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ABSTRACT
Electric vehicles (EVs) are the trend for future transporta-
tion. The major obstacle is range anxiety due to poor avail-
ability of charging stations and long charging time. Solar-
powered EVs, which mostly rely on solar energy, are free of
charging limitations. However, the range anxiety problem is
more severe due to the availability of sun light. For example,
shadings of buildings or trees may cause a solar-powered EV
to stop halfway in a trip. In this paper, we show that by
optimally planning the speed on different road segments and
thus balancing energy harvesting and consumption, we can
enable a solar-powered EV to successfully reach the desti-
nation using the shortest travel time. The speed planning
problem is essentially a constrained non-linear programming
problem, which is generally difficult to solve. We have iden-
tified an optimality property that allows us to compute an
optimal speed assignment for a partition of the path; then,
a dynamic programming method is developed to efficiently
compute the optimal speed assignment for the whole trip
with significantly low computation overhead compared to
the state-of-the-art non-linear programming solver. To eval-
uate the usability of the proposed method, we have also de-
veloped a solar-powered EV prototype. Experiments show
that the predictions by the proposed technique match well
with the data collected from the physical EV. Issues on prac-
tical implementation are also discussed.
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1. INTRODUCTION
Electric vehicles (EVs) are considered one of the future

means of transportation since they use electricity which can
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be obtained from many renewable energy sources, such as
tidal power, solar power, and wind power. Besides, EV has
the flexibility to integrate many different energy generators,
such as solar panels and fuel cells [27]. Regarding the US
market, the PEV and EV sales doubles every year from 2011
to 2013 [11]. A 20% steady increase of annual growth rate
of the global EV market is predicted before 2020 [7].

Wide acceptance of EVs still faces several challenges. For
now, the limited range of common EVs is considered to be
a major obstacle. Small battery capacity together with a
sparse availability of charging stations and hour-scale charg-
ing time makes long-range journey infeasible, which is widely
termed range anxiety to express the driver’s fear of fully de-
pleting the batteries during a trip [24].

A special class of EV is solar-powered EV, which partly or
totally relies on solar energy (obtained from the solar pan-
els installed on the car) to propel the vehicle. Solar-powered
EVs are considered a solution for sustainable mobility within
duty ranges [29, 30], since they may collect energy when
not only parking but also travelling on the road. Although
charging limitation is not as urgent, the range anxiety prob-
lem is even more severe due to unpredictable solar input. For
example, when driving on urban roads, one may encounter
intermittent shadings by buildings or trees, in which very
little solar energy can be harvested.

Recently, speed and route planning [8] was proposed as
a solution to the range anxiety problem for ordinary EVs.
The main idea is to choose a path and assign proper speeds
so that the energy consumption is minimized for a given
trip. However, speed planning for solar-powered EVs is
much more complex due to the availability of sunshine. The
driver has to survive the shaded road segments of a trip
where there is little solar input. Furthermore, energy con-
sumption is very often coupled with timing requirements,
such as deadlines. Users in most cases have to face the
trade-off between travel time and energy consumption.

In this paper, we study the problem of speed planning
for solar-powered EVs so that one can complete a given
trip with minimal travel time. This is essentially a complex
constrained non-linear programming problem with multiple
variables which, in general, cannot be efficiently solved. We
identified an optimality structure of the specific problem,
which enables us to compute the optimal speeds for par-
titions of the whole path without losing global optimality.



Then a dynamic programming method is used to find the
actual partition. Simulation results show that in terms of
analysis efficiency, our approach significantly outperforms a
standard non-linear programming solver that applies global
searching of the optimal speed assignment.

We also developed a solar-powered EV prototype to val-
idate the quality of the proposed method in complicated
real-life scenarios. Experimental results show that the pre-
dictions by our approach, such as the amount of harvested
energy, are generally close to those obtained from the phys-
ical solar-powered EV.

We acknowledge that the proposed solar solution is not
(and never will be) applicable to ordinary EVs, which weigh
around 2 tons, mainly because the planned speed is too slow.
However, the solution could be useful in the future on low-
speed EVs (or neighbourhood EVs) with improved efficiency
of solar panels.

2. SYSTEM MODELS
In this section, we present the trip path model, the energy

input and output models of a solar-powered EV.

2.1 Path Model
A path from starting point to destination is composed of

alternative illuminated road segments and shaded road seg-
ments according to the availability of sunshine. Note that
shadings can be caused by vast factors, such as tall build-
ings, trees along the road, hills, tunnels, etc. Without loss
of generality, a path can be defined as follows:

Definition 1 (Path; Macro Segment; Segment). A
path from location A to location B is composed of n consec-
utive macro (road) segments,

P(A,B) =< S1, S2, ..., Sn > (1)

where each macro segment Si is further composed of an
illuminated segment SIi followed by a shaded segment SSi .

Si =< SIi , S
S
i > (2)

Thus, a path can also be written as:

P(A,B) =< SI1 , S
S
1 , S

I
2 , S

S
2 , ..., S

I
n, S

S
n > (3)

A path may start with a shaded road segment in practice.
This can be treated as a macro road segment with an in-
finitely small leading illuminated segment. In this case, the
EV must rely on an initial energy buffer to survive the first
shaded segment. We do not further divide a single (illumi-
nated or shaded) segment into smaller segments.

