
Improving Performance by Monitoring
While Maintaining Worst-Case Guarantees

Syed Md Jakaria Abdullah Kai Lampka Wang Yi
Department of Information Technology, Uppsala University

Email: {jakaria.abdullah.kai.lampka.yi}@it.uu.se

Abstract-With real-time systems, feasibility analysis is based
on worst-case scenarios. At run-time, worst-case situations are
often very unlikely to occur. With the system being dimensioned
for the worst-case, one faces low resource utilization and implicit
loss in performance at run-time. We propose to use run-time
monitoring for evaluating the deviation of job releases from
their worst-case release bound. This allows us to compute a
conservative bound on the future workload. Based on this, we
design a scheme for reclaiming computation time, which has
been originaUy allocated for jobs which are now known to
be absent. By organizing the consumption of extra computing
time in a dynamic and time-safe manner, we improve the run­
time performance of applications and provably maintain the
worst-case guarantees for their response times. We evaluate
the usefulness of the presented approach by using randomly
generated traces of job releases.

I. INTRODUCTION

A. Motivation

Due to the significantly increased computing power of mod­
ern hardware, it can be believed that future (control) systems
will have larger capabilities and be much more dynamic.
This will lead to real-time systems which contain applications
which have less regular arrival times of workloads, with the
workload defined as number of job releases per fixed window
of time. As an example for this one may consider a visual
surveillance system. Modern video compression algorithms
like the one of the HEVC video coding layer are based on
inter-picture prediction of sequences of images. This signif­
icantly influences the amount of data as the complexity of
movements of sensed objects varies or the movement of the
sensing camera itself. Burstiness of workloads may have other
reasons: (a) In cyber physical systems a computation is typi­
cally triggered by events of the (physical) environment, which
can often not be predicted accurately, e. g., an autonomous
car needs to react to objects the occurrence of which is
unknown. (b) In distributed real-time systems, computations
might be triggered by output events which are produced
on other processing components. Variable processing times,
communication delays, and interferences on shared resources
make the prediction of precise triggering times extremely
complicated if not impossible.

Complex task activation patterns commonly feature non­
determinism to cope with unknown job release times. This
comes at the price of severely overprovisioning computational
resources, as real-time feasibility test [13] are based on worst­
case assumptions like synchronous release of a maximum

number of jobs. However, in most cases a real-time system will
actually encounter much lower numbers of job releases and
thereby be badly utilized. Exploiting the unused computation
time in a timing-preserving manner is the contribution of this
paper.

B. Own Contribution

This paper introduces a scheme for organizing slack recla­
mation for uniprocessor systems. Slack in the computation
time stems from the absence of previously accounted releases
of real-time jobs, where we make the extra computing time
available in a timing safe manner. This preserves the feasability
of a real-time system, i. e., the scheme does not introduce
additional deadline misses.

Contrasting standard scheduling schemes and the common
notion of free computing time, the scheme allows to consume
the extra computing time even in the presence of not com­
pleted, i. e., pending real-time jobs.

The proposed scheme does not improve the schedulability of
the deployed real-time system. However, its early as possible
consumption strategy of slack time lowers the average response
time of co-scheduled best-effort tasks.

C. Related Work

This work takes inspiration from real-time scheduling,
specifically from request and demand bound functions [2] ,
real-time servers [1], [5] and online slack reclamation schemes
[7], [11], [12], [18], etc. However, unlike previous work in
this area which is limited to either periodic or sporadic task
activation patterns, we tend to extend slack reclamation for
complex task activation patterns.

For modelling complex task activation patterns, we exploit
arrival curves of the Real-time Calculus [17] or their pseudo­
inverses [6]. Arrival curve based activation pattern modelling
gives room for underspecification, as one abstracts over exact
job release times. Moreover, arrival curves subsume standard
activation patterns such as the model of strictly periodic job
releases, the model of sporadic job releases and the one of
periodic job releases with jitter and minimal distances (P J D­
model) [16]. An example for the conversion of the later model
into RTC arrival curves is discussed in [15] .

