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Combinatorial Abstraction Refinement for Feasibility
Analysis of Static Priorities

Martin Stigge · Wang Yi

Abstract Combinatorial explosion is a challenge for many analysis problems in the
theory of hard real-time systems. One of these problems is static priority schedula-
bility of workload models which are more expressive than the traditional periodic
task model. Different classes of directed graphs have been proposed in recent years
to model structures like frames, branching and loops. In contrast to dynamic priority
schedulers with pseudo-polynomial time analysis methods, static priority schedula-
bility has been shown to be intractable since it is strongly coNP-hard already for the
relatively simple class of cyclic digraphs. The core of this problem is the necessity to
combine different behaviors of the participating tasks.

We introduce a novel iterative approach to efficiently cope with this combinato-
rial explosion, called combinatorial abstraction refinement. In combination with other
techniques it significantly reduces exponential growth of run-time for most inputs.
We apply the method to static task priorities and demonstrate that a prototype imple-
mentation outperforms the state-of-the art pseudo-polynomial analysis for dynamic
priority feasibility. It further shows better scaling behavior for randomly generated
problem instances. We extend the approach to non-preemptive schedulers as well as
static job-type priorities where jobs of different types in the same task may be as-
signed different static priorities. Finally, we provide a general, abstract formulation
of the algorithm, since we believe that this method can be applicable to a variety of
combinatorial problems in the theory of real-time systems with certain abstraction
structures.
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1 Introduction

One of the core objectives in the theory of hard real-time systems is to analyse
whether a given system workload will meet all its timing requirements at run-time for
all conceivable situations. The classical periodic task model by Liu and Layland (Liu
and Layland 1973) describes system workload as a collection of independent tasks.
Each task is activated periodically and the run-time of each activation is bounded by
a value derived from a worst-case execution time analysis.

The model’s assumption that each task is behaving periodically is often too sim-
ple. More expressive models have been proposed in recent years (Mok and Chen
1997; Baruah et al. 1999; Baruah 1998, 2010) in order to increase modeling power.
One of the most expressive models is the Digraph Real-Time task model (DRT)
(Stigge et al. 2011b; Stigge 2014) which models each task using a directed graph.
Timing constraints are represented as deadlines until which task activations need to
finish their executions. However, increased expressiveness of the workload model
leads to an increase in complexity of the associated schedulability analysis, which
aims at statically proving the absence of deadline misses, assuming a given sched-
uler.

The analysis complexity is further dependent on the type of scheduler. The two
common scheduler classes, dynamic and static priority schedulers, differ in how
they pick which task to execute in cases where more than one of them is waiting
for execution. For dynamic priority schedulers, the feasibility problem for the DRT
model has been shown to be tractable for uniprocessor platforms (Stigge et al. 2011b).
The method is based on evaluating demand-bound functions and leads to a pseudo-
polynomial test. However, the problem has been shown to be strongly coNP-hard for
static priority schedulers (Stigge and Yi 2012), implying that a pseudo-polynomial
test cannot exist (assuming P 6= NP). Thus, the worst-case run-time of a schedulabil-
ity test can be expected to be exponential in the task parameters.

One of the fundamental reasons for this hardness is that tasks do not have local
worst cases which can be combined to a global worst case. As a consequence, expo-
nentially many combinations of scenarios from all tasks need to be considered. Such
combinatorial explosions are major sources of intractability for many problems in
the theory of real-time systems and beyond. They introduce exponential algorithm
run-times leading to poor scaling behaviour.

In this article, we show that by carefully considering the properties of tasks and
their interactions, a static task priority schedulability test can be developed which
runs efficiently for typical problem instances. The key insights are abstractions which
allow to potentially prune large parts of the search space and efficiently guide the
search for a deadline miss. In particular, we provide the following contributions:

– We present methods to significantly reduce the exponential number of relevant
objects to be tested by introducing dominance relations on two domains relevant
for the analysis (critical vertices and critical request functions).

– We introduce an iterative technique called combinatorial abstraction refinement
in order to deal with a combinatorial explosion in the feasibility test for static
priorities. We also provide a general, abstract formulation that can easily be in-
stantiated for solving other combinatorial problems.
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– We show the method’s flexibility by extending it to two related settings. First,
we investigate an extension from static task priorities to static job-type priori-
ties by applying a busy-window extension technique. Second, we consider non-
preemptive schedulers, enabling applicability of the result to domains beyond
processor scheduling, e.g., networking.

Despite its exponential worst-case complexity, a prototype implementation of our
method outperforms the state-of-the-art algorithm for dynamic priority feasibility
which is pseudo-polynomial. Task sets with 50 tasks and more can be analyzed within
a few seconds. This demonstrates competitiveness of our approach using domain
knowledge for sophisticated optimizations.

We believe that our abstraction refinement technique may be applicable beyond
the concrete problem we are solving in this article. Many problems in the theory of
real-time systems are combinatorial in nature and our approach can be used as soon
as certain lattice structures for hierarchical abstractions are defined.

1.1 Prior Work

The periodic task model (Liu and Layland 1973) represents each task with two inte-
gers for period and worst-case execution time (WCET). Deadlines are implicit, i.e.,
equal to periods. Efficient analysis procedures are known for dynamic priorities via
the utilization bound (Liu and Layland 1973) and for static priorities via response-
time analysis (Joseph and Pandya 1986). Task priorities can be assigned using the
optimal Rate Monotonic scheme. More expressive models include the Multiframe
(MF) (Mok and Chen 1997) and Generalized Multiframe (GMF) (Baruah et al. 1999)
task models. Each task in these models cycles through a list of different frames with
different execution times (for both MF and GMF) and different inter-release separa-
tion times and deadlines (only GMF). Feasibility tests for these models are based on
demand-bound functions (Baruah et al. 1999). Static priority schedulability tests gen-
eralize response time analysis (Zuhily and Burns 2009; Takada and Sakamura 1997)
or utilization bounds (Mok and Chen 1997; Han 1998; wei Kuo et al. 2003; Lu et al.
2007). These tests however are either imprecise, i.e., over-approximate, or very slow
because of exponential explosion in complexity. For priority assignment, there is an
optimal strategy called Audsley’s Algorithm (Audsley 1991).

