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Abstract
Real-time systems are reactive computer systems
that must produce their reaction to a stimulus
within given time bounds. A vital verification re-
quirement is to estimate the Worst-Case Execution
Time (WCET) of programs. These estimates are
then used to predict the timing behavior of the over-
all system. The execution time of a program heavily
depends on the underlying hardware, among which
cache has the biggest influence. Analyzing cache
behavior is very challenging due to the versatile

cache features and complex execution environment.
This article provides a survey on static cache anal-
ysis for real-time systems. We first present the
challenges and static analysis techniques for inde-
pendent programs with respect to different cache
features. Then, the discussion is extended to cache
analysis in complex execution environment, followed
by a survey of existing tools based on static tech-
niques for cache analysis. An outlook for future
research is provided at last.
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1 Introduction

Real-time embedded systems not only exist in industry domains, such as automotive electronics,
avionics, telecommunication, medical systems, etc., but are deeply immersed in our everyday life
due to the rapid progress of mobile and embedded technology. A real-time system should not only
provide logically correct functionality, but moreover, it must meet timing requirements as stated
in the system specification [21]. In hard real-time systems, such as aerospace systems, a timing
error may result in catastrophic consequences. A major task in real-time system verification is to
analyze the timing behavior of the system before deployment in order to guarantee that no timing
violation occurs at run time.

A real-time system is typically composed of many tasks that cooperate to provide the required
functionality. To verify the satisfaction of the timing requirements of the system, one must first
know how long each task (or program) may execute. However, this is not an easy problem, because
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Figure 1 The distribution of execution times of a program.

the execution time of a program may vary widely as a result of many complex factors, such as
data inputs, hardware features, execution contexts, etc. Among all the possible execution times
(represented by the yellow range in Figure 1), the minimum and the maximum are called the
Best-Case Execution Time (BCET) and the Worst-Case Execution Time (WCET), respectively.
The main objective of program-level timing analysis is to estimate the WCET [130], which is then
used in system-level timing analysis, such as a schedulability analysis [34, 115].

The common practice in industry has been, and partly still is, to measure the end-to-end
execution latency of a task [127], by sampling its executions in different scenarios (depicted as the
blue vertical lines in Figure 1). The maximal observed execution time increased by a safety margin
is used as the WCET estimate of the measured program. This approach is called dynamic timing
analysis in the real-time community. However, the worst case is not guaranteed to be covered by
measurements. Thus, the observed WCET is in general an underestimation of the actual WCET.
Analytical methods that cover all possible execution scenarios (without executing the analyzed
program) and provide safe upper bounds on the WCET are desirable for hard real-time systems.
They are usually called static timing analysis.

Unfortunately, such upper bounds cannot be easily estimated due to both the complexity of
the program itself and the uncertainty from the execution environment. The program may execute
different control flow paths depending on input, and these different paths may need different
execution times. The execution platform may exhibit a dependence of the execution time of
instructions on the execution state of the platform. This execution state consists of the occupancy
of the platform resources. For example, an instruction may exhibit very different execution
times depending on whether instruction or operand fetches hit or miss the cache. The execution
environment, finally, may interfere with a program’s execution by preempting its execution and
thereby increasing the program’s response time. Hence, these three factors all have an impact on
the program’s execution time.

Exhaustive exploration of the combined space of control flow paths and paths through the
architectural state space is infeasible due to the size of this space. A conservative abstraction
of the execution platform is typically used in static timing analysis to increase efficiency. This
abstraction may adversely lead to an overestimated WCET. Efforts have to be exerted to reduce
the overestimation as much as possible, to avoid the need to over-provision system resources.

All approaches to static timing analysis compute bounds on the execution times of a program
starting with bounds on the execution times of individual instructions occurring at points in
the program. Their execution times typically depend on the execution state of the platform.
Depending on this state, an instruction’s execution may suffer from timing accidents, which
may increase the execution time by their associated timing penalties. For example, a memory
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access may suffer from a cache miss, which increases its execution time by the cache miss penalty.
The actual execution state is the result of the execution history. Different control flow paths
through the program, in general, result in different execution states and may thus exhibit different
execution times. A classification of an occurrence of a memory access as a cache hit or a cache
miss must hold for all executions of this memory access.1

Static timing analyses determine an invariant for each program point that describes all possible
execution states when control reaches this program point. Such an invariant allows excluding
many timing accidents, such as cache misses, pipeline stalls, etc., and safely allow subtracting the
associated timing penalties from the worst-case upper bound on the execution times.

Among the hardware features to consider in timing analysis, caches have the biggest influence
on execution time [59]. A precise analysis of the cache behavior does therefore have a great impact
on the precision of the overall WCET estimation.

Cache is a small on-chip memory to bridge the speed gap between the processing unit and the
much slower off-chip memory by storing a portion of the content from main memory. If a data
request hits in the cache, it takes only very few processor cycles to deliver the data from the cache
to the processing unit; otherwise, in the case of a miss, the CPU has to fetch the data from main
memory, which nowadays consumes hundreds of processor cycles.

The role of cache analysis for WCET estimation is to predict the behavior of a program on
the platform’s caches. For example, cache analysis may provide a safe bound on the number of
cache hits or misses when a program executes on some given platform; it may also categorize the
accesses to memory blocks in programs as definite hits or misses.

In [130], WCET analysis techniques and tools are surveyed. Due to its importance in timing
analysis and its complexity, cache analysis alone deserves an in-depth discussion.

The rest of the article is organized as follows. First, we give background knowledge on WCET
estimation and caches in Sec. 2. Then, we present the problems and solutions for the intensively
researched LRU caches in Sec. 3. A survey of the results on non-LRU caches is provided in
Sec. 4. In Sec. 5, the discussions are extended to cache analysis in multi-tasking and multi-core
environments where programs interfere with each other on shared caches. A summary of WCET
analysis tools based on static cache analysis is given in Sec. 6. We present an outlook for future
research at last.

2 Background Knowledge

We first present an established static WCET analysis framework to exhibit its main work flow
and where cache analysis steps in. Then, the basic concepts on cache organization, behavior and
analysis are introduced.

2.1 A Classical WCET Analysis Framework
The objective of static timing analysis is to compute safe lower and upper bounds on the execution
times of programs. These are also called BCET and WCET estimates, respectively. The WCET is
observed in a particular execution scenario with some execution context, such as data input and
initial hardware state. Theoretically, the WCET is not computable; otherwise, one could solve the
halting problem. In this article, we assume that all real-time programs terminate so that their
WCET can be computed.

1 Note that this is a slight simplification to ease understanding. Later on we will explain why it may make
sense to partition sets of memory accesses by contexts. The distinction between the occurrence of a memory
access or an instruction and one, several, or all of their executions is of utmost importance.
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Figure 2 The separated path and cache analyses framework for WCET estimation.

Most static analyses are performed on the binary code rather than the source code of the
program, because the two need not have the same control flow due to compiler optimizations, and
the source code does not determine the precise location of instructions and program variables in
memory, which are needed for instruction- and data-cache analysis.

A naïve, straightforward analysis would enumerate all possible executions to find the largest
execution time. However, this method does not scale. Consider a loop with a conditional branch
inside. If we do not know whether or not the branch is taken in each iteration, the number of
program paths to be explored is exponential with respect to the number of loop iterations. To
tackle the complexity, the state-of-the-art analysis techniques adopt the framework in Figure 2.

The first step is to reconstruct the Control Flow Graph (CFG) of the program. A CFG is
a directed graph, with each vertex representing an instruction and each edge representing the
control flow. We say there is a program point right before each vertex in the following discussion.
A CFG typically has a single entry and a single exit corresponding to the start and the end of
the program. The analysis is then conducted on the CFG. In some work [93], WCET analysis is
conducted in a modular way on program functions to reduce analysis overhead.

This step is followed by a Value Analysis, which computes enclosing intervals for all potential
values of registers and local variables and also determines loop bounds. This is a more or less
standard Interval Analysis as invented by P. and R. Cousot [30]. The next step is to compute an
upper bound on the execution time of each instruction (Ci in Equation 1), which heavily depends
on the underlying hardware features, such as pipelines [69], branch predictors [18, 28] and caches.
Cache analysis is an important part of this step, which is often referred to as micro-architectural
analysis or low-level analysis.

With the above results, the final task is to find the execution path that exhibits the longest
execution time, typically referred to as WCET calculation. An established approach is the Implicit
Path Enumeration Technique (IPET) [71], the main idea of which is to transform the problem of
searching the worst-case execution path into searching the execution counts for each instruction
such that the execution time is the largest. This can be formally modeled as an integer linear
programming (ILP) problem, in which the execution time of a program is represented by the sum
of execution latencies of all instructions. Thus, the WCET can be obtained by maximizing the
execution time (the objective function of the ILP problem):

WCET = max

N∑
i=1

Ci ×Xi (1)
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Figure 3 A common memory architecture.

In Equation (1), N refers to the total number of instructions, which is a constant obtained
from the CFG; Ci is the WCET bound for the ith instruction, which has been computed in the
third step; the variable Xi stands for the execution count of the ith instruction. Xi is subject to
constraints induced by the program structure. In the following, the variable di_j captures how
often the edge from instruction i to instruction j is taken. Then, Xi must be equal to both the
total execution counts of all its incoming edges and those of all outgoing edges2, which can be
expressed as follows.

∀i,Xi =
∑

all incoming edges
d∗_i =

∑
all outgoing edges

di_∗ (2)

Other program behavior can be constrained as well. For example, the loop iterations should
be bounded in advance either manually or by automatic analysis [49]. They can be modeled as
linear functions relating the execution counts of the loop body and the loop entry. All available
constraints are expressed in one ILP problem, whose maximal solution bounds the WCET from
above. To improve analysis efficiency, sequences of instructions (with no branch along the path)
are combined into basic blocks and represented by a single vertex in the CFG.

The key feature of this framework is the separation of micro-architectural analysis from WCET
calculation. In general, this approach is pessimistic. However, the sacrifice of precision is rewarded
by a significant improvement in analysis efficiency.

2.2 Cache Organization, Behavior and Analysis
Cache is a small, high-speed memory residing on the processor chip (shown in Figure 3) that
stores a copy of a portion of the instructions and/or data in main memory. Each access to the
cache results in either a hit or a miss. One can distinguish two types of cache misses. A cold miss
occurs when a data element, absent from the cache, is loaded for the first time. If the cache is full
and a cache miss occurs, a data element needs to be evicted. A replacement miss occurs when an
evicted element is reused. Cache hits are the result of memory reuse.

2.2.1 Cache Organization and Behavior
In most processors, a cache line (the unit for cache access) contains multiple data elements. An
access to one element causes the whole cache line to be loaded into the cache. As a result, a
following access to another element of the same cache line also results in a cache hit. Besides,
consecutive accesses to the same data element result in cache hits as well, an example of which is
the execution of a loop. The above two types of reuses are commonly referred to as spatial reuse
and temporal reuse, respectively, the pervasiveness of which is expressed by the well-known locality
principle.

2 For either the entry or the exit instruction, one can simply constraint the execution count to be exactly 1.
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Figure 4 Common cache replacement policies.

Some processors are equipped with two or more levels of caches, as a fine-grained trade-off
between cost and speed. The lowest level3 (namely L1 cache) is usually divided into a private
instruction cache and a private data cache, each of which is typically no larger than 32 KB and
has an access latency of 1− 2 cycles. If a memory access misses in the L1 cache, the L2 cache is
queried. The capacity of L2 caches may range from hundreds of KB to several MB, with an access
latency of around 10 cycles. In some high performance multi-core processors, an L3 cache may
also be deployed to further expand cache capacity. Misses in the last level cache trigger accesses to
the main memory via the off-chip memory bus, causing a delay in the order of hundreds of cycles.

Like other storage devices, addressing is an important feature of the cache design. Some
processors adopt the set-associative organization, in which the address space is partitioned into
independent sets. Every set has a fixed number of ways, each of which refers to a single cache
line in every cache set. The total number of ways within a cache set is called associativity. To
load a memory block, the processor first determines which cache set the block maps to. Then a
lookup into the target set is performed for a free cache way. If all the cache ways are occupied, a
replacement policy determines which old block to evict to make room for the new block. In this
article, we consider four common policies illustrated in Figure 4, assuming a 4-way cache set.

The least-recently-used (LRU) policy replaces the block that has been used least recently. The
illustration of LRU in Figure 4(a) is a first abstraction from the actual hardware implementation.
Each cache way in an LRU cache set is associated with a fixed age, which is received by the
block in the corresponding cache way. Figure 4(a) illustrates how the positions of the blocks are
reordered upon a cache hit and a cache miss.

However, most commercial processors do not employ LRU, because it requires complex hardware
implementation and further leads to higher power consumption. Non-LRU replacement policies,
such as First-In-First-Out (FIFO), Most-Recently-Used (MRU) and Pseudo-LRU (PLRU), are
adopted instead since they are simple to implement and still have similar average performance as
LRU [58].

Figure 4(b) shows how the FIFO replacement policy works. A cache hit does not change the
cache state. Upon a cache miss, all the memory blocks shift one position downwards, evicting the
block in the bottom cache way; then the new block is installed in the top-most cache way. Again,
this representation is an abstraction from the actual hardware implementation, which does not

3 A cache level is lower if it is closer to the processing unit; the highest level is typically called the last level.
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shift memory blocks from one cache line to another, but rather maintains a modulo-4 counter to
determine the next block to replace.

