This paper is published in Real-Time Systems. The final publication is available at http://link.springer.com.

Graph-Based Models for Real-Time Workload: A Survey

Martin Stigge - Wang Yi

Abstract This paper provides a survey on task models to characterize real-time
workloads at different levels of abstraction for the design and analysis of real-time
systems. It covers the classic periodic and sporadic models by Liu and Layland et
al., their extensions to describe recurring and branching structures as well as general
graph- and automata-based models to allow modeling of complex structures such
as mode switches, local loops and also global timing constraints. The focus is on
the precise semantics of the various models and on the solutions and complexity re-
sults of the respective feasibilty and schedulability analysis problems for preemptable
uniprocessors.

Keywords Real-Time Scheduling - Scheduling Theory - Schedulability Test -
Workload Models - Survey

1 Introduction

Real-time systems are often implemented by a number of concurrent tasks sharing
hardware resources, in particular the execution processors. The designer of such sys-
tems needs to construct workload models characterizing the resource requirements
of the tasks. With a formal description of the workload, a resource scheduler may
be designed and analyzed. The fundamental analysis problem to solve in the design
process is to check (and thus to guarantee) the schedulability of the workload, i.e.,
whether the timing constraints on the workload can be met with the given scheduler.
In addition, the workload model may also be used to optimize the resource utilization
as well as the average system performance.

In the past decades, workload models have been studied intensively in the theory
of real-time scheduling (Buttazzo 2011) and other contexts, for example performance

M. Stigge - W. Yi
Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden
E-mail: martin.stigge @it.uu.se

W.Yi
E-mail: yi @it.uu.se

2 Martin Stigge, Wang Yi

analysis of networked systems (Boudec and Thiran 2001). The research community
of real-time systems has proposed a large number of models (often known as task
models) allowing for the description and analysis of real-time workloads at differ-
ent levels of abstraction. One of the classic works is the periodic task model due
to Liu and Layland (1973); Leung and Merrill (1980); Leung and Whitehead (1982),
where tasks generate resource requests at strict periodic intervals. The periodic model
was extended later to the sporadic model (Mok 1983; Baruah et al. 1990; Lehoczky
et al. 1987) and multiframe models (Mok and Chen 1997; Baruah et al. 1999a) to
describe non-regular arrival times of resource requests, and non-uniform resource re-
quirements. In spite of a limited form of variation in release times and worst-case
execution times, these repetitive models are highly deterministic. To allow for the
description of recurring and non-deterministic behaviours, tree-like recurring models
based on directed acyclic graphs are introduced (Baruah 1998b,a) and recently ex-
tended to a digraph model based on arbitrary directed graphs (Stigge et al. 2011b,a)
to allow for modeling of complex structures like mode switches and local loops as
well as global timing constraints on resource requests. With origin from formal ver-
ification of timed systems, the model of task automata (Fersman et al. 2007) was
developed in the late 90s. The essential idea is to use timed automata to describe the
release patterns of tasks. Due to the expressiveness of timed automata, it turns out
that all the models above can be described using the automata-based model.

In addition to the expressiveness, a major concern in developing these models
is the complexity of their analyses. It is not surprising that the more expressive the
models are, the more difficult to analyze they tend to be. Indeed, the model of task
automata is the most expressive model with the highest analysis complexity, which
marks the borderline between decidability and undecidability for the schedulability
analysis problem of workloads. On top of the operational models summarized above
that capture the timed sequences of resource requests representing the system execu-
tions, alternative characterizations of workloads using functions on the time interval
domain have also been proposed, notably demand-bound functions, request-bound
functions and Real-Time Calculus (RTC) (Thiele et al. 2000) that can be used to
specify the accumulated workload over a sliding time window. They have been fur-
ther used as a mathematical tool for the analysis of operational workload models.

This paper is intended to serve as a survey on existing workload models for pre-
emptable uniprocessor systems. Figure 1 outlines the relative expressive powers of
the models (marked with sections where they are described). In the following sec-
tions we go through this model hierarchy and provide a brief account for each of the
well-developed models.

2 Preliminaries
2.1 Terminology
We first review some terminology used in the rest of this survey. The basic unit de-

scribing workload is a job, characterized by a release time, an execution time and a
type from which parameters like a deadline are derived. The higher-level structures

Graph-Based Models for Real-Time Workload: A Survey 3

@ Extended DRT (EDRT) (4.6)
(graph + constraints)

k-EDRT (4.6)
(graph + k constraints)
Digraph (DRT) (4.5)
. (arbitrary graph)
recurring RT (RRT) (4.3)
(DAG, P)

non-cyclic RRT (4.4)
(DAG, F)
recurring branching (RB) (4.2)

(tree, P) non-cyclic GMF (3.4)

. . (order arbitrary)
generalized multiframe (GMF) (3.3)

(Ei,Di, ;)
multiframe (3.2) sporadic (3.1)
(Ei,D=P) (E,D,P)

Liu & Layland (3.1)
(E,D=P)

Fig. 1 A hierarchy of task models. Arrows indicate the generalization relationship. We denote the corre-
sponding section in parentheses.

which generate (potentially infinite) sequences of jobs are tasks. The time interval
between the release time and the deadline of a job is called its scheduling window.
The time interval between the release time of a job and the earliest release time of its
succeeding job from the same task is its exclusion window.

A task system typically contains a set of tasks that at runtime concurrently gen-
erate sequences of jobs and a scheduler decides at each point in time which of the
pending jobs to execute. We distinguish between two important classes of schedulers
on preemptable uniprocessor systems:

Static priority schedulers. Tasks are ordered by priority. All jobs generated by a
task of higher priority get precedence over jobs generated by tasks of lower pri-
ority.

Dynamic priority schedulers. Tasks are not ordered a priori; at runtime, when choos-
ing one of the pending jobs to execute, the scheduler is not constrained to a static
priority ordering between tasks.

Given suitable descriptions of a workload model and a scheduler, one of the important
questions is whether all jobs that could ever be generated will meet their deadline
constraints, in which case we call the workload schedulable. This is determined in a
formal schedulability test which can be:

Sufficient or safe, if it is failed by all non-schedulable task sets,
Necessary, if it is satisfied by all schedulable task sets, or
Precise or exact, if it is both sufficient and necessary.

Workload that is schedulable with some scheduler is called feasible, determined by a
feasibility test that can also be either sufficient, necessary or both.

4 Martin Stigge, Wang Yi

2.2 Model Hierarchy

Most workload models described in this survey are part of a model hierarchy in the
sense that some are generalizations of others, cf. Figure 1. Intuitively, a modeling
formalism .#, generalizes a modeling formalism ., if any task system expressed in
terms of . has a corresponding task system expressed with .#4 such that these two
represent the same behavior. The motivation behind such a generalization concept is
that more expressive models should preserve the capability of being able to analyze
a given system description. That is, if a modeling formalism is being extended to
increase expressiveness, the original formalism should in some way remain a subclass
or special case. However, the concept as such is rather vague, which may lead to
disagreements about whether one model is in fact a generalization of another.

Therefore, Stigge (2014) introduces a formalization of the notion of what it means
for a modeling formalism to generalize another one within the semantic framework
introduced above. Recall that we use job sequences to express the semantics of work-
load models. We first define an equivalence on job sequences. We remove spurious
0-jobs in this definition since they do not quantify additional workload.

Definition 1 (Job Sequence Equivalence) Two job sequences p and p’ are equiva-
lent, written p = p’, if they are equal after removing all jobs with execution time 0.

This equivalence is useful in order to define equivalent sets of job sequences. Two
sets are equivalent if they only contain equivalent job sequences. They express the
same workload demands, apart from spurious 0-jobs.

Definition 2 Two sets S and S’ of job sequences are equivalent, written S = .8, if for
each p € S, there is p’ € §' with p = p’, and vice versa.

Since we express workload model semantics as sets of job sequences, we can use this
definition in order to give a formal definition of generalization. For a task system 7,
we write [7] to denote the set of job sequences generated by 7.

Definition 3 (Generalization) A workload model .#Z4 generalizes a workload model
Mp, written Ay = Mp, if for every task system Tp € .#p there is a task system
T4 € My such that [t4] = [t5] and 74 can be effectively constructed from 7z in
polynomial time.

This definition allows complexity results for analysis problems to carry over since
modeling formalisms that have been generalized can be interpreted as special cases
of more general ones. We summarize this in the following proposition.

Proposition 1 [f feasibility or schedulability can be decided in pseudo-polynomial
time for a workload model .#, then they can be decided in pseudo-polynomial time
for any M with # = '

Further, if feasibility or schedulability are strongly NP- or coNP-hard problems
for a workload model ., then they are strongly NP- or coNP-hard for any .4’ with
M = M, respectively.

Using this partial order on workload models, we outline a hierarchy of expressive
power in Figure 1. An edge .#4, @——® ./ represents the generalization relation

Graph-Based Models for Real-Time Workload: A Survey 5

with the arrow pointing to the more expressive model, i.e., .# = .#p. The higher a
workload model is placed in the hierarchy, the higher the expressiveness, but also the
more expensive feasibility and schedulability analyses.

3 From Liu and Layland Tasks to GMF

In this section, we show the development of task systems from the periodic task model
to different variants of the Multiframe model, including techniques for their analysis.

3.1 Periodic and Sporadic Tasks

The first task model with periodic tasks was introduced by Liu and Layland (1973).
Each periodic task T = (P, E) in a task set 7 is characterized by a pair of two integers:
period P and worst-case execution time (WCET) E. It generates an infinite sequence
p = (Jo,J1,...) containing jobs J; = (R;,e;,v) which are all of the same type v with
release time R; and execution time e¢; such that R; ;| = R; + P and ¢; < E. This means
that jobs are released periodically. Further, they have implicit deadlines at the release
times of the next job, i.e., d(v) = P.

A relaxation of this model is to allow jobs to be released at later time points, as
long as at least P time units pass between adjacent job releases of the same task. This
is called the sporadic task model, introduced by Mok (1983). Another generalization
is to add an explicit deadline D as a third integer to the task definition T = (P, E, D),
leading to d(v) = D for all generated jobs. If D < P for all tasks T € 7 then we say
that T has constrained deadlines, otherwise it has arbitrary deadlines.

This model has been the basis for many results throughout the years. Liu and
Layland (1973) give a simple feasibility test for implicit deadline tasks: defining the
utilization U(7) of a task set T as U(T) := YrccEi/F;, a task set is uniprocessor
feasible if and only if U(t) < 1. As in later work, proofs of feasibility are often
connected to the Earliest Deadline First (EDF) scheduling algorithm, which uses
dynamic priorities and has been shown to be optimal for a large class of workload
models on uniprocessor platforms, including those considered in this survey. Because
of its optimality, EDF schedulability is equivalent to feasibility.

