
Schedulability Analysis of Synchronous Digraph Real-Time Tasks

Morteza Mohaqeqi∗, Jakaria Abdullah∗, Nan Guan† and Wang Yi∗
∗Uppsala University, Sweden

†Northeastern University, China
Email: {morteza.mohaqeqi, jakaria.abdullah, yi}@it.uu.se, guannan@ise.neu.edu.cn

Abstract—Real-time task models have evolved from peri-
odic models to more sophisticated graph-based ones like the
Digraph Real Time task model (DRT) to specify branching
and loop structures of real-time embedded software. For
independent DRT tasks, efficient techniques for schedula-
bility analysis have been developed in previous work. In
this paper, we extend the DRT model to specify inter-
task synchronization through a rendezvous mechanism. We
present an abstraction technique for static priority schedu-
lability analysis of the corresponding tasks. Our experiments
show that, despite the high computational complexity of the
problem, the proposed technique scales very well for large
sets of dependent tasks.

Keywords-the digraph real-time task model; fixed-priority
scheduling; synchronization;

I. INTRODUCTION

With the increased complexity of real-time embedded

software, more expressive task models are required to

characterize the resource requirements of the real-time

tasks. In the past, a number of task models, ranging from

the relatively simple periodic and sporadic ones to the

more complex graph-based ones, have been proposed.

The Digraph Real-Time (DRT) model [1] is known as

one of the most expressive ones which can be used for

specifying complex structures of real-time programs such

as branching and loop structures. Based on this model,

a task may consist of different job types, where the

dependencies among the jobs are specified by a directed

cyclic graph.

While efficient schedulability analysis methods have

been developed for the DRT task model [1], [2], [3],

previous work has been mainly based on the tasks inde-

pendence assumption [4]. More specifically, while the job

dependency inside a task can be specified by the model, no

explicit and general notion of inter-task dependency has

been specified. The schedulability analysis of task systems

with inter-task dependency is often more sophisticated,

which makes the existing techniques unusable for this

case. For instance, regarding the fixed priority scheduling

policy, a simplifying property is that lower priority tasks

have no influence on the execution of higher priority ones.

However, in a system with task dependency, execution of a

high priority task can be influenced by the jobs belonging

to a lower priority one.

In this paper, we present a new task model for speci-

fying inter-task synchronization of real-time tasks through

a rendezvous mechanism. We develope techniques to per-

form uniprocessor schedulability analysis of this model.

For this purpose, we extend the well-known notion of

request function [2] by augmenting it with the additional

information of the synchronization instants. Additionally,

two abstraction refinement techniques are proposed for

improving the analysis efficiency. The experimental results

show that despite the essential complexity of the problem,

the method scales very well for large and complex task

sets.

The rest of this paper is organized as follows. Section II

reviews related work. The task model is formally defined

in Section III. Our approach for static priority schedula-

bility analysis of the proposed task model is presented

in Section IV. A number of techniques for improving

the analysis method are provided in Section V. Section

VI evaluates the efficiency and scalability of the analysis

method.

II. RELATED WORK

Much work has been done on the schedulability analysis

of various graph-based real-time task models, such as the

multiframe (MF) task model [5], generalized multiframe

(GMF) task model [4], non-cyclic GMF task model [6],

recurring branching (RB) task model [7], recurring real-

time (RRT) task model [8], etc. Figure 1 shows the

generalization relations among these task models. As it

is seen, the DRT task model considered in this paper is a

generalization of the above models. In the past, efficient

analysis methods have been proposed for both dynamic-

priority [1] and static-priority [2] scheduling analysis

of DRT tasks. Further, Guan et al. [3] proposed two

approximate response-time analysis methods and derived

the respective speed-up factors. These methods, however,

are unable to model the dependencies between real-time

tasks.

The synchronization semantic (called rendezvous or

synchronous message passing) considered in this paper is

widely used in modeling formalizations (such as CSP [9],

Petri net [10]), programming languages (such as Ada [11],

which is popular in developing real-time systems, Occam

[12], SHIM [13]) and real-time systems modeling tools

(such as UPPAAL [16], Ptolemy II [14]). Rendezvous is

closely related to the barrier synchronization that is widely

used in parallel programming models (e.g., the fork-join

model [15]).

In the context of formal verification, rendezvous syn-

chronization is supported by model checking tools such

as UPPAAL [16] and TIMES [18]. Due to the analysis

complexity of automata, the above mentioned tools suffer

from the state space-explosion problem. Rendezvous has
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Figure 1: Generalization relations between task models,

taken from [3].

been also considered in the context of periodic real-time

task models in early works [19], [20], [21]. However, these

scheduling and analysis techniques are not applicable to

the DRT model of this paper due to the combinatorial state

space explosion caused by the graph structures.

Limited studies have been done on synchronization of

DRT tasks. Guan et al. [22] develop a resource sharing

protocol to deal with branching structures in DRT tasks,

giving a speedup factor of 1.618 when used with unipro-

cessor fixed priority scheduling. In addition, a synchro-

nization model has been specified in [23] in which jobs

of different DRT tasks can be synchronized. Compared to

the mentioned studies [22], [23], in this paper we consider

a different kind of synchronization where releases of jobs

from different tasks are synchronized on action labels

denoted over their inter-release edges. As a special case of

synchronization, the fork-join DRT task model has been

specified by Stigge et al. [24]. In that model, a DRT task

can take a fork edge. When a fork edge is taken, a set of

independent paths will be followed in parallel until they

are joined in a so-called join edge. In contrast to our work,

they studied the EDF schedulability of this model.