The MRU cache (shown in Figure 4(c)) maintains a bit for each cache way (called MRU-bit)
to approximate the recency of access. Bit 1 means the block was visited recently. Upon a hit, the
MRU-bit of the hit block is set to 1. Upon a miss, the top-most way with MRU-bit 0 is taken by
the new block, and its MRU-bit is set to 1. Eventually there is only one cache way with MRU-bit
0. When this way is visited—in the example the access to c—the MRU-bit is turned to 1, and all
the other MRU-bits are set to 0. This is called a global flip.

PLRU is a tree-based approximation of LRU (Figure 4(d)). It arranges the cache ways at
the leaves of a binary tree with k−1 bits, where k is the cache associativity. Bit 0 and 1 on the
branches indicate the left and the right subtrees, respectively. Following the bits downwards from
the root, the cache line to be replaced or refilled can be found. After an access (either hit or miss)
to a cache way, all tree bits along the path from it to the root are set to point away. It is possible
that a cache set contains invalid cache lines. We assume the tree-fill policy, by which the line to
be filled or replaced is always determined by the tree bits.

In most architectures, cache sets are completely independent of each other. This makes the
independent analysis of programs’ behavior on different cache sets possible. Throughout this
article, we focus on the cache behavior in one set, and may use cache to refer to a cache set to
simplify the presentation when appropriate.

2.2.2 Cache Analysis
The objective of cache analysis is to statically determine the cache behavior of a program. Its
results can be used for performance analysis and optimization. The results may be of several
types: one is the classification of individual memory accesses in a program as hits or misses. Such
a classification of memory accesses can be used in a cooperating pipeline analysis to determine
whether the pipeline may have to stall on an instruction or operand fetch. Another is a bound
on the number of cache loads in a segment of the program. This allows, under certain conditions,
just adding an accumulated penalty to the execution-time bound for memory accesses that could
be neither classified as cache hits or misses. The former type of cache analysis could be called a
classifying cache analysis, one instance of the latter, relevant for practice, is known as persistence
analysis.

A typical use of the results of a cache analysis in real-time systems is estimating the BCET and
WCET of programs. The bigger the percentage of hits that will happen during execution it can
predict, the tighter the WCET estimation is. On the other hand, predicting a higher percentage
of actual misses leads to tighter BCET estimation.

The designer of a cache analysis faces several questions: the first one is whether the analysis
is to be a classifying or a persistence analysis. The second question is by which method cache
behavior should be analyzed. Associated with the second question are the questions of the
granularity of the analysis and the representation of the cache behavior properties.

Let us illustrate this rather abstract discussion with the example of classifying cache analyses.
The most precise analysis would predict each executed memory access to be either a hit or a
miss—here it is vital to make the difference between an executed memory access and the occurrence
of an instruction involving a memory access in a program. We have assumed that all real-time
programs terminate. Hence, any program would execute only finitely many memory accesses, so
that such an analysis would in principle be possible. However, the corresponding analysis would, in
general, not scale. On the other end are cache analyses that would classify occurrences of memory
accesses as always hit or always miss, where always means for all executions of this occurrence of
the memory access. However, experience has shown that the actual execution times of memory

LITES
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accesses associated with one occurrence of a memory access may vary widely. This means that
just taking their upper bounds may largely overestimate the memory-access costs. Precise and
efficient analyses should attempt to classify subsets of executed memory accesses corresponding to
one occurrence, such that the accesses in the subsets have some homogeneous timing behavior.
The subsets would be characterized through control flow criteria, in the following called contexts.
The most important examples for contexts are different iterations of loops.

To approach the second question raised above, one needs to identify the information about
cache contents—in the following mostly called concrete cache states (CCS)—to be computed by a
classifying cache analysis. This information would provide answers to the question, are all memory
accesses belonging to this occurrence (in this context) hits or are they all misses? One solution
would be to collect at each program point the set S of all concrete cache states that are possible
when program control reaches this program point (in this context). Such an analysis would again
not scale. Instead, one can represent sets of concrete cache states by abstract cache states (ACS).
Each abstract cache state (compactly) represents a set of concrete cache states. As we will see
later, two types of such abstract cache states are of interest. Consider the set S of all concrete
cache states that are possible at a program point. An abstract Must cache state will represent the
information: which memory blocks will be in each of the possible concrete cache states in S. This
is obtained by some kind of intersection applied to the elements in S. Likewise, an abstract May
cache state will represent the information: which memory blocks may be in one of the concrete
cache states in S. This is obtained by some kind of union applied to the elements in S.

3 Analysis of LRU Caches

For decades, a majority of research on cache analysis has focused on caches with LRU replacement
strategy. In this section, we survey the main analysis techniques with an emphasis on the approach
based on Abstract Interpretation (AI) [38]. This technique is realized in the aiT tool of AbsInt
[57], which is widely used in industry. Since programs spend most of their execution time in loops,
a sub-section is dedicated to the analysis of the cache behavior in loops. The big picture on LRU
caches is completed with further discussions on data cache and multi-level cache analyses.

3.1 Abstract-Interpretation-Based Approaches
The first cache analysis based on abstract interpretation (AI) was proposed by Ferdinand and
Wilhelm in the 1990s [1, 38]. The overall approach works in two phases:
1. An AI-based cache analysis computes abstract cache states at all program points as part of a

fixed-point solution;
2. These abstract cache states are queried in order to classify memory accesses.

3.1.1 A Short Introduction to Abstract Interpretation
Abstract interpretation [30] is a static program analysis method based on a semantics of the
considered programming language. Instead of executing the program on the concrete domain of
values, it executes an abstracted version of the program on an abstract domain of descriptions of
values. In the case of cache analysis, the program abstraction only describes the memory-access
behavior of the program, i.e., it performs all memory accesses that the program would execute.
This abstracted program works on abstract cache states, which are descriptions of sets of concrete
cache states. One abstract cache state is associated with each program point. Whenever the
analysis encounters a memory access, it updates the abstract cache state in a way induced by the
update that the processor would perform on the concrete cache states. Whenever the control flow
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Figure 5 An example to show the v relation w.r.t. the Must domain.

of the program merges, e.g. at the end of a conditional or at the header of a loop, it combines the
incoming abstract cache states in a sound way.

Gary Kildall [64] has recognized that the abstract domains of typical data-flow analyses are
lattices, i.e., partially ordered sets where all subsets have least upper bounds. The partial order
reflects the relative information content of two lattice elements. By convention, elements lower in
the lattice represent more information than information higher in the lattice, i.e., an element a
below or equal to an element b in the lattice, a v b, contains no worse information than b. The
domain of abstract cache states together with a partial order reflecting the amount of knowledge
about cache contents, in this sense, also forms a lattice.

Consider two abstract Must cache states â and b̂ (as shown in Figure 5). Abstract cache state
â represents just one concrete cache state, containing memory blocks {u, x, y, z} with the ages 1,
2, 3, 4. Abstract cache state b̂ represents the set of concrete cache states with memory block u
having age 1, x having age at most 3, z having age at most 4, and possibly one more (unknown)
block at age 2, 3, or 4. â v b̂ means that all the concrete cache states represented by â are also
represented by b̂. In particular, this implies that all the memory blocks known to be contained
in the concrete cache states described by b̂, in the example above u, x, z, are also known to be
contained in the concrete cache states described by â. Furthermore, â additionally tells us that,
(1) block y is guaranteed to be in the cache while b̂ does not; (2) the age upper bound estimated
for block x in â is smaller than that in b̂. Clearly, the abstract cache state â contains better
information than b̂. As stated above, at control flow merge points cache analysis must combine
the incoming information in a sound way. The operation applied to the incoming abstract cache
states is the least upper bound, t, of the lattice. This is shown in Figure 6. As said above and
made more precise later, it is some form of intersection. It determines (the best) safe information
holding for all incoming paths.

The lowest element in the lattice of abstract cache states, ⊥, called bottom, describes the
empty set of concrete cache states. It is the initial analysis information at all program points but
program entry. If we do not have any information about the cache contents at program entry, the
highest lattice element, >, called top, is used as initial analysis information. It describes the set of
all concrete cache states, and thus the absence of information about cache contents.

The update functions are, in general, monotone, so that information, once computed, is not
lost again. A fixed-point iteration over the control flow graph of the program is guaranteed to
terminate and deliver the least fixed point as solution. Essential for termination is the finiteness
of the lattice.

Let us summarize this short introduction to AI by listing the main ingredients of a particular
abstract interpretation. The designer needs to choose or define an abstract domain, a lattice of
abstract values, which are descriptions of (sets of) concrete values. The partial order defines the
relative information content of two lattice elements. The least upper bound is the operation to join
abstract values flowing to a program node through different control flow graph edges. Abstract
update functions for an instruction reflect the instruction’s effect on the incoming abstract values.

LITES
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Table 1 Cache Hit/Miss Classification.

Classification Cache Access Behaviors Described Analysis
Always Hit (AH) Block is guaranteed to be in the cache upon each memory access Must
Always Miss (AM) Block is guaranteed not to be in the cache upon each memory access May
Not Classified (NC) Cannot be classified by any of the above classifications /

{ a } {  } { c, f } { d }

{ c } { e } { a } { d }

{  } {  } { a, c } { d }

Set intersection + Maximal ageAge 1 2 3 4

ĉ

c2
^
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Figure 6 An example to demonstrate the Must join function.

3.1.2 Classification of Memory Accesses
Querying an abstract cache state, resulted from a cache analysis, for an accessed memory block
may yield qualitative properties as listed in Table 1. To determine whether the memory access to
m is always hit (AH), one simply checks the existence of m in the abstract Must cache reaching its
program point. Similarly, to determine whether the memory access to m is always miss (AM), it
suffices to know that m is not in the abstract may cache reaching its program point. If a memory
access can be neither classified as AH nor as AM, it is classified as NC. An NC classification can
have two reasons: (1) some of the executions of a memory access hit in the cache and others miss
in the cache, or (2) the analysis method overapproximates the set of concrete cache states and
thereby fails to deliver the correct classification. Research results show that these properties are
able to cover most access behaviors for LRU caches [38]. The classifications can then be expressed
as linear constraints on the execution cost of each instruction (basically each instruction generates
a single memory access) and later integrated into a WCET estimation. In architectures without
timing anomalies [22, 106], if the classification of a memory access is NC, it is safe to treat it as
AM. The properties AH and AM in Table 1 are explored by independent analyses, which are now
described in detail.

3.1.3 Must Analysis
The objective of a Must analysis is to compute a Must-ACS at each program point, which represents
the common cache contents in all possible executions leading to this program point. An age is
associated with each memory block in the Must-ACS, which is an upper bound of its ages in
all CCS. We use a graphical representation to show a Must-ACS, in which blocks are grouped
according to their ages, e.g., in Figure 6. The set of CCS represented by a given Must-ACS is
formally defined by the concretization function below, where c and ĉ denote concrete and abstract
cache states, respectively, and age(c,m) refers to m’s age in cache state c (applies to both concrete
and abstract states).

concMust(ĉ) = {c | ∀m ∈ ĉ : m ∈ c ∧ age(c,m) ≤ age(ĉ,m)} (3)

The Must-ACS at the program entry is initialized with > representing all concrete cache
states if the initial cache content is unknown; all other nodes are initialized with ⊥ representing
the empty set of concrete cache states. A fixed-point computation is employed to compute the
Must-ACS at each program point, during which two main operations over the Must-ACS are
involved.
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Figure 7 An example to demonstrate the Must update function.

A join function combines several Must-ACS into a single Must-ACS when the control flow
merges. The resulting Must-ACS takes the intersection of the sets of blocks in all the incoming
states and assigns to each block its maximal age from the incoming states, as shown in Figure 6.
An update function Û(ĉ, x) defines how an abstract state ĉ is changed due to an access to memory
block x, specifically, how the age of each block in the ACS is updated. Figure 7 shows an example.
A correct Must update function guarantees that the age of each block in the computed ACS is a
safe age upper bound for all possible represented CCS. For example in Figure 7, the age of d in ĉ
implies that there could be a CCS represented by ĉ, in which d has an age of 4, such as c2. By
loading x, we can no longer guarantee that d still stays in any resulting CCS. Thus, d has to be
removed from the computed abstract state ĉ′.

3.1.4 May Analysis
May analysis computes a May-ACS at each program point, which represents all potentially cached
contents in all possible executions leading to this program point. If block m does not exist in the
May-ACS at the reaching program point, we can guarantee the access to m is AM. Unlike the
Must-ACS, the age of each block in a May-ACS is the lower bound of its ages in all represented CCS,
as expressed by the May concretization function below, with the same notions as in function (3).

concMay(ĉ) = {c | ∀m ∈ c : m ∈ ĉ ∧ age(ĉ,m) ≤ age(c,m)} (4)

The May join function takes the union of the sets of blocks in all incoming May-ACS and
assigns each block the minimal age in all incoming states. The May update function is exemplified
in Figure 8, where ĉ is the May-ACS representing the concrete states c1 and c2. Take memory
block d for example. d’s age in the May-ACS is the minimum of those in c1 and c2. After the
access to x, d is evicted from c2. However, d still remains in the resulting May-ACS ĉ′, because ĉ′
must soundly represent the other resulting CCS c′1 in which d remains. To determine whether
the memory access to m is AM, it suffices to know that m is not in the May-ACS reaching its
program point. A block m is not in the final May-ACS at a program point because either m has
never been loaded or enough different blocks have been loaded to evict m from the cache. May
analysis does not directly help with tighter WCET estimations, however, predicting more misses
results in better estimations on BCET.