2.2 Solar Energy Input Models
In this paper, we consider EVs equipped with both solar

panels and batteries. The solar panels serve as the main
energy input, and the batteries are used as a buffer to tem-
porarily store unused solar energy, collected either before
or during the trip. At the beginning of a trip, the total
available energy in the batteries is represented by E0. On
illuminated road segments, solar energy is the main energy
source. The batteries may be used as an auxiliary source
or to store excess energy according to the amount of solar
input. On shaded road segments, energy consumption solely
depends on the batteries.

We assume perfect batteries by which the available amount
of energy does not decrease when the batteries are discharg-
ing with high current (i.e., high power output). Thus, the
available energy at any time can be totally used to drive the
EV regardless of its instantaneous power requirement.

Solar power changes over time with the sun angle during
the daytime [23]. The actual power output of a solar panel
is a fraction of the total solar power, which is determined by
the cell efficiency of the panel. Nowadays, the average cell ef-
ficiency of commercial solar panel products (based on single
crystal or multicrystaline) is around 20%, and that of mul-
tijunction photovoltaic cells can reach up to 46% [5]. Since
solar irradiance is continuously changing, Maximal Power
Point Tracking (MPPT) controllers are installed to optimize
solar power output.

In this paper, we assume constant solar power input for
illuminated segments, c in equation 4. The assumption is
reasonable for short trips, e.g., an hourly trip from home to
office. We apply the lowest solar power within the deadline
of a trip to ensure safe predictions. For shaded road seg-
ments, c = 0. The total energy input for an illuminated
segment of length S with constant cruising speed V is:

Ein = c · S
V

(4)

2.3 EV Energy Consumption Models
We intend to establish the relationship between the cruis-

ing speed and the energy consumption of an EV on a give
road segment. Energy consumption is in principle an inte-
gration of the power output (Pout) within a time interval.
Given a trip starting at time t0 and ending at t1, the energy
consumption is expressed by equation (5).

Eout =

∫ t1

t0

Poutdt (5)

For propelling, the instantaneous power output is mainly
used to overcome (i) rolling and hill climbing resistance, (ii)
aerodynamic drag, and to provide (iii) acceleration, which
are expressed as the main components of equation (6) [15].
In practice, power loss exists in both mechanical and electri-
cal sub-systems, so their efficiencies, ηm and ηe respectively
(0 < ηm, ηe < 1), are also included. Detailed meanings of
the physical parameters can be found in [15]. Clearly, cruis-
ing speed (V) plays a key role in determining the power
output of an EV.

Pout =
V

ηmηe
(M(fr + i) +

1

2
ρaCDAfV

2 +Mδ
dV

dt
) (6)

In this paper, we consider such a model in which accel-
eration power is not incurred (In Sec. 5, experimental re-
sults show this assumption is reasonable in real-life settings).
Thus, the transient power output at speed V is expressed
by equation 7, where parameters a and b are determined by
the vehicle itself and the road conditions. If the EV runs at
a constant speed V within distance S, the energy consump-
tion is expressed by equation 8.

Pout = aV3 + bV (7)

Eout = S(aV2 + b) (8)



Figure 1: A motivating example for speed planning

3. THE SPEED PLANNING PROBLEM
To explain the speed planning problem, consider the sce-

nario depicted in Figure 1. A person starts from home (A)
for the railway station (B) at a specific time t on daytime,
driving a solar-powered EV. There are three path options,
P1, P2 and P3, by choosing which the driver is concerned
about (i) whether he can successfully arrive at the destina-
tion, and moreover (ii) whether the trip can be finished in
time so that he does not miss the train.

Given no traffic jams, and for a traditional combustion en-
gine vehicle or a battery-powered EV, the driver may prob-
ably choose the shortest path P2 to save time. However, P2

includes a long tunnel to avoid a densely populated area.
Now, for a solar-powered EV, it will get no energy input
underground, which means the vehicle could probably stop
half-way in the tunnel. Comparably, other longer paths,
such as P1 with a small shaded segment and ample solar
input for the overall path, seem to be feasible.

More importantly, one must carefully plan his speed on
the path. Take P2 for example, to successfully survive the
“dark” tunnel, the driver has to collect enough energy by
driving very slowly on the illuminated segment before en-
tering the tunnel. In the tunnel, the driver may decide to
drive very fast to leave the “dangerous” segment as soon as
possible. However, this can be a bad decision: driving too
fast will very quickly deplete the precious collected energy,
because the faster the EV runs, the more energy it will con-
sume (as shown by equation (8)).

Furthermore, the driver is faced with a harder problem:
to balance the speeds between the illuminated segment and
the shaded segment. He can drive faster on the illuminated
segment to save time, which nevertheless reduces the amount
of collected energy, limiting his speed in the shaded segment.
The situation is even more complex if many illuminated and
shaded segments interleave with each other, like on path P3.

As can be seen, intuitions and experience in planning
trip for traditional combustion engine vehicles and battery-
powered EVs do not apply for solar-powered EVs. The
driving speed must be systematically planned according to
complex road situations and vehicle conditions, so that the
driver can successfully complete the trip and meet timing
requirements.

To assign a speed to each road segment to achieve minimal
overall travel time is a very complex constrained optimiza-

tion problem, which can be formally expressed as follows:

THE SPEED PLANNING PROBLEM
Objective function:

Tmin = min
n∑
i=1

(T (SIi ,Ω(SIi )) + T (SSi ,Ω(SSi )))

Constraints:
∀i ∈ {1..n}, ∗ = {I, S} Ω(S∗i ) > 0:
∀i ∈ {1..n}, ∗ = {I, S} E∗i ≥ 0:
(i) for an illuminated segment,
EIi = ESi−1 + EinIi −EoutIi ≥ 0;
(ii) for a shaded segment,
ESi = EIi −EoutSi ≥ 0

The travel time of a path can be expressed by the sum of
the times spent in each illuminated or shaded segment. In
the objective function, Ω(S∗i ) is a positive speed assignment
function for a given road segment S∗i , and T (S∗i ,Ω(S∗i )) is
the function to compute the travel time given Ω(S∗i ). To
find the optimal speed profile, i.e., Ω(S∗i ) for each road seg-
ment, the major difficulty is that the speed of a segment
may depend on other segments, as explained previously.