For measuring deviations of actual job releases and their
pre-defined bounding functions online, we exploit run-time
monitoring of real-time task activations [4], [9] , [14] . Specif­
ically, we apply the scheme of dynamic counters of Lampka
et al. [9] .

978-3-9815370-7-9/DATEI6/ ©2016 EDAA 257

8

'" <: 7
o .p
g; 6

.p
u
rc

~
~

Parameters
Period P, : 5
Jitter: 15
min. dis tance 0 = 0
Deadline 0, : 2 P,

,....-_---l

~------

: 1Ii 1(L~)
- -- ..I

For any sequence of job releases il musl hoJd:

re lease of t:J. E JR , : R(t:J.) < a:(t:J.)
lob i, to I,

deadline tCl

JOb j5

Sample trace with burst of releases resulting from jiner and zero min. distance

1~ 1~ do 2'S) 6.

Fig. 1. Upper bounding of task activations and sample traces when following
the upper bound

II. SYSTEM MODEL

We assume that a set of hard real-time tasks T is mapped
to uniprocessor. Each of the task Ti E T is equipped with
unique worst-case execution time C i and a relative deadline
D i . When a task Ti is activated, we say that a job j i ,k has
been released, i. e. , this job is the k'th invocation of the task
Ti . In case the processing of job j i ,k has not been started, we
say that the job (or task) is pending. In case the processing of
job j i ,k has started but has not terminated yet, we say that the
job is not completed and completed otherwise. It is required
that upon any activation of a task Ti at time t the execution
of the respective instance is completed at time t + D i latest.

For covering a wide range of job release patterns, this work
assumes that the job releases of a task Ti are specified by
a task-specific upper bounding function a i . The activation
pattern of a task itself can be arbitrarily complex and does
not need to be precisely known. The only thing required by
the presented approach is that the the number of jobs released
by task Ti is bounded from above by a subadditive curve
a i : m+ ---+ N o. In the following we denote this curve as
release bound I. and require the following property to hold:

with R i (t - s) as the cumulative counting function which
reports the number of job releases of task Ti in the interval
[s , t]. For s > t , we define ai(t - s) = Ri(t - s) = O. Note,
there is an infinite set of traces of job releases described by
release bound a i , namely all traces for which Eq. (1) holds.

A. Example

An examples to the modelling of a job release pattern by
means of an activation bound is provided by Fig. 1, where
we illustrated the modelling of a P J D activation model. We
have a period PI = 5, a relative deadline of each job which
is twice the period, here Dl = 2P1 , and for the WCET, we

1 In the context of RTC [17] the above Qi is called arrival curve. When
weighted with the WCET of a task, the release bound resembles what is
known in real-time scheduling as request bound function [2]

have C1 = 0.7 units of time. As the jitter of the task activation
model is 15 and the period is 5, the model includes bursts of
job releases of size 5. With PI being an integer divider of
the jitter, all of the staircases of a l have the same size, here
5. Otherwise, e. g., for a jitter of J1 = 16, the first staircase
would be of length 4 as P - J mod P.

Besides the bounding curve, we also illustrates a sample
trace of job releases. The trace is obtained by following the
bounding curve, i. e., we see a bursty task activation pattern
followed by a periodic job release sequence, where the first
job outside the burst arrives after 5 time units and every other
job after additional 5 time units. Note, there is an infinite set of
traces described by an activation bound. This set includes all
traces those number of job releases are bounded from above
in the sense of Eq. (1) and for all points in time sand t with
t - s 2': O.

III. TIME-SAFE RECLAMATION OF SLACK TIME

A. History-aware bounding of job releases

The proposed scheme is based on monitoring of job releases
as presented in [9] .

