(v) and δ ≤ ρ and

δ ≤ min

{
(p− pd)

2

∣∣∣∣ p is lifting point on rbf vT

}

where p ∈ (0, ρ+ δ) ∧ rbf vT (p
+) > rf π(0

+) = e(u).

then all v-started paths are still dominated by π up to ρ after
increasing δ(v) by δ.

Proof: Since rf π �ρ+δ rbf vT , for each v-started path πi, it
satisfies that π �ρ+δ πi. So ∀t ∈ [0, ρ+ δ] | rf π(t) ≥ rf πi

(t).

As a result of increasing δ(v) by δ, for each vertex u ∈
Pred−(v), pp(u, v) will be increased by δ. And for vertex
v′ ∈ Succ−(v), pp(v, v′) will be decreased by δ. Since δ ≤
dd(v) − e(v) ≤ pp(v) − e(v), the modified pp(v, v′) will not
be less than e(v) > 0, so the successive vertices will not be
overlapped. If the edge (v, v) exists, pp(v, v) keeps its original
value.

By the definition of request functions, for each v-started
path πi, the modified request function rf ′πi

after increasing
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δ(v) by δ holds ∀t ∈ [0, ρ] | rf ′πi
(t) ≤ rf πi

(t + δ). And for

the non v-started path π, its modified request function rf ′π
holds ∀t ∈ [0, ρ] | rf ′π(t+ δ) ≥ rf π(t).

Based on the discussions above, we have that for each t ∈
(0, ρ), there must exists a lifting point p ∈ [0, t+ δ) on rbf vT
such that

rbf vT (p
+) = rbf vT (t+ δ) ≥ rf πi

(t+ δ) ≥ rf ′πi
(t). (9)

If rbf vT (p
+) ≤ rf π(0

+), it is clear that

rf ′πi
(t) ≤ rf π(0

+) ≤ rf ′π(t).

Then consider the case of rbf vT (p
+) > rf π(0

+). Because
of π �ρ+δ πi, there also exists a lifting point pd on rf π which
holds

rbf vT (p
+) ≤ rf π(p

+
d ) = rf π(p

+ − (p− pd))

≤ rf π(t+ δ − (p− pd))

≤ rf ′π(t+ 2 · δ − (p− pd)).

Since 2 · δ ≤ p− pd, it implies that

rbf vT (p
+) ≤ rf ′π(t) (10)

Combining the discussion above, for each t ∈ (0, ρ), we
have rf ′πi

(t) ≤ rf ′π(t). By the definition of request bound
function, we can deduce that rf ′π �ρ rbf ′vT . By Lemma 3, it
proves this Lemma.

For each vertex u ∈ G(T ) \ {v}, by Lemma 4, we can
calculate a safe release delay bound to keep the original pre-
decessor vertex domination. Then we can select the maximal
calculated candidate values, since the request functions of the
non v-started paths will be more smoother with a more greater
δ(v) value.

The pseudo-code of the algorithm calculating the release
delay upper bound based on the above discussions is shown
in Figure 7. In line 3, it first generates the request bound
function rbf vT , reusing the algorithm to compute the request
bound functions in [9]. (but set RF0 to be {〈0, 0, v〉}), to
bound the accumulated workload through any v-started paths
(exponentially many). In line 4 it records the all lifting points
on rbf vT in the domain [0, ρ). The loop from line 5 to line
13 visits each candidate vertex u (�= v) to find the maximal
release delay time. For each vertex u ( �= v), line 6 constructs
a candidate dominating path π which starts with u, by the ap-
proach introduced in Figure 6. If rf π �π+Δ(v) rbf

v
T (checked

in line 8), line 9 and line 10 compute the release delay value
according to Lemma 4. Then it records the maximal value to
ret in line 11. Finally, line 14 returns the minimal value of
the 3 parameters to satisfy the restriction of Lemma 4.

E. Properties of the Algorithm

Complexity: Given a DRT task set τ , by the pseudo-
polynomial algorithm calculating rbf in [9] and Equation (3),
we can calculate Δslf (v) in line 4 of Figure 4 in pseudo-
polynomial time. As shown in Figure 7, the number of
iterations to execute in algorithm CalDelayBound is linear
with respect to the number of vertices in τ , and all sub-
routines in Figure 7 are with pseudo-polynomial complexity.

CalDelayBound(v,ρT ,Δslf )

1: ρ← ρT +Δslf

2: ret← 0
3: Generate rbfv

T for the v-started paths up to ρ
4: RS ← {p | rbf vT (p) < rbf vT (p

+)}
5: for each u ∈ G(T ) \ {v} do
6: π ← GenerateGreedyPath(u, ρ)
7: generate the request function rf π for π
8: if ∀t ∈ [0, ρ] | rbf vT (t) ≤ rf π(t) then
9: DS ← {〈p, pd〉 | p ∈ RS , rbf vT (p

+) > rf π(0
+)}

10: tem← min {(p− pd)/2 | 〈p, pd〉 ∈ DS}
11: ret← max(ret, tem)
12: end if
13: end for
14: return min{ret, ρT ,Δslf}

Figure 7: Algorithm for calculating release delay bound.

Thus the overall complexity of calculating Δitf (v) is also
pseudo-polynomial.

Further, the nested loop in Figure 4 is bounded by the
number of vertices in τ , so the overall time complexity of the
algorithm in Figure 4 is pseudo-polynomial.

Improvement Monotonicity:

Theorem 2. Given a DRT task T ∈ τ which is SP-schedulable
with a priority order P , after any step in the vertex transfor-
mation in Figure 4, T is also SP-schedule.

Proof: Consider the transformation of an arbitrary higher-
priority task T ′ ∈ τ |P(T ′) < P(T ) by the transforming
algorithm in Figure 4.