If the EV can successfully arrive at the destination, the
remained energy at the end of each road segment, E∗i , must
be non-negative, as expressed by the constraints. Ein and
Eout are computed by equations (4) and (8) respectively.
Note that inequality (ii) actually dominates inequality (i):
if (ii) is true, then (i) must hold since EoutSi ≥ 0. Then it
suffices to only constrain the remained energy at the end of
each macro segment.

The best path can be determined by comparing the min-
imal travel times for all available paths from location A to
location B, the number of which is typically not big in prac-
tice. So in this paper, we focus our discussion on optimizing
the travel time for a single path.

4. OPTIMAL SPEED PLANNING
To obtain the optimal solution efficiently, we decompose

the problem into several sub-problems to tackle the difficulty
step-by-step:

(1) Optimal speed assignment for a single macro segment :
We find that the optimal speed assignment for a macro



segment is to maintain a constant speed within each (il-
luminated or shaded) segment. Computing the speeds can
be formulated into a small-scale constrained non-linear pro-
gramming problem which can be efficiently solved.

(2) Optimal speed assignment for multiple macro segments:
When assigning speed for multiple macro segments, the com-
plexity increases significantly. For our problem, we find
that when the global optimal solution is achieved, the speed
assignment actually exhibits an interesting property: the
whole path is partitioned into several chunks with each chunk
containing several macro segments: the remained energy at
the end of each chunk is zero, and within a chunk, the macro
segments have the same speed assignment. By this, we can
treat all the macro segments in a chunk as a single big macro
segment, and thus speed assignment can be reduced to solv-
ing the big segment.

(3) Optimal speed assignment for the whole path by dy-
namic programming : Now, computing the optimal speed
assignment for a whole path can be decomposed into com-
puting several chunks. However, we still do not know where
these zero-energy points actually locate in the path. A näıve
way is to enumerate all possibilities, but the complexity is
exponential. By the optimal structure of our problem, we
present a dynamic programming based method to system-
atically find these points with polynomial complexity.

4.1 Speed Planning for a Macro Segment
First, consider the speed assignment for a single illumi-

nated/shaded segment, we have the following lemma.

Lemma 1. Given a specific energy consumption E, the
minimal travel time for a road segment with length S is
achieved by maintaining a constant speed.

Proof. An EV may move at variable speeds on a road
segment. This behavior can be modeled as: the road seg-
ment S is partitioned into n consecutive parts (S1 to Sn),
in each of which the EV moves at a constant speed xi. The
modeling is precise since we do not pose limitations on ei-
ther the length of each Si or the number of partitions. Now

the total energy consumption on S is E =
n∑
i=1

Si(ax
2
i + b).

Let f(x1, ..., xn) = T =
n∑
i=1

Si
xi

, and

g(x1, ..., xn) =
n∑
i=1

Si(ax
2
i + b)− E.

To minimize f(x1, ..., xn) subject to g(x1, ..., xn) = 0, we
apply the method of Lagrange multipliers [10], which intro-
duces a constant λ (λ ≥ 0) and an auxiliary function:

Λ(x1, ..., xn, λ) = f(x1, ..., xn) + λg(x1, ..., xn).
The values of the variables leading to the minimum of f

can be obtained by computing the equation set:
∇x1,...,xn,λΛ(x1, ..., xn, λ) = 0, where ∇xiΛ = ∂Λ

∂xi
.

By the symmetry of the representations of f and g, for any
i, ∇xiΛ(x1, ..., xn, λ) are the same, and at the optimal point,

xi = 3

√
1

2aλ
, i = 1...n. This means the trip time T reaches

its minimum when the speeds for all Si are the same, i.e., a
constant speed for the whole road segment.

Then consider the optimal speed assignment for a macro
segment, we have the following result.

Theorem 1. Given a macro segment S with an illumi-
nated segment of length S1 and a shaded segment of length

S2, the energy at the beginning and the end of S is E0 and
E1 respectively. The minimal travel time is achieved when
S1 and S2 are assigned constant speed respectively.

Proof. Since a solar-powered EV in a shaded segment
relies on the energy transferred from its previous illuminated
segment, we assume that at the end of S1, E2 amount of
energy is transferred to S2. The energy consumed in S1 is
E0 + Ein − E2, where Ein is the harvested energy in S1,
which is determined by the travel time t in S1. Energy
consumption in S2 is E2 −E1. By Lemma 1, the most time
saving approach is to run at a constant speed in both S1 for
any valid t, and also run at a constant speed in S2.

Lemma 1 and Theorem 1 exhibit the properties when min-
imal travel time is achieved for a macro segment. To find the
actually speed values in S1 and S2, one can use constrained
non-linear programming solvers in practice.