With this scheme, job releases of a task Ti are tracked with
respect to a set of dynamic counters combined in a minimum
computation. The current value of the j'th dynamic counter
associated with task Ti is stored by variable DNC [i , j]. This
variable gives the number of jobs to be released instanta­
neously and is incremented each period P i ,j'

On the basis of dynamic counters we compute a time-variant
bound on future job releases of task Ti and for a time span
[now, now + ~]:

Fi (t , ~) ~ min (DNC [i , j] + I ~ l + 1) . (2)
J E J i Pi ,j

with Ji as index set of task Ti for addressing its different
dynamic counters. The above equation is a simplifying over­
approximation of the bound presented in [9] .

B. Main idea of the slack reclamation scheme

The busy period or busy window is defined as the maximum
time span between two successive idling-phases of a processor
which we denote TBW in the following . Task invocations
occurring prior to the idling time are not relevant for the work­
conserving scheduling decisions and thus for satisfaction of
deadlines. This restricts any feasibility analysis of real-time
task set to consider at most sequences of job releases up to
the maximum length of any busy window [10] .

At analysis time, the worst case response time is constructed
by assuming that job releases of task Ti are bounded by the
release bound ai . This subsumes all placements of jobs within
the busy window and such that Ri (t - s) ~ ai (t - s) holds
for all t - s ~ TB W . With the starting of a new busy period, a
history-aware refinement of a i provided by F i might indicate
that there might be actually fewer task activations due to the
specific release history of task Ti.

The available slack time which we obtain from (ai (~ =
0) - F i (t , ~ = 0)) . Ci cannot be arbitrarily consumed. To

258 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

preserve feasibility of the system the slack time needs to be
used in an EDF-conformant way. In addition, the consumed
slack time and the time reserved for processing the potential
jobs released by task Ti needs to be strictly bounded by release
bound a i . This means that with only few job releases occurring
while the busy period progresses slack time needs to be re­
assigned to the task it originates from.

C. Example

For exemplifying the scheme, we consider the arrival curve
illustrated in Fig. 1, i. e., an activation process with bursts of
4 and a period of 5 time units. Let the sample trace of Fig. 2
be decisive. The trace starts a time to and such that to is a
renewal point2 . Let the release of job jl be at time to and the
release of job j2 be at time to + d as depicted also in Fig. 2.
In addition, due to inactivity of other tasks, the processor is
idling once it completed the processing of job jl, here after
time to + C1 as to + C1 < to + d. Thus, job j2 which is
released at time to + d ends the idling of the processor and
starts a new busy window.

When carrying out the feasibility analysis, it is assumed
that the release history of a task is irrelevant when starting a
busy period, i. e., all possible release patterns bounded by a1

are possible. However, from the release history of the sample
trace and the history-aware bound F it can be deduced that
up to time to + PI, only another 2 jobs can arrive. This is
because, with 2 jobs arriving in [to, d] there is only room for
another 2 jobs to be released in [to + d, to + PI) as F(to +
d, PI - d) = 2. This contrast the assumption underlying the
feasibility analysis. With the feasibility analysis, busy window
and the task activation processes start synchronously such that
feasibility is ensured for a1 (0) = 4 being released at any time
after time to + d. With al (d) = 4 and F(to + d, PI - d) =
2 this yields (4 - 2)C1 units of computation time as extra
computation time, as 2 jobs are guaranteed to not arrive in the
time window [to + PI - d, to + Pd due to the release history
of the task.

After time to + PI and with no job actually being released,
the slack time must be reduced by C1 time units. This is
because, in the time window [to + PI , to + 2Pd an additional
job can arrive at any time, i. e., F(to + PI, PI) = 3 and with
a1 (Pd = 4, this yields (4 - 3)C1 units of extra computation
time, opposed to the (al (PI) - 2)C1 units of extra computation
time which have been available in the preceding interval
[to + PI - d, to + PI)' In other words, as one job has been
released at time to + d and 3 can potentially arrive, it is
guaranteed that only 1 of the assumed a1 (PI) = 4 jobs cannot
arrive.

