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Abstract-With real-time systems, feasibility analysis is based 
on worst-case scenarios. At run-time, worst-case situations are 
often very unlikely to occur. With the system being dimensioned 
for the worst-case, one faces low resource utilization and implicit 
loss in performance at run-time. We propose to use run-time 
monitoring for evaluating the deviation of job releases from 
their worst-case release bound. This allows us to compute a 
conservative bound on the future workload. Based on this, we 
design a scheme for reclaiming computation time, which has 
been originaUy allocated for jobs which are now known to 
be absent. By organizing the consumption of extra computing 
time in a dynamic and time-safe manner, we improve the run­
time performance of applications and provably maintain the 
worst-case guarantees for their response times. We evaluate 
the usefulness of the presented approach by using randomly 
generated traces of job releases. 

I. INTRODUCTION 

A. Motivation 

Due to the significantly increased computing power of mod­
ern hardware, it can be believed that future (control) systems 
will have larger capabilities and be much more dynamic. 
This will lead to real-time systems which contain applications 
which have less regular arrival times of workloads, with the 
workload defined as number of job releases per fixed window 
of time. As an example for this one may consider a visual 
surveillance system. Modern video compression algorithms 
like the one of the HEVC video coding layer are based on 
inter-picture prediction of sequences of images. This signif­
icantly influences the amount of data as the complexity of 
movements of sensed objects varies or the movement of the 
sensing camera itself. Burstiness of workloads may have other 
reasons: (a) In cyber physical systems a computation is typi­
cally triggered by events of the (physical) environment, which 
can often not be predicted accurately, e. g., an autonomous 
car needs to react to objects the occurrence of which is 
unknown. (b) In distributed real-time systems, computations 
might be triggered by output events which are produced 
on other processing components. Variable processing times, 
communication delays, and interferences on shared resources 
make the prediction of precise triggering times extremely 
complicated if not impossible. 

Complex task activation patterns commonly feature non­
determinism to cope with unknown job release times. This 
comes at the price of severely overprovisioning computational 
resources, as real-time feasibility test [13] are based on worst­
case assumptions like synchronous release of a maximum 

number of jobs. However, in most cases a real-time system will 
actually encounter much lower numbers of job releases and 
thereby be badly utilized. Exploiting the unused computation 
time in a timing-preserving manner is the contribution of this 
paper. 

B. Own Contribution 

This paper introduces a scheme for organizing slack recla­
mation for uniprocessor systems. Slack in the computation 
time stems from the absence of previously accounted releases 
of real-time jobs, where we make the extra computing time 
available in a timing safe manner. This preserves the feasability 
of a real-time system, i. e., the scheme does not introduce 
additional deadline misses. 

Contrasting standard scheduling schemes and the common 
notion of free computing time, the scheme allows to consume 
the extra computing time even in the presence of not com­
pleted, i. e., pending real-time jobs. 

The proposed scheme does not improve the schedulability of 
the deployed real-time system. However, its early as possible 
consumption strategy of slack time lowers the average response 
time of co-scheduled best-effort tasks. 

C. Related Work 

This work takes inspiration from real-time scheduling, 
specifically from request and demand bound functions [2] , 
real-time servers [1], [5] and online slack reclamation schemes 
[7], [11], [12], [18], etc. However, unlike previous work in 
this area which is limited to either periodic or sporadic task 
activation patterns, we tend to extend slack reclamation for 
complex task activation patterns. 

For modelling complex task activation patterns, we exploit 
arrival curves of the Real-time Calculus [17] or their pseudo­
inverses [6]. Arrival curve based activation pattern modelling 
gives room for underspecification, as one abstracts over exact 
job release times. Moreover, arrival curves subsume standard 
activation patterns such as the model of strictly periodic job 
releases, the model of sporadic job releases and the one of 
periodic job releases with jitter and minimal distances (P J D­
model) [16]. An example for the conversion of the later model 
into RTC arrival curves is discussed in [15] . 