4.2 Key Properties for the Optimal Speed As-
signment

Now we consider to find the optimal speed assignment
for a path. We use x∗i to represent the speed assigned to
each segment S∗i , and use x∗i to represent the point at which
the objective function reaches its global minimum. The ob-
jective function to be optimized and the set of inequality
constraints are expressed as follows:

f(xI1, x
S
1 , ..., x

I
n, x

S
n) =

n∑
i=1

(
SIi
xIi

+
SSi
xSi

) (9)

∀k = 1..n, gk(xI1, x
S
1 , ..., x

I
n, x

S
n) =

k∑
i=1

{[SIi (a(xIi )
2 + b)]

+[SSi (a(xSi )2 + b)]} −
k∑
i=1

c
SIi
xIi
− E0 ≤ 0

(10)

The above problem is much more complex than optimiza-
tion for a single macro segment, mainly due to the interde-
pendency between different macro segments. For example,
consider two consecutive macro segments S1 and S2: S1

contains a long illuminated segment and a short shaded seg-
ment; the configuration of S2 is the opposite. Then S1 may
transfer energy to feed the long shaded segment in S2.

The complex optimization problem can be directly solved
by existing non-linear programming solvers. However, the
performance of such a method does not scale with the num-
ber of macro segments.

In our research, we find that when an optimal speed as-
signment for a path is reached, the remained energy at the
end of some macro segments is 0. For two adjacent zero-
energy points, all the macro segments included have the
same speed profile. This property is formulated into Theo-
rem 2 and proved as follows.

Theorem 2. For any i and j, if the remained energy at
the end of macro segments i − 1 and j, is 0, denoted by
Ei−1 = Ej = 0, and for any k (i ≤ k < j) Ek > 0, then
xIi = xIi+1 = · · · = xIj and xSi = xSi+1 = · · · = xSj , when the
minimal travel time for the path is reached.

Proof. By Karush-Kuhn-Tucker necessary conditions [10]
for a non-linear optimization problem, when the function f



E0 E2 = 0 E5 = 0 E6 = 0E1 > 0 E3 > 0 E4 > 0

Chunk 1 = <S1, S2> Chunk 2 = <S3, S4, S5> Chunk 3 = <S6>

Figure 2: An example of chunks separated by zero-energy points

(equation (9)) subject to a set of n constraints gi ≤ 0 (i =
1, ..., n) (expressed by (10)) reaches its minimum, and f and
g satisfy some regularity conditions1, then there exist con-
stants µi (i = 1, ..., n), such that:

∇f(X) +

n∑
i=1

µi∇gi(X) = 0 (11)

µigi(X) = 0 for i = 1, ..., n (12)

µi ≥ 0 for i = 1, ..., n (13)

Here we use X to symbolically represent the set of vari-
ables {x∗i |i = 1, ..., n, ∗ = I or S}, i.e., the optimal speed
assignment for simplicity.

Expending equation set (11), we obtain two sets of equa-
tions, for i = 1, ..., n:

− SIi
(xIi )

2
+ (

n∑
k=i

µk) · (2aSIi xIi +
cSIi

(xIi )
2

) = 0 (14)

− SSi
(xSi )2

+ (

n∑
k=i

µk) · (2aSSi xSi ) = 0 (15)

By solving the above sets of equations we get

(xIi )
3 =

1

2a
n∑
k=i

µk

− c

2a
(16)

(xSi )3 =
1

2a
n∑
k=i

µk

(17)

So for any macro segment Si, if the remained energy at
the end of it is not zero, which is equivalent to gi(X) < 0,
then “µi = 0” must hold, from equations (12) and (13).

Now considering macro segment Si and Si+1, if gi(X) < 0,
from equations (16) and (17), we can see that:
xIi = xIi+1, and xSi = xSi+1.
Then, all the macro segments between two adjacent zero-

energy points have the same speed assignment2.

1Let x be a feasible solution, and denote I = {i : gi(x) =
0}, if (i) f and gi are differentiable at x, (ii) gi for
i /∈ I are continuous at x, and (iii) ∇gi(x) for i ∈ I
are linearly independent, then conditions (12)-(14) apply.
Proof provided in: faculty.neu.edu.cn/ise/lvmingsong/e-
energy2016/kkt-proof.pdf
2For macro segment Si with gi(X) = 0, i.e., the remained
energy at its end is zero, one cannot determine whether µi =
0. If µi = 0, the above results for Si and Si+1 also hold.

Note that the remained energy at the end of the path must
be zero. The result is trivial: if there is remained energy in
the end, we can at least use it in the last shaded segment
to further reduce the overall travel time. So the optimal
solution always implies that the energy at the end of the
path is depleted.

With Theorem 2, we know that when the optimal point
is reached, there must be some macro segment end point(s)
with zero remained energy, and these points divide the whole
path into several big chunks, as shown in Figure 2. This
motivates us with a simpler way to compute the optimal
solution. If by some methods the zero-energy points within
a path can be exactly located, we can construct a new macro

segment Ŝ =< ŜI , ŜS >, where ŜI =
∑
SIi and ŜS =

∑
SSi ,

for any Si in the same chunk. A non-linear programming
solver can be used to compute the optimal speed assignment

for Ŝ. Note that computing the optimal speed assignment
for one single macro segment is much cheaper than for a
series of consecutive macro segments. Now the remained
problem is how to find the zero-energy points.

4.3 Finding Optimal Speed Profile by Dynamic
Programming

A major difficulty in finding the chunk separation points
is that we do not even know how many such points actually
exist in a path. A näıve method would be to enumerate all
possible combinations in the path. However, the complexity
of such a method is exponential. In this section, we present
a dynamic-programming-based method to search the sepa-
ration points in polynomial time.