3.1.1 Demand-Bound Functions

For the case of explicit deadlines, Baruah et al. (1990) introduced a concept that was
later called the demand-bound function: for each interval size ¢ and task T, dbf ()
is the maximal accumulated worst-case execution time of jobs generated by T in any
interval of size ¢. More specifically, it counts all jobs that have their full scheduling
window inside the interval, i.e., release time and deadline. The demand-bound func-
tion dbf () of the whole system 7 has the property that a task system is feasible if
and only if

Vi >0:dbf (1) <t (1)

6 Martin Stigge, Wang Yi

This condition is a valid test for a very general class of workload models and is of
great use in later parts of this survey. It holds for all models generating sequences of
independent jobs. A proof was provided by Baruah et al. (1999a).

Focussing on sporadic tasks, Baruah et al. (1990) show that dbf . (¢) can be com-
puted with

dbf (1) = T;TE,» -max {0, V PP’J + 1}) (2)
This closed-form expression is motivated by the observation that periodic tasks lead
to a simple form of very regular step-functions. Using this they prove that the fea-
sibility problem is in coNP. Eisenbrand and Rothvofl (2010) have shown that the
problem is indeed (weakly) coNP-hard for systems with constrained deadlines. Very
recently, Ekberg and Yi (2015) have tightened this result by providing a proof of
coNP-hardness in the strong sense.

Another contribution of Baruah et al. (1990) was to show that for the case of
U(7) < ¢ for some constant ¢, there is a pseudo-polynomial solution of the schedula-
bility problem, by testing Condition (1) for a pseudo-polynomial number of values.
Intuitively, the smaller the task set’s utilization U (), the smaller a value ¢ has to be
in order to be able violate Condition (1). The reason is that its left-hand side dbf .(t)
approaches an asymptotic growth of U(7), eventually creating a gap to its right-hand
side 7. Thus, if U(7) is bounded by a ¢ < 1, a pseudo-polynomial bound for ¢ can al-
ways be derived. On the other hand, for U(7) = 1, a similar bound for 7 is not known.
The existence of such a constant bound ¢ of U(7) (however close to 1) is a common
assumption when approaching this problem since excluding utilizations very close
to 1 only rules out very few actual systems.

3.1.2 Static Priorities

For static priority schedulers, Liu and Layland (1973) show that the rate-monotonic
priority assignment for implicit deadline tasks is optimal, i.e., tasks with shorter pe-
riods have higher priorities. They further give an elegant sufficient schedulability
condition by proving that a task set T with n tasks is schedulable with a static priority
scheduler under rate-monotonic priority ordering if

U(t)<n-2"7=1). (3)

For sporadic task systems with explicit deadlines, the response time analysis tech-
nique has been developed. It is based on a scenario in which all tasks release jobs
at the same time instant with all following jobs being released as early as permitted.
This maximizes the response time R; of the task in question, which is why the sce-
nario is often called the critical instant. It is shown by Joseph and Pandya (1986) and
independently by Audsley et al. (1991) that R; is the smallest positive solution of the
recurrence relation R
R=E; — | -E; 4

i+]Z<‘, { le i 4)
assuming that the tasks are in order of descending priority. This is based on the obser-
vation that the interference from a higher priority task 7; to T; during a time interval

Graph-Based Models for Real-Time Workload: A Survey 7

of size R can be computed by counting the number of jobs task 7; can release as
(R/ij and multiplying that with their worst-case duration E;. Together with T;’s
own WCET E;, the response time is derived. Solving Equation (4) leads directly to
a pseudo-polynomial schedulability test. Eisenbrand and Rothvof (2008) show that
the problem of computing R; is indeed NP-hard.

3.2 The Multiframe Model

The first extension of the periodic and sporadic paradigm for jobs of different types to
be generated from the same task was introduced by Mok and Chen (1997). The mo-
tivation is as follows. Assume a workload which is fundamentally periodic but it is
known that every k-th job of this task is extra long. As an example, Mok and Chen de-
scribe an MPEG video codec that uses different types of video frames. Video frames
arrive periodically, but frames of large size and thus large decoding complexity are
processed only once in a while. The sporadic task model would need to account for
this in the WCET of all jobs, which is certainly a significant over-approximation. Sys-
tems that are clearly schedulable in practice would fail standard schedulability tests
for the sporadic task model. Thus, in scenarios like this where most jobs are close
to an average computation time which is significantly exceeded only in well-known
periodically recurring situations, a more precise modeling formalism is needed.

To solve this problem, Mok and Chen (1997) introduce the Multiframe model. A
Multiframe task 7 is described as a pair (P,E) much like the basic sporadic model
with implicit deadlines, except that E = (Ey, ..., E;_1) is a vector of different execu-
tion times, describing the WCET of k potentially different frames.

3.2.1 Semantics

As before, let p = (Jp,Ji,...) be a job sequence with job parameters J; = (R;, e;,v;)
of release time R;, execution time e; and job type v;. For p to be generated by a
Multiframe task 7" with k frames, it has to hold that e; < E(, 1) moda x for some offset a,
i.e., the worst-case execution times cycle through the list specified by vector E. The
job release times behave as before for sporadic implicit-deadline tasks, i.e., Rj;| >
R; + P. We show an example in Figure 2.

A A A

— - .

[Frame 0 - b Frame [- | e Frame 2 -~ I Frame 3 - I Frame 0 - |

Fig. 2 Example of a Multiframe task 7 = (P,E) with P =4 and E = (3,1,2,1). Note that deadlines are
implicit.

8 Martin Stigge, Wang Yi

3.2.2 Schedulability Analysis

Mok and Chen (1997) provide a schedulability analysis for static priority schedul-
ing. They provide a generalization of Equation (3) by showing that a task set 7 is
schedulable with a static priority scheduler under rate-monotonic priority ordering if

U(t) <r-n-((1+1/r)1/”—1).)

The value r in this test is the minimal ratio between the largest WCET E; in a task and
its successor E;; 1) mod - Note that the classic test for periodic tasks in Condition (3)
is a special case of Condition (5) with r = 1.

The proof for this condition is done by carefully observing that for a class of
Multiframe tasks called accumulatively monotonic (AM), there is a critical instant
that can be used to derive the condition (and further even for a precise test in pseudo-
polynomial time by simulating the critical instant). In short, AM means that there is
a frame in each task such that all sequences starting from this frame always have a
cumulative execution demand at least as high as equally long sequences starting from
any other frame. After showing (5) for AM tasks the authors prove that each task can
be transformed into an AM task which is equivalent in terms of schedulability. The
transformation is via a model called General Tasks (Mok and Chen 1996) which is an
extension of Multiframe tasks to an infinite number of frames and therefore of mainly
theoretical interest.

Refined sufficient tests have been developed (Han 1998; Baruah et al. 1999b; Kuo
et al. 2003; Lu et al. 2007) that are less pessimistic than the test using the utilization
bound in (5). They generally also allow certain task sets of higher utilization than
those passing the above test to be classified as schedulable. A precise test of expo-
nential complexity has been presented (Zuhily and Burns 2009) based on response
time analysis as a generalization of (4). The authors also include results for models
with jitter and blocking.

3.3 Generalized Multiframe Tasks

In the Multiframe model, all frames still have the same period and implicit deadline.
Baruah et al. (1999a) generalize this further by introducing the Generalized Multi-
Sframe (GMF) task model. A GMF task T = (P,E,D) with k frames consists of three
vectors:

P=(PRy,...,P1) for minimum inter-release separations,
E = (Eo,...,Ex_1) for worst-case execution times, and
D = (Dy,...,Dy_1) for relative deadlines.

For unambiguous notation we write P!, EI and D! for components of these three
vectors in situations where it is not clear from the context which task 7 they belong
to.

Graph-Based Models for Real-Time Workload: A Survey 9

3.3.1 Semantics

As a generalization of the Multiframe model, each job J; = (R;,e;,v;) in a job se-
quence p = (Jo,J1,...) generated by a GMF task T needs to correspond to a frame
and the corresponding values in all three vectors. Specifically, we have for some off-
set a that:

L. Riv1 2 Ri+ Platiy mod &
2.6 < E(a+i) mod k

An example is shown in Figure 3.

i B O e B e R OO

freeeeeens Frame O -+ |- Frame 1 --[f---- Frame 2 -+ | ST Frame (-+ |- Frame 1 --|

Fig. 3 Example of a GMF task T = (P,E,D) with P = (5,3,4), E= (3,1,2) and D = (3,2,3).

3.3.2 Feasibility Analysis

Baruah et al. (1999a) give a feasibility analysis method based on the demand-bound
function. The different frames make it difficult to develop a closed-form expression
like (2) for sporadic tasks since there is in general no unique critical instant for GMF
tasks. Instead, the described method (which we sketch here with slightly adjusted
notation and terminology) creates a list of pairs (e,d) of workload e and some time
interval length d which are called demand pairs in later work (Stigge et al. 2011b).
Each demand pair (e,d) describes that a task 7' can create e time units of execution
time demand during an interval of length d. From this information it can be derived
that dbf;(d) > e since the demand bound function dbf;(d) is the maximal execution
demand possible during any interval of that size.

In order to derive all relevant demand pairs for a GMF task, Baruah et al. first
introduce a property called localized Monotonic Absolute Deadlines (I-MAD). Intu-
itively, it means that two jobs from the same task that have been released in some
order will also have their (absolute) deadlines in the same order. Formally, this can be
expressed as D; < P; + D1 1) mod x» Which is more general than the classical notion
of constrained deadlines, i.e., D; < P;, but still sufficient for the analysis. We assume
this property for the rest of this section.

As preparation, the method by Baruah et al. (1999a) creates a sorted list DP of
demand pairs (e, d) for all i and j each ranging from O to k — 1 with

i+ itj-1
€= ZEmmod/m d= Z Py mod k +D(i+j) mod k-
m=i m=i

For a particular pair of i and j, this computes in e the accumulated execution time
of a job sequence with jobs corresponding to frames i,...,(i+ j) mod k. The value

10 Martin Stigge, Wang Yi

of d is the time from first release to last deadline of such a job sequence. With all
these created demand pairs, and using shorthand notation Py, 1= Zé‘;ol P, Egqm =

Y%} E; and Dyyin := min=, D;, the function dbf () can be computed with

0 ifr < Dmin:
dbf(t)={ max{e | (e,d) € DP withd <t} if t € [Duin, Psum + Dmin)
\‘%J Egum + dbfT (Dmin + (l - Dmin) mod Psum) if t 2 Poum + Dmin-

Intuitively, we can sketch all three cases as follows: In the first case, time interval
t is shorter than the shortest deadline of any frame, thus not creating any demand.
In the second case, time interval ¢ is shorter than Py, 4+ Dmin Which implies that at
most k jobs can contribute to dbf (). All possible job sequences of up to k jobs are
represented in demand pairs in DP, so it suffices to return the maximal demand e
recorded in a demand pair (e,d) with d < ¢. In the third case, a job sequence leading
to the maximal value dbf;(¢) must include at least one complete cycle of all frames
in T. Therefore, it is enough to determine the number of cycles (each contributing
Eqm) and looking up the remaining interval part using the second case.