3.2 Improving Precision by Using Contexts
In practice, merely relying on classifying analyses, such as Must and May analyses, may still
largely overestimate the memory-access cost and thus the WCET. Methods to improve the
knowledge about the cache behavior are proposed by taking program structures into consideration,
in particular loops. The cache behavior of programs in loops is somewhat special: the first iteration
typically loads the contents into the cache; later iterations profit from the first iteration since
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accesses to the cached contents are hits. The concrete state on return to the loop header may
thus be very different from that reaching the loop from the outside. This is also reflected in cache
analysis where the abstract state upon return from the first iteration may be very different from
that on the entrance to the loop. Naïvely applying the join function to these two abstract cache
states would produce very bad information about the cache behavior of the loop. In such cases, a
large percentage of the accesses to the memory blocks in the loop cannot be classified as either AH
or AM by the previously introduced Must and May analysis. However, there are two alternative
ways to tighten the WCET estimation. The first one exploits the above observation by virtually
unrolling each loop followed by a Must analysis. An access to a memory block that in the first
iteration would be classified as AM, and that in the other iterations would be classified as AH
would then be classified as FM (first miss). The other alternative would be to bound the number
of cache misses for all the accesses to a memory block within a certain program scope. These
two analysis techniques will be now introduced. Note that the first analysis still is a classifying
analysis for memory accesses, albeit with a new classification, FM, and the second is a bounding
analysis for memory blocks in a scope.

3.2.1 Virtual Inlining & Virtual Unrolling (VIVU)
VIVU [85] can be used to improve cache analysis precision for loops. The idea is to analyze the
first loop iteration separately from all other loop iterations. This is done by virtually unrolling
the first iteration of the loop body4, so as to distinguish the behavior between the two contexts.
Then, a Must analysis is applied to the program with the unrolled loop to find the AH memory

4 (1) The unrolling is called virtual since it is done by maintaining separate abstract cache states for the first
iteration and the remaining iterations (e.g., ĉ1 and ĉ′1 in Figure 9(b)). For ease of understanding, we use a
physically unrolled CFG to show the effects. (2) VIVU allows to unroll more than one iteration of the loop
since iterations other than the first may have vastly different behavior and thus execution times. Here we
assume only unrolling the first iteration to simplify presentation.
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accesses in all but the first loop iterations. Figure 9(b) shows the results of unrolling the inner
loop of the program in Figure 9(a). In the new CFG, cf and co refer to the first and the other
iterations of the inner loop, respectively (similar for d). Assume the cache is 2-way associative.
Must analysis on the new CFG is able to classify co and do as AH, and thus c and d as FM.

3.2.2 Persistence Analysis

One can aim at the same analysis objective by a Persistence analysis. There are several possible
notions of persistence of memory blocks one could aim at. These are:
persistence execution causes at most one miss for the memory block,
first miss only the first access is a miss, all others are hits,
no eviction the block is never evicted after a possible miss.

For a memory block that is persistent in a program fragment, timing analysis can assume a
bound of one cache load for all accesses within that program fragment.

The first Persistence analysis was proposed by Mueller et al. [88, 89] for computing First Miss
classification of memory references. For set-associative caches, the basic idea of Mueller’s approach
is to check whether all conflicting instructions in a loop fit into the cache. Later, Ferdinand and
Wilhelm [38] proposed a Persistence analysis based on Abstract Interpretation. This analysis
employs abstract cache states, Per-ACS, as do the Must and May analyses. The fact that a block
has been visited and already evicted from the cache is modeled by assigning an age > to the block,
where > is larger than the cache associativity. The Per-ACS at each program point represents
the cache contents that are potentially visited and then guaranteed to remain in the cache. If a
memory block exists in the Per-ACS at the end of the scope, then one can guarantee that at most
one cache miss may occur for all the accesses to this block.

The concretization of a Per-ACS is a set of traces satisfying the persistence condition, i.e.,
at most one miss for each block with a non–> age in the Per-ACS. More precisely, a Per-ACS
captures upper bounds on the ages of memory blocks, assuming that they have already been
accessed at least once in the execution of the program.

Figure 10(a) gives an example for Persistence update. All blocks in Per-ACS ĉ are potentially
visited during program execution. By accessing x, d is no longer guaranteed to be in the cache
since it has age 4 in ĉ, which is maintained by putting d in the >-age line. Block f , already evicted
from the cache before accessing x, remains unchanged in the >-age line. The update function
for Persistence analysis mainly needs to guarantee the maximal age for each block in the ACS is
soundly maintained.
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At a control flow merge point, several Per-ACS are merged by the join function, which takes
the union of the blocks in all the incoming Per-ACS and assigns each block the maximal age from
the incoming states, as shown in Figure 10(b). Intuitively, the set union operation guarantees the
resulting Per-ACS does not lose track of any potentially visited memory block; the maximal age
ensures that we can safely predict whether a block is definitely persistent after its first access.

The Persistence analysis by [38] was recently found to be unsafe, due to an error in the update
function, which may incorrectly underestimate the age of a block. The error was corrected by
Cullmann [31] and Huynh [62]. Several different ways were proposed to restrict the set of memory
blocks in a Per-ACS to the actual capacity of a cache set. The simplest way, yielding the least
precise results, marks all memory blocks in a Per-ACS as non-persistent, if the Per-ACS contains
more blocks than the associativity allows. Others check the number of conflicts between members
of the Per-ACS; Huynh’s analysis employs fixed-point computation to collect for each block m a
set of potentially conflicting blocks (blocks that are mapped to the same cache set with m and
thus may age m). If the total number of conflicting blocks is no larger than A− 1, where A is the
cache associativity, then one can safely draw the conclusion that m, once loaded, will persist in
the cache. A similar idea was also applied in the Persistence analysis [90] by Mueller. Cullmann
presents a number of similar persistence analyses [31]. The most precise of Cullmann’s analyses
relies on a May analysis to make correct decisions on age update.

3.2.3 Analysis Scope
A bounding analysis, such as the Persistence analysis, is designed to investigate cache behavior
within a program scope, in most cases a loop body. It is common for a program to have nested
loops, where a block in an inner loop also belongs to the outer loop. A natural question would be:
does the block have a different cache behavior for different loop levels? To distinguish a block’s
behavior, the relevant loop nest(s) (the inner loop, the outer loop, or both) is/are unrolled in the
VIVU approach. Multi-level approach were proposed by Mueller et al. [128] and Ballabriga and
Cassé [10]. Ballabriga and Cassé [10] apply the Persistence analysis of [38] on the relevant scope,
here specifically the relevant loop nest, to explore local cache behavior. Figure 9(c) illustrates
the basic idea. Persistence properties regarding different loop nests for a memory block can be
encoded as linear constraints (or other forms) and integrated into WCET computation for tighter
estimations.

3.2.4 Comparing VIVU and Persistence Analysis
Since both VIVU and Persistence analysis are able to bound cache misses for a program scope, a
straightforward question would be: which one is more precise? In fact, the two techniques are
generally incomparable. For the program in Figure 11(a), co and do cannot be classified as AH
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by Must analysis [38] of the VIVU approach, as neither co nor do is guaranteed to be accessed
in any loop iteration (they belong to two respective conditional branches). On the other hand,
multi-level Persistence analysis is successful in this example for c and d. In Figure 11(b), both bo
and eo can be classified as AH by VIVU. However, none of b, c, d or e can be classified as FM by
the multi-level Persistence analysis in the static cache simulation framework [90]. This is because
the Persistence analysis [90] counts the conflicting blocks in a loop (mapped to the same cache
set); if the number is larger than the cache associativity, none of the blocks in the loop can be
classified as FM. If, otherwise, a different Persistence domain is adopted in the multi-level analysis,
such as [31], b and e can be locally classified as persistent.

VIVU and Persistence analysis can also be compared in terms of analysis cost. On the one
hand, VIVU may result in a more expensive micro-architectural analysis, having to distinguish
multiple contexts. On the other hand, the results of Persistence analysis need to be encoded into
constraints during implicit path enumeration. The influence of the two effects on analysis times
has not yet been compared empirically.

3.3 Other Techniques

3.3.1 Static Cache Simulation (SCS)
There are essentially two approaches preceding AI-based approaches. Mueller et al. [88] developed
static cache simulation to categorize memory references as Always hit, First hit, First miss, or
Always miss. They were the first to propose to use abstract cache states (ACS), starting for
direct-mapped caches [88].

They later attempted to extend this approach to set-associative caches [89, 90, 128]. For
set-associative caches, abstract cache states are defined to hold potentially cached memory blocks
at all possible positions, i.e., ages. This results from using set union as join operation at control
flow merge points. They also give an update scheme for abstract cache states, which, unfortunately,
computes incorrect age lower bounds [89, 128]. The abstract cache states resulted after fixed-point
iteration are then used to derive Always hit, First hit, First miss, or Always miss categorizations.
It is far from trivial to derive Must information from information contained in their abstract cache
states. Spatial locality can be easily exploited. Beyond that there is no obvious way to compute
sound and precise Must information. In [90], Mueller employed dominator information in addition
to abstract cache states to compute correct Must information.

3.3.2 Cache State Transition Graphs (CSTGs)
Also before AI-based approaches, Li et al. presented a technique that uses Cache State Transition
Graphs (CSTGs) to model cache behavior [72]. A CSTG, built out of the CFG, models the
cache-state transitions for a given cache set. A vertex in the CSTG stands for a possible concrete
cache state, and each edge in the CSTG represents a possible transition from the source state to
the destination state due to a memory access in the program. Instead of exploring qualitative
properties, such as AH, AM and FM, the analysis tries to find a lower bound on cache hits for
each memory block. The bounds can be modeled as linear constraints and combined into the ILP
to obtain the WCET for the program. By explicitly enumerating the concrete cache states, the
CSTG approach can provide good analysis precision. However, it does not scale with program
size. Assume that there are M memory blocks mapped to each cache set with associativity K,
the number of states in an CSTG can be calculated by

∑K
i=0

M !
(M−i)! [72]. Note that the number

of linear constraints is of the same scale as the number of CSTG states. In practice, the analysis
efficiency is low due to the complexity of the resulting ILP problem.
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Figure 12 The analysis framework of McAiT.

3.3.3 Model-Checking-Based Methods
Model checking [26] is a powerful technique widely used in system-level timing analysis of real-time
systems. Timed automata [6] have been used to model the cache behavior of programs, and a
model checker has been employed to find the WCET. Existing work includes the McAiT tool [80],
the METAMOC approach [32], and Gustavsson et al.’s analysis [50]. These works use the model
checker (UPPAAL in their cases) as a black-box tool. They express the cache access behaviors of
a program by the modeling language of the model checker, and verify whether the WCET of the
program is bounded by a specified value as a reachability problem.

Figure 12 shows the architecture of the McAiT tool. McAiT first constructs the program
automaton out of the CFG, which fully simulates the behavior of the program, such as the control
flow and how the program accesses caches. For a given cache configuration, McAiT builds a timed
automaton to model each cache. The execution of an instruction causes the program automaton
to issue messages to the cache automaton via UPPAAL’s channel mechanism, and the cache
automaton updates the cache state accordingly. The timed automata models for both the program
and the cache are then explored using the UPPAAL model checker to find the WCET.

Essentially, the estimated WCET by a model checker is the actual WCET of the program,
since all the possible executions are explored. Cache hits and misses for each execution of memory
accesses are precisely reported. The major difference between this approach and the CSTG
approach is that the possible cache states are not explicitly modeled in the automaton, but rather
explored by the model checker. The main drawback of model-checking-based approaches is their
lack of scalability, since an exponential state space has to be explored.

3.4 Data Caches
Modern processors are typically equipped with data caches to improve the performance of data
accesses. Instructions are fetched from known addresses; so instruction fetching can be accurately
analyzed. In contrast, data accesses are less predictable [76, 123].

3.4.1 Main Challenges
Before predicting hits/misses for data accesses, the set of data addresses accessed by each instruction
needs to be determined, referred to as value analysis or address analysis [9, 129]. The threat to
precision is that an imprecise value analysis may not be able to eliminate memory accesses that
do not occur in a real execution. The problems are the following: Firstly, data manipulations
using redirectable pointers make it hard to statically determine the data items actually accessed.
Secondly, in the presence of dynamic data structures on the heap, the data addresses can only be
determined at run-time (due to this problem, dynamic data structures are typically avoided in hard
real-time systems). Lastly, value analysis may work with abstractions of memory addresses, such
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1  for (i = 0; i < N; i++)
2    for (k = 0; k < N; k++)
3      for (j = 0; j < N; j++)
4        C[j][i] += A[k][i] * B[j][k];

Figure 13 An example of matrix multiplication.
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Figure 14 Data cache analysis based on the pigeonhole principle.

as intervals. As a result, the address range they compute may be overapproximated. Considering
non-feasible data accesses in cache behavior analysis increases the probability of not being able to
classify memory accesses as cache hits or misses. In addition, a memory access without a precisely
determined address pollutes the information contained in an abstract data cache since the update
function has to be applied to all potential concrete addresses.