For the same reason, the slack time needs to be re-adjusted
for the next period starting at to + 2P1 . This is because, with
no additional job release up to time to + 2P1, the history-aware
bound F coincides with the static bound a1.

2 A renewal point is a point in time, where the past behaviour turns irrelevant
for the future task activations, i. e., the full range of task activations bounded
by 0<1 is possible [9].

1----+ new busy window, started at + d

r" Ie + PI
P1 ---

--- - d ----- + 3PI

History of reledse pottern

Fig. 2. Sample trace and slack time stemming from variations of job releases

II Task Period Jitter Delay WCET Relative Deadline II
I 20 2 2 2 20
2 40 5 2 2 40
3 25 60 I 1 25
4 50 20 1 2 50
5 35 90 2 8 35

TABLE I
TASKS ET WHERE TASK PARAM ETERS AR E SPECIFI ED IN MILlS ECO NDS

IV. EMPIRICAL EVALUATION

In this section we present an empirical evaluation of our
slack reclamation scheme. As part of the evaluation, we
implemented a trace generator and an online EDF scheduler
with our slack reclamation scheme using Matlab scripting
language.

Our trace generator accepts task specified in PJD model
together with relative deadline and WCET of it. Generation
of the trace is inspired by [8], which uses a state machine to
switch between two modes, namely eager and lazy mode. In
eager mode, the generator tries to generate events following
upper bound of the job releases. In lazy mode, the trace gener­
ator refrains from generating events unless it is going to violate
the lower bound3 of the job releases in next time instant.
Unlike [8], we used a single user provided parameter M to
r~ndo.mly ~witch between eager and lazy mode. The switching
time IS umformly sampled from the interval [0, M . P] where
P is the task period. As a result, to get large variation in
switching times we can use large values of M.

For the example case study, we generate trace from the
taskset given in Table 1. Task 1 and 2 in this taskset have low
jitter while the other three tasks have relatively large jitter in
their activation pattern. For generating trace, we set M to be
small for task 1 and large for other 4 tasks. The generated
trace shown in Fig. 3(a) has both periodic activation pattern
(task 1) and bursty activation pattern (rest of the tasks) in the
same trace. We run this trace with an EDF scheduler modified
with our slack reclamation mechanism (dynamic counters and
refill) and record slack elements generated by the trace. In
Fig. 3(b) we can see the slack generated by the trace Fig. 3(a).
Interesting observations are: (1) maximum amount of slack is
reclaimed when the schduler faces frequent idle periods. For
our trace it is in the interval between 350 to 450 milliseconds
when there are very few job activations. (2) Inventory of

3Number of RTC job releases are bounded form above and below [17].

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 259

60

--Task 1

50 --Task 2
--Task 3
--Task 4

<f) 40 --Task 5
c:
Q)
> w
Q) 30
<f)

'" Q)
a;
a: 20

10

200 400 600 800 1000
Interval

(a) Job release events in a random trace of the example taskset

10 r------.------.-----~._----_.----__.

1--Slack I
8

2

200 400 600 800 1000
Interval (ms)

(b) Slack Time obtained when job releases follow the trace of Fig. 3(a)

Fig. 3. Example run of slack reclamation

reclaimed slacks are decreased by dynamic counter updates
and if not used slack queue will return to the empty state
after certain period of time. All the observations conform that
our mechanism can correctly reclaim activation slacks during
run-time if it is available in the corresponding run.

Our scheme utilizes start of a busy period as the instant of
reclaiming activation slacks. It is possible that a workload has
very long busy periods during run-time and its activation is
strictly periodic. In such cases, our scheme is pessimistic as it
depends on variations of the job releases. However, when the
run-time activations do not conform worst-case activations, our
scheme can reclaim considerable amount of slacks as shown
in the example.