III. TASK MODEL

This section specifies the syntax and semantics of the

synchronous digraph real-time task model. In addition,

notations used in the subsequent sections are introduced.

A. Syntax

A synchronous digraph real-time (SDRT) task T is

specified by a directed graph G(T ) = (V (T ), E(T )),
where V (T ) and E(T ) denote the set of graph’s vertices

and edges, respectively. Each vertex v ∈ V (T ) represents

a job type, and is labeled with a pair 〈e(v), d(v)〉, where

e(v) denotes the worst-case execution time (WCET) and

d(v) denotes the relative deadline of the corresponding

jobs. It is supposed that WCETs and relative deadlines

are positive integers. Each edge (u, v) ∈ E(T ) is also

labeled with a positive integer, p(u, v), specifying the

minimum inter-release time between two jobs. In addition,

v1 v2

v3 v4
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〈2, 20〉 〈1, 3〉

〈1, 6〉

30

10

9

10

8
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(b) Task T2

Figure 2: Two SDRT tasks with two synchronizations on

actions s1 and s2.

an edge (u, v) may be labeled with an action which is

denoted by a(u, v). Actions are used to denote inter-

task synchronization. We use the notation a(u, v) =⊥
to show that an edge (u, v) is not associated with any

synchronization.

Two tasks T1 and T2 are said to have a synchronization

on action s if there exist edges (u, v) ∈ E(T1) and

(u′, v′) ∈ E(T2) such that a(u, v) = s and a(u′, v′) = s.1

Moreover, the set of synchronization actions between the

two tasks is represented as Act(T1, T2). More precisely,

Act(T1, T2) is defined as

Act(T1, T2) = {s | a(u, v) = a(u′, v′) = s �=⊥ for some

(u, v) ∈ E(T1) and (u′, v′) ∈ E(T2)}
Example 1: Figure 2 shows two SDRT tasks which

have two synchronizations on actions s1 and s2. For these

tasks, we have Act(T1, T2) = {s1, s2}.
In this paper, our focus is on the SDRT tasks with

constrained deadline. This means that, given an SDRT task

T , for each u ∈ V (T ), we have d(u) ≤ p(u, v) for all

(u, v) ∈ E(T ). Also, similar to the DRT task model, it

is assumed that for any u, v ∈ V (T ), there exists at most

one edge from u to v.

B. Semantics

The semantics of the SDRT task model is defined based

on the set of execution traces which can be generated

1In this paper, we assume that exactly two tasks are involved
in each synchronization (action).
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Figure 3: Sample executions of the tasks specified in

Fig. 2.

by the respective tasks. An execution trace of a task is

specified by a job sequence.

Definition 1 (Job Sequence [1]): A job sequence is de-

fined as σ = [(R0, e0, v0), (R1, e1, v1), . . .], where each

tuple (Ri, ei, vi) represents a job instance, in which Ri,

ei, and vi denote job release time, job execution time, and

the job type, respectively. Additionally, the job sequence

σ can be generated by a task T if (v0, v1, . . .) is a path in

the task’s graph G(T ), and

• Ri+1 −Ri ≥ p(vi, vi+1), and

• ei ≤ e(vi),

for all i ≥ 0. A job sequence may be finite or infinite.

An SDRT task can only generate synchronous job

sequences. In a synchronous execution, the jobs of two

tasks which are associated with a common synchronization

action must be released at the same time. If one of

the synchronized jobs is ready to be released while the

other one is not, it will be blocked until the other job

becomes ready. This is similar to the synchronization

(rendezvous) mechanism provided by the modeling tools

(such as UPPAAL [16]) and programming languages (such

as Ada [27]) through which the communication and syn-

chronization of the tasks can be specified.

Figure 3 shows sample executions of the tasks T1 and T2

specified in Fig. 2. A non-synchronous execution (which

is not valid according to the synchronization semantic)

is depicted in Fig. 3a. Besides, Fig. 3b illustrates a

synchronous execution in which task T1 is blocked until

the other task (namely T2) can release the respective job,

v6.

In order to formally specify the synchronization seman-

tics, we first define the notion of action sequence.

Definition 2 (Action Sequence): The action

sequence (AS) of a job sequence σ =
[(R0, e0, v0), . . . , (Rn, en, vn)] is defined as

ASσ := [(s0, ts0), . . . , (sm, tsm)] (1)

where a pair (sj , tsj ) is in ASσ if and only if there exists

some i, 0 ≤ i < n, for which sj = a(vi, vi+1) �=⊥ and

tsj = Ri+1.

It is supposed that an action sequence is sorted with

respect to the release times, that is, tsj < tsj+1 , for

0 ≤ j < m. Also, for a set of actions A, let 	ASσ
A
denote the action sequence obtained from ASσ by remov-

ing all the tuples (s, ts) for which s /∈ A. On the basis of

these definitions, we define the notion of synchronous job

sequence.