Besides that, data cache analysis is challenged by another problem: executing an instruction
may generate accesses to multiple data addresses. Figure 13 depicts a program with a matrix
multiplication, in which line 4 generates accesses to different matrix elements (in different loop
iterations). For this simple program, one can easily determine the data items accessed in each
loop iteration. But, in general, data accesses could be very unpredictable due to input dependence
of the array indexes. Consider accesses to array A[x][y]: if the values of x or y are not clear, one
has to conservatively assume that any address in the whole array could be accessed. Furthermore,
classifications of memory accesses as used for instruction-cache analysis (AH, AM, FM) may not
be sufficient to describe data cache behavior.

3.4.2 Analysis without Input Dependence

Early work, such as the Cache Miss Equation (CME) framework [39], focused on analyzing
programs with predictable data accesses. The underlying idea is to set up mathematical formulas
(Linear Diophantine equations specifically) to precisely capture both spatial and temporal memory
reuses by relating data addresses, loop induction variables and cache parameters. From the
solution of the equations, one can check if a memory block is evicted from the cache before it can
be reused. An upper bound on the number of misses can thus be obtained for WCET estimation.

However, only a small set of programs can be analyzed by the CME framework: (1) loops must
be rectangular loops and perfectly nested; (2) array subscript expressions and the bounds of the
loop index must be affine combinations of the enclosing loop indices; (3) no data/input-dependent
conditions may exist. The CME framework has been later extended to allow function calls [124],
conditionals only depending on the loop induction variables [124], and multiple loop nests [97].
Unfortunately, none of these methods can deal with input dependence. Clauss presented an
approach of solving cache miss equations through the mapping to Ehrhart polynomials [27].
Still, the complexity of solving these polynomials is high. Another approach is the Presburger
Arithmetic framework [23], which has similar restrictions and is computationally expensive.
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Figure 15 Ferdinand’s Persistence analysis for data caches.

3.4.3 Analysis with Input Dependence
Earlier research to handle input dependence focused on direct-mapped caches. Kim et al. proposed
an analysis method based on the pigeonhole principle [65]. Figure 14 shows 3 iterations in the
execution of a loop in which a, b, c, and d can be accessed. If in total 9 memory accesses are
generated, then at least 9 − 4 = 5 among them must be cache hits. The 4 cache misses are
cold misses. This work was later extended by Staschulat and Ernst to handle programs with
unpredictable input dependency [112], in which cache misses are bounded according to data access
types: (1) cache misses from predictable accesses are bounded by the pigeonhole principle; (2)
cache misses from unpredictable accesses are tracked down by a miss counter and expressed with
linear constraints. Unfortunately, these methods are still too restrictive. First, they only work for
direct-mapped caches. Second, the loops must fit into the cache to utilize the pigeonhole principle.
Essentially, these approaches correspond to simple Persistence analysis for the special case where
programs fits into the cache.

AI-based analysis techniques are extended to analyze set-associative data caches with input
dependency. Ferdinand extended the Persistence analysis [37] with a new update function to
handle multiple memory accesses by one instruction. The basic idea and its drawback can be
explained by the example in Figure 15.

Figure 15(a) gives the CFG of a loop in which p1 to p4 are program points. Note that each time
the instruction after p3 is executed, one of the blocks from {c, d, e} could be accessed. Figure 15(b)
shows the fixed-point iteration process, given a cache size of 3. The last column lτ of each abstract
state is used to collect the blocks that have been evicted from the cache (a common structure for
most Persistence abstract domains). On the transitions from p3 to p4, since it is not clear which
of the three blocks (or their combination) is actually accessed, they pessimistically assume that all
blocks in {c, d, e} could be accessed and cause other blocks to age. Thus, both a and b are evicted
from the cache (collected in lτ ). Moreover, since there is no knowledge on the access sequence of
c, d and e, they receive an age of 3 when they are brought into the cache state in the 1st iteration.
As a result, no cache hit can be predicted for this loop. As only one from c, d, e may be accessed
in every iteration, slightly better results would be possible with a different transfer function.

Sen and Srikant developed a Must analysis for data caches [110]. The analysis can be combined
with VIVU to discover the persistence property of data accesses. Despite some small differences,
the age manipulation in Sen’s Must analysis are similar to Ferdinand’s Persistence analysis [37],
and thus may lead to very pessimistic estimations.

Ferdinand’s and Sen’s analyses show that without modeling data access patterns, the abstract
domain has to do very conservative age maintenance. Again, for the program in Figure 15(a), if
by some means we know that the lifetime of c, d, and e do not overlap, then the analysis can be
improved. For example, if the loop iterates for 30 times, c is only accessed in iterations 1 to 10, d
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Figure 16 The separate analysis architecture.

only in iterations 11 to 20, and e only in iterations 21 to 30, then c, d and e cannot evict each
other in their lifetime. They are actually persistent (given a cache size of 3) once they are loaded
into the cache, since any of them can only be aged by a and b. Based on this observation, Huynh
et al. proposed scope-aware data cache analysis [62]. Each memory access is now associated with
a temporal scope to model its lifetime, as an augmentation to the traditional AI-based analysis. In
the update function, memory accesses that have no overlapping temporal scopes do not cause each
other to age. In consequence, some non-existing access conflicts are excluded, and more persistent
data accesses can be identified (such as c, d and e).

Hahn and Grund observe that cache analysis does not require knowledge of absolute addresses
of memory accesses. Instead, it is sufficient to know about the relation between the addresses
of different memory accesses: do they refer to the same cache block, a different cache block but
the same cache set, or different cache blocks in different cache sets? Based on this insight, they
developed relational cache analysis [51], which can classify accesses as cache hits even if the
absolute address of the access is unknown.

To summarize, input dependence makes data-cache analysis a challenge. The main causes are
imprecise address analysis and the inability to model and analyze data access patterns. Imprecision
of the results may indicate that two memory accesses compete for the same cache set, while in
reality they always go into different sets. The success of data cache analysis depends on whether
temporal and spatial locality of data accesses can be precisely captured and analyzed.

3.5 Multi-Level Caches
Most modern processors adopt a multi-level cache design. Upon a memory access, the processor
queries the memory hierarchy from the L1 cache down to main memory until the requested data or
instruction is found. Regardless of the number of levels, the highest level cache is generally much
faster than main memory, since the latter is accessed via the off-chip memory bus. To produce
precise WCET estimations, cache analysis should be conducted all the way to the highest level,
instead of merely on the L1 cache.

3.5.1 Separate vs. Integrated Approaches
Two major analysis frameworks for multi-level caches are the separate analysis, which analyzes
caches level by level, and the integrated analysis, which deals with the cache hierarchy as a whole.

The separate analysis framework was first proposed by Mueller [87] and refined by Hardy and
Puaut [55], who corrected a soundness problem. Figure 16 [55] shows the main work flow. In the
analysis of all but the L1 cache, a key information is whether a data request actually leads to
an access to this level. For example, if a memory access is predicted always hit at L1, then the
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Table 2 Computing CAC for level L and memory block r [55].

CACr,L−1

CHMCr,L−1 AM AH FM NC

A A N U U
U U N U U
N N N N N

Input State: ACSin

N access to r

Update(ACSin, r) ACSin

Join function
Join(Update(ACSin, r), ACSin)

Output State: ACSout

A access to r

Figure 17 The update function for U access [55].

L2 cache will not be visited. An interface across cache levels, called Cache Access Classification
(CAC) is introduced to describe this information. The notion CACr,L denotes the access property
of block r to level L, which is evaluated to one of the following three cases:

N (Never): the access to r is never performed at level L;
A (Always): the access to r is always performed at level L;
U (Uncertain): the access to r at level L can neither be excluded nor predicted.

The CAC values for level L are computed from both the Cache Hit/Miss Classification (CHMC)
and the CAC for level L−1, which is shown in Table 2.

Trivially, if CACr,L−1 = A (or N), then the access to memory block r is always (or never)
considered in the analysis of level L. However, handling the U classification requires special
attention. In Mueller’s multi-level analysis [87], memory accesses with U classification are
"conservatively" treated as always access in the analysis of the current cache level. However, this
treatment is demonstrated to be unsafe [55], since it may underestimate block ages, and thus
incorrectly predict cache misses as hits. Hardy and Puaut corrected the problem by considering
both possibilities for the U accesses in the update function (shown in Figure 17), which guarantees
that the worst-case scenario is never missed.

However, Hardy and Puaut’s analysis may suffer from precision problems. Note that in the
above CAC computation, the FM classification is treated the same as NC, which means the
information obtained by Persistence analysis at level L− 1 is never leveraged in the analysis of
level L. Actually, a block classified as FM at level L−1 causes at most one access to level L on
its first access. Mueller in an earlier practice tried to solve this problem by unrolling the loop
bodies [87], but this approach does not scale.

The component-wise separate analysis has several advantages. First, the analyzer has the
flexibility to apply a different analysis method for each cache level, as long as the method produces
hit/miss classifications as the interface across adjacent levels. This is desirable for architectures
with different replacement policies for different cache levels, such as in the IBM Power 5 processor.
Second, the overall analysis is scalable as long as the adopted single-level analysis is scalable.

However, the separate analysis may be pessimistic due to imprecise transfer of cache access
information across cache levels. In contrast, integrated analysis [111] tries to build a holistic
abstract domain for all cache levels, aiming to collect the information lost by the separate analysis.
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Figure 18 How a live cache helps to obtain a more precise join operation [111].

Consider a Must join operation of a separate analysis with a 2-way L1 cache and a 4-way L2
cache, shown in Figure 18. SiLj represents the abstract state Si at Level j. Consider block x,
which appears in S1L2 on the left branch and in S2L1 on the right branch. By a separate analysis,
x does not appear in the joined state S3 of any level. If a subsequent access to x occurs, a cache
hit can not be predicted. However, by evaluating both levels together, it can be seen that x does
show up in every incoming path, so a subsequent access to x should be a cache hit, either in L1 or
in L2 depending on the execution history. This is to say, x is guaranteed in the cache hierarchy at
the joined program point. Unfortunately, this information is lost in the separate analysis.

Based on this observation, Sondag and Rajan introduced a new component called live cache
into the traditional abstract domains. At a join, a block is added to the live cache if it appears in
some cache level in every input cache state, as depicted by S3live5 in Figure 18. With live-cache
information, one can now safely predict that x at least hits in the L2 cache. As reported in [111],
the extra overhead by introducing live cache is acceptable for a 2-level cache hierarchy. However,
analysis overhead increases with the number of cache levels, since an independent live cache is
maintained for every pair of cache levels.

3.5.2 The Impact of Inclusiveness
The relationship between cache levels is a key design feature. In some processors, all data in
level L must be contained in level L+1. Such caches are called (strictly) inclusive caches. For
example in Figure 19, the access to e causes a to be evicted from L2, so a is forced to be removed
from L1 to guarantee inclusion. Inclusive caches are favored in multi-cores: any data update
in the shared L2 cache is automatically synchronized to the private L1 caches of all cores due
to inclusion enforcement, which also achieves data coherency. Other processors adopt exclusive
caches, in which data is guaranteed to be in at most one cache level. Exclusive caches are desirable
for resource-limited systems since there is no data duplication in the cache hierarchy. The type
adopted in previous discussions is called mainly-inclusive, which neither enforces inclusiveness nor
exclusiveness. Inclusive caches are harder to analyze than exclusive caches, because the update to
one cache level may cause further changes to both lower and higher cache levels. Such behavior
may preclude the separate analysis flow.

Hardy et al. adapted the separate analysis [55], originally designed for mainly-inclusive caches,
to both inclusive and exclusive caches [56]. The main idea is to first conduct an analysis assuming
a mainly-inclusive cache, and to then modify the CHMC results to guarantee that the effects of
cross-level cache updates are safely considered. For example in Figure 19, the analysis assuming

5 x has an older age in S1L2 than in S2L1. This is because Sondag’s analysis assumes the write back policy. If
x is evicted from the L1 cache, it is installed in the youngest position of the L2 cache. This means x can still
suffer another k − 1 evictions in L2, where k is the cache associativity. The age of a block in the live cache
describes how long it can stay in the whole cache hierarchy.
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Figure 19 Handling new behavior of inclusive and exclusive caches.

mainly-inclusive cache reports that a is AH at L1 but may be evicted from L2. To adapt this
result to an inclusive cache, one must consider the possibility that a can be removed from the L1
cache due to an update in the L2 cache. As a result, a’s CHMC at L1 is modified from AH to
NC. Similar problems exist in the May analysis as well. As a consequence to CAC computation,
accesses to all cache levels except L1 are changed to Uncertain (CACr,L=U for L≥2). All these
modifications severely degrade the analysis precision.

Sondag and Rajan extended their integrated analysis to both inclusive and exclusive caches [111].
The resulting update and join functions for inclusive caches are very complex since once a block
is accessed on some level L, the corresponding changes in other cache levels must be correctly
considered. Analysis of exclusive caches has similar problems. To summarize, the inter-dependent
updates among cache levels to enforce inclusion/exclusion brings new difficulties regardless of the
analysis framework.

3.5.3 The Impact of Write Operations
A write to the cache occurs when a data variable receives a new value. Two levels of policies
determine when and where to conduct the writing of data back to memory. The write-through
policy requires that the new value is updated synchronously both in the cache and in main memory.
In contrast, the write-back policy only marks the modified data as dirty, and performs the actual
update of memory only when the data is evicted from the cache. A write miss occurs if the data
to write are not in the cache. Under the write allocate policy, missed data are first loaded into the
cache, and then updated with the new value, resulting in a cache miss followed by a cache hit. For
the non-write allocate policy, the data are directly written to main memory, bypassing the caches.