The most general model to date with a tractable feasibility problem is the Di-
graph Real-Time task model (DRT) (Stigge et al. 2011b; Stigge 2014). Each task is
modeled with a directed graph in which vertices represent job releases and edges rep-
resent branches and inter-release delays. Feasibility for dynamic priority schedulers
has been shown to be tractable (Stigge et al. 2011b), even for an extension with a
bounded number of global timing constraints (Stigge et al. 2011a). However, similar
results have been shown to be unlikely for static priorities since the problem becomes
strongly coNP-hard in this case (Stigge and Yi 2012).

Periodic task models with non-preemptive schedulers have been analyzed in the
application domain of CAN busses (Tindell and Burns 1994; Davis et al. 2007) with
comprehensive general treatment by George et al. (1996). Extensions of the busy
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window (Lehoczky 1990) have been investigated in the context of scheduling with
varying job priorities by Harbour et al. (1991).

The introduction of task automata (Fersman et al. 2007) is taking a model check-
ing approach. This model is based on timed automata, extended with real-time tasks.
Expressiveness is so high that the associated schedulability problem is even unde-
cidable in a few variants of the model. The decidable cases, including models for
dynamic and static priority schedulers, suffer from the same scalability problem that
is common to all model checking approaches.

An approximative solution is the real-time calculus (RTC) (Thiele et al. 2000)
which uses arrival and service curves (not unlike the request functions we use) in
order to describe task activations and availability of computing resources. There is a
large body of research around RTC but it is inherently over-approximate.

Our abstraction refinement approach has been inspired by abstraction and refine-
ment techniques used in verification, like counterexample guided abstraction refine-
ment (Clarke et al. 2000) or abstract interpretation (Cousot and Cousot 1977; Gula-
vani et al. 2008).

2 Preliminaries

This section presents the task model with its syntax and semantics, followed by the
problem description.

2.1 Task Model

We use the digraph real-time (DRT) task model (Stigge et al. 2011b) to describe the
workload of a system. A DRT task set τ = {T1, . . . ,TN} consists of N independent
tasks. A task T is represented by a directed graph G(T ) with both vertex and edge
labels. The vertices V (T ) = {v1, . . . ,vn} of G(T ) represent the types of all the jobs
that T can release. Each vertex v is labeled with an ordered pair 〈e(v),d(v)〉 denoting
worst-case execution-time demand e(v) and relative deadline d(v) of the correspond-
ing job. Both values are assumed to be non-negative integers. The edges of G(T )
represent the order in which jobs generated by T are released. Each edge (u,v) is
labeled with a non-negative integer p(u,v) denoting the minimum job inter-release
separation time. In this work, we assume deadlines to be constrained by inter-release
separation times, i.e., for each vertex u, its deadline label d(u) is bounded by the
minimal p(u,v) for all outgoing edges (u,v).

Example 1 Figure 1 shows an example of a DRT task.

Semantics. An execution of task T corresponds to a potentially infinite path in G(T ).
Each visit to a vertex along that path triggers the release of a job with parameters
specified by the vertex label. The job releases are constrained by inter-release sep-
aration times specified by the edge labels. Formally, we use a 3-tuple (r,e,d) to
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v2
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v3
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Fig. 1 An example task containing five different types of jobs

denote a job that is released at (absolute) time r, with execution time e and dead-
line at (absolute) time d. We assume dense time, i.e., r,e,d ∈ R>0. A job sequence
ρ = [(r1,e1,d1),(r2,e2,d2), . . .] is generated by T , if and only if there is a (potentially
infinite) path π = (π1,π2, . . .) in G(T ) satisfying for all i:

1. ei 6 e(πi),
2. di = ri +d(πi),
3. ri+1− ri > p(πi,πi+1).

For a task set τ , a job sequence ρ is generated by τ , if it is a composition of sequences
{ρT}T∈τ

, which are individually generated by the tasks T of τ .

Example 2 For the example task T in Figure 1, consider the job sequence ρ =
[(6,6,16),(19,3.3,44),(51,1,61)]. It corresponds to path π = (v1,v2,v3) in G(T )
and is thus generated by T .

Note that this example demonstrates the “sporadic” behavior allowed by the se-
mantics of our model. While the second job in ρ (associated with v2) is released as
early as possible after the first job (v1), the same is not true for the third job (v3).

2.2 Schedulability and Feasibility

We assume preemptive scheduling on uniprocessor systems (except in Section 7
where we assume a non-preemptive scheduler) and use the standard notion of schedu-
lability:

Definition 1 (Schedulability) A task set τ is schedulable with scheduler Sch, if and
only if for all job sequences generated by τ , all jobs meet their deadlines when sched-
uled with Sch. Otherwise, τ is unschedulable with Sch.

While the notion of schedulability fixes a particular scheduler, feasibility is a
related problem about the existence of such a scheduler:

Definition 2 (Feasibility) A task set τ is feasible, if and only if there is a scheduler
Sch such that τ is schedulable with Sch.
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We distinguish between dynamic and static priority schedulers, i.e., whether the
scheduler has to obey a given order of relative priorities on the task set. In general,
dynamic priority schedulers have more freedom in their scheduling decisions than
static priority schedulers and can therefore successfully schedule more task sets.