Definition 3 (Synchronous Job Sequences): Two

job sequences σ and σ′ generated by two arbitrary

SDRT tasks T1 and T2 are said to be synchronous if

	ASσ
Act(T1,T2) = 	ASσ′
Act(T1,T2). Further, n (for

n > 2) job sequences are synchronous if any two of them

are synchronous.

Example 2: Consider the SDRT tasks shown in Fig. 2.

Two job sequences σ = [(0, 4, v1), (15, 1, v2), (35, 1, v4)]
and σ′ = [(0, 2, v5), (30, 1, v6), (39, 1, v7)], generated by

T1 and T2, are not synchronous and thus are not regarded

as valid job sequences. Meanwhile, the job sequence σ′′ =
[(0, 4, v1), (30, 1, v2), (50, 1, v4)] generated by T1 is syn-

chronous with σ′ since 	ASσ′′
{s1,s2} = 	ASσ′
{s1,s2} =
[(s1, 30)].

C. Further Definitions

In this section, further definitions and notations which

are used in the subsequent sections are introduced.

Consider an SDRT task and an arbitrary path π =
(v0, v1, . . . , vl) in the respective graph. Then, the most
dense job sequence generated via π is defined as σπ =
[(R0, e0, v0), . . . , (Rl, el, vl)], where

• R0 = 0,

• Ri =
∑i−1

j=0 p(vj , vj+1), for 0 < i ≤ l, and

• ei = e(vi), for 0 ≤ i ≤ l.

While the most dense job sequence of a path is unique,

infinite number of job sequences can be associated with

each path. To show this, we define the notion shifted job

sequence as follows.

Definition 4 (Job Sequence Shifting): Assume that σ =
[(R0, e0, v0), (R1, e1, v1), . . .] is a job sequence generated

by a task T . In addition, let i and t be two arbitrary

positive integers. Then, the shifted job sequence with

respect to i and t is defined as the job sequence σ′(i, t) =
[(R′0, e0, v0), (R

′
1, e1, v1), . . .] where

R′j =
{

Rj , j < i,
Rj + t, j ≥ i,

Lemma 1: For any job sequence σ generated by a task

T , all of the corresponding shifted job sequences can also

be generated by T .

Proof: It is easily seen that the shifted job sequence

satisfies the conditions specified in Definition 1. As a

result, it is also a job sequence.

It is worth noting that if σ′ is a job sequence obtained

by shifting a job sequence σ, then σ and σ′ are generated

through the same path in the respective task graph.

For an action sequence AS = [(s0, ts0), . . . , (sm, tsm)],
we use the notation AS [i] to refer to the i + 1th tuple,
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namely (si, tsi). Also, we define AS [i].s ≡ si and

AS[i].t ≡ tsi . Further, |AS | denotes the size of AS .

For convenient presentation and without loss of gener-

ality, it is assumed that multiple actions of the same type

appearing in a job sequence are relabeled to different and

unique labels. For example, two instances of an action s
appearing in a job sequence can be relabeled as y and z,

and are dealt with as different actions. This relabeling is

accomplished such that if the actions of two job sequences

match with each other, the respective actions after the

relabeling will match as well.

IV. SCHEDULABILITY ANALYSIS

In this section, we present schedulability analysis of

the SDRT task sets for the static priority (SP) scheduling

policy. Under an SP scheduling policy, a unique priority

is assigned to each task. At runtime, a job of a task can

be executed only if no job of higher priority tasks exists

in the system. Accordingly, SP schedulability of a task set

is defined as follows.

Definition 5: ([2]) A task set is said to be SP schedu-

lable if and only if there exists at least one priority order

for the tasks under which all the jobs meet their deadline.

For schedulability analysis, we first review the SP

schedulability conditions for a set of DRT tasks [2].

Afterwards, we present our analysis approach for the

SDRT task model.

A. SP Schedulability for DRT Tasks

A DRT task is specified by a directed graph as done

in the SDRT task model. The difference is that no syn-

chronization can be specified by the DRT task model.

The DRT SP schedulability analysis approach proposed in

[2] is based on the notion of request function. Intuitively,

a request function determines the maximum accumulated

workload which can arrive during a time interval.

Definition 6 (Request Function [2]): Consider an ar-

bitrary path π = (v0, v1, . . . , vl) in a task graph

and the respective most dense job sequence σπ =
[(R0, e0, v0), . . . , (Rl, el, vl)]. The request function asso-

ciated to π is defined as

rf π(t) := max
k

{
k∑

i=0

ei

∣∣∣∣∣ Rk < t

}
(2)

for t > 0, and rf π(t) = 0 for t ≤ 0.

The SP schedulability of a given job with respect to a

set of higher priority tasks (called interfering tasks) can be

specified based on this definition. To this aim, define ΠT

as the set of all paths in the graph of task T . Also, for a set

of tasks τ = {T1, T2, . . . , Tn}, let Π(τ) = ΠT1
× ΠT2

×
. . .×ΠTn

be the set of all path combinations, namely

Π(τ) = {(π1, . . . , πn) | π1 ∈ ΠT1
, . . . , πn ∈ ΠTn

}
Then, the SP schedulability condition of a job belonging

to a DRT task with respect to a set of interfering DRT

tasks is given by the following theorem.