For measuring deviations of actual job releases and their 
pre-defined bounding functions online, we exploit run-time 
monitoring of real-time task activations [4], [9] , [14] . Specif­
ically, we apply the scheme of dynamic counters of Lampka 
et al. [9] . 
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Sample trace with burst of releases resulting from jiner and zero min. distance 

1~ 1~ do 2'S ) 6. 

Fig. 1. Upper bounding of task activations and sample traces when following 
the upper bound 

II. SYSTEM MODEL 

We assume that a set of hard real-time tasks T is mapped 
to uniprocessor. Each of the task Ti E T is equipped with 
unique worst-case execution time C i and a relative deadline 
D i . When a task Ti is activated, we say that a job j i ,k has 
been released, i. e. , this job is the k'th invocation of the task 
Ti . In case the processing of job j i ,k has not been started, we 
say that the job (or task) is pending. In case the processing of 
job j i ,k has started but has not terminated yet, we say that the 
job is not completed and completed otherwise. It is required 
that upon any activation of a task Ti at time t the execution 
of the respective instance is completed at time t + D i latest. 

For covering a wide range of job release patterns, this work 
assumes that the job releases of a task Ti are specified by 
a task-specific upper bounding function a i . The activation 
pattern of a task itself can be arbitrarily complex and does 
not need to be precisely known. The only thing required by 
the presented approach is that the the number of jobs released 
by task Ti is bounded from above by a subadditive curve 
a i : m+ ---+ N o. In the following we denote this curve as 
release bound I. and require the following property to hold: 

with R i (t - s) as the cumulative counting function which 
reports the number of job releases of task Ti in the interval 
[s , t ]. For s > t , we define ai(t - s) = Ri(t - s) = O. Note, 
there is an infinite set of traces of job releases described by 
release bound a i , namely all traces for which Eq. (1) holds. 

A. Example 

An examples to the modelling of a job release pattern by 
means of an activation bound is provided by Fig. 1, where 
we illustrated the modelling of a P J D activation model. We 
have a period PI = 5, a relative deadline of each job which 
is twice the period, here Dl = 2P1 , and for the WCET, we 

1 In the context of RTC [17] the above Qi is called arrival curve. When 
weighted with the WCET of a task, the release bound resembles what is 
known in real-time scheduling as request bound function [2] 

have C1 = 0.7 units of time. As the jitter of the task activation 
model is 15 and the period is 5, the model includes bursts of 
job releases of size 5. With PI being an integer divider of 
the jitter, all of the staircases of a l have the same size, here 
5. Otherwise, e. g., for a jitter of J1 = 16, the first staircase 
would be of length 4 as P - J mod P. 

Besides the bounding curve, we also illustrates a sample 
trace of job releases. The trace is obtained by following the 
bounding curve, i. e., we see a bursty task activation pattern 
followed by a periodic job release sequence, where the first 
job outside the burst arrives after 5 time units and every other 
job after additional 5 time units. Note, there is an infinite set of 
traces described by an activation bound. This set includes all 
traces those number of job releases are bounded from above 
in the sense of Eq. (1) and for all points in time sand t with 
t - s 2': O. 

III. TIME-SAFE RECLAMATION OF SLACK TIME 

A. History-aware bounding of job releases 

The proposed scheme is based on monitoring of job releases 
as presented in [9] . 

With this scheme, job releases of a task Ti are tracked with 
respect to a set of dynamic counters combined in a minimum 
computation. The current value of the j'th dynamic counter 
associated with task Ti is stored by variable DNC [i , j ]. This 
variable gives the number of jobs to be released instanta­
neously and is incremented each period P i ,j' 

On the basis of dynamic counters we compute a time-variant 
bound on future job releases of task Ti and for a time span 
[now, now + ~]: 

Fi (t , ~) ~ min (DNC [i , j ] + I ~ l + 1) . (2) 
J E J i Pi ,j 

with Ji as index set of task Ti for addressing its different 
dynamic counters. The above equation is a simplifying over­
approximation of the bound presented in [9] . 