For dynamic priority schedulers, it is well-known that in our setting of indepen-
dent jobs, the earliest deadline first (EDF) scheduler is optimal (Dertouzos 1974).
This means that if a task set can be scheduled with any scheduler, it can also be
scheduled by EDF. It has been shown that for EDF, schedulability of DRT task sets
can be checked in pseudo-polynomial time (Stigge et al. 2011b) for systems with
bounded utilization. This is even the case for an extension of DRT with global tim-
ing constraints (Stigge et al. 2011a). Thus, feasibility is considered to be a tractable
problem.

Our focus in this work is on static priority scheduling. We distinguish between
static task priorities (SP) and static job-type priorities (SJP).

SP: A priority order Pr : τ → N assigns a priority to each task (with lower numbers
for higher priorities). We assume priorities to be unique, i.e., Pr is a bijection onto
{1, . . . ,‖τ‖}.

SJP: Let V (τ) :=
⋃

T∈τ V (T ) denote the set of all vertices in all graphs. A priority
order Pr : V (τ)→ N assigns a unique priority to each job type.

We say that a task set τ is SP schedulable with Pr or SJP schedulable with Pr if a static
task priority or static job priority scheduler using priority order Pr can successfully
schedule τ , respectively. We further say that τ is SP feasible or SJP feasible if there
is a Pr such that τ is SP schedulable or SJP schedulable with Pr, respectively. As
we will see in Section 3, schedulability and feasibility problems are equivalent up
to a linear factor. Previous work has proved that SP schedulability is strongly coNP-
hard already for sub-classes of DRT with cyclic graphs (Stigge and Yi 2012). This
means that no exact pseudo-polynomial algorithm can test SP schedulability or SP
feasibility for a given task set. However, since both problems are highly relevant, we
present in Sections 3 to 5 an efficient algorithm that solves typical instances in time
comparable to state-of-the-art solutions for EDF schedulability.

3 Method Overview

In this section, we give an overview of our algorithm for checking SP schedulabil-
ity and SP feasibility under preemptive schedulers. The method is extended to SJP
schedulers in Section 6 and non-preemptive scheduling in Section 7.

3.1 Lowest-Priority Feasibility

Our decision procedures are based on checking whether a task in a task set may be
assigned the lowest priority.

Definition 3 For a task set τ = {T1, . . . ,TN}, a task T ∈ τ is lowest-priority feasible
in τ if there is a priority order Pr with Pr(T ) = N such that T does not miss any
deadlines if τ is SP scheduled with Pr.
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Note that this definition does not state anything about deadline misses of any other
tasks in τ . Further, if T ∈ τ is lowest-priority feasible in τ , then this property is
independent of the relative priorities of all other tasks in τ . We summarize this insight
in the following Lemma.

Lemma 1 For a task set τ = {T1, . . . ,TN}, if a task T ∈ τ is lowest-priority feasible
shown by a priority order Pr, then it will always meet its deadline if SP scheduled
with any permutation of Pr.

Proof The amount of interference that a task T experiences from tasks of higher
priorities does not change when their relative priorities change. In fact, even the actual
interference patterns do not change, i.e., the exact timing of the interference. Thus,
all permutations of priorities of tasks with higher priority than T lead to the same
schedulability behavior of T . ut

As we will see now, SP schedulability and SP feasibility can both be reduced to
checking lowest-priority feasibility of individual tasks.

3.2 SP Schedulability

Given a task set τ = {T1, . . . ,TN} with a priority order Pr, SP schedulability of τ with
Pr can be decided as follows. For each task T ∈ τ , check whether T is lowest-priority
feasible in the set of all tasks with priority up to Pr(T ). Note that this condition is
both sufficient and necessary, since adding tasks of lower priority to a task set does
neither introduce nor remove deadline misses of higher priority tasks.

Lemma 2 A task set τ = {T1, . . . ,TN} is SP schedulable with a priority order Pr if
and only if each T ∈ τ is lowest-priority feasible in task set τ6T defined as:

τ6T :=
{

T ′ | Pr(T ′)6 Pr(T )
}
.

Proof By above discussion. ut

3.3 SP Feasibility: Audsley’s Algorithm

Checking SP feasibility of a task set τ is possible using a similar method which is
usually called Audsley’s Algorithm (Audsley 1991). First, check all T ∈ τ for lowest-
priority feasibility in τ . If this check is successful for any T , recursively apply the
algorithm to τ \{T}. However, if during this recursive procedure for some subset τ ′⊆
τ no such T is found, τ is not SP feasible. This method has the additional advantage
of synthesizing a priority order if the task set is found to be SP feasible, by taking the
reverse order in which the tasks were found to be lowest-priority feasible.

Lemma 3 A task set τ = {T1, . . . ,TN} is SP feasible if and only if either it is empty
or there is a T ∈ τ which is lowest-priority feasible in τ and τ \{T} is SP feasible.
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Proof It is clear that if this test succeeds, τ is indeed SP feasible since the synthesized
priority order automatically satisfies the condition in Lemma 2 from above.

Conversely, let the test fail for some subset τ ′ ⊆ τ but assume there is a priority
order Pr for which τ is SP schedulable. Of all tasks in τ ′, some task T ∈ τ ′ is assigned
lowest priority by Pr. Since τ is assumed to be SP schedulable with Pr, this task T
will always meet all deadlines even with interference of all tasks of higher priority in
τ . However, τ ′ is just a subset of τ , therefore the interference experienced by T from
all other tasks in τ ′ can not be larger (Lemma 1). Thus, T must be lowest-priority
feasible in τ ′, contradicting the assumption that the test failed for τ ′. ut

This lemma provides a recursive instance of Audsley’s optimal priority assignment
scheme. Our setting satisfies the three conditions that are sufficient for it to ap-
ply (Davis and Burns 2011). Note that this means that in the process of synthesizing
a priority order starting with the lowest priority, one can never “pick wrong” among
all tasks that are lowest-priority feasible.