Theorem 1 ([2]): A job with worst-case execution time

e and relative deadline d is schedulable, i.e., meets its

t

rf (t)

0 1 2 3 4 5 6 7
0

1

2

3

4
rf1

s

t

rf (t)

0 1 2 3 4 5 6 7
0

1

2

3

4
rf2

s

Figure 4: Two synchronous request functions.

deadline, under a set of interfering (i.e., higher priority)

tasks τ if and only if

∀(π1, . . . , πn) ∈ Π(τ) : ∃t ≤ d : e+
∑
Ti∈τ

rf πi
(t) ≤ t (3)

In other words, a necessary and sufficient condition for

schedulability of a job is that there exists a time instant

t between the job release time and its deadline at which

the job and all of the higher priority jobs released before

t are completely executed.

B. SP Schedulability for SDRT Tasks

According to the specified semantics for the SDRT

task model, a synchronization can influence the timing

characteristics and resource requests of the tasks. This

reveals that one cannot directly apply Theorem 1 to

the case of SDRT. In this section, we first adapt the

definition of request function such that the information of

synchronization instants can be represented as well. To this

aim, in addition to the accumulated arrived workload, an

action sequence is also associated with a request function.

The action sequence of a request function rf , denoted as

AS rf , is defined as the action sequence of the correspond-

ing job sequence as defined in Definition 2. We use this

definition to specify synchronous request functions. Two

request functions are said to be synchronous if they contain

the same action sequences (considering only the actions

that are common between the respective tasks). Further, a

set of (more than two) request functions are synchronous

if any two of them are synchronous. Figure 4 shows an

example of two synchronous request functions, where the

synchronization instant is denoted by an upward arrow.

According to the synchronous semantics of the SDRT

task model, for SP schedulability analysis (as defined

in Definition 5) we need to only consider synchronous

request functions. A brute force approach is to generate

all paths and the corresponding job sequences, and then, to

select the synchronous ones to apply the SP schedulability
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condition. This approach, however, is quite inefficient

since a large number of useless non-synchronous job

sequences are generated and checked. To address this

issue, we propose an approach which only considers the

synchronous job sequences. In summary, we first generate

all of the most dense job sequences for each task. Then, for

any combination of the corresponding request functions

from different tasks, an alignment is performed to obtain

the synchronous counterparts. After that, the schedulability

condition stated in Theorem 1 is applied. We show that this

approach is sound in terms of determining the SP schedu-

lability of an SDRT task set as defined in Definition 5.

The details are provided in the following.

We first define the notion of extended action sequences

of a given job sequence. For this purpose, consider a job

sequence σ = [(R0, e0, v0), (R1, e1, v1), . . .] generated by

task T with the corresponding action sequence ASσ . We

define the set of extended action sequences as

EASσ = {ASσ} ∪
{
[(s, 0),ASσ[0],ASσ[1], . . .]

∣∣
∃(u, v0) ∈ E(T ) : a(u, v0) = s }

Accordingly, for a path π and its most dense job sequence

σπ , RFπ is defined as the set of all request functions

rf , for which rf (t) is calculated as in (2), and AS rf ∈
EASσπ

.

As mentioned, for SP schedulability, we need to con-

sider the synchronous request functions associated to a

task set. However, the request functions obtained from the

most dense job sequences are not necessarily synchronous.

We introduce the alignment operation to obtain the corre-

sponding synchronous request functions.

Definition 7 (Request Function Alignment): Consider

two request functions rf and rf ′ where a common

synchronization action s exists in their action sequences.

Additionally, let (si, tsi) and (sj , tsj ) denote the

respective tuples in AS rf and AS rf ′ , respectively (i. e.,

si = sj = s). Without loss of generality, we assume

tsi ≤ tsj . The alignment operation of rf and rf ′ with

respect to s is denoted as align(rf , rf ′, s) and is defined

as follows. Let arf and arf ′ be the resulting request

functions associated to rf and rf ′, respectively, after the

alignment. We define arf ′ = rf ′ and

arf (t) =

⎧⎨
⎩

rf (t), t ≤ tsi ,
rf (tsi), tsi < t ≤ tsj ,
rf (t− δs), t > tsj ,

(4)

where δs = (tsj − tsi). Additionally, the respective action

sequences are specified as ASarf ′ = AS rf ′ and

ASarf = [AS rf [0], . . . ,AS rf [i− 1],AS rf [i] + δs,

AS rf [i+ 1] + δs, . . .],

where AS rf [i] + δs ≡ (AS rf [i].s,AS rf [i].t+ δs).
Based on this definition, we define the Synch operation

for a set of request functions as shown in Fig. 5. As seen,

first, the function Align is called, which finds the pair of

request functions whose first actions are the same (lines

function Synch(R) � R is a set of request functions

1: Align(R) � defined in Fig. 6

2: for each rf ∈ R do
3: if |AS rf | > 0 then
4: (s, ts)← AS rf [0]

5: new rf (t) =

{
rf (t), if t < ts,
rf (ts), otherwise,

6: rf ← new rf
7: ASrf ← {}
8: end if
9: end for

Figure 5: Procedure for synchronizing the set R containing

one request function per task.

function Align(R) � R is a set of request functions

1: S ← {
(rf , rf ′) | rf , rf ′ ∈ R,AS rf [0].s = AS rf ′ [0].s

}
2: while S is not empty do
3: for each (rf , rf ′) ∈ S do
4: Align and Pop(rf , rf ′,AS rf [0 ].s) � see

Fig. 7

5: end for
6: S ← {

(rf , rf ′) | rf , rf ′ ∈ R,
7: AS rf [0].s = AS rf ′ [0].s}
8: end while

Figure 6: Procedure for aligning request functions with

respect to their common actions.