B. Main idea of the slack reclamation scheme 

The busy period or busy window is defined as the maximum 
time span between two successive idling-phases of a processor 
which we denote TBW in the following . Task invocations 
occurring prior to the idling time are not relevant for the work­
conserving scheduling decisions and thus for satisfaction of 
deadlines. This restricts any feasibility analysis of real-time 
task set to consider at most sequences of job releases up to 
the maximum length of any busy window [10] . 

At analysis time, the worst case response time is constructed 
by assuming that job releases of task Ti are bounded by the 
release bound ai . This subsumes all placements of jobs within 
the busy window and such that Ri (t - s) ~ ai (t - s) holds 
for all t - s ~ TB W . With the starting of a new busy period, a 
history-aware refinement of a i provided by F i might indicate 
that there might be actually fewer task activations due to the 
specific release history of task Ti. 

The available slack time which we obtain from (ai (~ = 
0) - F i (t , ~ = 0)) . Ci cannot be arbitrarily consumed. To 
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preserve feasibility of the system the slack time needs to be 
used in an EDF-conformant way. In addition, the consumed 
slack time and the time reserved for processing the potential 
jobs released by task Ti needs to be strictly bounded by release 
bound a i . This means that with only few job releases occurring 
while the busy period progresses slack time needs to be re­
assigned to the task it originates from. 

C. Example 

For exemplifying the scheme, we consider the arrival curve 
illustrated in Fig. 1, i. e., an activation process with bursts of 
4 and a period of 5 time units. Let the sample trace of Fig. 2 
be decisive. The trace starts a time to and such that to is a 
renewal point2 . Let the release of job jl be at time to and the 
release of job j2 be at time to + d as depicted also in Fig. 2. 
In addition, due to inactivity of other tasks, the processor is 
idling once it completed the processing of job jl, here after 
time to + C1 as to + C1 < to + d. Thus, job j2 which is 
released at time to + d ends the idling of the processor and 
starts a new busy window. 

When carrying out the feasibility analysis, it is assumed 
that the release history of a task is irrelevant when starting a 
busy period, i. e., all possible release patterns bounded by a1 

are possible. However, from the release history of the sample 
trace and the history-aware bound F it can be deduced that 
up to time to + PI, only another 2 jobs can arrive. This is 
because, with 2 jobs arriving in [to, d] there is only room for 
another 2 jobs to be released in [to + d, to + PI) as F(to + 
d, PI - d) = 2. This contrast the assumption underlying the 
feasibility analysis. With the feasibility analysis, busy window 
and the task activation processes start synchronously such that 
feasibility is ensured for a1 (0) = 4 being released at any time 
after time to + d. With al (d) = 4 and F( to + d, PI - d) = 
2 this yields (4 - 2)C1 units of computation time as extra 
computation time, as 2 jobs are guaranteed to not arrive in the 
time window [to + PI - d, to + Pd due to the release history 
of the task. 

After time to + PI and with no job actually being released, 
the slack time must be reduced by C1 time units. This is 
because, in the time window [to + PI , to + 2Pd an additional 
job can arrive at any time, i. e., F( to + PI, PI) = 3 and with 
a1 (Pd = 4, this yields (4 - 3)C1 units of extra computation 
time, opposed to the (al (PI) - 2)C1 units of extra computation 
time which have been available in the preceding interval 
[to + PI - d, to + PI)' In other words, as one job has been 
released at time to + d and 3 can potentially arrive, it is 
guaranteed that only 1 of the assumed a1 (PI) = 4 jobs cannot 
arrive. 

For the same reason, the slack time needs to be re-adjusted 
for the next period starting at to + 2P1 . This is because, with 
no additional job release up to time to + 2P1, the history-aware 
bound F coincides with the static bound a1. 

2 A renewal point is a point in time, where the past behaviour turns irrelevant 
for the future task activations, i. e., the full range of task activations bounded 
by 0<1 is possible [9]. 