Given a path P =< S1, ..., SN > with N macro segments,
we introduce N − 1 variables c1, ..., cN−1, with 1 ≤ ci ≤
ci+1 ≤ N for any i = 1...N −2, as the separation points
of P. An assignment of values to c1, ..., cn−1 refers to a
partition of P into N chunks. Specially, we define c0 = 0
and cN = N to represent the start and end points of path
P. When there are less than N chunks regarding an optimal
solution, some separation points must have the same value.
We use tcs(ci, cj) to denote the optimal travel time for a
chunk between ci and cj .

We then define a function Opt(x) which gives a way
to compute the travel time for a sub-path starting from
the x-th macro segment and ending with the end of the
path. For such a sub-path, we need N−x separation points
cx, cx+1, · · · , cN−1. We use cx−1 and cN to refer to the start-
ing point and the end point of the sub-path.

Opt(x) = min
∀x≤cx≤N
∀cx≤cx+1≤N

···
∀cN−2≤cN−1≤N

{
N∑
k=x

tcs(ck−1, ck)} (18)



Theorem 3 (Optimality of Opt(x)). Opt(x) returns
the global minimal travel time for path P =< Sx, ..., SN >.

Proof. By the definition of Opt(x), it is easy to see that
it covers all possible number of actual separation points and
for each number all possible assignments.

From the definition of Opt and Theorem 3, we have

Opt(1)= min
∀1≤c1≤N
∀c1≤c2≤N

···
∀cN−2≤cN−1≤N

{
N∑
k=1

tcs(ck−1, ck)}

= min
∀1≤c1≤N

{tcs(0, c1) + Opt(c1 + 1)}

(19)

Note that Opt(N + 1) = 0. The above equation implies
that the original optimization problem can be recursively
reduced to a simpler problem which is easier to solve. So we
present a dynamic-programming-based algorithm as follows.

Algorithm 1 Optimal Speed Planning for a Path

Input: (1) the path P(A,B) =< S1, S2, ..., SN >; (2) initial
energy in the buffer: E0

Output: Optimal speed assignment to each road segment
1: /* STEP 1: compute the optimal travel times for all

possible chunks */
2: for i = 1→ n do
3: for j = i→ n do
4: compute tcs(i, j) for chunk [i, j]
5: if chunk [i, j] is NOT valid then
6: tcs(i, j) = +∞
7: end if
8: end for
9: end for

10: /* STEP 2: compute Opt(i) bottom up */
11: Opt(N) = tcs(N,N)
12: for i = N−1→ 1 do
13: Opt(i) = +∞
14: for j = i→ N do
15: Opt(i) = min{Opt(i), tcs(i, j) + Opt(j + 1)}
16: end for
17: Record the speed assignment of Opt(i)
18: end for
19: return Opt(1)

Algorithm 1 contains two main steps. First, we pre-compute
the travel times for all possible chunks, which are used to
compute Opt(i), (i = N · · · 1) in the second step. Note that
line 5 involves a process to validate a chunk [i, j], in which we
compute the remained energy for each macro segment within
chunk [i, j], given the computed speed assignment and the
initial energy (E0 if i = 1; 0 otherwise). If there is at least
one macro segment whose remained energy is negative, then
chunk [i, j] represents an invalid partition in the problem do-
main. It is easy to see that the complexity of Algorithm 1 is
O(n2), where n is the number of macro segments of a path.

4.4 Discussion on the Zero Energy Phenomenon
By the above optimality structure, at the end of each

chunk, the remained energy is zero. People may claim that
it is not safe to leave the EV with zero energy during a
trip. Actually, this is not a problem. In practice, one can

charge the EV batteries with some initial energy for safety.
As shown in the proofs of Theorem 1− 3, the optimization
procedure is not affected by the value of initial energy (E0).
In problem solving, we treat the non-zero initial energy as
zero and then perform speed planning. The result is that
the initial energy is still remained in the battery at the end
of the trip, i.e., the EV only uses solar energy collected on
the way.

5. EXPERIMENTS
In this section, we present two sets of experiments:

• simulations are conducted to compare the performance
of our proposed method and that of a constrained non-
linear programming solver in MATLAB;

• experiments are conducted on a solar-powered EV pro-
totype. The purpose is to evaluate whether our ap-
proach can be applied in real-life scenarios.

Table 1: Simulation results

No.
Macro Length Travel Time OPT GS

Segments (km) (min) (sec) (sec)

1 2 3.9 44.56 2 3

2 2 5.3 67.14 3 34

3 3 16.3 193.24 3 34

4 4 13.2 147.94 8 158

5 5 13.3 145.62 30 125

6 6 9.8 105.25 18 152

7 7 9.5 105.10 23 174

8 8 11.5 129.83 90 129

9 9 11.7 127.56 58 1076

10 10 12.7 138.49 98 937

11 11 15.7 169.45 64 1151

12 12 19.1 218.15 78 827

13 13 20.3 227.22 122 1044

14 14 22.9 271.81 123 2430

15 15 27.8 314.45 106 2900

16 16 20.4 235.60 150 8215

17 17 28.0 321.48 153 9441

18 18 24.8 286.20 171 4788

19 19 28.7 330.35 200 9436

20 20 27.5 314.46 278 N/A

5.1 Simulation Results
In the simulations, we compare the performance of the

following two approaches that can find the optimal speed
assignment for a path:

• GlobalSearch is a constrained non-linear programming
solver provided by the MATLAB Global Optimization
Toolbox citegs-malab. It applies the scatter search al-
gorithm [35] to generate a number of trial points, then
repeatedly examines the trial points and calls another
local optimal solver fmincon to search the state space.