1 and 6 in Fig. 6). If found, the request functions are

aligned (line 4 in Fig. 6) and the procedure proceeds to

the next actions. Otherwise, the request functions cannot

be aligned anymore. Thus, the arriving workload after the

first unmatched synchronization must be ignored (lines 2

to 9 of Fig. 5) since the synchronization cannot take place,

which means that the respective task is blocked.

The Synch operation defined in Fig. 5 has this property

that the resultant request functions constitute a set of

synchronous request functions.

Lemma 2: Consider a set of tasks τ = {T1, ..., Tn}. Let

π̄ = (π1, ..., πn) ∈ Π(τ) be an arbitrary path combination

where πi ∈ ΠTi
, and define

RF π̄ = {{rf 1, . . . , rf n} | rf 1 ∈ RFπ1
, . . . , rf n ∈ RFπn

}
(5)

For any R ∈ RF π̄, the alignment of R as defined in Fig. 5

yields a set of request functions that are related to at least

one set of synchronous job sequences generated by τ .

Proof: According to Definition 7, the align(.) oper-

ation just shifts (postpones) the arrived workload. There-

fore, it can be thought of as the shift operation for the

job sequences specified in Definition 4. Hence, based on

Lemma 1, there exists a valid job sequence generated

by the respective task for each aligned request function.

Moreover, it can be observed that when two request

functions are aligned with respect to an action s (line 4 in

Fig. 6), the value of the request functions, as well as the

tuples in their action sets, that are related to time instants

t ≤ ts will not change later in the procedure. Additionally,

in the for loop in Fig. 5, the actions that are not matched

180180



function Align and Pop(rf , rf ′, s)

1: align(rf , rf ′, s) � defined in Definition 7

2: ASrf ← ASrf \ASrf [0] � remove ASrf [0]
3: ASrf ′ ← ASrf ′\ASrf ′ [0] � remove ASrf ′ [0]

Figure 7: Procedure for aligning two request functions and

then removing the first actions.

(synchronized) are removed from the request functions. As

a result, the obtained request functions are synchronous.

Consequently, we can provide the SDRT SP schedu-

lability condition. Here, we focus on the schedulability

of a job which is released independent of other jobs, i.e.

a job which has no synchronization with any job of the

other tasks. In [30] we have shown that how the analysis

approach is extended to the general case.

Theorem 2: Given an SDRT task set τ , a job v with

worst-case execution time e and relative deadline d is

schedulable under an interfering task set τhp ⊆ τ if and

only if

∀π̄ ∈ Π(τ), ∀R ∈ RF π̄ : ∃t ≤ d :

e+
∑

rf i∈Synch(R)
Ti∈τhp

rf i(t) ≤ t, (6)

where RF π̄ is as defined in (5).2

Proof: First, we assume Condition (6) holds but the

job v is unschedulable. Unschedulability of v means that

there must be a combination of request functions rf i ∈
Synch(R) which can generate a workload such that for

each t ≤ d, tasks from τhp are executing strictly more

than t − e time units within [0, t]. As a result, the sum

of rf i ∈ Align(R) for tasks in τhp is strictly greater than

t− e for each t ≤ d, which contradicts Condition (6).

Next we assume that v is schedulable but Condition (6)

does not hold. Since v is schedulable, there exists a mini-

mal t0 ≤ d such that e time units of idle time is available

in [0, t0] for any combination of rf i(t0) ∈ Align(R)
belonging to the tasks of τhp . That means any accumulated

workload released by the high priority tasks does not

exceed t0 − e within [0, t0], which is precisely equivalent

to Condition (6) leading to a contradiction.

V. STATE-SPACE REDUCTION

The schedulability analysis problem of the DRT task

model has been shown to be strongly coNP-hard [28]

for SP scheduling. Since the SDRT task model is a

generalization of DRT, the exponential complexity of the

analysis problem for the SDRT is unavoidable. In this

section, we present techniques which, in spite of this

complexity, significantly improve the efficiency of the

analysis method and make it quite practical to be used

for large task sets.

2Note that due to the inter-task synchronization, the Synch()
operation in (6) is applied to the set of request functions of all
tasks (including the lower priority ones).

The schedulability analysis method proposed in the

previous section explores all path combinations, which

leads to an exponential complexity. Mainly, there are two

sources causing this complexity. First, the number of paths

generated by each task graph can grow exponentially.

Second, the number of path combinations obtained from

combining paths of different tasks may result in a huge

state-space. In this section, we deal with these issues.

For the first concern, it is seen that we do not need

to consider all paths (and request functions) generated by

an SDRT task. In fact, we define a notion of dominance
for request functions in the sense that only dominant

request functions should to be regarded in the schedula-

bility analysis. Besides, in order to avoid the investigation

of all combination of paths, we employ an abstraction

approach [2], based on which the set of request func-

tions are first aggregated to abstract request functions.

Using this abstraction, unnecessary path combinations

can be avoided. Additionally, we provide an abstraction

refinement approach based on abstracting the task set

with ignoring a subset of synchronization actions. In the

following subsections, the details of each approach are

specified.