The write-through policy is generally easy to handle in cache analysis, since data writes to
a certain cache level incur no change to other cache levels. However, for the write-back policy,
evicted dirty data are written to higher cache levels. Second, for the write allocate policy, a write
operation always causes cache accesses regardless of hit or miss, which makes no difference from
the read operation. However, for non-write allocate caches, a write miss never causes a cache
access, so one cannot simply assume that each write operation changes the cache state, as is the
case for reads. Like the inclusiveness enforcement, complex write operations cause cross-level
cache updates, which is a challenge to the analysis.

Hardy’s separate analysis framework has been extended to multi-level data caches by Lesage
et al. [67] and to multi-level unified caches by Chattopadhyay and Roychoudhury [24]. However,
both analyses assume a write-through policy. The abstract domains adopted in these methods are
not able to handle write-back. Sondag and Rajan modeled write-back behavior in their integrated
analysis [111]. It is shown that modeling write-back is easier by an integrated abstract domain,
but one still has to carefully distinguish possibly evicted blocks from definitely evicted blocks at any
level during the analysis to guarantee soundness. Definitely evicted blocks are identified from the
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May information in Sondag’s method. Due to the access uncertainty of possibly evicted blocks,
conservative update and join operations have to be employed, causing a loss in precision.

4 Analysis of Non-LRU Caches

In the past two decades, most research on cache analysis in the real-time domain was focused on
the LRU replacement policy. The analysis of non-LRU replacement policies, i.e., those widely
adopted in real-life processors, is still immature. In this section, we look into the challenges for
non-LRU analysis and survey existing techniques.

4.1 Why Are Non-LRU Replacement Policies Hard to Analyze
To answer this question, we explore why it is hard to design precise and efficient abstract domains
and the corresponding operations for non-LRU caches. We identify multiple challenges discussed
in the following paragraphs.

4.1.1 Unsuitability of AH, AM, and FM Classifications
Under LRU replacement most memory accesses can be classified as AH, AM, or FM. Are these
classifications equally suitable for non-LRU replacements? If not, what are alternatives that are
better suited to characterize other policies’ behavior?

Unfortunately, these classifications are not as suitable for non-LRU replacements as they are
for LRU. As shown in Guan et al.’s analysis [47], under FIFO replacement memory accesses may
exhibit alternative hit and miss behavior so that none of the traditional classifications (AH, AM
or FM) applies. Similarly, under MRU many cache accesses exhibit the K-Miss property [45]. An
access classified as K-Miss suffers several misses (bounded by K ≤ cache associativity) upon the
first few accesses, and then persists in the cache. This kind of persistence property, however, is
not captured by the FM classification. This demonstrates that one needs to better understand
the specific cache behavior under different policies to come up with proper classifications.

4.1.2 Irregular and Non-Monotone Cache Update Behavior
The abstract domains and the corresponding transfer functions are designed to compute cache
behavior invariants. An abstract domain is precise and efficient if (1) abstract states can compactly
represent many concrete states, while preserving the information required for classification, and
at the same time (2) transfer functions precisely capture the effect of a memory access on the
concrete cache states. For example in the AI-based analyses for LRU, the block age bounds in
the abstract states capture precisely the information required to classify blocks as cached or not.
Further, this information can be precisely maintained by the transfer functions due to LRU’s
regular cache update: a) whether or not a block’s age depends solely on its age relative to the
accessed block’s age. Upper and lower bounds (in Must and May analyses) on the ages of blocks
can be precisely updated due to the monotonicity of the operation, b) regardless of its previous
age, and whether it was cached or not, the accessed block is always assigned the youngest age.

Unfortunately, most non-LRU replacement policies do not possess such monotone behavior.
Take the FIFO replacement in Figure 4(b) for example. After a hit to d, d remains in the original
position and is immediately evicted by the next access to x. The fact that d is recently accessed
is not reflected by the update rules. An example of irregular behavior under MRU is shown in
Figure 4(c). After f is installed into the cache, a subsequent hit to c followed by a miss to e evicts
f out of the cache. However, block b, which is older than f , remains in the cache even after f is
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evicted. The problem of PLRU is shown in Figure 4(d). In the state before a is accessed, the
oldest block that will be evicted next is b. However, after a hit to a, the block to be evicted is
changed to d.

To build efficient abstract domains for such replacement policies is very difficult. For example,
in a Must analysis for FIFO [41], early determination of cache misses is helpful to better predict
cache hits later. However, a very complex May analysis has to be designed to determine miss
information as early as possible. For PLRU, a precise analysis must model the tree bits. The
Must analysis for PLRU [40] by Grund employs a far more complex abstract domain, compared
to LRU, to express information in the tree and predict cache hits.

4.1.3 The Influence of Initial States
Cache behavior heavily depends on execution history. In [104], it is shown that program per-
formance under non-LRU replacement policies are very sensitive to the initial cache state, i.e.,
what remains in the cache before a program starts. This presents a challenge to obtain precise
estimations. To illustrate the problem, assume currently m is accessed in a FIFO cache and we
want to precisely estimate m’s lifetime. There are many possible situations: Case 1: m hits, but
it has been in the cache for the longest time among the cached blocks, and thus it will be evicted
upon the next cache miss. Case 2: the access to m is a miss and due to first-in, first-out behavior
m will withstand another k− 1 (where k is cache associativity) cache misses without being evicted.
Obviously, m’s remaining “life expectancy” in the two cases is rather different. If no knowledge on
the initial cache states is available, a safe analysis (to predict hits) has to assume the worst case,
i.e., Case 1. To be more precise, one may try to distinguish Case 2 from Case 1 by investigating
whether the current access to m is a miss or not. Then, the analysis needs to know there are
enough cache misses to evict any previously accessed m out of the cache, which again relies on
the initial states. If a replacement policy can remove uncertainty from the initial states quickly, it
will be easier to analyze.

To analytically model the effects of unknown initial states, Reineke et al. proposed a metric,
evict, for a replacement policy [105], as listed in Table 36. Intuitively, the value of evict(k) tells us
after how long a sequence of pairwise different memory accesses, we can conclude that the cache
only contains blocks from the access sequence, or, in other words, how long a sequence of pairwise
different accesses is needed to evict all unknown cache contents from the cache.

The evict(k) results show that generally longer sequences have to be observed for non-LRU
replacement policies. This property directly corresponds to the achievable precision by a May
analysis to predict misses, and indirectly affects Must analysis, the precision of which partly
depends on how much May information can be obtained during the Must analysis [41]. Similarly,
the fill metric captures the number of pairwise different memory accesses required to reach a
single cache state independently of the initial cache state. As can be seen in Table 3, the gap
between LRU and other policies is even bigger for the fill metric.

The two metrics evict and fill discussed above relate to the precision of classifying analyses.
In other work, Reineke and Grund [104] determined how strongly the number of cache misses may
vary depending on the initial state, which is related to the precision of bounding analysis in the
presence of uncertainty about the initial state. Their analysis demonstrates that the number of
cache misses may vary strongly depending on the initial state under FIFO, PLRU, and MRU,
while it may not vary much under LRU replacement. Further, it is shown that the empty cache

6 Table 3 extracts the HM case for evict and fill with k > 2 from the full results in [105], where k is cache
associativity.
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Table 3 Predictability metrics [105].

Policy evict(k) fill(k)
LRU k k

FIFO 2k − 1 3k − 1
MRU 2k − 2 3k − 4
PLRU k

2 log2k + 1 k
2 log2k + k − 1

Table 4 Generalized predictability metrics [105].

Policy mls(k) = mls′(k) evict′(k)
LRU k k

FIFO 1 2k − 1
MRU 2 2k − 2
PLRU log2 k + 1 ∞

state is not necessarily the worst initial state for non-LRU policies. This presents severe problems
for measurement-based WCET analysis approaches.

4.2 Predicting Cache Hits
The more hits can be predicted, the better the WCET bound. Must and Persistence analyses
discussed earlier are used for this purpose. To predict a hit for a memory access to m, an analysis
needs to ensure m has not been evicted since its last access. Intuitively, the more pairwise different
blocks have been accessed since the last access to m, the higher the chance that m has been
evicted from the cache. To capture this information, we introduce the following definition:

I Definition 1 (Reuse Distance). Let p be a memory access sequence that ends with an access to
memory block m. The reuse distance7 of m, denoted by rdp(m), is the number of distinct blocks
accessed along p since the previous access to m in p.

The notion of reuse distance coincides with the ages of memory blocks that are used in the
analysis of LRU caches. For example, let p1 = 〈beabcda〉 and p2 = 〈abccdcccba〉, we have
rdp1(a) = rdp2(a) = 4. Due to branches or input-dependent memory accesses, there can be
multiple access sequences leading to the same access to block m in a program. So we define
the maximal reuse distance, denoted by r̂d(m), as the maximal value of rd(m) over all possible
memory access sequences leading to a particular access. We can evaluate analysis techniques by
the maximal reuse distances for which they can predict cache hits.

Reineke et al. explored the minimal life-span [105] for different replacement policies, which
is the minimal length of a sequence of pairwise different memory accesses necessary to evict a
block that has just been accessed from the cache. The minimal life-span values are given in the
mls(k) column of Table 4. A slight variation of mls(k) is mls′(k), which considers the minimal
number of pairwise different memory blocks required to evict a block that has just been accessed
from the cache. Notice, the slight difference between the two notions: mls(k) considers only
sequences consisting of pairwise different accesses, whereas mls′(k) allows multiple accesses to the

7 In the literature, this is also referred to as the (LRU) stack distance [86]. Also, note that the term reuse
distance is used ambiguously in the literature, sometimes referring to the number of accesses since the previous
access to m, and sometimes referring to the number of distinct blocks accessed since the previous access to m.
We follow the latter notion.
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Figure 21 Example programs.

same block. For all the considered policies, mls(k) is equal to mls′(k). The metric evict′, also
listed in Table 4, will be discussed in Sec. 4.3. The mls′(k) metric tells us how many of the most
recently accessed blocks are guaranteed to be in the cache. By this result, a Must analysis can be
constructed as follows: for any memory access to m, one can check if r̂d(m) ≤ mls′(k) holds for
the given replacement policy. If yes, the memory access to m is guaranteed to be a hit. We say
that such an analysis explores Level I, which is illustrated in Figure 20.

Notice that to predict cache hits, the Must analysis for LRU presented in Sec. 3.1 computes
upper bounds on the maximal reuse distances of memory blocks. Similarly, the May analysis
computes lower bounds on the minimal reuse distance of memory blocks to predict cache misses.
As the notion of reuse distances is replacement policy-independent, these LRU Must analysis can
thus safely be reused to predict hits for other policies, by relying on the policies value of mls′(k).

However, the mls′(k) values for non-LRU replacements are commonly small compared to cache
associativity k, because they consider worst-case scenarios. In practice, it is unlikely that the
worst case occurs at every program point. Thus, analyses tailored to a particular replacement
policy can often go beyond Level 1 in predicting hits.

For a program that can fit into the cache of size k, there is a strong intuition that each block
of the program eventually persists in the cache, i.e., after some misses, the remaining accesses
to each block are definitely cache hits. For such programs, the maximal reuse distance of any
access is no larger than k (Level II in Figure 20). This property is attractive as it enables an
efficient Persistence analysis that simply collects the set of different blocks accessed by a program.
However, such a Persistence analysis is not correct for every replacement policy: it works for LRU,
MRU and FIFO, but not for PLRU.

Figure 22 illustrates the cache state transitions when the loop in Figure 21(a) is executed,
alternating between the three branches in the loop body on a 4-way PLRU cache. Each time a
is accessed, the root bit points to the right subtree, so b, c, and d have to compete for the two
cache lines on the right. Even though the loop can fit into the 4-way cache set, only block a is
persistent. This example unveils a negative property of PLRU: it does not always make use of all
its capacity [14].

It is crucial to investigate what process a block may go through before it finally persists in the
cache. This is important to safely bound the number of misses that may occur.

For MRU, Guan et al.’s results [45] show that if for a block m, r̂d(m) ≤ k holds, m will
eventually persist in the cache. However, m may suffer more than one miss before reaching the
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Figure 22 An example that demonstrates that PLRU does not always use the cache’s entire capacity.

a
[ ?, ?, ?, ? ] [ a, ?, ?, ? ]

b
[ b, a, ?, ? ]

c
[ c, b, a, ? ]

a
[ c, b, a, ? ]

d
[ d, c, b, a ]

e
[ e, d, c, b ]

a
[ a, e, d, c ]

b
[ b, a, e, d ]

c
[ c, b, a, e ]

a
[ c, b, a, e ]

d
[ d, c, b, a ]

e
[ e, d, c, b ]

miss hit

miss hit

Figure 23 Alternative hit and miss behavior on FIFO.

stable state. The result is strong in that bounds on the number of misses are determined for all
reuse distances in Level II for MRU. Consider the program in Figure 21(b): even if the program
cannot fit into a 4-way MRU cache, block a’s number of misses can be bounded by a constant
since r̂d(a) ≤ 4.