Finally, Baruah et al. (1999a) describe how a feasibility test procedure can be
implemented by checking Condition (1) for all 7 at which dbf(¢) changes up to a
bound U

T
= 1(U()‘L') I}]él%((Psflm - DrTnin)

with U(7) := Yre EL . /PL.. measuring the utilization of a GMF task system. If
U () is bounded by a constant ¢ < 1 then this results in a feasibility test of pseudo-
polynomial complexity. Baruah et al. include also an extension of this method to task
systems without the [-MAD property, i.e., with arbitrary deadlines. As an alternative
test method, they even provide an elegant reduction of GMF feasibility to feasibility
of sporadic task sets by using the set DP to construct a dbf-equivalent sporadic task
set.

3.3.3 Static Priorities

An attempt to solve the schedulability problem for GMF in the case of static priorities
was presented by Takada and Sakamura (1997). The idea is to use a function called
Maximum-interference function (MIF) M(t). It is based on the request-bound function
rbf (t) which for each interval size ¢ counts the accumulated execution demand of
jobs that can be released inside any interval of that size. (Notice that in contrast,
the demand-bound function also requires the job deadline to be inside the interval.)
The MIF is a “smoother” version of that, which for each task only accounts for the
execution demand that could actually execute inside the interval. We show examples
of both functions in Figure 4.

The method uses the MIF as a generalization in the) -summation term in Equa-
tion (4), leading to a generalized recurrence relation for computing the response time:

R=E;+) M;R) (6)

j<i

Graph-Based Models for Real-Time Workload: A Survey 11

rbf (1) Mr (1)
6 6
4 4
2 2
0 -4 T T T T T T T t 0 T T T T T T T t
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) Request-bound function (b) Maximum-interference function

Fig. 4 Examples of request-bound function and maximum-interference function of the same task 7 =
(P,E,D) with P=D = (6,7,10) and E = (3,3,1).

Note that this expresses the response time of a job generated by one particular frame i
of a GMF task with M;(t) expressing the corresponding maximum-interference func-
tions of higher priority tasks. Computation of M;(¢) is essentially the same process as
determining the demand-bound function dbf (¢) from above.

It was discovered by Stigge and Yi (2012) that the proposed method does not
lead to a precise test since the response time computed by solving Equation (6) is
over-approximate. The reason is that M;(¢) over-approximates the actual interference
caused by higher priority tasks. They give an example in which case the test using
Equation (6) determines a task set to be unschedulable while none of the concrete
executions would lead to a deadline miss.

Stigge and Yi (2012) provide a hardness result by showing that the problem of an
exact schedulability test for GMF tasks in case of static priority schedulers is strongly
coNP-hard implying that there is no adequate replacement for M;(r). Intuitively, one
single integer-valued function on the time interval domain cannot precisely capture
the information needed to compute exact response times. Different concrete task sets
with different resulting response times would be abstracted by identical functions,
ruling out a precise test. The rather involved proof is mostly focussing on the a more
general task model (Digraph Real-Time tasks, cf. Section 4.5) but is shown to even
hold in the GMF case and in fact even applies to the MF model. Still, the MIF-based
test for GMF presented by Takada and Sakamura (1997) is a sufficient test of pseudo-
polynomial time complexity.

3.4 Non-cyclic GMF

The original motivation for Multiframe and GMF task models was systems consisting
of frames with different computational demand and possibly different deadlines and
inter-release separation times, arriving in a pre-defined pattern. Consider again the
MPEG video codec example where video frames of different complexity arrive, lead-
ing to applicability of the Multiframe model. For the presented analysis methods, the
assumption of a pre-defined release pattern is fundamental. Consider now a system
where the pattern is not known a priori, for example if the video codec is more flexi-
ble and allows different types of video frames to appear adaptively, depending on the
actual video contents. Similar situations arise in cases where the frame order depends

12 Martin Stigge, Wang Yi

on other environmental decisions, e.g. user input or sensor data. A prominent example
is an engine management component in an automotive embedded real-time system.
Depending on the engine speed, the tasks controlling ignition timing, fuel injection,
opening of exhaust valves, etc. have different periods since the angular velocity of
the crankshaft changes (Buttazzo et al. 2014). These systems cannot be modeled with
the GMF task model.

Moyo et al. (2010) propose a model called Non-Cyclic GMF to capture such
behavior adequately. A Non-Cyclic GMF task T = (P, E, D) is syntactically identical
to GMF task from Section 3.3, but with non-cyclic semantics. In order to define the
semantics formally, let ¢ : N — {0,...,k— 1} be a function choosing frame ¢ (i) for
the i-th job of a job sequence. Having ¢, each job J; = (R;,e;,v;) in a job sequence
p = (Jo,J1,...) generated by a non-cyclic GMF task T needs to correspond to frame
¢ (i) and the corresponding values in all three vectors:

L. Riy1 2 Ri+ Py
2. e < E(])(z)

This contains cyclic GMF job sequences as the special case where ¢(i) = (a +
i) mod k for some offset a. An example of non-cyclic GMF semantics is shown in
Figure 5.

1 —lhlbeie

T T T T T T T T T T T T T T t

Fig. 5 Non-cyclic semantics of the GMF example Figure 3.

For analyzing non-cyclic GMF models, Moyo et al. (2010) give a simple density-
based sufficient feasibility test. Defining D(7') := max;C! /D! as the densitiy of a
task T, a task set 7 is schedulable if ¥ 7., D(T) < 1. This generalizes a similar test
for the sporadic task model with explicit deadlines. In addition to this test, Moyo
et al. (2010) also include an exact feasibility test based on efficient systematic sim-
ulation. That is, they carefully extract a set of job sequences to simulate, in order to
conclusively decide feasibility. A complexity bound is not given.

A different exact feasibility test is presented by Baruah (2010a) for constrained
deadlines using the demand-bound function as in Condition (1). A dynamic program-
ming approach is used to compute demand pairs (see Section 3.3) based on the ob-
servation that dbf(t) can be computed for larger and larger 7 reusing earlier values.
More specifically, a function A7 (¢) is defined which denotes for an interval size ¢ the
accumulated execution demand of any job sequence where jobs have their full exclu-
sion window! inside the interval. It is shown that A7 (¢) for # > 0 can be computed by
assuming that some frame i was the last one in a job sequence contributing a value
to Ar(¢). In that case, the function value for the remaining job sequence is added to

! The exclusion window of a job is the time interval between its release time and the earliest possible
release time of the next job from the same task. In the GMF model, this window has length P,-T for jobs
released by frame i of task 7.

Graph-Based Models for Real-Time Workload: A Survey 13

the execution time of that specific frame i. Since frame i is not known a priori, the
computation has to take the maximum over all possibilities. Formally,

Ar(t) =max{Ar(t—P")+E] | PF <t}. (7)
]

Using this, dbf(¢) can be computed via the same approach by maximising over all
possibilities of the last job in a sequence contributing to dbf; (). It uses that the
execution demand of the remaining job sequence is represented by function Ar(z),
leading to
dbf (1) = max {Ar(t = D])+ E] | D] <t}. ®)
]

This leads to a pseudo-polynomial time bound for the feasibility test if U(T) is
bounded by a constant, since dbf(r) > t implies 1 < (Yr,El)/(1—U(t)) which
is pseudo-polynomial in this case.

The same article also proves that evaluating the demand-bound function is a
(weakly) NP-hard problem. More precisely: Given a non-cyclic GMF task T and
two integers 7 and B it is coNP-hard to determine whether dbf(t) < B. The proof
is via a rather straightforward reduction from the Integer Knapsack problem. Thus, a
polynomial algorithm for computing dbf () is unlikely to exist.

3.4.1 Static Priorities

A recent result by Berten and Goossens (2011) proposes a sufficient schedulability
test for static priorities. It is based on the request-bound function similar to Takada
and Sakamura (1997) and its efficient computation. In a similar way, the function is
inherently over-approximate and the test is of pseudo-polynomial time complexity.

Other recent results specifically handle the case of tasks in control applications
for combustion engines. They can be modeled using the non-cyclic GMF model, but
tighter results can be obtained by a more custom-tuned model which we discuss in
Section 5.2.

4 Graph-oriented Models

The more expressive workload models become, the more complicated structures are
necessary to describe them. In this section we turn to models based on different
classes of directed graphs. We start by recasting the definition of GMF in terms of a
graph release structure.

4.1 Revisiting GMF

Recall the Generalized Multiframe task model from Section 3.3. A GMF task T =
(P,E,D) consists of three vectors for minimum inter-release separation times, worst-
case execution times and relative deadlines of k frames. The same structure can be
imagined as a directed cycle graph* G = (V, E) in which each vertex v € V represents

2 A cycle graph is a graph consisting of one single cycle, i.e., one closed chain.

14 Martin Stigge, Wang Yi

the release of a job and each edge (v,V') € E represents the corresponding inter-
release separation. A vertex v is associated with a pair {(e(v),d(v)) for WCET and
deadline parameters of the represented jobs. An edge (u,v) is associated with a value
p(u,v) for the inter-release separation time.

The cyclic graph structure directly visualizes the cyclic semantics of GMF. In
contrast, non-cyclic GMF can be represented by a complete digraph. Figure 6 illus-
trates the different ways of representing a GMF task with both semantics.

T = (P,E,D)

P=(10,8,3,5,5)
E=(1,2,3,1,1)
D =(10,7,7,9,8)

(1,8)
(a) T as vectors (b) T as cycle graph (c) T as complete graph

Fig. 6 Different ways of representing a GMF task 7. The vector-representation in 6(a) from Section 3.3
does by itself not imply cyclic or non-cyclic semantics. This is more clear with graphs in 6(b) and 6(c).
Note that we omit vertex and edge labels in 6(c) for clarity.

4.2 Recurring Branching Tasks

A first generalization to the GMF model was presented by Baruah (1998b), followed
up by Anand et al. (2008). It is based on the observation that real-time code may
include branches that influence the pattern in which jobs are released. As the result of
some branch, a sequence of jobs may be released which may differ from the sequence
released in a different branch. In a schedulability analysis, none of the branches may
be universally worse than the others since that may depend on the context, e.g., which
tasks are being scheduled together with the branching one. Thus, all branches need to
be modeled explicitly and a proper representation is needed, different from the GMF
release structure.