• Our approach applies Algorithm 1 to compute the op-
timal solution. In the step to compute tcs(i, j) for a
chunk, we apply the GlobalSearch solver.



Both approaches are implemented and run within MAT-
LAB 2015a. The maximal allowed iterations is set to 10, 000,
and the maximal allowed function evaluations are set to
1, 000, 000 for GlobalSearch, to make both approaches achieve
the best quality solution. The experiments run on a desk-
top computer with a 3.60GHz Intel Core i7-4790 CPU and
16GB main memory. In our simulations, solar input is set to
200W , a common level at around 10:00am on a clear spring
day in Shenyang, China. We randomly generate 20 paths
with the number of macro segments ranging from 2 to 20,
shown in Table 1. The total lengths and the computed min-
imal travel times (same for both methods) are listed as well.
The computation times to solve the optimization problem
by our approach, denoted by OPT, and by GlobalSearch,
denoted by GS, are shown in the last two columns. If an
approach does not finish within 3 hours, we say it runs out
of time, and its performance is marked “N/A”.

For analysis time, our approach basically follows the n2

2

curve, because it computes the travel time of of n(n−1)
2

pos-
sible chunks (line 2-10 in Algorithm 1). The computation
overhead of GlobalSearch increases much faster with the
number of segments, basically follows an exponential curve.
Our approach wins because we decompose (by the optimal
structure) the original problem into smaller sub-problems
that can be solved much more efficiently.

5.2 Validation Results
To check whether the proposed method applies in com-

plicated real-life situations, we built a small solar-powered
EV as a validation platform. The prototype is based on an
experimental EV; the major modification is the solar energy
system. Figure 3 shows the prototype, the main details of
which are listed in Table 2.

Table 2: Configurations of the solar-Powered EV
Component Specifications

Solar Panel

Brand: Yingli Solar

Module Type: YL270C-30b (60 Cells)

Technology: Monocrystalline

Power Output (STC): 270W

Module Efficiency: 16.6%

Cell Dimensions: 156 X 156 (mm)

Dimensions: 1640 X 990 X 40 (mm)

Weight: 18.5kg

MPPT Controller

Brand: victron energy

Module: BlueSolar MPPT 100/50

Output Voltage: 12/24V

Rated Charge Current: 50A

Max. Power: 700W@12V, 1400W@24V

Max. Efficiency: 98%

Charging Method: multi-stage adaptive

MPPT Control Algorithm: N/A

Electric Vehicle

Dimensions: 2050 X 1220 X 1570 (mm)

Kerb Mass: 580kg

Drive Type: Rear wheel

Motor Type: Brushless DC motor

Rated Motor Power: 2.2kW

Maximum Speed: 35km/h

Speed planning requires to know the parameters for the
EV power output function, i.e., a and b in equation (7). In

Figure 3: The solar-powered EV prototype

(a) Front view (b) Rear view

reality, the values are determined by many complex factors,
such as vehicle specifications, road conditions, weather, etc.
To obtain a precise model for the EV output, we use the
prototyped platform to profile the required parameters. We
collect data on the output power for different speeds, then
use the cftool in MATLAB to fit a function in the form of
equation (7). Then the precise values a = 0.01 and b = 33
specific to our EV and the test roads are obtained.

We conducted four validation experiments in late April,
among which three were run on a clear day and one on a
cloudy day. The paths were planned on university campus
located at latitude 41◦76′ N and longitude 123◦42′ E. On
campus, shadings are mainly created by buildings, and we
measured the length of each shading segment. On general
city areas, with geographical and building data, one can
apply the ray-tracing technique to compute the shadings on
the road given the current time and location (to compute
sun angle). Existing GIS tools (e.g., ArcGIS [3]) are already
capable of this computation.

In each experiment, we measure the transient PV input
power at the start time, used as the constant input power
for the speed planner. Then for a given path, the speed
planner returns the optimal speed on each road segment. In
each experiment, we drive the EV at the planned speed, and
track down the travel time, harvested and consumed energy
regarding each road segment. The path configuration and
the collected data are listed from Table 3 to Table 6, in
which OPT and HW refer to the results from the speed
planner and the real solar EV, respectively.

Table 3: Validation results for Exp-1
Weather: Clear PV Power: 210W

Test Time: 10:32:02 ∼ 11:15:44

Seg.
Length

(km)

Travel Time

(min)

Energy Input

(Wh)

Energy Output

(Wh)

OPT HW OPT HW OPT HW

SI
1 1.76 23.59 23.80 82.55 78.17 58.43 66.38

SS
1 0.54 1.48 1.55 0 1.29 20.42 21.18

SI
2 1.22 16.35 16.82 57.22 58.01 40.50 49.60

SS
2 0.54 1.48 1.55 0 1.33 20.42 22.89

Total 4.06 42.90 43.72 139.77 138.80 139.77 160.05

In the first three clear day experiments, experimental data
between OPT and HW match well. The data can be ex-
plained in detail from several aspects.