A. Dominant Request Functions

In the SP schedulability analysis, it is observed that

a request function may dominate another one such that

schedulability under the dominant request function guar-

antees the schedulability under the dominated one. In such

a situation, it suffices to consider only the dominant one in

the schedulability analysis (i.e. Condition (6)). Definition 8

formally specifies this dominance relation.

Definition 8: Consider two request functions rf 1 and

rf 2. rf 1 dominates rf 2 if it holds that:

If Eq . (6 ) holds with rf 1 , then it holds with rf 2 , too.

In the following lemma, we provide a sufficient condition

for checking the dominance relation for request functions.

Lemma 3: A request function rf 1 dominates another

request function rf 2 if the following conditions hold:

1) ∀t : rf 1(t) ≥ rf 2(t).
2) rf 1 and rf 2 contain the same sequence of actions.

3) (ASrf1 is empty) or (ts ≤ t′s and rf 1(ts) ≥ rf 2(t
′
s)

and rf ′1 dominates rf ′2), where (s, ts) = ASrf 1
[0],

(s, t′s) = ASrf 2
[0], and rf ′1 and rf ′2 are obtained by

Align and Pop(rf 1 , rf 2 , s).

Proof: The proof is by induction on the number of

actions contained in the request functions. Here, we give

a sketch of the proof. For |AS rf | = 0, the problem

becomes the same as the problem for the DRT task model,

which has been proven in [2]. If |AS rf | = 1, then the

conditions ts ≤ t′s and rf 1(ts) ≥ rf 2(t
′
s) guarantee that

the alignment of any set of request functions with rf 1
specifies equal or more workload compared to when they

are aligned with rf 2. In addition, removing the actions

leads to a problem with |AS rf | = 0 which is already

proven in the base case of the induction. Further, assume

that the lemma holds for |AS rf | = n. Similar justification
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Figure 8: Request function rf 1 dominates rf 2.

can be made for |AS rf | = n+1 considering the alignment

with respect to the first actions, and removing the actions

after the alignment, which gives a problem instance with

|AS rf | = n.

Figure 8 shows an example of a request function (rf 1)

which dominates another request function (rf 2).

B. Request Function Abstraction

Based on the condition provided in Theorem 2, to make

sure that a task set is schedulable, the schedulability condi-

tion must be checked for all path combinations π̄ ∈ Π(τ).
To avoid assessing all combinations, we incorporate the

abstraction refinement approach [2], [23]. The main idea in

this technique is that instead of exhaustively investigating

the combination of the set of all concrete instances of

the problem, we can start with an abstract level. More

specifically, we can aggregate a set of request functions of

a task such that they are over-approximated by an abstract
request function. Then, if the schedulability condition

holds for the abstract request function, we can infer

that it holds for all ingredient request functions (namely

those which are abstracted), without any need to check

them individually. In the following, we formally define an

abstract request function.

Definition 9 (Abstract Request Function): The abstract

request function of a set of request functions RF =
{rf 1, rf 2, . . . , rf n} is a request function rf where

• ∀t : rf (t) = max(rf 1(t), rf 2(t), ..., rf n(t)), and

• AS rf =
{
(u, tu) | ∃rf i ∈ RF : (u, tu) ∈ AS rf i

and
tu = min{t′u | (u, t′u) ∈ AS rf j

for

some rf j ∈ RF}}
Additionally, any rf i ∈ RF is called an ingredient request

function.

On the other hand, a request function is concrete if it

is derived from a path in the respective graph. Based on

the abstraction refinement approach, concrete and abstract

request functions are considered in a binary tree structure,

called abstraction tree, in which, all concrete request

functions are placed in leaves. Further, each internal node

is associated to the abstract request function obtained from

abstraction of its children. Figure 9 provides a schematic

view of the structure of such a tree.

The most abstract
request function

Concrete
request functions

Figure 9: A schematic view of the abstraction tree of a

task, taken from [28].

function Synch(R) � R is a set of request functions

1: Ra ← {rf ∈ R | rf is abstract}
2: Rc ← {rf ∈ R | rf is concrete}
3: Align(Rc)
4: while True do

5:

S = { (rf , rf ′) |rf ∈ Rc , rf
′ ∈ Ra ,

AS rf [0].s = AS rf ′ [0].s,
AS rf [0].t < AS rf ′ [0].t }

6: if S is empty then
7: break

8: end if
9: for each (rf , rf ′) ∈ S do

10: Align and Pop(rf , rf ′,AS rf [0].s)
11: end for
12: end while
13: for each rf ∈ Rc do
14: if AS rf is not empty then
15: (s, ts)← ASrf [0]
16: if ∃rf ′ ∈ R : (∃t′s : (s, t′s) ∈ AS rf ′) then
17: continue

18: end if
19: new rf (t) =

{
rf (t), if t < ts,
rf (ts), otherwise,

20: rf ← new rf
21: ASrf ← {}
22: end if
23: end for

Figure 10: Alignment of a mixed set of abstract and

concrete request functions.