A natural way of representing branching code is a tree. Indeed, the model pro-
posed by Baruah (1998b) is a tree representing job releases and their minimum inter-
release separation times. We show an example in Figure 7(a). Formally, a Recurring
Branching (RB) task T is a directed tree G(T) = (V,E) in which each vertex v € V
represents a type of job to be released and each edge (u,v) € E the minimum inter-
release separation times. They have labels (e(v),d(v)) and p(u,v), specifying WCET,
deadline and inter-release separation time parameters, respectively. In addition to the

Graph-Based Models for Real-Time Workload: A Survey 15

tree, each leaf u has a separation time p(u, V) to the root vertex vy, in order to
model that the behavior recurs after each traversal of the tree.

(1,17)
(a) RB task (b) RRT task (c) Non-cyclic RRT task

Fig. 7 Examples of RB, RRT and non-cyclic RRT task models.

In order to simplify the feasibility analysis, the model is syntactically restricted in
the following way. For each path @ = (7, ..., ;) of length [from the root @y = v,
to a leaf vy, its duration when going back to the root must be the same, i.e., the value
P:= Zf;(l) p(7;, Wi11) 4 p(7y, Voo) must be independent of . We call P the period of
T. Note that this is a generalization of GMF since GMF can be expressed as a linear
tree.

4.2.1 Semantics

A job sequence p = (Jo,J,...) is generated by an RB task 7 if it corresponds to a
path 7 through G(T) in the following way. Path 7 starts at some vertex mp in G(T),
follows the edges to a leaf, then starts again at the root vertex, traverses G(T') again
in a possibly different way, etc. (Very short & may of course never reach a leaf.) The
correspondence between p and 7 means that all jobs J; are of the form J; = (R;, ¢;, T;),
and the following:

1. Riv1 2 Ri+p(mi, mig1),
2. e; < 6(717,').

4.2.2 Feasibility Analysis

The analysis presented by Baruah (1998b) is based on the concept of demand pairs
as described before. We sketch the method of Baruah (1998b), slightly adjusted to
fit our terminology and notation. First, a set DPy is created consisting of all demand
pairs corresponding to paths not containing both a leaf and a following root vertex.
This is straightforward since for each pair of vertices (#,v) in G(T') connected by a
directed path 7, this connecting path is unique. Thus, a demand pair (e, d) for 7 can be
derived by computing its total execution time and deadline. Formally, all (e¢,d) € DP
are created by enumerating all vertex pairs (u,v) and computing for their connecting

16 Martin Stigge, Wang Yi

path T = (7, ..., m) the values

l -1

e:=Ye(m), d:=Y p(m,m)+d(m).
i=0 i=0

Second, all paths 7 which do contain both a leaf and a following root vertex can
be cut into three subpaths .04, Tniddle and Ty

/ / /! /! /" /1
717:(V7...,V[,Vmot,v,...,Vl,Vmot,V yo o Vs Vioot, Vo3V)
N——

Thead Tomiddle Ttail

We use v, v;, etc. for arbitrary leaf nodes. The first part 7,44 is the prefix of & up
to and including the first leaf in 7. The second part 7,44, is the middle part starting
with v, and ending in the last leaf which 7 visits. Note that 7,4, may traverse the
tree several times. The third part m,; starts with the last occurrence of v, in 7. For
each of the three parts, a data structure is created so that demand pairs for a full path
7 can be assembled easily.

In order to represent Myeqq, a set UP 4 is created. For all paths 7000 = (mo,...,m)
that end in a leaf, UP},,s contains a pair (e, p) with

l -1

e::Ze(ﬂi)7 p::Zp(niani+l)+p(nlvvroot)-
i=0 i=0

For representing 7,44, the maximal accumulated execution demand en,x of any
path completely traversing the tree is computed. Note that all paths from the root to a
leaf have the same sum of inter-release separation times and this sum is the period P
of T. Finally, for representing 7, a set DP,,,; is computed as a subset of DP(only
considering paths starting at v,yo;.

Using these data structures, dbfr(f) can be computed easily. If # < P, then a job
sequence contributing to dbf;(t) either corresponds to a demand pair in DPy (not
passing V) or is represented by items from UPj,r and DP,,,; (since it is passing
Vior €Xactly once):

Fi(t) :=max{e | {e,d) € DPy withd < t},
Fy(t) :==max {e| + e | (e1,p) € UPjeqp A (€2,d) € DPpooy Ap+d <1},
dbfr(t) =max {F(t), i>(t)} ift<P.

In case t > P, such a job sequence must pass through v,,,; and traverses the tree com-
pletely for either [/P or [t/P]| — 1 times. Each of the complete traversals contributes
emax to the total execution time sum of 7,,;44.. For the parts that are represented by
Thead and T,; of the corresponding path 7, we can use F, from above, since Tjeqq
concatenated with 7,; correspond to a job sequence without a complete tree traversal
but which Visits v, For the case of ;44 traversing the tree |¢/P| times, there are
t mod P time units left to consider, which is summarized in Equation (9). Similarly,

Graph-Based Models for Real-Time Workload: A Survey 17

for the case of 7,44 traversing the tree |7/P| — 1 times, there are (f mod P) + P time
units left, summarized in Equation (10). Putting it together for t > P:

F3(t) = \‘%J 'emax+F2(t mOdP)’ ©)
F4(l‘) = \‘t_PPJ 'emax+F2((t mOdP)+P)’ (10)

dbfr(t) = max {F3(r), Fa(t)} ift>P.

Finally, in order to do the feasibility test, i.e., verify Condition (1), the demand-
bound function dbf () = Y.7c. dbf(t) is computed for all ¢ up to a bound D derived
in a similar way as for GMF in Section 3.3.

4.3 Recurring Real-Time Tasks — DAG Structures

In typical branching code, the control flow is joined again after the branches are
completed. Thus, no matter which branch is taken, the part after the join is common
to both choices. In the light of a tree release structure as in the RB task model above,
this means that many vertices in the tree may actually represent the same types of
jobs to be released, or even whole subtrees are equal. In order to make use of these
redundancies, Baruah (1998a) proposes to use a directed acyclic graph (DAG) instead
of a tree. The impact is mostly modeling efficiency: each DAG can be unrolled into a
tree, but that comes at the cost of potentially exponential growth of the graph.

A Recurring Real-Time (RRT) task T is a directed acyclic graph G(T'). The def-
inition is very similar to RB tasks in the previous section, we only point out the dif-
ferences. It is assumed that G(T') contains one unique source vertex (corresponding
to vyer in an RB task) and further one unique sink vertex (corresponding to leafs in
a tree). There is no explicit minimum inter-release separation time between the sink
and the source vertex. Instead, an RRT task has an explicitly defined period parameter
P that constrains the minimal time between two releases of jobs represented by the
source vertex. An RRT task behaves just like an RB task by following paths through
the DAG. We skip the details and give an example of an RRT task in Figure 7(b).

4.3.1 Feasibility Analysis

Because of its close relation to RB tasks, the feasibility analysis method presented by
Baruah (1998a) is very similar to the method presented above for RB tasks and we
skip the details. Note that this is largely due to the general period parameter P which
could be inferred in the RB model since all paths from v,y t0 V,p0r Were assumed
to have the same duration. However, the adapted method has exponential complexity
since it enumerates paths explicitly.

Chakraborty et al. (2001) present a more efficient method based on a dynamic
programming approach, leading back to pseudo-polynomial complexity. Instead of
enumerating all pairs of vertices (u,v) in the DAG, the graph is traversed in a breadth-
first manner. The critical observation is that all demand pairs representing a path

18 Martin Stigge, Wang Yi

ending in any particular vertex v can be computed from those for paths ending in all
parent vertices. It is not necessary to have precise information about which the actual
paths are that the demand pairs represent. Even though Chakraborty et al. consider
a limited variant of the model in which paths traverse the DAG only once, the ideas
can be applied in general to the full RRT model.

The feasibility problem is further shown to be NP-hard by Chakraborty et al.
(2001) via a reduction from the Knapsack problem and the authors give a fully poly-
nomial-time approximation scheme. For the special case where all vertices have equal
WCET annotations, they show a polynomial-time solution, similar to the dynamic
programming technique above.

4.3.2 Static Priorities

A sufficient test for schedulability of an RRT task set with static priorities is presented
by Baruah (2003). It is shown that, up to a polynomial factor, the priority assignment
problem in which a priority order has to be found is equivalent to the priority testing
problem where a task set with a given priority order is to be tested for schedulability.
At the core of both is the test whether a given task T € T will meet its deadlines if it
has the lowest priority of all tasks in T (whose relative priority order does not matter).
In that case T is called lowest-priority feasible.

The proposed solution gives a condition involving both the demand-bound func-
tion dbf;(¢) and the request-bound function rbf (). It is shown that a task T is
lowest-priority feasible if

V> 0:3 <tidbfr(t)+ Y, rbfp(f) <7 (11)
T'et\{T}

It is shown that rbf - (t) can be computed with just a minor modification to the com-
putation procedure of dbf;(¢) and that Condition (11) only needs to be checked for a
bounded testing set of ¢, similar to the bound D introduced in checking Condition (1)
in feasibility tests. For each ¢, checking the existence of at’ < ¢ is essentially identical
to an iterative procedure of solving the recurrence relation in Equation (6) of which
Condition (11) is a generalization.

A tighter and more efficient test is shown by Chakraborty et al. (2001) based on
a smoother variant of the request-bound function, denoted rbf% (¢). Using this, a task
T is lowest-priority feasible if

WeG(T): 3t <dv):e(v)+ Z rbf () <t (12)
T'et\{T}

This test is a more direct and tighter generalization of the sufficient test using Equa-
tion (6) for GMF tasks.

4.3.3 Position in the Model Hierarchy

The RRT model is a generalization of the RB model in the sense of Definition 3.
It is not the case that syntactically, every RB task is also an RRT task, because of

Graph-Based Models for Real-Time Workload: A Survey 19

the edges from leaves back to the root vertex in an RB task. However, Stigge (2014)
demonstrates that an equivalent RRT task can be constructed as follows. Given G(T')
of an RB task T, we create a new vertex v serving as a dummy sink vertex, i.e.,
{e(v),d(v)) = (0,0). For each leaf vertex u, we create an edge (u,v) to the sink vertex
with edge label p(u,v) := p(u,vyp0) and remove edge (u, vy). The resulting graph
is G(T") of a new task T’ which together with a parameter P equal to the duration of
any path through G(T') back to its root is now syntactically an RRT task. It is easily
verified that [T] = [T].