V. CONCLUSIONS AND FUTURE WORK

We presented a dynamic slack reclamation scheme using
run-time monitoring of job releases. Our scheme predicts
availability of activation slacks at the beginning of a busy
period thus allows best-effort jobs to consume it as early as
possible. This can improve quality of service for best-effort
jobs by improving their responsiveness. Another possible

application of activation slacks can be graceful degradation
of low-criticality jobs in mixed-criticality systems [19] or jobs
with weakly-hard real-time constraints [3]. In future we would
like to investigate usefulness of our scheme in the above
mentioned areas and compare it's performance with the state
of the art graceful degradation mechanisms.

REFERENCES

[I] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In RTSS, pages 4-13, 1998.

[2] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real­
time ta~ks . Real-Time Syst., 24(1):93- 128, Jan. 2003.

[3] G. Bernat, A. Burns, and A. L1amosi. Weakly hard real-time systems.
IEEE Trans. Comput. , 50(4):308-321 , Apr. 2001.

[4] F. Bodmann, N. Muehleis, and F. Slomka. Situation aware scheduling for
energy-efficient real-time systems. In Proceedings of the 8th Workshop
Cyber-Physical Systems - Enabling Multi-Nature Systems, 2011.

[5] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Real-Time Systems. Springer-Verlag, Santa Clara, CA, USA, 2011.

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. Sys­
tem level performance analysis - the symtals approach. lEE Proceedings
Computers and Digital Techniques, 2005.

[7] R. Jejurikar and R. Gupta. Dynamic slack reclamation with procras­
tination scheduling in real-time embedded systems. In Proceedings of
the 42nd annual Design Automation Conference, pages 111- 116. ACM,
2005.

[8] S. Kuenzli and L. Thiele. Generating event traces based on arrival
curves. In Measuring, Modelling and Evaluation of Computer and
Communication Systems (MMB), 2006 13th GIIITG Conference, pages
1- 18, March 2006.

[9] K. Lampka, K. Huang, and J.-J. Chen. Dynamic counters and the
efficient and effective online power management of embedded real­
time systems. In Proceedings of the 8th International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2011 , pages 267- 276, Taipei , Taiwan, Oct 2011. ACM.

[10] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Real-Time Systems Symposium, 1990. Proceedings., 11th,
pages 201-209. IEEE, 1990.

[II] J. Lehoczky. An optimal algorithm for scheduling soft-aperiodic tasks
in fixed-priority preemptive systems. In RTSS, pages 110-123, 1992.

[12] G. Lipari and S. Baruah. Greedy reclamation of unused bandwidth in
constant-bandwidth servers. In ECRTS, pages 193- 200, 2000.

[13] c. L. Liu and J. W. Layland. Scheduling algorithms for mUltiprogram­
ming in a hard-real-time environment. J. ACM, 20(1):46-6 1, Jan. 1973.

[14] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst.
Monitoring arbitrary activation patterns in real-time systems. In Proc.
of IEEE Real-Time Systems Symposium (RTSS), Dec 2012.

[15] S. Perathoner, K. Lampka, and L. Thiele. Composing heterogeneous
components for system-wide performance analysis. In Proceedings of
Design, Automation and Test in Europe, 2011 (DATE 11), pages 1-6,
Grenoble, France, Mar 2011. IEEE.

[16] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition
for scheduling analysis in platform design. In Proceedings of the 39th
Annual Design Automation Conference, DAC '02, pages 287- 292, New
York, NY, USA, 2002. ACM.

[17] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. IntI. Symposium on Circuits
and Systems, volume 4, pages 101- 104, 2000.

[18] T.-S. Tia, J.-S. Liu, and M. Shankar. Algorithms and optimality of
scheduling soft aperiodic requests in fixed-priority preemptive systems.
Real-Time Systems, IO(1):23-43, 1996.

[19] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, pages 239- 243,
2007.

260 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