For schedulability analysis, we redefine the Synch()
operation for a mixed set of abstract and concrete request

functions as shown in Fig. 10. As seen, a while loop has

been added (lines 4 to 12) to the procedure. In this loop,

it is checked that whether an action in a concrete request

function happens earlier compared to its appearance in an

abstract one. If this is the case, we can align the former

with respect to the latter. This is because of the definition

of the action sequence of an abstract request function,

which for any action, considers its earliest occurrence

among the ingredient request functions. As a result, we

know that if a concrete request function is to be aligned

with any of the ingredient ones, the earliest time at

which the action can happen in a synchronous manner

is considered. By this way, the aligned set of request

functions provide an upper bound on the workload that

can enter to the system up to each time t.
Figure 11 represents the procedure for schedulability
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function Schedulable(τ, v)

1: Q← an empty queue

2: ri ← root of the abstraction tree obtained for task

Ti ∈ τ
3: R← (r1, . . . , rn)
4: Q.add(R)
5: while Q is not empty do
6: R← Q .pop()
7: if ∀t ≤ d(v) : e(v) +

∑
rf i∈Synch(R)

Ti∈τhp
rf i(t) > t,

then
8: if R is concrete then
9: return false

10: else
11: Q.add(refine(R))
12: end if
13: end if
14: end while
15: return true

Figure 11: The procedure for schedulability analysis of a

job v using the abstraction refinement technique.

analysis of a job using the abstraction refinement tech-

nique. In each step, the schedulability condition is checked

on a combination of request functions (line 7). If the

condition does not hold and all the request functions are

concrete, then the job will be considered unschedulable

(line 9). Meanwhile, if R contains at least one abstract

request function, we need to refine it (because an abstract

request function presents an over-approximation of the

actual workload and we cannot conclude unschedulability

of the job based on an abstract request function). In this

case, the combination of request functions is refined by

replacing one of the abstract ones with its children in the

respective abstraction tree (line 11).

C. Action-Based Refinement
While the previous abstraction and refinement approach

improves the efficiency of the analysis method, it does not

scale very well when the number of actions is increased.

(see Section VI for the experiment results illustrating

this issue). In this section, we present an action-based

abstraction approach to address this problem. This method

is based on the intuition that by ignoring some actions,

the task set can be approximated by another one with a

simpler structure, and thus, a shorter analysis time. The

details are presented in the following.
Consider an SDRT task set τ with the set of actions S.

For any subset S′ ⊆ S we define task sets τ−S′ and τ+S′ as

follows

τ−S′ ≡ The task set obtained from τ by removing all the

edges e for which a(e) ∈ S′.

τ+S′ ≡ The task set obtained from τ by removing all the

actions s ∈ S′ (without removing the edges).

We refer to S′ as the set of ignored actions. Our

approach is based on the relationship between τ , τ−S′ , and

τ+S′ from a the schedulability point of view, as specified

in the following lemma.

Lemma 4: Consider an SDRT task set τ and an arbi-

trary set of ignored actions S′. Then, the following holds:

τ−S′ is unschedulable ⇒ τ is unschedulable (7)

τ+S′ is schedulable ⇒ τ is schedulable (8)

Proof: The proof of (7) is based on the fact that the

set of all job sequences which can be generated by τ−S′

is a subset of that of τ . This is because that removing

a number of edges from an SDRT task graph removes

some execution paths. On the other hand, it does not

add any new execution trace. For the proof, assume that

τ−S′ is unschedulable. This means than there exists a job

sequence under which at least one job misses its deadline.

According to the mentioned fact, such a job sequence can

be generated by τ as well, leading to a deadline miss. As a

result, τ turns out to be unschedulable. A similar argument

holds for (8) considering that all job sequences generated

by τ can be generated by τ+S′ .

The action-based abstraction approach is constructed

on the basis of Lemma 4. In this approach, instead of

directly analyzing the task set τ , we proceed on the

corresponding under- and over-approximations, namely

τ−S′ and τ+S′ . We begin by considering the largest set of

ignored actions, namely S′ = S, which provides the

highest level of abstraction. In each step, schedulability

of τ+S′ and unschedulability of τ−S′ are inspected. If τ+S′

is schedulable, it is implied that τ is schedulable and the

test is terminated. Besides, if τ−S′ is unschedulable we can

conclude that τ is unschedulable. Otherwise, we proceed

one refinement step by removing one item from the set

of ignored actions. In the worst scenario, we will need to

remove all items from the set of ignored actions, achieving

S′ = ∅. At this step, τ−S′ = τ+S′ = τ , which means that

we have to analyze the actual task set for schedulability

test. Figure 12 shows a schematic view on the refinement

procedure. As seen, at each step, τ−S′ and τ+S′ are refined

to provide more accurate approximations of τ .

We illustrate our action-based abstraction refinement

approach using a simple example. Figure 13 shows a

set of two SDRT tasks with two synchronizations. The

abstraction and refinement steps related to this sample task

set are shown in Fig. 14. In the first step, the set of ignored

actions is determined as S′ = {s1, s2}. The first column

of the table depicts the respective task sets τ−S′ and τ+S′

for this step. In the next step, the task sets are refined by

adding the synchronization action s1. The results are seen

in the second column of the table. Finally, by reviving

action s2, the task sets are completely refined, obtaining

the original task set τ .