4.4 Non-cyclic RRT

A different generalization of RB is non-cyclic RRT3 (Baruah 2010b) where the as-
sumption of one single sink vertex is removed. Specifically, a non-cyclic RRT task T’
is a DAG G(T) with vertex and edge labels as before that has a unique source vertex
Vsource- Additionally, for every sink vertex v, there is a value p(v,Vsource) as before.
We give an example in Figure 7(c). Note that a non-cyclic RRT task does not have a
general period parameter, i.e., paths through G(T') visiting vy, repeatedly may do
so in different time intervals when doing so through different sinks.

4.4.1 Feasibility Analysis

The analysis technique presented by Baruah (2010b) is similar to the ones of RB
and RRT. The author uses the dynamic programming technique of Chakraborty et al.
(2001) to compute demand pairs inside the DAG in order to keep pseudo-polynomial
complexity and assumes a partition of paths 7 into Tjeqq, Tmiqale and T,y as before.
The difference here is that paths traversing G(T') completely from vgyce to a sink
may have different lengths, i.e., 7,44 1S not necessarily a multiple of some period
P. Thus, the expressions for partial dbf(t) computation in Equations (9) and (10)
cannot just assume a fixed length P and a fixed computation time epax. The idea
to solve this is to first use the technique by Chakraborty et al. (2001) to compute
demand pairs for full DAG traversals. These can then be interpreted as frames with
a length and an execution time requirement, which can be concatenated to achieve a
certain interval length, like a very big non-cyclic GMF task. Similar to Equation (7)
for solving non-cyclic GMF feasibility, all possible paths going from source to a
sink can be represented in a function Ar(z) that expresses for each ¢ the amount of
execution demand these special paths may create during intervals of length ¢. Similar
to Equation (8), this function is integrated into Conditions (9) and (10), resulting in
an efficient procedure.

The procedure is generalized in Section 4.5 which generalizes and unifies all
feasibility tests presented so far.

3 The name “non-cyclic RRT” can be a bit misleading. The behavior of a non-cyclic RRT task is cyclic,
in the sense that the source vertex is visited repeatedly. However, in comparison to the RRT model, the
behavior is non-periodic, in the sense that revisits of the source vertex may happen in different time inter-
vals.

20 Martin Stigge, Wang Yi

4.4.2 Position in the Model Hierarchy

It is rather straightforward to see that the non-cyclic RRT model generalizes the RB
model since a tree is a special case of a DAG. However, it is not directly obvious
that non-cyclic RRT generalizes non-cyclic GMF since non-cyclic GMF does not
syntactically fit into the non-cyclic RRT definition, even if interpreted as a (fully
connected) digraph. Nevertheless, a transformation of a non-cyclic GMF task T =
(P,E,D) is given by Stigge (2014). In order to create G(T") for an equivalent non-
cyclic RRT task T’, we create k vertices vy, ..., vc_1, each representing one of the
k frames of T, i.e., {e(v;),d(v;)) := (E;,D;). Further, we create a (dummy) source
vertex Vyource With {€(Vsource) d (Vsource)) := (0,0). We connect the source with the
vertices v; via edges (vi, Vsource) and (Vsource,vi) which have labels

p(Vivvsource) =F, p(Vsour067Vi) =0.

It is clear that T’ is equivalent to T since all vertices v; can be visited in any order,
just as the frames of T, hence [T] = [T'].

4.5 Digraph Real-Time Tasks

Stigge et al. (2011b) observe that the non-cyclic RRT model can be generalized to
any directed graph. They introduce the Digraph Real-Time (DRT) task model and
describe a feasibility test of pseudo-polynomial complexity for task systems with
utilization bounded by a constant. A DRT task T is described by a directed graph
G(T) with edge and vertex labels as before. There are no further restrictions, any
directed graph can be used to describe a task. Using any graph allows modeling of
local loops which was not possible in any model presented above. Even in the non-
cyclic RRT model, all cycles in that model have to pass through the source vertex.
An example of a DRT task is shown in Figure 8(a).

(1,5) (1,2)
(a) DRT task (b) EDRT task

Fig. 8 Examples for DRT and EDRT task models. The EDRT task in Figure 8(b) contains two additional
constraints (u4,u>,6) and (u3,u3,9), denoted with dashed arrows. Note that these dashed arrows do not
represent edges that can be taken. They only denote additional timing constraints.

Graph-Based Models for Real-Time Workload: A Survey 21

4.5.1 Semantics

The behavior of a DRT task 7T is similar to earlier models. A job sequence p =
(Jo,J1,...) is generated by T if there is a path & = (7, 7y, ..) through G(T') such
that each job is of the form J; = (R;, ¢;, ;) and it holds that

1. Rit1 > R+ p(m;,m;11) and
2. e; < 6‘(71}).

Note that this implies sporadic job releases as before. However, worst-case sequences
usually release jobs as soon as permitted.

4.5.2 Feasibility Analysis

Stigge et al. (2011b) present a feasibility analysis method which is again based on
demand pairs. However, there is no single vertex through which all paths pass and
neither does the graph G(T') represent a partial order as DAGs do. Thus, earlier dy-
namic programming approaches can not be applied. It is not possible either to simply
enumerate all paths through the graph since that would lead to an exponential proce-
dure. Instead, the authors propose a path abstraction technique which is essentially
also based on dynamic programming, generalizing earlier approaches.

For the case of constrained deadlines, each path & = (vy,...,v;) through G(T) =
(V,E) is abstracted using a demand triple {(e(r),d(7),v;) with

! -1
e(m):= Ze(vi), d(m):= Zp(vi,viH) +d(v).
i=0 i=0
It contains as first two components a demand pair and the third component is the last
vertex in the path. This abstraction allows creating all demand pairs for G(T') itera-
tively. The procedure starts with all demand triples that represent paths of length 0,

i.e., with the set
{{e(v),d(v),v) |veV}.

In each step, a triple (e,d,v) is picked from the set and extended to create new triples
(e',d' V') via

di=e+e(V), d:=d—dv)+pV)+d(), ()€EE.

This is done for all edges (v,v') € E. The procedure abstracts from concrete paths
since the creation of each new triple {¢’,d’,V') does not need the information of the
full path represented by (e,d,v). Instead, the last vertex v of any such path suffices.
The authors show that this procedure is efficient since it only needs to be executed
once up to a bound D as before and the number of demand triples is bounded.

Further contributions of Stigge et al. (2011b) include an extension of the method
to arbitrary deadlines and a few optimisation suggestions for implementations. One
of them is considering critical demand triples (e,d,v) for which no other demand
triple (¢’,d’,V') exists with

1. ¢ >e,

22 Martin Stigge, Wang Yi

2. d <d,and

3.V =v.

It is shown that only critical demand triples need to be stored during the procedure.
All other, non-critical, demand triples can be discarded since they and all their future
extensions will be dominated by others when considering contributions to the demand
bound function dbf;(t). This optimization reduces the cubic time complexity of the
algorithm to about quadradic in the task parameters.

The presented method is applicable to all models in the previous sections since
DRT generalizes all of them. In a few special cases, custom optimizations may speed
up the process. Recently, Zeng and Di Natale (2014) have proposed a clever appli-
cation of max-plus algebra to the problem of computing the demand-bound function
which can speed up the computation further.

4.5.3 Static Priorities

Sufficient tests involving rbf () similar to Conditions (11) and (12) can be applied
to DRT as well, but no exact schedulability test for DRT with static priorities can be
of pseudo-polynomial time complexity. It was shown by Stigge and Yi (2012) that
the problem is strongly NP-hard via a reduction from the 3-PARTITION problem.
Further, even fully polynomial-time approximation schemes can not exist either. The
result holds for all models at least as expressive as GMF or even the Multiframe
model.

Despite these hardness proofs, practical schedulability tests are still desirable,
even though they might have worst-case inputs for which they run in exponential
time. Using an iterative refinement method, Stigge and Yi (2013) introduce a schedu-
lability test that runs about as fast as the state-of-the-art pseudo-polynomial feasibility
test on synthetically generated task sets. The idea is to abstract paths through graphs
representing tasks as request functions. That is, for a task 7', a path & through G(T')
is represented by a function rf(¢) which gives the maximal cumulative amount of
workload that this task can request from the processor along 7 within the first ¢ time
units. Figure 9 shows two request functions.

if (¢)

18
15
12

=)}

S W

t

T T r— T+ T+ T+ 7 ‘T T T T’ T+ T T T 70
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 9 Example of two request functions for two different paths 7 and 7’

Given tuples 7f = (rf () ,1f (TZ), ...) of request functions, each representing a path
for a different task of higher priority, a condition can be given for a job associated

Graph-Based Models for Real-Time Workload: A Survey 23

with a vertex v to be able to meet its deadline as:

Vif: 3t <dw)re(w)+ Y D) <.

TGThig/l

Intuitively, this condition guarantees that for all release scenarios of higher priority
tasks, represented by the tuples rf, the job associated with v will be able to finish be-
fore its deadline. Compared to Conditions (11) and (12), this test is precise, but comes
at the cost of testing all combinations rf if applied naively. This can be improved by
considering abstract request functions which are the point-wise maximum of request
functions and thereby represent sets of behaviors. In the example in Figure 9, con-
sider the point-wise maximum of rf; and rf,; which is an over-approximation of
both behaviors. The approach can be used for iterative refinement by starting with
one function that represents all behaviors and is successively refined to represent
smaller and smaller sets along an abstraction tree, illustrated in Figure 10.

PN

o 1
Wy 1fn

Fig. 10 Request function abstraction tree for request functions of some task 7'. The leaves are five concrete
request functions. Each inner node is the point-wise maximum of all descendants and thus an abstract
request function. Abstraction refinements happen downwards along the edges, starting at the root.

The method refines abstractions in order to solve a combinatorial problem and is
therefore called combinatorial abstraction refinement. It is a rather general idea and
has been applied as well to response-time analysis of static priorities and EDF (Stigge
and Yi 2014). While the problem is strongly NP-hard and the method’s time complex-
ity therefore, in principle, exponential for worst-case instances, Stigge and Yi (2014)
show that typical instances can be solved in time comparable to the state-of-the.art
feasibility analysis described above in Section 4.5.2 which has pseudo-polynomial
worst-case time complexity. Note that both methods are incomparable since they dif-
fer in the type of scheduler the analysis assumes, i.e., EDF versus static priorities.

4.5.4 Position in the Model Hierarchy

We observe that, intuitively, the DRT model generalizes all models described so far.
All models are based on different classes of directed graphs which are all subsumed
by the generality of the DRT model. This includes multiframe models which are
essentially cycle graphs and even the sporadic task model which can be expressed
using a single vertex with a self loop. Regarding the model hierarchy depicted in
Figure 1, Stigge (2014) provides more details about two aspects.