3.4 Critical Vertices

As we will see now, it is sufficient to test all vertices of a task separately in order
to conclude that the task is lowest-priority feasible. The fundamental assumption for
this to hold is that deadlines are constrained, which implies that jobs of the same task
do not cause interference to each other1.

More specifically, given a vertex v with WCET e(v) and relative deadline d(v),
it is sufficient to check whether the tasks of higher priority τhigh can execute for an
accumulated time of strictly more than d(v)− e(v) time units in any time interval of
size d(v). In case that is possible, the task containing v can not be lowest-priority
feasible since the corresponding job may miss its deadline. However, if that is not
the case, we say that v is schedulable with interference set τhigh or just schedulable
if τhigh is clear from the context. Our algorithm for testing schedulability of a single
vertex is described in Section 4.

Lemma 4 Given a task set τ , a task T ∈ τ is lowest-priority feasible if and only if all
vertices v ∈ G(T ) are schedulable with interference set τ \{T}.

Proof By above discussion. ut

In fact, not all vertices need to be checked. Consider two vertices v1 and v2 of a
task with

〈e(v1),d(v1)〉= 〈3,10〉 and 〈e(v2),d(v2)〉= 〈2,20〉 .

Assume that v1 is schedulable with some interference set τ . This immediately implies
that v2 is schedulable as well, since the execution demand of jobs corresponding to
v2 is lower and only needs to meet a deadline that is larger. We say that v1 dominates
v2 and call a set of vertices in a task which are not dominated by others critical

1 Another important condition for this is that all jobs released by the same task do have the same priority.
We extend the method to SJP in Section 6, i.e., where different vertices could be assigned different static
priorities.
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vertices. Clearly, only critical vertices need to be checked for schedulability, which
also implies schedulability of all other vertices and thus lowest-priority feasibility of
the whole task.

This observation is important for run-time complexity of our analysis method.
For a set of n vertices with a uniform random distribution of WCET and deadlines,
the expected number of critical vertices is O(

√
n), dramatically reducing the run-time

of a loop that tests all vertices individually for schedulability. Further, as we will see
in Section 4, testing a vertex v for schedulability is in the worst case exponential in
d(v). Therefore, an optimization that tends to remove vertices v with large d(v) has
the additional benefit of avoiding the most expensive individual tests.

The concept of a domination relation between two vertices can be extended to
vertices of different tasks with different priorities. Take the two vertices v1 and v2
from above and now assume that v2 is part of a task with higher priority than the
one containing v1. If v1 turns out to be schedulable, then v2 is as well, since the set
of tasks interfering with the jobs corresponding to v2 is smaller, thus causing less
interference. We summarize this concept as follows.

Definition 4 For a task set τ with priority order Pr and tasks T,T ′ ∈ τ , we say that
v ∈ G(T ) dominates v′ ∈ G(T ′), written v < v′, if and only if:

1. e(v)> e(v′),
2. d(v)6 d(v′) and
3. Pr(T )> Pr(T ′).

If T = T ′, then we call this an intra-task dominance, otherwise an inter-task domi-
nance. A maximal set of vertices v containing no other v′ with v′ < v is called a set
of critical vertices.

For checking SP schedulability the application of this is straightforward. Test a set of
critical vertices for schedulability, directly leading to SP schedulability of the whole
task set. For checking SP feasibility, the priority order is not known a priori. Thus,
initially only intra-task dominance can be considered. However, each time a task T is
found to be lowest-priority feasible, all inter-task dominated vertices in the remaining
tasks are clearly non-critical and do not need to be tested anymore.

4 Single-Job Interference Testing

We now focus on checking whether a single job may experience sufficient interfer-
ence from tasks of higher priority such that it misses its deadline. For the rest of this
section, we assume that we want to check schedulability of a vertex v with label 〈e,d〉,
i.e., with WCET e and deadline d. We want to check whether a given task set τ of
higher priority tasks may cause more than d−e time units of interference in any time
window of d time units. Note that the relative priorities of all tasks in the interference
set τ do not matter in this case.

A naive approach for this test could be as follows. For each task T ∈ τ , pick a
path π(T ). Given the set of paths

{
π(T )

}
T∈τ

, the synchronous arrival sequence can
be simulated, i.e., a job sequence where all jobs take their maximal execution time,
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the first job from each path π(T ) is released at time 0 and all following jobs as soon
as allowed by the edge labels. See Figure 2 for an example. Vertex v is schedulable
if and only if for an exhaustive enumeration and combination of all such paths, each
simulation turned out to detect at least e idle time units within the first d time units.

T

v1 v2

t

T ′
t

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Scheduling window

Fig. 2 Example of simulating a synchronous arrival sequence in a time interval of size 35. The interference
set is τ = {T,T ′} with T from Figure 1 and T ′ a periodic task with (e,d, p) = (2,8,8). From task T , we
simulate path (v1,v2,v3). In this concrete scenario, 14 idle time units are detected.

Such an approach is of course prohibitively slow since there are two sources of
exponential explosion: the number of paths in each task, and the number of path
combinations to be simulated. In the rest of this section, we present ways of reducing
the relevant number of paths. Section 5 introduces a method for reducing the number
of combination tests.

4.1 Request Functions

In order to deal with the exponential number of paths in each task, we introduce a
path abstraction that is sufficient for testing interference but allows to substantially
reduce the number of paths that have to be considered. We abstract a path π with a
request function which for each t returns the accumulated execution requirement of
all jobs that π may release during the first t time units.