Table 4: Validation results for Exp-2
Weather: Clear PV Power: 210W

Test Time: 11:20:52 ∼ 11:40:38

Seg.
Length

(km)

Travel Time

(min)

Energy Input

(Wh)

Energy Output

(Wh)

OPT HW OPT HW OPT HW

SI
1 0.53 9.05 9.55 31.66 33.56 17.68 23.73

SS
1 0.34 0.93 0.87 0 0.86 12.82 15.05

SI
2 0.50 8.44 8.23 29.52 26.61 16.50 20.44

SS
2 0.38 1.03 1.13 0 1.19 14.18 19.32

Total 1.75 19.45 19.78 61.18 62.22 61.18 78.54

Table 5: Validation results for Exp-3
Weather: Clear PV Power: 180W

Test Time: 12:57:26 ∼ 13:56:37

Seg.
Length

(km)

Travel Time

(min)

Energy Input

(Wh)

Energy Output

(Wh)

OPT HW OPT HW OPT HW

SI
1 0.67 18.51 18.28 55.52 58.11 22.21 30.23

SS
1 0.81 2.34 2.37 0 2.38 30.24 30.94

SI
2 0.39 10.57 10.78 31.72 35.19 12.69 20.41

SS
2 0.34 0.98 0.85 0 0.84 12.69 13.72

SI
3 0.36 9.91 9.63 29.74 29.85 11.90 15.42

SS
3 0.38 1.09 1.17 0 1.12 14.19 17.77

SI
4 0.27 7.49 7.23 22.47 22.54 8.99 11.91

SS
4 0.50 1.44 1.40 0 1.39 18.67 21.11

SI
5 0.24 6.61 5.82 19.83 17.24 7.93 10.08

SS
5 0.53 1.53 1.67 0 1.59 19.77 22.72

Total 4.49 60.47 59.20 159.28 170.25 159.28 194.31

Travel time. There is a slight difference between the travel
times predicted by the speed planner and those by the hard-
ware platform. This is because currently our prototyped EV
relies on the driver to maintain constant speed. The accu-
racy of the speedometer, the sensitivity of the acceleration
pedal, and the driver’s level of technique introduce inevitable
errors during the control process. For advanced EVs with
auto-cruise systems, stabilizing speed will be much easier.

Collected energy. Basically, the predicted energy input
by the speed planner is very close to that actually collected.
This shows that the constant solar power input model is rea-
sonable, at least for the time of the experiments (10:30am -
2:00pm) in which solar power does not change significantly.
For Exp-1, the actual collected energy should be larger than
the predicted amount, with the change of solar angle. This
trend can be witnessed in most illuminated segments. But,
on segment SI1 , the actually collected energy is lower. This
is because the shade of roadside trees on some illuminated
segments slightly decreases power input. For Exp-3, the pre-
dicted energy input should be larger than the actual data,
since solar power decreases in the afternoon. In the exper-
iment, we input a conservative low solar power (180W ) to
the speed planner to ensure safe predictions, which leads to
underestimated solar energy input.

Consumed energy. For all three clear day experiments,
the average consumed energy is about 20% higher than the
prediction. This is the result of two facts: first, acceleration
energy consumption is neglected in our model; second, since
in illuminated segments the planned speed is 2-3km/h, it
is very hard to manually stabilize the speed in this range,
which introduces unpredictable acceleration energy.

Comparably, our speed planner works slightly worse in
Exp-4, in which the predicted solar energy input is much

Table 6: Validation results for Exp-4
Weather: Cloudy E0: 60Wh PV Power: 60W

Test Time: 13:21:26 ∼ 14:44:12

Seg.
Length

(km)

Travel Time

(min)

Energy Input

(Wh)

Energy Output

(Wh)

OPT HW OPT HW OPT HW

SI
1 1.76 45.12 45.05 45.12 87.12 58.18 76.75

SS
1 0.54 2.24 2.65 0 0.35 18.95 19.73

SI
2 1.22 31.28 32.70 31.28 48.76 40.33 51.40

SS
2 0.54 2.24 2.38 0 0.19 18.94 18.64

Total 4.06 80.88 82.78 76.40 136.42 136.40 166.52

Time
13:25 13:31 13:37 13:43 13:50 13:56 14:02 14:08 14:15 14:21 14:27 14:33 14:40
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Figure 4: Irradiance profile for EXP-4

lower than the actual input. This is because the weather was
unpredictable on that cloudy day. Figure 4 shows the tran-
sient solar power profile where the circled areas correspond
to the shaded segments. When the experiment started, the
solar power decreased to 60W due to dense cloud. We input
this small number to the speed planner. However, the cloud
cleared up during the trip, and more energy was then har-
vested. Exp-4 shows that unpredictable weather conditions
is a major obstacle for off-line prediction of solar input. On-
line control will be helpful to deal with such uncertainties
by dynamically adjusting the speed plan.

6. DISCUSSIONS ON PRACTICAL IMPLE-
MENTATIONS

In this section, we discuss practical aspects of the pro-
posed framework.

6.1 Uncertainties from the Environment
First, solar input is sometimes unpredictable due to weather

conditions. Figure 4 shows such an extreme example of
cloudy weather. To model complex weather conditions, new
frameworks are required. For example, weather inaccuracies
can be modeled by stochastic formulation [22] with existing
solar power data [2]; then solar power estimations can be
obtained by a stochastic optimization procedure. Second,
unpredictable traffic situations could make the problem very
complex. For instance, when there are traffic jams, the EV
has to run much slower on the jam road segment and cannot
follow the planned speed. The effects are different when the
EV is jammed in illuminated segments or shaded segments.
For the former case, more energy could be collected during
the trip; for the latter case, if the sun angle is decreasing,
the travel time for the remaining trip will be increased since
solar power is lower. Since the locations of traffic jams are
in general changing over time, such uncertainties are very
hard to model, and thus it is not possible to obtain optimal
speed assignment statically.