For each v′ ∈ G(T ′), Δitf is bounded by Figure 7. By
Lemma 4, we can conclude that with Δitf , the transformation
of v′ will not result in increased interference during [0, ρT ′ ],
so for each v ∈ CS(τ) ∩ G(T ) the request function up to
d(v) ≤ ρT ′ (by (6)) will not increase after the transformation
of v′. Thus, the critical vertices of G(T ) will keep their
schedulability, and by Lemma 2, we know task T will still be
schedulable after any adjustments of higher-priority vertices.

Then we consider the transformation of T itself. By Lemma
1, we know that with the Δslf calculated by (3), each vertex v
will not lose its original schedulability after the transformation.

Therefore, this theorem is proved.

V. EXPERIMENTAL EVALUATION

The target of the experiments in this section is to evaluate
the effectiveness of the proposed task graph transformation
algorithm by comparing the number of schedulable task sets
before and after the transformation.

A. Random Task Set Generation

The utilization of a DRT task T is the highest ratio between
the accumulated e(v) and the sum of release separation of
vertices among all simple cycles in G(T ) [23]. The total
utilization of a task set is the sum of individual tasks’ uti-
lizations. Clearly, a necessary condition for a DRT task set to
be schedulable is that the total utilization is bounded by 1.
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A task is generated as follows. A random number of
vertices is created, connected by edges according to a specified
out-degree. Edges are placed so that the graph is strongly con-
nected. After choosing edge labels with a uniform distribution
in a specified range, the deadline d(v) of each vertex v is
chosen with a uniformly distributed ratio to the minimal release
separation of outgoing edges from v. Finally, the execution
time e(v) is generated with a uniformly distributed ratio to
d(v). The relative deadline of each vertex v is constrained by
the minimal p(v, v′) of all edges outgoing from v.

The procedure of generating task sets is as follows. First
a task set of two randomly generated tasks is constructed and
evaluated. Then we randomly generate a new task and add it
to the task set in the last step, and repeat this procedure until
the total utilization of the task set exceeds 1. Then a new task
set of two newly generated tasks is constructed. The whole
procedure repeats until a sufficiently large number of task sets
are generated and evaluated. The total utilization domain (0, 1]
is divided into X ranges with the same step 1/X , and for each
range the evaluation results are counted independently.

In order to evaluate the performance over different types of
tasks, we create light tasks, medium tasks and heavy tasks, as
shown in the following table. These types differ in the range
of out-degree and the ragen of execution times. We conduct
experiments for these three settings respectively.

Type Vertices Out-degree p e

Light [7, 15] [1, 3] [50, 300] [1, 4]

Medium [7, 15] [1, 4] [50, 300] [1, 6]

Heavy [7, 15] [1, 5] [50, 300] [1, 8]

We use the minimal deadline of the all vertices of G(T )
to decide task T ’s priority: the smaller deadline the higher
priority. If more than one tasks share the same priority value,
we give a random priories order between them.
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Figure 8: Improvement of acceptance ratio.

The effectiveness of our transformation algorithm is eval-
uated by the metric acceptance ratio: the ratio between the
number of schedulable task sets and the total number of
generated task sets. We compare this ratio between

• Transformation: the algorithm proposed in this paper.

• Original: the exact SP schedulablility test algorithm
without task transformation proposed in [27].

Figure 8 shows the experiment results with the combined
task types (randomly select one from the three types for current
generated task). Experiment results with different types of
tasks are illustrated in Figure 9. For each point in these figures,
at least 5000 randomly generated task sets are evaluated.
From the results we can find that the acceptance ratio can
be improved significantly with our transforming algorithm
under different settings. In the range of low total utilization
(below 0.3), all the generated task sets are schedulable with-
out transformation, so the improvement is zero. Finally, the
improvement decreases again as the total utilization increases,
where the task sets are very difficult to become schedulable
due to the high total utilization.

We also evaluate the efficiency of the proposed transfor-
mation algorithm. The experiments use an implementation in
Python and execute on a desktop computer with an Intel Core
i7-2600 CPU (3.40GH). Both our approach and the original
approach in [27] execute the refinement-based exact sched-
ualbility analysis once. The difference is that our approach
will first do task transformation before that. However, in all
the experiments we have conducted the extra timing overhead
incurred by task transformation is very low, comparing to
the time used for the exact schedulability analysis. (typically
< 5% extra time overhead). So we can conclude that the task
transformation is very efficient, and can be used to handle
large-scale task systems.

VI. CONCLUSIONS AND FUTURE WORK

We proposed to use task graph transformation to improve
the schedulability of DRT task systems. The transformation
is performed by inserting certain amount of delay before the
release time of each vertex. However, in general the release
delay may lead to both positive and negative effects of the
system schedulability. The challenge is how to efficiently
decide the delay for each vertex of each task to maximize
the chance to transform unschedulable task sets to schedulable
ones. We developed efficient techniques to solve this prob-
lem, which guarantees the interference workload of critical
vertices not to be increased in the transformation procedure
in the sense that it will never degrade the schedulability of
any individual task. This property can efficiently guide the
transformation procedure to quickly come to a high-quality
solution. Experiments with randomly generated task sets shows
our proposed techniques is very efficient and can significantly
improve the schedulability of task graph systems. In the future,
we will extend this work to deal with more general task
graphs with precedence constraints [10], [6] and task graph
systems of parallel workload with fork-join semantics [28] on
multiprocessor systems, with both global scheduling [18] and
partitioning based scheduling [11], [12].
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(a) Improvement of LIGHT type of tasks.
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(b) Improvement of MEDIUM type of tasks.

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Total utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

Transformation
Original

(c) Improvement of HEAVY type of tasks.

Figure 9: Comparison of acceptance ratio between different task types.
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