Definition 5 For a path π = (v0, . . . ,vl) through the graph G(T ) of a task T , we
define its request function as

rf π(t) := max
{

e(π ′) | π ′ is prefix of π and p(π ′)< t
}

where e(π) := ∑
l
i=0 e(vi) and p(π) := ∑

l−1
i=0 p(vi,vi+1).

In particular, rf π(0) = 0 and rf π(1) = e(v0), assuming that all edge labels are strictly
positive. Note further that two paths sharing a prefix π have request functions that are
identical up to the duration p(π) of that prefix. We give an example in Figure 3.

Using this path abstraction, we can give a precise characterization of schedula-
bility of a vertex v. The following theorem considers all combinations of all request
functions corresponding to paths in all tasks of higher priority. Intuitively, the jobs
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rf (t)

t
0 5 10 15 20 25 30 35 40 45 50

0

3

6

9

12

15
rf π

rf π ′

rf π ′′

Fig. 3 Example of request functions on [0,50]. Paths are taken from G(T ) in Figure 1 with π = (v1,v2,v3),
π ′ = (v1,v2,v4) and π ′′ = (v3,v4,v2). Note that π and π ′ share a prefix and therefore rf π and rf π ′ coincide
on interval [0,42].

corresponding to a vertex v are schedulable if and only if for each combination there
is some time interval smaller than d(v) in which the sum of all requests in addi-
tion to e(v) does not exceed the size of the time interval. This means that the job
in question is always able to finish execution at some point before d(v) time units
have passed because the interference up to this point allows enough time for it to
execute to completion. We write Π(T ) for the set of paths in G(T ) and Π(τ) for
Π(T1)× . . .×Π(TN), i.e., the set of all combinations of paths from all tasks. Further,
let π̄ = (π(T1), . . . ,π(TN)) denote an element of Π(τ), i.e., a single combination of
paths.

Theorem 1 A vertex v is schedulable with interference set τ if and only if

∀π̄ ∈Π(τ) : ∃t 6 d(v) : e(v)+ ∑
T∈τ

rf
π(T )(t)6 t. (1)

Proof Assume Condition (1) holds but v is unschedulable. Because of the latter, there
must be a combination of paths π̄ = (π(T1), . . . ,π(TN)) executing in a synchronous
arrival sequence for strictly more than d(v)− e(v) time units within time interval
[0,d(v)], causing a job corresponding to v to miss its deadline. In particular, for each
t 6 d(v), tasks from τ are executing for strictly more than t− e(v) time units within
[0, t]. Since rf

π(T )(t) gives an upper bound for how many time units task T is execut-
ing within [0, t] along path π(T ), we have

∑
T∈τ

rf
π(T )(t)> t− e(v) (2)

for each t 6 d(v). This contradicts the assumption that Condition (1) holds.
Assume now that v is schedulable but Condition (1) does not hold. Because of the

latter, there is π̄ ∈ Π(τ) such that Condition (2) holds for all t 6 d(v). Let t0 6 d(v)
minimal such that τ leaves e(v) time units of idle time in [0, t0] when π̄ is executing in
a synchronous arrival sequence. Such a t0 must exist since v is schedulable. Thus, up
to t0, the accumulated sum of execution times of jobs released along the paths π(T )

does not exceed t0−e(v). Since there is idle time at t0, this accumulated sum is equal
to ∑T∈τ rf

π(T )(t0) by Definition 5, so Condition (2) can not hold for this particular t0,
leading to a contradiction. ut
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Note that in Condition (1) it is sufficient to only test all integers t 6 d(v) since request
functions only change at integer points. There are two reasons for that: (1) we assume
all graph labels to be integers, and (2) the release sequences represented by request
functions have all job releases as early as possibly allowed by the edge labels. For the
rest of the article, functions only need to be evaluated at integer points.

Generally, each Π(T ) may be infinite, since there are infinitely many paths in di-
rected graphs with (directed) cycles. However, as we have already seen for paths shar-
ing a prefix, only finitely many prefixes of paths in Π(T ) are relevant. This is because
only a bounded number of them has request functions that differ somewhere on the in-
terval [0,d(v)]. Formally, let RF(T ) denote the set of request functions corresponding
to the paths in G(T ), restricted to domain [0,d(v)]. As with Π before, we write RF(τ)
for all combinations of tasks, i.e., RF(T1)× . . .×RF(TN) and r̄f = (rf (T1), . . . ,rf (TN))
for elements of RF(τ). With this notation, Condition (1) is equivalent to

∀r̄f ∈ RF(τ) : ∃t 6 d(v) : e(v)+ ∑
T∈τ

rf (T )(t)6 t. (3)

4.2 Critical Request Functions

The test in Condition (3) is already finite, since RF(τ) can be effectively and finitely
enumerated. However, the number of request functions per task is exponential in d.
We will see that only a small fraction of them is in fact relevant. Consider two request
functions rf and rf ′ such that rf (t) > rf ′(t) for all t in [0,d(v)]. If Condition (3) is
satisfied using rf for some task, then it will also be satisfied with rf ′ instead for the
same task, since the LHS of the inequality is even smaller with rf ′. Clearly, only rf
needs to be considered.

We formalize this by introducing a notion of dominance on the set of request
functions.

Definition 6 For two request functions rf and rf ′ on domain [0,d], we say that rf
dominates rf ′, written rf < rf ′, if and only if

∀t ∈ [0,d] : rf (t)> rf ′(t).

A maximal set of request functions rf containing no other rf ′ with rf ′ < rf is called
a set of critical request functions.

Example 3 As an example, we take again the request functions on [0,50] in Figure 3.
Note that rf π has at each point a value at least as large as rf π ′ . Therefore we have
rf π < rf π ′ . The same holds with rf π ′′ , i.e., rf π < rf π ′′ . In fact, rf π is a critical request
function for this task.