6.2 Solar Input and Acceleration Energy
In this paper, we use a constant solar power in energy

input prediction. In real-time, solar power is continuously
changing with the change of sun angle during the trip. En-
ergy input now has a more complex relation with the car
speed. Regarding energy output, we used a simpler model
where acceleration energy is ignored. Validation results (in
Sec. 5.2) show that even if we simplified energy input/output
models, the analysis precision is good enough for some prac-
tical use, such as short-range trips.

6.3 Potential Application Scenarios
Given the state-of-the-art efficiency of solar panels and

typical energy loss, energy harvesting on a clear summer day
is about 2KWh for a 1.6m2 panel (used in our validation).
Take NISSAN Leaf [4] for example, 2KWh can support a
11.6km range. As the energy is harvested in about 10 hours,
the average speed is 1.16km/h. We acknowledge that purely
relying on solar energy is not a reasonable solution for an
ordinary EV in daily use.

For light-weight low-speed EVs, like the prototype in this
paper, 2KWh may support up to 25km range (an average
speed of 2.5km/h). Note that the highest efficiency achieved
in labs is up to 46% [5]; once commercialized, daily energy
harvesting of a solar panel can be up to 5.54KWh, support-
ing a range of 70km. If we extend the area of the solar panel
to 2.3m2, the average speed will be up to 10km/h, which is
actually the average speed in rush hours in a densely pop-
ulated Chinese city. As reported in [6], the market of low-
speed EVs in China was increased by 46.6% in 2013, mainly
because they are cheap, small, and enough for low-end use.
The proposed solution will become more applicable in the
future for this special yet fast increasing EV market.

7. RELATED WORK
In a closely related work [26], Plonski et al. studied the

problem of path planning for solar-powered robots. The
main objective is to select a path from a map and assign
speeds to the path segments so that the energy consumed
for the trip is minimized with given timing constraints. The
focus of the work was on precisely modeling solar radiance
over the interested area, which can be used to improve the
precision of solar power modeling of our work in the future.
In another work [30], Sorrentino et al. studied energy opti-
mization of an electric vehicle powered by both solar panels
and batteries. They used genetic algorithm to find a speed
profile that minimizes the overall energy consumption of a
trip. However, Sorrentino’s work does not consider the shad-
ings on a path, so their problem is essentially different from
the problem studied in this paper.

A large body of research work focuses on path planning
of solar-powered aircrafts [19, 31, 20, 13, 17, 12, 25], mostly
Unmanned Aerial Vehicles (UAVs). The general objective is
to maximize solar energy harvesting for a trip within hours.
Different from road vehicles, the controller may adjust not
only the speed but also the heading angle and the bank angle
to optimize the solar irradiance input angle for higher power
collection. Path optimization is conducted to cope with com-
plex solar irradiance distribution due to local weather. Es-
sentially, these problems have different energy harvesting
and power consumption models from our problem. Path
planning for aircrafts basically allows an aircraft to bypass
low solar power areas; for our problem, it is generally not

possible to bypass the shaded segment on a selected path,
and the planner must carefully assign vehicle speed to suc-
cessfully survive the “dark” segments.

Some researchers studied the path and speed planning
problem for non-solar-powered electric vehicles [8, 9, 33, 32,
28, 14]. A common optimization objective is to minimize
energy consumption by finding the right path between two
locations and assign optimal speeds on different parts of the
route. Most of the problems can be formulated as the Con-
strained Shortest Path (CSP) problem [18] which is known
to be NP-complete [16]. The solutions are subject to certain
constraints, such as overall trip time, battery capacity, the
number of recharging stations on the route [32, 28], etc. A
fundamental difference between our work and these research
is that the related works do not consider solar energy input
during the trip. Exceptionally, some research considers en-
ergy recuperation in their models [8, 9], which is similar to
the solar energy input on illuminated road segments in our
model. However, the two types of models are essentially dif-
ferent: those in [8, 9] assume fixed energy input on a road
segment; while in our model, the amount of solar energy
input depends on the speed assignment to the correspond-
ing road segment, which is generally further affected by the
solar input along the whole path.

Related work also considered speed planning to improve
comfort during driving [21, 34]. Specifically, such problems
aim at reducing the level of accelerations and longitude jerk
by optimizing the speed and trajectory of the vehicle for a
path with specific road conditions. These research problems
require more detailed information on vehicle propelling and
road conditions, but neither timing requirements nor energy
harvesting/consumption is within their concern.

The design of solar cars has been extensively explored
in worldwide challenges, e.g., the famous American Solar
Challenge [1]. In these challenges, the designers mainly focus
on maximizing the area of solar panels and optimizing the
car shape for best aerodynamic performance, so that the
solar car can achieve an as long as possible range with a
decent speed. These challenges greatly motivates the use of
solar energy on EVs; however, the proposed EV models are
still not suitable for nowadays real-life use.

8. CONCLUSION & FUTURE WORK
We have studied the speed planning problem for solar-

powered EVs to successfully finish a trip with minimal travel
time. The problem is a constrained non-linear programming
problem with many variables, which is generally very hard to
solve. By exploring the optimality structure of this specific
problem, we propose a dynamic-programming-based method
to efficiently compute the optimal speed assignment for a
trip. Simulation results show that our approach can signifi-
cantly improve analysis performance compared to the state-
of-the-art approaches. Validation results on a solar-powered
EV prototype demonstrate that the proposed method can
be used in some real-life scenarios.

In the future, we plan to improve the proposed framework
from the following aspects: (1) incorporating variable solar
power, variable shadings and acceleration energy consump-
tion for better modeling/analysis precision; (2) new frame-
works to model uncertain weather and traffic situations; (3)
integrating map applications, shading analysis and speed
planning into an in-car mobile application.
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