For FIFO replacement, Grund and Reineke [42] show that if a loop entirely fits into the cache,
each block suffers at most one miss and then persists in the cache8; otherwise, no guarantee is
given. Guan et al. further explored this problem, and found that if a block m satisfies r̂d(m) ≤ k,
then even though m is not eventually persistent, it is still guaranteed to enjoy cache hits, which
can be expressed by a bound on the number of misses that accesses to m may suffer [47]. For
example in Figure 21(b), r̂d(a) ≤ 4 holds for a 4-way FIFO cache. In the worst case, the loop
alternatively takes the two branches, and a may suffer cache misses repeatedly. To evict a from
the cache, both branches have to be taken, which causes a to enjoy a cache hit in the execution
of one of the branches (shown in Figure 23). It can be shown that a suffers at most b 1

2 · xc+ y

misses, where x is the execution count of a, and y is the total number of times the loop is entered.
The only analysis to predict hits for PLRU for maximal reuse distances in Level II is a Must

analysis proposed in [43]. The analysis presented is based on the following observation: to evict a
block with the fewest possible accesses to distinct memory blocks, the three bits (assuming an
associativity of 8) that are on the path from a cache line to the root of the tree need to be flipped
in a particular order, namely from the bottom to the top. This is illustrated in Figure 24 for
block m. Notice that flipping bits near the root before flipping all bits closer to the leaves does
not contribute to evicting m, as these bits will eventually be flipped back before evicting m. The
basic idea behind the analysis in [43] is to track two properties: a) the number of bits that already
point towards a block (counting from the leaf of the tree), and b) the so-called “sub-tree distance”
between pairs of blocks. The sub-tree distance between a and b captures which bits on the path
from a to the root an access to b may flip. By analyzing these key properties, it is sometimes
possible to predict that a block stays in the cache even if more than mls′PLRU (k) = log2 k + 1
other blocks have been accessed.

8 Note that blocks do not necessarily encounter their misses in the first loop iteration. It may take several
iterations for all the blocks to stabilize in the cache.
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Figure 25 Cache behavior under MRU in Level III.

To go beyond Level II means to explore whether blocks with maximal reuse distance larger
than k still have cache hits. One needs to first show that the above fact does occur for some
replacement policy, and second propose an analysis to discover the cache hits. Take MRU for
example, Figure 25 shows that even if we have r̂d(a) = r̂d(d) > 4 for a 4-way cache, accessing a
and d is always hit. But this phenomenon relies on the initial state at the entry of the loop. To
explore such behavior, the abstract domain must be able to preserve very detailed information on
cache states. This requirement makes it very hard to explore cache hits in Level III by abstract
analysis methods. The abstractions introduced by Grund and Reineke for FIFO [41] are in
principle able to predict Level III hits, however, they usually require a highly context-sensitive
analysis to do so. Level III ends at evict′(k), after which no more hits are possible.

4.3 Predicting Cache Misses
Predicting more misses tightens the estimated BCET, but it can also indirectly help with the
analyses for some non-LRU replacement policies to predict more hits [41]. A concrete example is the
case of FIFO explained in the discussion of the influence of initial states in Sec. 4.1. Furthermore,
for multi-level cache analysis, predicting more misses for level L reduces the uncertainty of
cache accesses on level L+ 1, which leads to more precise overall estimations. Lastly, in micro-
architectures with timing anomalies, if a memory access cannot be classified as a cache hit, both
the cache hit and the cache miss cases need to be explored. Predicting cache misses may in such
cases drastically reduce analysis times, as it allows to explore only the cache miss case.

To predict cache misses requires to show that memory blocks are not in the cache right before
they are being accessed. Thus a May analysis, i.e., an analysis that overapproximates cache
contents, is required to safely predict cache misses. May analyses can be constructed based
on a variation of the evict metric [105], which we denote by evict′. The difference between
evict and evict′ is the same as the difference between mls and mls′: any sequence s containing
evict′(k) distinct memory blocks is guaranteed to evict any prior cache contents not contained in
the sequence s. In contrast, evict refers only to sequences that never access the same memory
block twice. Values of evict′ for common policies are listed in Table 4. For example, for FIFO,
evict′(k) = 2k−1. This means that after accesses to 2k−1 pairwise different blocks, the cache
only contains elements from the accessed sequence. Then, the May analysis only needs to observe
a sequence with 2k−1 pairwise different blocks other than m precluding the current access to
m. On the other hand, for PLRU, evict′(k) =∞. In other words, there are sequences of memory
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accesses containing an arbitrary number of distinct memory blocks that do not evict all prior
cache contents. We have seen an example of such a sequence in the previous section, which is
illustrated in Figure 22.

May analyses based on evict′ can be constructed by determining lower bounds on the reuse
distances of memory blocks. The LRU May analysis presented in Sec. 3.1 does exactly that.

The evict metric suggests that less than evict(k) accesses to pairwise different memory blocks
do not allow to predict any misses, thereby constituting a limit on how much information a May
analysis can obtain. However, this conclusion is built on the assumptions that the initial state is
completely unknown, and that the access sequence consists of pairwise different memory accesses.
There is thus hope that by tailoring an abstract domain to a specific replacement policy, more
precise May analyses can be achieved. So far, such abstractions have only been built for the FIFO
replacement policy [40, 41]. Due to limited space, we only explain the main intuitions and the key
constituents of the two existing FIFO abstract domains.

Consider a 4-way FIFO cache and the access sequence x ◦ s ◦ x, where the first access to x is a
miss and installs x into the “first-in” cache way, and then a sequence s that does not contain x is
accessed followed by another access to x. To predict a miss for the second access to x, it suffices
to check whether either of the following two properties holds:

Property 1 : The accesses in s result in at least 4 misses;
Property 2 : Before the second access to x, every cache way is occupied by a memory block
from s.

The abstract domain proposed in [41], which we call FIFOα, checks Property 1. The key
information to be maintained in the abstract domain is the number of definite misses after the
first access to x, denoted by dm(x). When dm(x) reaches 4 during the analysis, one can predict
misses for a future access to x. To better maintain definite misses, the number of cache ways
covered by blocks accessed after the last access to x is maintained as auxiliary information.

A disadvantage of FIFOα is that it only starts to predict misses after 2k− 1 pairwise different
memory blocks have been accessed, which is in line with the evict metric. Therefore, Grund and
Reineke proposed another FIFO domain, which we denote by FIFOβ , so that cache misses can
be predicted even if fewer than 2k − 1 pairwise different blocks are accessed between two different
accesses to the same block [40, 42]. The domain FIFOβ checks Property 2 to predict cache misses.
For the above example, it explores if memory blocks accessed in sequence s eventually cover all
the 4 cache ways. The exploration is based on a more powerful result (Lemma 4 in [42]):

If a sequence s contains l distinct blocks, then l − k + 1 cache ways must be occupied by the
contents of s, regardless of the initial cache state.

Importantly, the effect of consecutive sequences adds up. For example, let s = s1 ◦ s2 =
〈a, b, c, d, e〉 ◦ 〈a, b, c, d, e〉. The accesses to s1 cover the 5−4+1=2 most-recently-used ways in the
cache set. Similarly, the accesses to s2 contribute another 5−4+1=2 to the covered positions.
Then we can guarantee that access to s finally covered all the 4 cache ways9. This means the
execution of s actually evicts x out of the cache and a miss on the second access to x can safely
be predicted.

So far, no May analysis is known for PLRU. For MRU the best known May analysis is based
on evict′. Precisely predicting misses for these two policies is still a challenge.

9 The effectiveness of this analysis depends on how a long sequence is partitioned. Grund has a systematic
method to explore different partitionings for optimization [40].
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4.4 The Relative Competitiveness Framework
Besides the above research, Reineke and Grund proposed the Relative Competitiveness frame-
work [103] that allows to translate analysis results for one replacement policy to another policy.
The promise is then to apply known LRU analyses to non-LRU caches.

A policy P is (k, c)-hit-competitive relative to policy Q if the number of cache hits hP (s)
of P on sequence s is bounded from below by the number of cache hits hQ(s) of Q as follows:
hP (s) ≥ k · hQ(s)− c. Similarly, a policy P is (k, c)-miss-competitive relative relative to policy Q
if the number of cache misses mP (s) of P on sequence s is bounded from above by the number of
cache misses mQ(s) of Q as follows: mP (s) ≤ k ·mQ(s) + c.

By monotonicity of the two inequalities, they can also be applied to lower bounds on the
number of hits and upper bounds on the number of misses: For example, given a lower bound on
the number of hits of Q using hit-competitiveness a lower bound on the number of hits of P can
be derived.

For (k, c) = (1, 0) the notions of (k, c)-hit- and miss-competitiveness coincide. In this case, P
“dominates” Q. In other words, P never incurs more misses than Q. In such a case we simply say
that P is (1, 0)-competitive relative to Q. Then, a Must analysis for Q is a valid Must analysis for
P ; conversely, a May Analysis for Q is a valid May Analysis for P .

In [103] it is shown how to automatically compute the best values for (k, c) such that policy P
is (k, c)-hit/miss-competitive relative to policy Q, for fixed associativities of the two policies.
Depending on the similarity of P and Q this computation scales to associativities between 8 and
256.

The most interesting cases are those in which either P or Q is LRU, as precise analyses for
LRU are known. Examples for hit-competitiveness results derived in this way are [101, 103]:

An 8-way FIFO cache is ( 1
2 ,

7
2 )-hit-competitive relative to an 8-way LRU cache.

An 8-way FIFO cache is ( 2
3 , 2)-hit-competitive relative to an 4-way LRU cache.

An 8-way PLRU cache is ( 1
2 ,

3
2 )-hit-competitive relative to an 6-way LRU cache.

An 8-way MRU cache is ( 2
3 ,

4
3 )-hit-competitive relative to a 4-way LRU cache.

To use this relation, assume 100 hits are predicted for a program on an 4-way LRU cache, then⌈ 2
3 × 100− 2

⌉
= 65 hits are guaranteed on an 8-way FIFO cache.

The metrics mls′(k) and evict′(k) are strongly related to (1, 0)-competitiveness relative to
LRU. In particular, let mls′P (k) and evict′P (k) denote the values of the two metrics under policy P .
Then, P is (1, 0)-competitive relative to LRU(mls′P (k)) and LRU(evict′P (k)) is (1, 0)-competitive
relative to P . For example:

LRU(2k − 1) is (1, 0)-competitive relative to FIFO(k).
LRU(2k − 2) is (1, 0)-competitive relative to MRU(k).
PLRU(k) is (1, 0)-competitive relative to LRU(log2 k + 1).

Cache analyses based on relative competitiveness can be pessimistic, because the relation holds
for any possible workload. Moreover, the framework provides bounds on hits (or misses) for the
whole program or alternatively program fragments rather than classifying independent memory
access, except for the case of (1, 0)-competitiveness. This makes it difficult to apply the approach
in multi-level cache analysis, or in integrated analyses considering both caches and pipelines.

5 Execution Environments

Discussions so far have focussed on analyzing an independent program. Cache analysis is severely
challenged in the presence of complex execution environment, such as multi-tasking systems
or shared-cache multi-cores, where extra time delay due to interference on caches from other
co-scheduled/running programs must be taken into account.
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Preempted Task : UCBi

Preempting Tasks : ECBhp(i)

WCRTi

UCBi and ECBhp(i)  CRPD

Response Time Analysis

Figure 26 The separate CRPD analysis framework.

5.1 Cache-Related Preemption Delay
An essential feature of real-time systems is preemption, which allows a higher priority task
to preempt a lower priority task so that the higher priority one meets its deadline. However,
preemptions may lead to extra cache misses: the execution of the preempting task may alter the
cache state, so that once resumed, the preempted task needs to bring data back into the cache
that was evicted as a consequence of the preemption. The extra delay due to cache reloading is
commonly referred to as the Cache-Related Preemption Delay (CRPD). Empirical results [74]
show that CRPD contributes significantly to the execution time, so it must be precisely estimated
to obtain tight estimations of response times. Furthermore, it has also been shown that with
CRPD, the synchronous release of all higher priority tasks does not represent the critical instance
of single-core preemptive scheduling [134]. Clearly, preemptions introduce a new dimension of
complexity into timing analysis.

The most intensively studied framework is separate CRPD analysis, in which the CRPD
is treated as a separate overhead rather than as a part of the WCET of the preempted task.
To bound the CRPD under LRU replacement, two approaches have been proposed, which are
illustrated in Figure 26:
1. By analyzing the preempted task [2, 66, 91, 119, 113]: Additional misses can only occur for

useful cache blocks (UCBs), i.e., blocks that may be cached and that may be reused later,
resulting in cache hits. For LRU, the number of such UCBs is a bound on the number of
additional misses due to preemptions. Static analyses have been proposed to safely approximate
the set of UCBs.

2. By analyzing the preempting task [91, 113, 119, 121]: The preempting task may only cause
additional cache misses in those cache sets that it modifies. Thus, analyses to compute
bounds on the number of evicting cache blocks (ECBs) have been developed. A memory
block is an ECB if it may be accessed during the preempting task’s execution. However, for
set-associative caches, approaches based purely on ECBs have so far been either imprecise [17]
or unsound [119], as shown in [17].

The CRPD is computed as the total time delay of all preemption-related cache misses. The final
step is to take into account the computed CRPD bounds in a schedulability analysis framework,
so that the Worst-Case Response Time (WCRT) of the preempted task can be obtained. All such
approaches assume timing compositionality [52] so that the cost of additional cache misses can be
accounted for separately.