Let CRF(T ) denote the (unique) set of critical request functions for T and let
CRF(τ) be defined analogously. Then Condition (3) is equivalent to the following
which is quantifying only over all combinations CRF(τ) of critical request functions
instead of RF(τ).

∀r̄f ∈ CRF(τ) : ∃t 6 d(v) : e(v)+ ∑
T∈τ

rf (T )(t)6 t. (4)
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Typically, only a rather small fraction of request functions in a task is critical (tens
versus thousands or millions). This already reduces the number of combinations dra-
matically for which Condition (4) needs to be checked, despite the theoretically ex-
ponential size of all CRF(T ) in the worst case.

4.3 Computation of Request Functions

Critical request functions are our solution to the exponential explosion of paths in
each graph G(T ) by carefully considering only the relevant ones. Before we present
in Section 5 our solution to the second source of exponential complexity, i.e., the
number of combinations of request functions from different tasks, we sketch an effi-
cient method for computing critical request functions for a given graph G(T ).

The algorithm is based on an iterative graph exploration technique presented
in (Stigge et al. 2011b) based on path abstractions, which in our case are request
functions. The idea is to start with all 0-paths in the graph, i.e., paths containing just
a single vertex, and iteratively extending each already generated path with all succes-
sor vertices. During that procedure, request functions that are found to be dominated
by an already generated one are discarded. The procedure ends when all critical re-
quest functions on domain [0,d(v)] have been generated. For more details about the
general algorithm framework we refer to (Stigge et al. 2011b).

4.4 The Naı̈ve Algorithm

We summarize this section by presenting a naı̈ve first version of the full algorithm
in Figures 4 to 7, based on Lemmas 2 to 4 and Theorem 1. Assumed is a function
generate-rfs(T ) returning a set of critical request functions for a task T on the relevant
time interval. Such a function can be implemented as sketched above in Section 4.3.
We further assume that vertices have been marked as critical and implicitly update
these markings in SP-feasible(τ).

function schedulable(v,τ) :
1: for all T ∈ τ do
2: CRF(T )← generate-rfs(T )
3: end for
4: for all r̄f ∈ CRF(τ) do
5: if ∀t 6 d(v) : e(v)+∑T∈τ rf (T )(t)> t then
6: return false
7: end if
8: end for
9: return true

Fig. 4 Algorithm for schedulability of a vertex v with interference set τ .

Note that SP-schedulable(τ,Pr) makes O(‖τ‖) calls to lp-feasible(T,τ), com-
pared to SP-feasible(τ) making O(‖τ‖2) such calls. Thus, the run-time difference is
only about a factor linear in the number of tasks.



14 Martin Stigge, Wang Yi

function lp-feasible(T,τ) :
1: for all critical v ∈ G(T ) do
2: if not schedulable(v,τ \{T}) then
3: return false
4: end if
5: end for
6: return true

Fig. 5 Algorithm for lowest-priority feasibility of a task T ∈ τ .

function SP-schedulable(τ,Pr) :
1: for all T ∈ τ do
2: if not lp-feasible(T,τ6T ) then
3: return false
4: end if
5: end for
6: return true

Fig. 6 Algorithm for SP schedulability of a task set τ with priorities Pr.

function SP-feasible(τ) :
1: if τ = /0 then
2: return true
3: end if
4: for all T ∈ τ do
5: if lp-feasible(T,τ) then
6: return SP-feasible(τ \{T})
7: end if
8: end for
9: return false

Fig. 7 Algorithm for SP feasibility of a task set τ .

The main bottleneck of both algorithms is the combinatorial explosion in line 4
of schedulable(v,τ). Even though the number of critical request functions per task is
low, a brute force style test of all combinations is still prohibitively expensive. We
deal with this problem in the following section by replacing the rather naive com-
binatorial test with our proposed iterative approach using combinatorial abstraction
refinement.

5 Combinatorial Abstraction Refinement

In the previous section we dealt with exponential problem sizes by introducing dom-
inance relations on the domains of vertices and request functions in order to discard
large fractions of the search space. However, the combinatorial problem of having to
try all combinations of (critical) request functions remains.

In order to deal with this problem, we introduce an abstraction on top of request
functions, called abstract request functions. This abstraction is still sound: if a combi-
nation of abstract request functions signals schedulability of a vertex, this conclusion
is indeed true. However, if a combination signals non-schedulability, it may be that
this conclusion is over-approximate. In such a case, in order to still give precise re-
sults, we refine the abstraction into combinations of “less abstract” request functions.
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This is iterated until either a vertex is finally found to be schedulable, or we arrive at
a combination of concrete request functions, i.e., without any remaining abstraction,
conclusively resulting in unschedulability.

As we will see, the result is a precise analysis method which avoids combinato-
rial explosion for typical inputs. The rest of this section presents the details of our
technique.

5.1 Abstract Request Functions

We introduce an abstraction of a set of request functions by taking their point-wise
maximum.

Definition 7 We call rf a concrete request function if it is derived from a path π in a
graph G(T ) as in Definition 5.

We call rf an abstract request function if there is a set {rf 1, . . . ,rf k} of concrete
request functions, such that

∀t : rf (t) = max{rf 1(t), . . . ,rf k(t)} .

In that case we write rf = rf 1t . . .t rf k.

Abstract request functions can be directly used in a schedulability test in order to
get over-approximate results. Specifically, for each task T , let mrf (T ) be the abstract
request function derived from the whole set CRF(T ) of all critical (concrete) request
functions. We call mrf (T ) the most abstract request function for T . Using the combi-
nation of all mrf (T ), a vertex v is schedulable if

∃t 6 d(v) : e(v)+ ∑
T∈τ

mrf (T )(t)6 t. (5)

This holds because Condition (5) implies Condition (4) from Section 4.2. The test
is much more efficient since it uses only one combination of (now abstract) request
functions instead of exponentially many.