24 Martin Stigge, Wang Yi

First, it is clear that non-cyclic RRT is generalized by DRT since each non-cyclic
RRT task is already syntactically a DRT task. In fact, the non-cyclic RRT model is the
subclass of the DRT model in which each G(T') is a strongly connected directed graph
in which all cycles share a common vertex. By transitivity, all models located below
non-cyclic RRT in the model hierarchy are generalized by DRT, including branching
and multiframe models.

Second, the RRT model is, strictly speaking, not generalized by the DRT model.
This is because the parameter P for every RRT task is a global constraint which the
DRT model cannot directly express. It is a timing constraint between two successive
releases of jobs associated with the source vertex. One such constraint exists per RRT
task. This restriction, albeit mostly a technicality, is alleviated with the introduction of
EDRT tasks in the following section. More specifically, an RRT task can be expressed
by an equivalent 1-EDRT task, which in turn can be pseudo-polynomially translated
into a DRT that is equivalent for most analysis purposes, as described in the following
section.

4.6 Global Timing Constraints

In an effort to investigate the border of how far graph-based workload models can be
generalized before the feasibility problem becomes infeasible, Stigge et al. (2011a)
propose a task model called Extended DRT (EDRT). In addition to a graph G(T') as in
the DRT model, a task T also includes a set C(T) = {(from,,t01,%), ..., (fromy, tox, %)}
of global inter-release separation constraints. Each constraint (from;, to;, ;) expresses
that between the visits of vertices from; and to;, at least 7; time units must pass. An
example is shown in Figure 8(b).

4.6.1 Feasibility Analysis

The feasibility analysis problem for EDRT indeed marks the tractability borderline.
In case the number of constraints in C(T') is bounded by a constant k which is a
restriction called k-EDRT, Stigge et al. (2011a) present a pseudo-polynomial fea-
sibility test. If the number is not bounded, they show that feasibility analysis be-
comes strongly NP-hard by a reduction from the Hamiltonian Path problem, ruling
out pseudo-polynomial methods.

For the bounded case, we illustrate why the iterative procedure described in Sec-
tion 4.5 for DRT can not be applied directly and then sketch a solution approach.
The demand triple method can not be applied without change since the abstraction
loses too much information from concrete paths. In the presence of global constraints,
the procedure needs to keep track of which constraints are active. Consider path
7 = (u4,us) from the example in Figure 8(b), which would be abstracted with de-
mand triple (2,4,us). An extension with u; leading to demand triple (4,7, u5) is not
correct, since the path 7' = (ug,us,u;) includes a global constraint, separating re-
leases of the jobs associated with u4 and u; by 6 time units. A correct abstraction of
7’ would therefore be (4,8,u5), but it is impossible to construct that from (2,4, us)
which lost information about the active constraint.

Graph-Based Models for Real-Time Workload: A Survey 25

A solution to this problem is to integrate information about active constraints into
the analysis. For each constraint (from;,t0;,7%;), the demand triple is extended by a
countdown that represents how much time must pass until fo; may be visited again.
This slows down the analysis, but since the number of constraints is bounded by a
constant, the slowdown is only a polynomial factor. Stigge et al. (2011a) choose to
not directly integrate the countdown information into the iterative procedure but to
transform each EDRT task T into a DRT task 7’ where the countdown information
is integrated into the vertices. The transformation leads to an equivalent iterative pro-
cedure and has the advantage that an already existing graph exploration engine for
feasibility tests of DRT task sets can be reused without any change. The transforma-
tion is illustrated in Figure 11.

(a) EDRT task T (b) (Parts of) DRT task T’

Fig. 11 A basic example of a 1-EDRT task T being transformed into an equivalent DRT task 7”. Only a
subset of the vertices of 7’ is shown.

5 Further Generalizations and Extensions

‘We now turn to models that either extend the DRT model in other directions or are
outside the hierarchy in Figure 1 since they operate partially or entirely on a different
abstraction level.

5.1 Resource Sharing

Real-time systems even on uniprocessor platforms contain not only the execution pro-
cessor, but often many resources shared by concurrently running jobs using a lock-
ing mechanism during their execution. Locking can introduce unwanted effects like
deadlocks and priority inversion. For periodic and sporadic task systems, the Prior-
ity Ceiling (and Inheritance) Protocols (Sha et al. 1990) and Stack Resource Policy
(Baker 1991) are established solutions with efficient schedulability tests. While these

26 Martin Stigge, Wang Yi

protocols can be used for more expressive models like DRT, the analysis methods do
not necessarily apply.

Some initial work exists on extending the classical results to graph-based models.
The common model extension is to consider a set of semaphores that all tasks may
use, and annotate each vertex in each graph with the set of semaphores that the corre-
sponding job may lock, together with a bound on the locking duration, cf. Figure 12.

() o
O{(Vz,R]) =1

10
15
20
378>
2,5 0 a(vs,R)) =2
(2,5) e (v3,R1)
(X(V3,R2>:l

Fig. 12 A DRT task with resource annotations & : V x {R;,R,} — N.

Results of Ekberg et al. (2014) introduce an optimal protocol for GMF tasks with
resources scheduled by EDF and Guan et al. (2011) develop a new protocol to deal
with branching structures in the context of EDF scheduling. Recently, static prior-
ity schedulers have been considered by Zhuo (2014), in which blocking times are
represented by blocking functions, similar to request functions for DRT analysis, cf.
Section 4.5.3. Generally, the non-deterministic behaviours introduced by DRT-like
models are not yet well understood in the context of resource sharing and subject of
future research.

5.2 Adaptive Variable-Rate Tasks

A model that has gained attention recently is motivated by control applications for
combustion engines. In this setting, task releases are triggered by specific crankshaft
rotation angles, leading to flexible inter-release separation times induced by different
engine speeds. Further, execution times may be variable as well, since at higher en-
gine speeds, certain functionality is being dropped because of a lack of time until the
next task release. The resulting model contains different frames with different inter-
release times and a non-trivial pattern of possible switches between frame types that
can be exploited for analysis purposes. More specifically, a priori knowledge about
the minimal time that one job type has to be repeatedly released until a new type can
be instantiated, can lead to more exact results.

This model has been given different names, like Rate-Adaptive Tasks (Buttazzo
et al. 2014), Variable Rate-Dependent Behaviour (Davis et al. 2014) or Adaptive
Variable-Rate Tasks (Biondi et al. 2014). In a series of works, a few analysis methods
have been developed. A sufficient utilization-based feasibility test (Buttazzo et al.

Graph-Based Models for Real-Time Workload: A Survey 27

2014) was among the first known results. For static priorities, efficient but only suffi-
cient ILP-based tests have been published (Davis et al. 2014) as well as an exact test
(Biondi et al. 2014) which does an exhaustive search of all critical behaviours.

Current results are usually based on the assumption that just one task in the sys-
tem does exhibit variable-rate behavior. Future work includes investigation of task
systems with several such tasks for which angular velocity is correlated. Of course,
this model can be over-approximated with the non-cyclic GMF model (and there-
fore methods for DRT analysis can be applied), but without further adaptation, cor-
responding analysis methods can only provide sufficient tests. The model offers an
interesting research direction by investigating its relation to the DRT model and re-
lated formalisms in its hierarchy. Because of the dense set of existing frame sizes,
there is no obvious one-to-one correspondence that would allow direct applicabil-
ity of the methods surveyed in this article. However one may conjecture that such
a mapping could be created by defining suitable equivalence classes on frame sizes,
allowing definition of an equivalent graph-based model.

5.3 Task Automata

A very expressive workload model called task automata is presented by Fersman et al.
(2002). It is based on Timed Automata that have been studied thoroughly in the con-
text of formal verification of timed systems (Alur and Dill 1994; Bengtsson and Yi
2003). Timed automata are finite automata extended with real-valued clocks to spec-
ify timing constraints as enabling conditions, i.e., guards on transitions. The essential
idea of task automata is to use the timed language of an automaton to describe task
release patterns.

In DRT terms, a task automaton (TA) T is a graph G(T') with vertex labels as in
the DRT model, but labels on edges are more expressive. An edge (u,v) is labeled
with a guard g(u,v) which is a boolean combination of clock comparisons of the
form x 1 C where C is a natural number and <€ {<, <, >,>,=}. Further, an edge
may be labeled with a clock reset r(u,v) which is a set of clocks to be reset to 0
when this edge is taken. Since the value of clocks is an increasing real value which
represents that time passes, guards and resets can be used to constrain timing behavior
on generated job sequences. We give an example of a task automaton in Figure 13.

A task automaton has an initial vertex. In addition to resets and guards, task au-
tomata have a synchronization mechanism. This allows them to synchronize on edges
either with each other or with the scheduler on a job finishing time.

Note that DRT tasks are special cases of task automata where only one clock is
used. Each edge (u,v) in a DRT task with label p(u,v) = C can be expressed with an
edge in a task automaton with guard x > C and reset x := 0.

Fersman et al. (2007) show that the schedulabiliy problem for a large class of
systems modeled as task automata can be solved via a reduction to a model check-
ing problem for ordinary Timed Automata. A tool for schedulability analysis of task
automata is presented by Amnell et al. (2002); Fersman et al. (2006). In fact, the feasi-
bility problem is decidable for systems where at most two of the following conditions
hold:

28 Martin Stigge, Wang Yi

Fig. 13 Example of a task automaton.

Preemption. The scheduling policy is preemptive.

Variable Execution Time. Jobs may execute for a time from an interval of possible
execution times.

Task Feedback. The finishing time of a job may influence new job releases.

However, the feasibility problem is undecidable if all three conditions are true (Fers-
man et al. 2007). Task automata therefore mark a borderline between decidable and
undecidable problems for workload models.

5.4 Fork-Join Real-Time Tasks

An extension of the DRT task model to incorporate fork/join structures has been
proposed recently by Stigge et al. (2013). Instead of following just one path through
the graph, the behavior of a task includes the possibility of forking into different paths
at certain nodes, and joining these paths later. This can be thought of as temporarily
creating parallel threads which execute concurrently until they are synchronized and
ultimately joined again.

Syntactically, the concept is represented using hyperedges. A hypergraph gener-
alizes the notion of a graph by extending the concept of an edge between two vertices
to hyperedges between two sets of vertices. More precisely, a hyperedge (U,V) is
either a sequence edge with U and V being singleton sets of vertices, or a fork edge
with U being a singleton set, or a join edge with V being a singleton set. In all cases,
the edges are labeled with a non-negative integer p(U, V) denoting the minimum job
inter-release separation time. The model is illustrated with an example in Figure 14.
Note that this contains the DRT model as a special case if all hyperedges are sequence
edges. Since every DRT task can be interpreted as a single thread which never syn-
chronizes with other tasks in the system, the FJRT task model is a strict generalization
of the DRT task model.