As a generalization of this simple example, the refine-

ment is performed via a loop. At each iteration, the anal-

ysis method provided in the previous sections (including

the abstraction refinement approach specified in Sec. V-B)

is called on the task sets τ−S′ and τ+S′ . If the analysis

reveals that τ−S′ is unschedulable (or τ+S′ is schedulable),

then it is concluded that the original task set (τ ) is also
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Figure 12: A schematic view of the action-based abstrac-

tion refinement.
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Figure 13: A set of two simple SDRT tasks (for clarity, the

vertex labels and inter-separation times are not shown).

unschedulable (or schedulable) and the loop is terminated.

Otherwise, task sets τ+S′ and τ−S′ are refined one step by

removing one synchronization action from S′ (as seen in

different steps in Fig. 14).

VI. EVALUATION

We have implemented the proposed method using the

python library previously developed for schedulability

analysis of DRT task sets [28]. For random task set

generation, similar to [2], we considered three types of

tasks, namely small, medium, and large tasks, with the

parameter ranges given in Table I. For each task, one of

these types is randomly selected. Then, the task param-

eters are chosen from the corresponding intervals with a

uniform probability. In addition, synchronization actions

are added to the randomly selected edges. Regarding the

task synchronization, we study two cases. In the first one,

n synchronization actions are added to the task set, where

n is the number of tasks in the task set. In the second case,

3n actions are added, which represents a relatively high

degree of synchronization between the tasks. In addition,

we obtained the results for the task sets containing no

action. In this case, the methods behave similar to which

proposed for the DRT tasks [2]. In order to generate a task

set with a desired utilization, random tasks are generated

and added to the task set until the total utilization of

the task set becomes larger than the specified utilization.

As a consequence, task sets with higher utilizations are

usually associated with higher number of tasks. In our

experiments, for each data point, 100 random experiments

have been run.

We first explore that how much the dominance relation

helps in state-space reduction. To this aim, we report the

Table I: Task set parameters

Task Type Small Medium Large

Vertices [3, 5] [5, 9] [7, 13]

Branching degree [1, 3] [1, 4] [1, 5]

p [50, 100] [100, 200] [200, 400]

e [1, 2] [1, 4] [1, 8]

d [25, 100] [50, 200] [100, 400]

number of path combinations which should be considered

in the schedulability analysis. The results are depicted in

Fig. 15. As seen, the reduction obtained by the dominance

relation is considerable compared to the total combina-

tions. It is also observed that in task sets with higher

number of actions less request functions are dominated.

This is expected because, according to Definition 8, when

the number of actions increases (or equivalently, |AS rf | is

larger, on the average), the dominance conditions are less

likely to hold.

We have assessed the scalability of the proposed meth-

ods through varying the total number of actions in a

task set. We have changed the number of synchronization

actions from two to 40 with a step of two. For each

experiment, we generated a task set with the desired

utilization, and then, run the analysis method to test

schedulability of a single job with the lowest priority

which has no synchronization with the higher priority

tasks (the higher priority tasks have synchronizations with

each other). We obtained the average run-time for two

cases: (i) the analysis without the action-based abstraction

refinement; and (ii) the analysis with the action-based

abstraction refinement. Figure 16 shows the results for

two values of the task set utilization, namely 0.5 and

0.6. As seen, increasing the number of actions in the

task sets causes that the analysis approach (without the

action-based refinement) become very lengthy. In contrast,

the action-based abstraction refinement approach scales

very well when the number of actions is increased. This

is because that this method adds the actions gradually

and often it reaches a decision on the schedulability (or

unschedulability) of the task set earlier.

Further, we investigate the acceptance ratio, as well

as the number of actual combinations which are tested

by the action-based abstraction refinement method, for

task sets with different number of synchronization actions.

Acceptance ratio is computed by dividing the number of

schedulable task sets by the total number of task sets. We

used the Audsley’s algorithm [29] for SP schedulability of

a task set. The results are presented in Table II. As seen,

task sets with higher number of actions exhibit higher

acceptance ratio. This is because that the synchronization

requirement restricts the tasks, leading to equal or less

workload released until any time instant and a lower

chance of deadline miss. In addition, it is seen that

with increased number of actions, more combinations are

checked during the analysis. There are two reasons for

this result. First, as shown in Fig. 15, total combinations
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Figure 14: Action-based abstraction refinement for the task set τ specified in Fig. 13.
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Figure 16: Average run-time of the proposed methods.

Table II: Schedulability analysis results

Acceptance Ratio Tested Combinations

Util. No act. n act. 3n act. No act. n act. 3n act.

0.35 1 1 1 20 22 22

0.4 1 1 1 29 29 29

0.45 0.99 0.99 0.99 47 51 48

0.5 0.91 0.92 0.96 80 150 20860

0.55 0.44 0.52 0.58 153 958 387167

0.6 0.15 0.19 0.26 199 1603 128074

0.65 0.01 0.01 0.02 172 29872 19167

increase with higher number of actions. Second, with more

actions, the abstract request functions provide less accurate

estimate of the ingredient ones, reducing the effectiveness

of the approach.

VII. CONCLUSION

In this paper, we proposed an extension of the DRT

task model through which the inter-task synchronization

(rendezvous) can be specified. We proposed a method for

SP schedulability analysis of this model for uniprocessor

systems. We also introduced two abstraction refinement

techniques for improving the efficiency of the analysis.

The extension of the proposed approach to the case of

dynamic priority scheduling is regarded as a future work.

In addition, the capability of the proposed model for

specifying task sets described by other existing models

(such as the fork-join model [15]) can be investigated.
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