1----+ new busy window, started at + d 

r" Ie + PI 
P1 ---

--- - d ----- + 3PI 

History of reledse pottern 

Fig. 2. Sample trace and slack time stemming from variations of job releases 

II Task Period Jitter Delay WCET Relative Deadline II 
I 20 2 2 2 20 
2 40 5 2 2 40 
3 25 60 I 1 25 
4 50 20 1 2 50 
5 35 90 2 8 35 

TABLE I 
TASKS ET WHERE TASK PARAM ETERS AR E SPECIFI ED IN MILlS ECO NDS 

IV. EMPIRICAL EVALUATION 

In this section we present an empirical evaluation of our 
slack reclamation scheme. As part of the evaluation, we 
implemented a trace generator and an online EDF scheduler 
with our slack reclamation scheme using Matlab scripting 
language. 

Our trace generator accepts task specified in PJD model 
together with relative deadline and WCET of it. Generation 
of the trace is inspired by [8], which uses a state machine to 
switch between two modes, namely eager and lazy mode. In 
eager mode, the generator tries to generate events following 
upper bound of the job releases. In lazy mode, the trace gener­
ator refrains from generating events unless it is going to violate 
the lower bound3 of the job releases in next time instant. 
Unlike [8], we used a single user provided parameter M to 
r~ndo.mly ~witch between eager and lazy mode. The switching 
time IS umformly sampled from the interval [0, M . P ] where 
P is the task period. As a result, to get large variation in 
switching times we can use large values of M. 

For the example case study, we generate trace from the 
taskset given in Table 1. Task 1 and 2 in this taskset have low 
jitter while the other three tasks have relatively large jitter in 
their activation pattern. For generating trace, we set M to be 
small for task 1 and large for other 4 tasks. The generated 
trace shown in Fig. 3(a) has both periodic activation pattern 
(task 1) and bursty activation pattern (rest of the tasks) in the 
same trace. We run this trace with an EDF scheduler modified 
with our slack reclamation mechanism (dynamic counters and 
refill) and record slack elements generated by the trace. In 
Fig. 3(b) we can see the slack generated by the trace Fig. 3(a). 
Interesting observations are: (1) maximum amount of slack is 
reclaimed when the schduler faces frequent idle periods. For 
our trace it is in the interval between 350 to 450 milliseconds 
when there are very few job activations. (2) Inventory of 

3Number of RTC job releases are bounded form above and below [17]. 
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(a) Job release events in a random trace of the example taskset 
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1--Slack I 
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(b) Slack Time obtained when job releases follow the trace of Fig. 3(a) 

Fig. 3. Example run of slack reclamation 

reclaimed slacks are decreased by dynamic counter updates 
and if not used slack queue will return to the empty state 
after certain period of time. All the observations conform that 
our mechanism can correctly reclaim activation slacks during 
run-time if it is available in the corresponding run. 

Our scheme utilizes start of a busy period as the instant of 
reclaiming activation slacks. It is possible that a workload has 
very long busy periods during run-time and its activation is 
strictly periodic. In such cases, our scheme is pessimistic as it 
depends on variations of the job releases. However, when the 
run-time activations do not conform worst-case activations, our 
scheme can reclaim considerable amount of slacks as shown 
in the example. 

V. CONCLUSIONS AND FUTURE WORK 

We presented a dynamic slack reclamation scheme using 
run-time monitoring of job releases. Our scheme predicts 
availability of activation slacks at the beginning of a busy 
period thus allows best-effort jobs to consume it as early as 
possible. This can improve quality of service for best-effort 
jobs by improving their responsiveness. Another possible 

application of activation slacks can be graceful degradation 
of low-criticality jobs in mixed-criticality systems [19] or jobs 
with weakly-hard real-time constraints [3]. In future we would 
like to investigate usefulness of our scheme in the above 
mentioned areas and compare it's performance with the state 
of the art graceful degradation mechanisms. 
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