However, Condition (5) is over-approximate. If it is satisfied, vertex v is indeed
schedulable, but if it fails, v may still be schedulable. See Figure 8 for an example of
this. The reason is that the abstraction loses information, and therefore the implication
does not hold in the other direction, i.e., Conditions (4) and (5) are not equivalent.

In order to turn this back into a precise test while still taking advantage of the ab-
straction power, we now introduce an abstraction refinement technique which allows
us to iteratively refine the abstraction until a precise answer can be given.

5.2 Abstraction Refinement

As we have seen above, testing schedulability using just the most abstract request
function may give an imprecise result in case the test fails. Instead of falling back to
testing all combinations of concrete request functions, the abstraction can be refined
by trying intermediate steps. For example, the test can be applied to abstract request
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(a) G(T ) of task T
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rf (v1 ,v2)

rf (v2 ,v1)

mrf

(b) Request functions

Fig. 8 Example demonstrating imprecise results if just the most abstract request function mrf is used. The
two critical request functions rf (v1,v2)

and rf (v2 ,v1)
for T are shown. Both scenarios identify idle intervals

on [0,8]: path (v1,v2) from t = 2 and path (v2,v1) from t = 6. Thus, a vertex with 〈e,d〉= 〈1,8〉 would be
schedulable with T having higher priority. However, this information is lost if only mrf is considered.

functions that do not take the maximum over all concrete request functions, but for
example just half of them. The result is a test which is more precise than Condi-
tion (5) but still more efficient than Condition (4). Since this step is more precise, it
is more likely that the test succeeds in case v is schedulable. If the test still fails, the
abstractions can be refined even further.

We now make this idea formal and present the details. For each task T , we build
an abstraction tree bottom-up as follows. The leaves are represented by all concrete
request functions from CRF(T ). In each step of the construction, we take two nodes
rf 1 and rf 2 which do not yet have a parent node and which are “closest”, for example
by using a similarity metric on request functions (see Section 5.3). For these two
nodes, we create their parent node by taking their point-wise maximum rf 1 t rf 2.
This is repeated until we have created the full tree, in which case the tree root is the
most abstract request function mrf (T ). Figure 9 illustrates the abstraction tree2.

mrf

rf π1
rf π2

rf π5

rf π3
rf π4

Fig. 9 Request function abstraction tree for request functions of task T in Figure 1. The leaves are all
five concrete (critical) request functions on [0,50]. Each inner node is the point-wise maximum of all
descendants and thus an abstract request function. Abstraction refinements happen downwards along the
edges, starting at the root.

Our abstraction refinement algorithm works on these abstraction trees as follows.
First, test schedulability of a vertex v by testing the combination of all tree roots, ex-

2 The point-wise maximum on request functions and the dominance relation from Definition 6 are a
join-semilattice (<,t) on the request functions for each task. These semilattices are the core structure of
our abstraction refinement technique.
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actly as in Condition (5). If that test fails, replace one of the abstract request functions
with its child nodes from the tree, creating several new combinations to be tested. This
is iterated until either all tests conclude that v is schedulable, or until a combination
of leaves, i.e., concrete request functions, turns out to make v unschedulable.

The resulting method is precise and much more efficient than testing all possi-
ble combinations of request functions. The reason for the efficiency is that in the
schedulable case, the test is likely to succeed already on rather high abstraction lev-
els. Further, in the unschedulable case, the combination of concrete request functions
that violates schedulability is found in a rather guided way through the trees down to
the tree leaves since schedulable subtrees are avoided.

5.3 Similarity Metric

We use a similarity metric on request functions in two situations: when building the
abstraction tree and when refining a combination of abstract request functions.

Building the Abstraction Tree: During construction of the abstraction tree, we want
to merge the two “most similar” request functions. The effect of this is that the
abstract request function representing them is a good representation of the two
abstracted ones.

Abstraction Refinement: When a combination of request functions signals a potential
deadline miss, we want to replace one of them with its child nodes in the corre-
sponding abstraction tree of its task. It is beneficiary to choose the one where the
child nodes are “least similar” since this will lead to rather different situations
being tested next, i.e., different regions of the search space.

Formally, we define a metric on the space of request functions. It captures our in-
tuitive notion of “distance” between two functions as representing the difference in
behavior in simulated sequences.

Definition 8 For two request functions rf and rf ′ we define their distance on domain
[0,d] as

distd(rf ,rf ′) :=
d

∑
i=0

α
i · |rf (i)− rf ′(i)|.

We choose to introduce a weighting factor α which results in differences in early val-
ues weighing more than in later values. The rationale is that idle intervals early in the
considered synchronous arrival sequence have an overall larger effect on schedulabil-
ity of a vertex. Therefore, request functions that are very similar early in the interval
should be considered more alike than request functions that are rather different early
in the interval and only become more similar later. In our tests, we found that a good
compromise value is when early values are weighted with a factor of about 10 com-
pared to late values. This leads to α = d

√
0.1 with α0 = 1 and αd = 0.1.
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5.4 The Improved Algorithm

We give now the full algorithm that incorporates the abstraction refinement technique.
The only change to the pseudo-code given in Section 4 is the implementation of
schedulable(v,τ) which we replace with schedulable-car(v,τ) in Figure 10.