5.1.1 Computing Useful and Evicting Cache Blocks
Since a preemption must happen before some instruction, here we first consider what happens at
a particular program point. Most existing work adopts the UCB definition in [66]. A cache block
m is useful at a given program point p, if:
1. m may be cached at p;
2. m may be reused at some program point reachable from p without being evicted along the

corresponding path.
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To determine memory blocks that satisfy Condition (1), one needs to collect the set of blocks
that may be cached by any possible program path from the starting point of the CFG to p,
referred to as Reaching Cache Blocks (RCBs) and denoted by RCBp. This corresponds to a May
analysis as discussed in Sec. 3.1. To determine memory blocks that satisfy Condition (2), a set
of Live Cache Blocks (LCBs), denoted by LCBp, is computed similarly to RCBp, however, by a
backward analysis. Then, an overapproximation of the set of useful cache blocks at point p, UCBp
is obtained by the intersection of RCBp and LCBp. A bound on the CRPD is then obtained by
taking the maximum size of UCBp over all program points.

For direct-mapped caches, two major techniques exist: set-based analysis [66] and state-based
analysis [91]. Both techniques rely on dataflow analyses to collect the RCBs and LCBs at each
program point. State-based analysis maintains all possible concrete cache states at a program
point. The analysis is precise, but does not scale to large programs. In contrast, set-based analysis
maintains one abstract state at each program point, which collects the set of all possible cached
blocks for each cache line. Staschulat and Ernst [113] proposed a scalable precision analysis that
presents a trade-off between the above two analyses. The main idea is to pose a bound on the
number of cache states maintained at each program point. Whenever the number of states goes
beyond the limit, cache states are merged.

Regarding the analysis of the preempting task, note that (a) what matters is the size of the
set of evicting cache blocks and not its actual contents, and (b) sizes that exceed the associativity
of the cache do not have to be distinguished, as they will evict all prior cache contents anyway.
For those reasons bounds on the number of ECBs can be obtained from bounds on the number of
reaching cache blocks at the end of program execution, i.e., RCBend.

5.1.2 CRPD Computation for Direct-Mapped Caches
For direct-mapped caches, the CRPD can be estimated by only considering the preempted task,
which pessimistically assumes that each UCB of the preempted task could be evicted by the
preempting task [66]. These techniques are classified as the UCB-Only approach by [4]. The CRPD
can also be computed by only considering the preempting tasks [20, 121], which assumes any ECB
of a preempting task may cause a preemption related cache miss (ECB-Only by [4]). Clearly, more
precise CRPD can be computed by evaluating both the preempting and the preempted tasks.
Specifically, the ECB-Only approaches have been improved by considering the preempted tasks,
resulting in the UCB-Union class [118]; similarly, the UCB-Only approaches have been extended
into the ECB-Union class [4].

Schedulability analysis needs to take the CRPD into account. Consider a widely adopted
schedulability analysis [7] shown in Equation (5), where Ri is the response time, Ci is the WCET
of a task, and Tj is the activation period. Equation (5) can be interpreted in the following way:
the preemption cost of task τi preempted by τj , denoted by γi,j , is seen as an extra part of the
execution time of the preempting task τj .

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
(Cj + γi,j) . (5)

In the presence of nested preemptions, as shown in Figure 27, the response time of τ3 includes
both the indirect cost of τ1 preempting τ2 (γa) and the direct cost of τ2 preempting τ3 (γb). The
main problem is how to safely account for γa. Actually, γa can be considered in γ3,1. Note that
γa may be larger than γb, so a safe γ3,1 needs to account for the maximal cost of τ1 preempting
any lower priority task, however not lower than τ3. Note that the ECB-Only approaches do not
suffer from such nested preemption problems since they do not consider the preempted task.

A disadvantage of analyses by Equation (5) is: the worst-case delay γi,j is always assumed for
each preemption (τj preempting τi). As a result, some cache evictions can be included multiple
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Figure 27 An example of nested preemptions.
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Figure 28 An example of reordered misses.

times. To reduce this pessimism, other approaches [4, 114] adopted the schedulability test of
Equation (6) instead, which evaluates the total cost of multiple preemptions of τj preempting
τi as a whole. The computation of γstai,j differentiates preemption scenarios, and thus can avoid
unnecessary inclusion of cache evictions.

Ri = Ci +
∑

∀j∈hp(i)

(
⌈
Ri
Tj

⌉
Cj + γstai,j ) . (6)

Altmeyer et al. provided a detailed classification of different approaches to bound the CRPD
for direct-mapped caches and their relationship [4].

5.1.3 CRPD Computation for Set-Associative Caches
The computation of UCBs and ECBs can be solved by existing May analyses for set-associative
caches. The main challenge is how to precisely and safely compute the “intersection" between the
sets of UCBs and ECBs.

Let us first discuss a safety problem, given LRU replacement. Consider the case in Figure 28.
Blocks a, b, c and d are all useful blocks. A preemption installs x into the cache set and thereby
evicts a. The subsequent accesses of the preempted task to a, b, c and d are all cache misses even
though the preempting task only evicted one cache block. This illustrates that there are two
types of context-switch misses [17, 74]. The miss to a is a replaced miss, as a direct result of the
preemption. In contrast, the misses to b, c and d are an indirect result of reordering of blocks
by the LRU replacement policy. This example shows that even a single ECB can lead to a chain
of misses to multiple UCBs, which cannot happen for direct-mapped caches. An example of an
unsafe analysis is [118], which overlooked reordered misses.

One way to cope with this problem was proposed in [17]. As soon as there is a single ECB
that maps to a particular cache set, all the UCBs that map to the same cache set are assumed to
contribute to context-switch misses. This is obviously conservative, and it can be improved by
obtaining more detailed information about the useful cache blocks. This information is captured
by the notion of resilience introduced by [5].

The resilience res(m) of a useful cache block m is the amount of “disturbance”, i.e. its ECBs,
by a preempting task that the block may endure before becoming useless to the preempted task.
Consider a useful cache block m for an 8-way LRU cache in Figure 29, where all blocks are mapped
to the same cache set. The maximal age of m before its second access is 5. If the program is
preempted at any point between the two accesses to m, for example at program point p, m will
not be evicted from the cache as long as at most 3 ECBs from the preempting task map to the
same set. So m’s resilience is 3.
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Figure 29 The notion of resilience.

By computing lower bounds on the resilience of useful cache blocks, one can exclude many
cache misses compared with the conservative assumption in [17]. However, nested preemptions
must be very carefully handled. The ECBs from nested preempting tasks may accumulate to age
a useful block. In this case, the ECBs of all possible preempting tasks must be considered, which
may adversely introduce some pessimism.

The problem of reordered misses is rooted in LRU. A new policy called Selfish-LRU [102] has
been proposed to eliminate reordered misses. The idea is to first evict cache blocks that do not
belong to the currently active task.

For other replacement policies, such as FIFO and PLRU, the number of additional misses
can even be greater than the number of UCBs, the number of cache ways, and the number of
ECBs [17]. This makes it difficult to obtain precise CRPD bounds for these policies. An approach
based on relative competitiveness [103] was sketched in [17] that allows bounding the total misses
(intra- and inter-task misses) of a non-LRU policy from the results of LRU. Due to the generic
nature of the relative competitiveness framework, the analysis results can be imprecise.

5.1.4 Other Analyses

It has been observed [2] that some pessimism is introduced by independently computing bounds
on the CRPD and on the WCET. Consider the treatment of memory accesses to blocks that
have been classified as useful cache blocks during the WCET analysis. If such accesses cannot be
guaranteed to result in cache hits, a sound WCET analysis will also cover the cache miss case.
However, in that case, while a preemption-related cache miss may occur in reality, it has already
been accounted for in the computed WCET bound. Motivated by this observation, a notion of
definitely-cached UCBs has been proposed in [2], which excludes such blocks from the CRPD
computation. Excluding such blocks from the CRPD computation had previously been proposed
by Schneider [107] in what he calls the “isolated method”. This approach relies on a coupling of
WCET and CRPD analysis and may improve precision significantly.

Ramaprasad and Mueller [98, 100] presented an approach to response-time analysis for strictly-
periodic task sets under fixed-priority scheduling, taking into account the CRPD in data caches.
Due to their assumption of periodic tasks, they are able to simulate the scheduler during a
hyperperiod of the system. Taking into account BCET and WCET estimates they can then
accurately predict the number of preemptions, and to some extent even the preemption points
within each job, which are taken into account in the CRPD analysis. In addition to the restriction
to periodic task sets, this work shares the limitations of the data-cache analysis framework [97]
that it builds upon, i.e., neither input-dependent memory accesses nor input-dependent control
flows are supported. This approach was later extended to support a single non-preemptive region
within each task [99].

CRPD analysis under dynamic priority scheduling has also been studied [63, 79]. The difference
lies in the CRPD calculation for different schedulability tests of new scheduling policies. Lunniss
et al. [78] compared the effectiveness of fixed priority scheduling and EDF in the presence of
CRPD. Phavorin et al. [96] showed that common assumptions about optimality and sustainability
of scheduling algorithms do not hold anymore, once CRPD is taken into account.
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An alternative to bounding the cost of individual preemptions and taking this cost into account
within schedulability analysis is to conservatively account for all possible preemptions within
WCET analysis. This was first proposed by Schneider [107] in what he calls the “integrated
method”. The advantage of such an approach is that it can take into account overlapping of
memory latencies and computations in pipelined processors. This advantage, however, is usually
outweighed by overestimating the number of additional misses that may occur, as an unbounded
number of preemptions needs to be taken into account.

5.1.5 Limiting Preemptions
We have focused on approaches to bound the CRPD under fully-preemptive scheduling. Various
mechanisms exist to reduce the number of preemptions, and thereby also the overheads introduced
by preemptions. In the extreme case, tasks are scheduled non-preemptively, eliminating preemption
cost entirely. However, under non-preemptive scheduling, long-running lower priority tasks often
render task sets unschedulable. Prominent approaches that represent a compromise between
the extremes of fully-preemptive and non-preemptive scheduling are preemption thresholds [125],
cooperative scheduling [19], and floating non-preemptive regions [13].

Under fixed-priority scheduling with preemption thresholds, in addition to its priority, a task
is associated with a preemption threshold. When a task is running, it can only be preempted
by tasks whose priority is higher than the preemption threshold of the running task. This has
been shown to sometimes improve schedulability and reduce the number of preemptions [125].
Schedulability analysis taking into account CRPD under preemption thresholds [16] relies on
the same basic cache analysis concepts, i.e., UCBs and ECBs, as schedulability analyses under
standard fixed-priority preemptive scheduling.

Under cooperative scheduling, each task allows the scheduler to preempt it at fixed preemption
points, i.e., program locations at which it yields to the scheduler. Between preemption points, a
task is executed non-preemptively. This introduces lower-priority blocking time, which may reduce
schedulability, and requires analysis of the maximum blocking time [3]. The CRPD analyses
described above, based on UCBs, ECBs, and resilience can be applied to fixed preemption points
in a straightforward manner. A challenge is to select preemption points in a way that maximizes
a task set’s schedulability. Fewer preemption points may result in lower CRPD but may increase
the maximum blocking time. For programs consisting of straight-line code only, Bertogna et
al. [15] provided an algorithm to optimally select preemption points. They assumed that the
WCET is inflated accounting for preemptions at every preemption point by arbitrary preempting
tasks, rather than accounting for the effect of preemptions within response-time analysis based on
separate CRPD bounds.

In the floating non-preemptive region scheduling model [13], preemptions are limited as follows:
When the highest priority task is executing, and a job of a higher priority task is released, the
running job is not immediately preempted. Instead, a floating non-preemptive region of fixed
length Qi commences, where Qi may depend on the task τi currently running. The currently
running job is preempted after Qi time units, unless it completes before. Again, CRPD analyses
based on UCBs, ECBs, and resilience can be applied in this setting. However, as in the case of
fixed preemption points, it is also possible to derive WCET bounds for all tasks that hold under
the assumption that any two preemptions of a task are separated by at least Qi time units. Given
such WCET bounds, schedulability analyses do not need to further account for preemption costs.
Marinho et al. [83, 84] provided analyses to bound a task’s WCET including CRPD taking into
account the length of floating non-preemptive regions. Their algorithm consists of two phases:
1. First, a so-called preemption delay function f is computed. For any time t, f(t) is a bound on

the CRPD if the task is preempted after t time units. In order to compute f , they determine
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Figure 30 A common shared cache design in multi-cores.

a bound on the CRPD for each program point based on UCBs. Given lower and upper bounds
on the execution time of each basic block, they determine lower and upper bounds on when a
particular basic block may be running. Combining the two values yields f .

2. Then they incrementally determine based on f , one preemption at a time, the minimal progress
over time in the execution of a program, when it can be preempted each Qi time units.

If floating non-preemptive regions are short such an approach may be pessimistic as it does not
take into account how often and by which tasks a task may actually be preempted. On the other
hand, as in the “integrated method” of Schneider [107], it may take into account overlapping of
memory latencies and computations in pipelined processors. To our knowledge, the two approaches
have not been experimentally compared in the limited preemption context. This also applies to
Bertogna et al. [15].

A comprehensive survey of the literature on cache-related preemption delays is given by
Phavorin and Richard [95].

5.2 Shared Caches in Multi-Cores
Nowadays, multiple processing cores are deployed on a single die to fully exploit the real estate of
the processor chip and to achieve high performance with low power consumption. A commonality
among modern multi-core processors is the sharing of on-chip resources among multiple cores,
such as the last-level cache (Figure 30), so that each core can potentially make use of the entire
resource. However, tasks running in parallel on different cores compete for the shared resource,
resulting in inter-core conflicts, also referred to as inter-core interference. Due to this interference,
the execution time of a program now also depends on the resource-access behavior of the tasks
running in parallel [133].