As an extension of the DRT model, an FJRT task system releases independent
jobs, allowing to define concepts like utilization U(T) and demand-bound function
just as before in Section 4.5. A task executes by following a path through the hyper-
graph, triggering releases of associated jobs each time a vertex is visited. Whenever
a fork edge ({u},{v1,...,vm}) is taken, m independent paths starting in v| to v,,, re-
spectively, will be followed in parallel until joined by a corresponding join edge. In

Graph-Based Models for Real-Time Workload: A Survey 29

Vi

Fig. 14 Example FJRT task. The fork edge is depicted with an intersecting double line, the join
edge with an intersecting single line. All edges are annotated with minimum inter-release de-
lays p(U,V). The vertex labels are omitted in this example. A possible job sequence contain-
ing jobs with their absolute release times and job types (but omitted execution times) is p =
[(07\/1):(5aV2)7(5aV5)a(67\’4)7(77"3)1(8:V5)~,(16-,V6)’(22~,V1)]-

order for a join edge ({ui,...,un},{v}) to be taken, all jobs associated with vertices
uy,...,u, must have been released and enough time must have passed to satisfy the
join edge label. Forking can be nested, i.e., these m paths can lead to further fork
edges before being joined. Note that meaningful models have to satisfy structural re-
strictions, e.g., each fork needs to be joined by a matching join, and control is not
allowed to “jump” between parallel sections.

5.4.1 Feasibility

A complete method for analyzing FJRT task sets is not known at the time of writing.
However, we sketch current approaches (Stigge et al. 2013). The usual demand-bound
function based condition, i.e., checking V¢ > 0 : Y7o, dbf(¢) < t, is applicable.

Demand Tuples. For an FJRT task T without fork and join edges, dbf () can be
evaluated by traversing its graph G(T') using a demand tuples abstraction as in-
troduced in Section 4.5. We can extend this method to the new hyperedges by a
recursive approach. Starting with “innermost” fork/join parts of the hypergraph,
the tuples are merged at the hyperedges and then used as path abstractions as
before. It can be shown that this method is efficient.

Utilization. Recall that just computing dbf(¢) does not suffice for a finite test since
it is also necessary to know which interval sizes ¢ need to be checked. As for
the DRT model, a bound can be derived from the utilization U(7) of a task set
7. However, it turns out that an efficient way of computing U (7) is surprisingly
difficult to find. The difficulty comes from parallel sections in tasks with loops
of different periods which, when joined, exhibit the worst-case behavior in very
long time intervals of not necessarily polynomial length.

6 Conclusions and Outlook

This survey covers a hierarchy of graph-based workload models for hard real-time
systems, together with analysis methods and related results for preemptive unipro-

30 Martin Stigge, Wang Yi

cessor scheduling. We have provided details for all models included in a formally de-
fined model hierarchy (cf. Figure 1) and sketched analysis methods and complexity
results for each model. Generalizations of models have been presented together with
analysis methods which in turn have in most cases been generalizations as well, in-
cluding previous methods as special cases. This is especially true for feasibility anal-
ysis where increased non-determinism made previous methods inapplicable. Apart
from their importance in theoretical studies, we believe that these expressive models
may find their applications in for example model- and component-based design for
timed systems.

As a theoretical result, a classification of task models into tractable and intractable
classes is shown in Figure 15. This provides interesting insights about the precise
position of the borderlines which we will discuss briefly.

(a) Feasibility. (b) SP Schedulability.

Fig. 15 Classification of task models into ’\tractablg/‘ (pseudo-polynomial tests exist) versus | intractable !

(strongly coNP-hard), relative to different decision problems.

For EDF scheduling, the fundamental problem is to determine processor demand
within time intervals. The complexity of computing this demand appears to be closely
related to non-deterministic branching in task graphs. In the basic DRT model, cf. the
hierarchy in Figure 15(a), computing the demand is possible in pseudo-polynomial
time as long as timing constraints are either purely local or can be translated into local
constraints. In this case, graph traversal algorithms can track constraints one by one
when following branches. The extension from k-EDRT to EDRT causes intractability
since many global constraints need to be considered together in all branches.

For SP scheduling, the source of intractability is different. In this case, actual in-
terference patterns need to be considered, in contrast to EDF. Different interference
patterns can be combined in different ways, leading to a combinatorial explosion

Graph-Based Models for Real-Time Workload: A Survey 31

and therefore a high complexity of the schedulability problem. Therefore, all models
allowing different types of frames can be shown to lead to intractability, cf. Fig-
ure 15(b). The non-cyclic GMF model using a complete digraph for each task plays
a special role in the hierarchy. Even though it allows different types of frames, it can
not enforce their order. Therefore, the hardness proofs for multiframe models with
static priority schedulers are not applicable to the non-cyclic GMF model. Moreover,
exact pseudo-polynomial time analysis methods are not known either and left open
for future work.

In preparing this paper, we have intended to cover only works on independent
tasks for preemptive uniprocessors. Surveys on related topics have been published
on the broad area of static-priority scheduling and analysis (Audsley et al. 1995), on
scheduling and analysis of repetitive models for preemptable uniprocessors (Baruah
and Goossens 2004), on real-time scheduling for multiprocessors (Davis and Burns
2011) and on the historic development of real-time systems research in general (Sha
et al. 2004).

The following is a list of areas that we consider important in relation to the pre-
sented models, but did not include them in this paper for keeping the topic focused.

Real-Time Multiprocessor Scheduling. In contrast to uniprocessor systems, schedul-
ing real-time workloads on parallel architectures is a much harder challenge. There
are various scheduling strategies, e.g., global and partition-based scheduling with
mostly sufficient conditions for schedulability tests. A comprehensive survey on this
topic was published by Davis and Burns (2011). In the context of graph-based work-
load models, recent work focuses on the sporadic DAG model (Baruah et al. 2012b).
Each sporadic task does not just release a single job at its activation but a set of jobs
for which precedence constraints are specified with a directed acyclic graph. Results
include speed-up bounds (Bonifaci et al. 2013; Li et al. 2014) and sufficient schedu-
lability tests (Baruah 2014).

Mode Switches. A system may operate in different modes demonstrating different
timing behaviors. In particular, the current mode is often a property of the system
state, not just the task state, i.e., coordination and correlation between tasks may take
place. The notion is rather general and several different concrete mode switching
models are conceivable in the context of graph-based workload models like the DRT
model.

— On the level of job releases, modes between tasks may be coordinated by provid-
ing synchronization possibilities on edges between job types. That is, tasks need
to “take” edges together, synchronously, thereby modeling a global synchroniza-
tion. Analysis methods need to be adapted in order to reflect the restricted set of
behaviors. Note that many methods that are not mode-aware are still sound, but
possibly over-approximate.

— On the level of job execution, modes may switch at a time instant where jobs
are executing and demand that job parameters change immediately. One may
consider a simple model using a directed mode-change graph where the nodes
stand for modes, assigned with a set of tasks to be executed in the correspond-
ing mode, and edges for mode switches that may be triggered by an internal or

32 Martin Stigge, Wang Yi

external event and guarded by a timing constraint such as a minimal separation
distance. A prominent example of this kind of mode switches is the theory of
mixed-criticality scheduling which has been studied intensively in recent years
(Baruah et al. 2012a, 2011; Ekberg and Yi 2012). In recent work (Ekberg and
Yi 2014; Ekberg et al. 2013), it has been shown that a mixed criticality task sys-
tem can be modeled nicely using a chain of modes representing the criticality
levels where mode switches are triggered by a task over-run that may occur at
any time. The authors present a technique for scheduling the mixed criticality
workload described in directed acyclic graphs. An interesting direction for future
work is scheduling of mode switches in general directed graphs, which involves
fixed-point computation due to cyclic structures.

An open area for research is the connection of mode switches with multiprocessor
scheduling with seminal work by Li and Baruah (2012).

Tools for schedulability analysis. Over the years, many models and analysis tech-
niques have been developed. It is desirable to have a software framework that as in-
put takes a workload description in some of the models and a scheduling policy and
determines the model’s schedulability. A tool for task automata has been developed
using techniques for model checking timed automata (Amnell et al. 2002). Due to
the analysis complexity of timed automata, it suffers from the state-explosion prob-
lem. For the tractable models including DRT in the hierarchy of Figure 1, a tool for
schedulability analysis is currently under development in Uppsala based on the path
abstraction techniques of Stigge et al. (2011b); Stigge and Yi (2013).

Acknowledgements

The authors would like to thank the anonymous reviewers of the Real-Time Systems
journal for their constructive comments on an earlier manuscript of this article.

References

Alur, R. and Dill, D. L. (1994). A Theory of Timed Automata. Theoretical Computer Science, 126:183—
235.

Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., and Yi, W. (2002). TIMES - A Tool for Modelling
and Implementation of Embedded Systems. In Proc. of TACAS 2002, pages 460—-464. Springer-Verlag.

Anand, M., Easwaran, A., Fischmeister, S., and Lee, I. (2008). Compositional feasibility analysis of
conditional real-time task models. In Proc. of ISORC 2008, pages 391-398.

Audsley, N. C., Burns, A., Davis, R. L., Tindell, K. W., and Wellings, A. J. (1995). Fixed priority pre-
emptive scheduling: An historical perspective. Real-Time Systems, 8(2):173—198.

Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J. (1991). Hard Real-Time Scheduling:
The Deadline-Monotonic Approach. In Proc. of RTOSS 1991, pages 133-137.

Baker, T. P. (1991). Stack-based scheduling for realtime processes. Real-Time Syst., 3(1):67-99.

Baruah, S. and Goossens, J. (2004). Scheduling real-time tasks: Algorithms and complexity. Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, 3.

Baruah, S. K., , Mok, A. K., and Rosier, L. E. (1990). Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proc. of RTSS, pages 182—190.

Baruah, S. K. (1998a). A general model for recurring real-time tasks. In Proc. of RTSS, pages 114-122.

Graph-Based Models for Real-Time Workload: A Survey 33

Baruah, S. K. (1998b). Feasibility Analysis of Recurring Branching Tasks. In Proc. of EWRTS, pages
138-145.

Baruah, S. K. (2003). Dynamic- and Static-priority Scheduling of Recurring Real-time Tasks. Real-Time
Systems, 24(1):93-128.

Baruah, S. K. (2010a). Preemptive Uniprocessor Scheduling of Non-cyclic GMF Task Systems. In Proc.
of RTCSA 2010, pages 195-202.