Inter-core interference on a shared cache is different from inter-task interference due to
preemption. First, in a single-core preemptive system, a higher priority task does not suffer from
interference by a lower priority task, while in multi-core systems, all tasks running in parallel
on different cores interfere with each other independently of their priority level. Second, in a
single-core preemptive system, a task can only suffer from interference by preempting tasks a
small number of times, no more than the total number of releases of the higher priority tasks; in
contrast, on multi-cores, interference on a shared cache may come between any two consecutive
cache accesses of a task. Precisely analyzing all possible interleaving cache accesses on a shared
cache is notoriously difficult due to the huge number of cases to consider.

One approach is to extend the AI-based analysis to take into account the interference on the
shared cache [73]. The basic idea is similar to the resilience analysis in CRPD analysis. Assume
that two tasks, A and B, run in parallel and share a k-way L2 cache. To estimate A’s WCET,
multi-level analyses for A are first conducted without considering the interference from task B.
Then, a second step analyzes task B to see whether its interference could cause the blocks of A



M. Lv, N, Guan, J. Reineke, R. Wilhelm, and W. Yi 05:37

that are guaranteed to hit when A runs in isolation, to be evicted from the cache. Consider a
block m of A: its maximal age, age(m), in the cache can be extracted from a Must analysis. Then
task B is analyzed to determine a bound on the number of interfering memory blocks that map to
the same cache set as m , denoted byM. IfM≤ k−age(m) holds, m willl remain in the cache
even in the presence of B’s interference. Otherwise, m could be evicted from the cache due to B’s
execution, and its classification needs to be changed accordingly.

A major drawback of the above approach is that the timing of cache conflicts is not considered,
i.e., all potential cache conflicts computed from cache mapping are included. However, if by some
means we know that the lifetimes of two conflicting tasks (or cache accesses) do not overlap, some
cache conflicts can be safely excluded. This is a key property to tighten the estimations. Zhang
and Yan proposed a technique to exclude infeasible conflicts by exploring conflicting pairs of cache
accesses [135]. Liang et al. in [73] explore the overlapping of the lifetimes of co-running programs.
The timing of cache conflicts can also be precisely captured by model checking. Gustavsson et
al. used timed automata to model the behavior of programs on shared caches [50]. Infeasible
conflicts can be precisely excluded when the UPPAAL model checker explores the system model.
However, due to state space explosion, model checking based analysis can hardly scale beyond 2
cores. Another model checking based method was proposed in [132]. The SPIN model checker
was adopted to exclude the infeasible cache conflicts, but the models did not explore the exact
timing of the cache conflicts.

Another major analysis obstacle is that uncertainty, introduced by particular analysis technique
or inherent to a hardware feature, may be amplified in the presence of shared caches. For example,
in AI-based analyses, pessimistic age prediction makes the blocks of the interfered task less resilient;
similarly, pessimistic age prediction for the interfering task leads to an overestimated number
of conflicting blocks. Another source of uncertainty is the separation of cache behavior analysis
and path analysis [120], which adversely introduces “architecturally-infeasible” paths. Pruning
such infeasible paths can help to tighten WCET estimations. Banerjee et al. proposed a finer-
grained abstract domain, which associates path information into the traditional Must and May
abstract states to exclude non-existent cache states due to infeasible paths [12]. Chattopadhyay
and Roychoudhury proposed another technique that improves the prediction for NC blocks by
excluding infeasible paths using model checking [25]. Both techniques can be integrated into the
analysis framework of [73] to more precisely estimate shared cache interference.

Even with the above techniques, real-time system design still faces a problem: if the shared
cache is freely used, the worst-case performance of the tasks also degrades. Therefore, recent
research tried to employ mechanisms that provide temporal isolation on shared caches, which both
simplifies cache analysis and at the same time reduces the WCET. Cache partitioning [75, 116, 122]
partitions the cache space among tasks by controlling page allocation to completely avoid cache
conflicts among tasks on different cores. Cache locking [75, 116] locks the frequently used data
in the cache so that hit/miss behavior is totally predictable. Another approach [54] tries to
bypass the shared cache upon accesses to memory blocks with little reuse, which reduces cache
interference. The idea of bypassing [54] was later extended to shared data caches [68], in which
two heuristics are introduced to bypass indeterministic data references. On the system level, some
further issues have to be solved. In multi-tasking systems, different tasks may try to lock the
same cache segment, so scheduling of the lockings must be considered [126]. Regarding cache
partitioning, the partitions assigned to the tasks may overlap in cache space. A task can only
start execution if both the CPU and the cache partition are available. The schedulability tests
must consider both the CPU and the cache constraints [46]. However, partitioning and locking
have a side-effect of reducing the cache space available for each task. New techniques are expected
for more intelligent resource allocation and arbitration, so that the WCET of the tasks can
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Table 5 WCET analysis tools supporting static cache analysis.

Tools Instruction
Cache

Data
Cache

Multi-Level
Cache

Non-LRU
Cache CRPD Shared

Cache

aiT AI AI Pseudo-RR,
PLRU, FIFO

OTAWA AI,
ML-PER

Chronos Scope-
Aware

Separate
Framework

Heptane AI AI Separate
Framework

Separate
Analysis

WCA Model
Checking

FIFO

SWEET AI

METAMOC Model
Checking

Model
Checking

Round Robin

McAiT AI Separate
Framework

Model
Checking

Florida
State, NC
State,
Furman

University

SCS SCS, CME Separate
Framework

Separate
Analysis

Chalmers
University

Symbolic
Execution

Symbolic
Execution

be further reduced (Unlike the general-purpose computing domain [136], cache management in
real-time systems [82] optimizes the worst-case rather than the average-case performance.), and
the schedulability of the overall system is improved.

6 Static Analysis Tools

In the past decades, a number of WCET analysis tools have been developed in both industry and
academia. Table 5 lists the tools that support static cache analysis.

aiT [57] is the only static WCET analysis tool in routine use in industry. It has been qualified,
i.e., admitted to certification of time-critical avionics subsystems of several Airbus planes by the
European European Aviation Safety Agency (EASA) and has been used in their certification. It
is also used in other air and space companies in Europe, the United States, and China and in
German automotive OEMs and their suppliers. It uses the AI-based analyses [31, 38] for both
instruction and data caches. Besides LRU, the aiT tool can analyze three non-LRU replacement
policies: Pseudo-Round-Robin [58] as well as, PLRU and FIFO based on the analyses described
in [103] and [44].

The OTAWA tool [11] developed by the University of Toulouse, France, is an open framework for
WCET analysis. OTAWA provides instruction cache analysis based on abstract interpretation [38]
with the improvement of multi-level Persistence analysis [10].

Chronos [70] is a static WCET analysis tool from the National University of Singapore. It was
originally designed with a highlight on pipeline analysis using the SimpleScalar simulator. The
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latest version, Chronos 4.2, now supports the recent contributions of the group: scope-aware data
cache analysis [62] and unified cache analysis [24].

Heptane [60] is a static WCET analysis tool developed by IRISA, France. The highlight of the
tool is the separate analysis of multi-level caches [55]. It also support shared cache analysis by the
technique extended from AI-based analysis [54].

WCA [109] from Vienna University of Technology and DTU is a WCET analysis tool for a
Java processor, JOP [108], which uses method cache to store the instructions of a whole Java
method. A method is fully loaded into the cache upon invocation and enjoys cache hits during
its execution. On exit, the content of the caller function is reloaded into the method cache. The
method cache is organized like a fully-associative FIFO cache with N blocks. The tool uses model
checking to analyze the method cache, and it also provides a simple persistence analysis given
that a code region can fit into the cache.

SWEET [117] is a WCET analysis tool currently maintained by Mälardalen University of
Sweden. Although mainly focusing on flow analysis, it supports AI-based analysis for instruction
caches [38].

The METAMOC tool [33] from Aalborg University of Denmark employs model checking for
both instruction and data caches. It can analyze the round-robin replacement policy used by the
ARM920T processor.

McAiT [80] is a WCET analysis tool jointly developed by Uppsala University of Sweden and
Northeastern University of China. The tool supports L1 instruction cache analysis by the AI-based
approaches [31, 38], and shared L2 cache analysis by model checking.

Other research prototypes include a tool from Florida State, North Carolina State, and Furman
Universities, which adopts Static Cache Simulation [88] for both instruction and data cache
analysis, and also supports data cache analysis using cache miss equations [97]. Another prototype
from Chalmers University of Technology uses symbolic execution [77] for cache analysis.

The data provided in Table 5 might be imprecise, because the information can only be inferred
from the publications instead of the tools in some cases. More comprehensive knowledge on
existing WCET analysis tools can be found in [130] and the reports for the WCET Tool Challenge
in 2011 [53], 2008 [61] and 2006 [48].

7 Future Research Directions

WCET estimation is a key task in timing analysis of real-time systems. Since caches may
significantly affect execution time, the quality of cache analysis determines the precision of the
estimated WCET. This article surveys the main challenges and analysis techniques for vast cache
architectures. For decades, the LRU replacement policy has been well studied. The most valuable
asset is that a comprehensive understanding of cache behavior and cache analysis were established
by the ingenious researchers in related communities. Several future directions can be explored to
bridge the gap.

Evaluation and Comparison of Different Approaches. The reader of this survey may be disap-
pointed not to find evaluations and comparisons of the different methods for cache analysis. These
are indeed hard to find in literature and are therefore subject of future research.

One of the obstacles to fair evaluation is the difficulty to obtain industrial software for
experimentation; most industrial embedded software is not openly available. Another reason for
the non-existence of good experimental evaluations is the dominance of the Mälardalen Benchmark
Suite. The programs in this benchmark suite have a very special characteristic: They are small
and contain tiny loops. They start with long straight-line code sequences for the initialization of
the program variables. This alone makes them already problematic; the execution is independent
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of the values of the input variables. Measuring this one execution would suffice if execution times
were independent of the initial architectural state—which they often are not [104]. Analyzing
the cache performance using the programs from this benchmark should stress the cache; access
sequences without evictions do not provide any insights.

Analytical comparisons of the different approaches should, in principle, be possible. However,
they have not been performed. For instance, the abstract cache state in Mueller’s static cache
simulation [88, 90] is much like the abstract May cache in the abstract-interpretation-based
approach [37, 38]. Intuition says that the precision of May information as obtained by abstract
interpretation should therefore be the same as that obtained by static cache simulation. We would,
however, assume that Must information as obtained by abstract interpretation is more precise
than that obtained by static cache simulation since the computation of Must information from an
abstract May cache employs rather strong conditions to eliminate contents from the May cache
that cannot be guaranteed to be in all concrete caches.

Non-LRU Cache Analysis. Although LRU is highly predictable, it is practically more important
to analyze non-LRU replacement policies since they are actually adopted in real-life processors.
Must, May and Persistence analyses need to be established to fully characterize the cache behavior.
Currently, the missing pieces are Persistence analysis for FIFO, Must and May analyses for MRU,
Persistence and May analyses for PLRU. Furthermore, there are no techniques to analyze non-LRU
data caches and multi-level caches, which are actually required to cover the whole cache hierarchy.
For policies other than the above-mentioned ones, similar analysis targets should be fulfilled.
However, we still lack a systematic way to construct abstract analyses for new replacement policies.

Application of Cache Analysis in Other Domains. So far the use of cache analysis has mostly
been confined to WCET analysis. However, there is at least one more domain in which cache
analysis can deliver valuable insights, namely security. Side-channel attacks recover secret inputs
to programs from physical characteristics of the computation. Typical goals of such attacks are
the recovery of cryptographic keys and private information about users. Characteristics that
have been exploited for that purpose include execution time, cache behavior, memory and power
consumption, and electromagnetic radiation. Doychev et al. have demonstrated that static cache
analyses based on abstract interpretation can be used to derive guarantees on the amount of
information leaked to an attacker [35].

Design and Analysis of Timing-Predictable Embedded Systems. Preemption delay analysis
and multi-core shared cache analysis have to consider the interactions among tasks running
in parallel. It is commonly acknowledged that inter-core interference not only harms cache
analysis, but also degrades overall system performance. Academia has gradually come to a
consensus [8, 29, 122]: the solution to this problem should be to regulate both the hardware [92, 131]
and the software [36, 81, 94] so that the system behaves in a timely predictable manner. The
grand challenge is to obtain predictability without sacrificing the performance provided by future
powerful processors. Cache analysis will provide valuable insights to characterize tasks so that
good design decisions can be made in resource allocation and arbitration, such as cache partitioning
and cache-aware scheduling.

One important step in this direction would be to understand how timing compositionality [52]
can be achieved. Due to complex interactions between caches and other microarchitectural
components, such as branch predictors or out-of-order pipelines, provably sound WCET analyses
can currently only be achieved by analyzing all of these components together in an integrated
fashion. However, such an integrated approach is very unlikely to scale to multi-tasking systems
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or even to the parallel execution of multiple tasks on a multi-core processor. In these scenarios, to
limit analysis complexity, interference costs are better analyzed separately and then taken into
account during schedulability analysis. Timing compositionality has, however, not been formally
proven for models of any modern microarchitecture, leaving much of the recent work unapplicable
to real systems.
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