Baruah, S. K. (2010b). The Non-cyclic Recurring Real-Time Task Model. In Proc. of RTSS, pages 173—
182.

Baruah, S. K. (2014). Improved multiprocessor global schedulability analysis of sporadic DAG task sys-
tems. In Proc. of ECRTS, pages 97-105.
Baruah, S. K., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., and Stougie, L.
(2012a). Scheduling real-time mixed-criticality jobs. IEEE Trans. Computers, 61(8):1140-1152.
Baruah, S. K., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., and Wiese, A. (2012b). A Generalized
Parallel Task Model for Recurrent Real-time Processes. In Proc. of RTSS, pages 63—72.

Baruah, S. K., Burns, A., and Davis, R. I. (2011). Response-time analysis for mixed criticality systems. In
Proc. of RTSS, pages 34-43.

Baruah, S. K., Chen, D., Gorinsky, S., and Mok, A. (1999a). Generalized multiframe tasks. Real-Time
Syst., 17(1):5-22.

Baruah, S. K., Chen, D., and Mok, A. K. (1999b). Static-priority scheduling of multiframe tasks. In Proc.
of ECRTS, pages 38-45.

Bengtsson, J. and Yi, W. (2003). Timed automata: Semantics, algorithms and tools. In Lectures on Con-
currency and Petri Nets, pages 87—124.

Berten, V. and Goossens, J. (2011). Sufficient FTP Schedulability Test for the Non-Cyclic Generalized
Multiframe Task Model. CoRR, abs/1110.5793.

Biondi, A., Melani, A., Marinoni, M., Natale, M. D., and Buttazz, G. (2014). Exact Interference of Adap-
tive Variable-Rate Tasks under Fixed-Priority Scheduling. In Proc. of ECRTS, pages 165-174.

Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., and Wiese, A. (2013). Feasibility Analysis in the
Sporadic DAG Task Model. In Proc. of ECRTS, pages 225-233.

Boudec, J. and Thiran, P. (2001). Network Calculus: A Theory of Deterministic Queuing Systems for the
Internet. Lecture Notes in Computer Science. Springer.

Buttazzo, G. (2011). Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Appli-
cations. Realtime Systems. Springer.

Buttazzo, G. C., Bini, E., and Buttle, D. (2014). Rate-Adaptive Tasks: Model, Analysis, and Design Issues.
In Proc. of DATE, pages 1-6.

Chakraborty, S., Erlebach, T., and Thiele, L. (2001). On the complexity of scheduling conditional real-time
code. In Proc. of WADS 2001, pages 38—49.

Davis, R. I. and Burns, A. (2011). A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput. Surv., 43(4):35:1-35:44.

Davis, R. 1., Feld, T., Pollex, V., and Slomka, F. (2014). Schedulability Tests for Tasks with Variable
Rate-Dependent Behaviour under Fixed Priority Scheduling. In Proc. of RTAS, pages 51-62.

Eisenbrand, F. and RothvoB, T. (2008). Static-priority Real-time Scheduling: Response Time Computation
is NP-hard. In Proc. of RTSS, pages 397-406.

Eisenbrand, F. and RothvoB, T. (2010). EDF-schedulability of synchronous periodic task systems is coNP-
hard. In Proc. of SODA 2010, pages 1029-1034.

Ekberg, P., Guan, N, Stigge, M., and Yi, W. (2014). An Optimal Resource Sharing Protocol for General-
ized Multiframe Tasks. In Journal of Logical and Algebraic Methods in Programming.

Ekberg, P., Stigge, M., Guan, N., and Yi, W. (2013). State-based mode switching with applications to
mixed-criticality systems. In Proc. of WMC 2013, pages 61-66.

Ekberg, P. and Yi, W. (2012). Outstanding paper award: Bounding and shaping the demand of mixed-
criticality sporadic tasks. In Proc. of ECRTS, pages 135-144.

Ekberg, P. and Yi, W. (2014). Bounding and shaping the demand of generalized mixed-criticality sporadic
task systems. Real-Time Systems, 50(1):48-86.

Ekberg, P. and Yi, W. (2015). Uniprocessor feasibility of sporadic tasks with constrained deadlines is
strongly conp-complete. In Proc. of ECRTS. to appear.

Fersman, E., Krcal, P., Pettersson, P., and Yi, W. (2007). Task automata: Schedulability, decidability and
undecidability. Inf. Comput., 205(8):1149-1172.

Fersman, E., Mokrushin, L., Pettersson, P., and Yi, W. (2006). Schedulability analysis of fixed-priority
systems using timed automata. Theor. Comput. Sci., 354(2):301-317.

34 Martin Stigge, Wang Yi

Fersman, E., Pettersson, P., and Yi, W. (2002). Timed Automata with Asynchronous Processes: Schedula-
bility and Decidability. In Proc. of TACAS 2002, pages 67-82. Springer-Verlag.

Guan, N., Ekberg, P., Stigge, M., and Yi, W. (2011). Resource Sharing Protocols for Real-Time Task
Graph Systems. In Proc. of ECRTS, pages 272-281.

Han, C.-C. J. (1998). A Better Polynomial-Time Schedulability Test for Real-Time Multiframe Tasks. In
Proc. of RTSS, pages 104—113, Washington, DC, USA. IEEE Computer Society.

Joseph, M. and Pandya, P. K. (1986). Finding Response Times in a Real-Time System. The Computer
Journal, 29:390-395.

Kuo, T., Chang, L., Liu, Y., and Lin, K. (2003). Efficient online schedulability tests for real-time systems.
IEEE Transactions On Software Engineering, 29:734-751.

Lehoczky, J. P., Sha, L., and Strosnider, J. K. (1987). Enhanced Aperiodic Responsiveness in Hard Real-
Time Environments. In Proc. of RTSS, pages 261-270.

Leung, J. Y.-T. and Merrill, M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information Processing Letters, 11(3):115 — 118.

Leung, J. Y.-T. and Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation, 2(4):237 — 250.

Li, H. and Baruah, S. K. (2012). Outstanding paper award: Global mixed-criticality scheduling on multi-
processors. In ECRTS, pages 166—175.

Li,J., Chen, J.-J., Agrawal, K., Lu, C., Gill, C., and Saifullah, A. (2014). Analysis of Federated and Global
Scheduling for Parallel Real-Time Tasks. In Proc. of ECRTS, pages 85-96.

Liu, C. L. and Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. J. ACM, 20(1):46-61.

Lu, W.-C,, Lin, K.-J., Wei, H.-W., and Shih, W.-K. (2007). New Schedulability Conditions for Real-Time
Multiframe Tasks. In Proc. of ECRTS, pages 39-50.

Mok, A. K. (1983). Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Envi-
ronment. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Mok, A. K. and Chen, D. (1996). A General Model for Real-Time Tasks. Technical report.

Mok, A. K. and Chen, D. (1997). A Multiframe Model for Real-Time Tasks. IEEE Trans. Softw. Eng.,
23(10):635-645.

Moyo, N. T., Nicollet, E., Lafaye, F., and Moy, C. (2010). On Schedulability Analysis of Non-cyclic
Generalized Multiframe Tasks. In ECRTS, pages 271-278.

Sha, L., Abdelzaher, T., Arzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M.,
Lehoczky, J., and Mok, A. K. (2004). Real time scheduling theory: A historical perspective. Real-Time
Syst., 28(2-3):101-155.

Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance protocols: an approach to real-time
synchronization. Computers, IEEE Transactions on, 39(9):1175 —1185.

Stigge, M. (2014). Real-Time Workload Models: Expressiveness vs. Analysis Efficiency. PhD thesis,
Uppsala University, Sweden.

Stigge, M., Ekberg, P., Guan, N., and Yi, W. (2011a). On the Tractability of Digraph-Based Task Models.
In Proc. of ECRTS, pages 162-171.

Stigge, M., Ekberg, P, Guan, N., and Yi, W. (2011b). The Digraph Real-Time Task Model. In Proc. of
RTAS 2011, pages 71-80.

Stigge, M., Ekberg, P., and Yi, W. (2013). The Fork-Join Real-Time Task Model. Proc. of ACM SIGBED
Review, 10(2).

Stigge, M. and Yi, W. (2012). Hardness Results for Static Priority Real-Time Scheduling. In Proc. of
ECRTS, pages 189-198.

Stigge, M. and Yi, W. (2013). Combinatorial Abstraction Refinement for Feasibility Analysis. In Proc. of
RTSS, pages 340-349.

Stigge, M. and Yi, W. (2014). Refinement-Based Exact Response-Time Analysis. In Proc. of ECRTS,
pages 143-152.

Takada, H. and Sakamura, K. (1997). Schedulability of Generalized Multiframe Task Sets under Static
Priority Assignment. In Proc. of RTCSA 1997, pages 80-86.

Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-time calculus for scheduling hard real-time
systems. In ISCAS 2000, volume 4.

Zeng, H. and Di Natale, M. (2014). Computing periodic request functions to speed-up the analysis of
non-cyclic task models. Real-Time Systems, pages 1-35.

Zhuo, Y. (2014). Static priority schedulability analysis of graph-based real-time task models with resource
sharing. Term paper, Uppsala University, Sweden.

Graph-Based Models for Real-Time Workload: A Survey 35

Zuhily, A. and Burns, A. (2009). Exact Scheduling Analysis of Non-Accumulatively Monotonic Multi-
frame Tasks. Real-Time Systems Journal, 43:119-146.

36

Martin Stigge, Wang Yi

Authors

Martin Stigge received a Ph.D. degree in 2014 from Uppsala University
for his work in the area of formal analysis of timed systems with special
focus on scheduling theory. In the group of Prof. Wang Yi, he extended
the theory of expressive workload models with new models, complexity
results and analysis algorithms.

Wang Yi received his Ph.D. in Computer Science in 1991 from
Chalmers University of Technology. Currently he is a professor at Up-
psala University where he holds the chair of Embedded Systems. He is
one of the initial contributors to the research area on verification of timed
systems. He is a co-founder of UPPAAL, a model checker for concur-
rent and real-time systems. He received the CAV Award 2013, for the
development of UPPAAL. His current interests include models, algo-
rithms and software tools for modeling and verification, timing analysis,
real-time scheduling, and their application to the design of embedded
systems. With Pontus Ekberg, Nan Guan and Martin Stigge, he received
the Outstanding paper award of ECRTS 2012 and Best Paper Awards
of RTSS 2009 and DATE 2013. Wang has been an editor for several
journals including IEEE Transactions on Computers and served regu-
larly as TPC chair and TPC member for numerous conferences including
TACAS, EMSOFT and RTSS. Currently he is steering committee mem-
ber of EMSOFT, LCTES and ESWEEK. He is a fellow of the IEEE.