The implementation assumes a function generate-mrf (T ) which generates the ab-
straction tree and returns the tree root, i.e., the most abstract request function for T .
We further assume a function refine(r̄f ) which takes a combination of request func-
tions and returns a set of combinations where one or more of the abstract request
functions are replaced by child nodes from the abstraction tree(s). Further, the imple-
mentation uses a store for combinations of request functions. This could be a stack
or a queue or any other data structure that implements insertion (add) and retrieval
(pop) operations and a test for emptiness (isempty). The algorithm returns if either a
combination of concrete request functions is found to make v unschedulable or if the
test of all combinations concludes schedulability of v.

function schedulable-car(v,τ) :
1: store← /0
2: for all T ∈ τ do
3: rf (T )← generate-mrf (T,d(v))
4: end for
5: store.add(r̄f )
6: while not store.isempty() do
7: r̄f ← store.pop()
8: if ∀t 6 d(v) : e(v)+∑T∈τ rf (T )(t)> t then
9: if isabstract(r̄f ) then

10: store.add(refine(r̄f ))
11: else
12: return false
13: end if
14: end if
15: end while
16: return true

Fig. 10 Improved algorithm based on combinatorial abstraction refinement for schedulability of a vertex
v with interference set τ .

5.5 General Algorithm Formulation

We conclude Section 5 by providing a general formulation of the refinement pro-
cedure from which the schedulability analysis above can be instantiated. Generally,
the method provides an approach to finding negative instances of a combinatorial
decision problem, or proving the absence thereof. The method is applicable to any
N-ary predicate with abstraction structures in all components. Formally, we assume
the following.

– The problem is defined on N finite domains S1, . . . ,SN . An element of the product
space S1× . . .×SN is called a concrete combination.
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– Each domain Si is embedded in a domain Ai of abstract elements, i.e., Si ⊆ Ai.
On each Ai there is a partial order <i in which Si are the minimal elements and
there is a greatest element >i ∈ Ai.

– The partial orders on the component domains implicitly define a partial order <
on the product space:

a1 <1 a′1∧ . . .∧aN <N a′N ⇐⇒ 〈a1, . . . ,aN〉<
〈
a′1, . . . ,a

′
N
〉
.

This implies that all elements from S1× . . .× SN are the minimal elements of <
and that 〈>1, . . . ,>N〉 is the greatest element.

– There is a predicate

P : A1× . . .×AN →{true, false} .

For concrete combinations, this predicate distinguishes positive from negative
instances.

– The predicate is monotonic with respect to the partial order, that is:[
P(〈a1, . . . ,aN〉) ∧ 〈a1, . . . ,aN〉<

〈
a′1, . . . ,a

′
N
〉]

=⇒ P(
〈
a′1, . . . ,a

′
N
〉
).

Combinatorial abstraction refinement provides an efficient method of finding a
concrete combination 〈s1, . . . ,sN〉 ∈ S1× . . .× SN where P(〈s1, . . . ,sN〉) is false, or
proving that none exists. Note that this problem is in coNP if the predicate P can
be evaluated in polynomial time. It may be interpreted as proving a theorem over
a domain composed of orthogonal components, or fining a counterexample to that
theorem.

Except for a few special cases, a naı̈ve brute-force method would need ∏i ‖Si‖=
Ω(2N) evaluations of P, i.e., an exponential number, since the necessity of having
to try all combinations leads to a combinatorial explosion. The refinement scheme is
often much more efficient than that, depending on the abstractions. We give pseudo-
code of the general formulation in Figure 11. As for its instances used for testing
schedulability above, we assume a few associated auxiliary functions.

– A data structure store used for storing and retrieving tuples from the abstract prod-
uct domain A1× . . .×AN . The store needs to support functions add for storing
and pop for retrieving tuples. A function isempty indicates whether the store is
empty.

– A function refine takes one tuple 〈a1, . . . ,aN〉 as its argument and returns a set of
tuples {〈b1, . . . ,bN〉i} which, intuitively, is a complete set of direct descendants
in <. Formally:
1. Each 〈b1, . . . ,bN〉i is dominated by 〈a1, . . . ,aN〉, i.e.,

∀i : 〈a1, . . . ,aN〉< 〈b1, . . . ,bN〉i .

2. For any concrete combination 〈s1, . . . ,sN〉 ∈ S1× . . .×SN which is dominated
by 〈a1, . . . ,aN〉, i.e.,

〈a1, . . . ,aN〉< 〈s1, . . . ,sN〉 ,
there is one of the new tuples 〈b1, . . . ,bN〉i dominating it, i.e.,

∃i : 〈b1, . . . ,bN〉i < 〈s1, . . . ,sN〉 .
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Note that the new tuples 〈b1, . . . ,bN〉i may partially coincide with the original
〈a1, . . . ,aN〉. As an example, if each partial order <i can be represented as a tree,
refine may return a set of combinations for which one ai in tuple 〈a1, . . . ,aN〉 is
replaced by all child nodes in its tree.

– A function isabstract testing whether a tuple 〈a1, . . . ,aN〉 is concrete or not, i.e.,

isabstract(〈a1, . . . ,aN〉) ⇐⇒ 〈a1, . . . ,aN〉 /∈ S1× . . .×SN .

Clearly, the method presented above in Figure 10 is an instance of this general
formulation in which Si = CRF(Ti), predicate P is the existence of an idle instant and
all partial orders in all components are given by the abstraction trees. (Note that the
return value is just the opposite since the algorithm in Figure 10 returns true if the
vertex is schedulable while the algorithm in Figure 11 returns false in that case since
no counter-example has been found.)

function find-negative(P) :
1: store← /0
2: store.add(〈>1, . . . ,>N〉)
3: while not store.isempty() do
4: 〈a1, . . . ,aN〉 ← store.pop()
5: if ¬P(〈a1, . . . ,aN〉) then
6: if isabstract(〈a1, . . . ,aN〉) then
7: store.add(refine(〈a1, . . . ,aN〉))
8: else
9: return 〈a1, . . . ,aN〉

10: end if
11: end if
12: end while
13: return false

Fig. 11 Generalized formulation of our combinatorial abstraction refinement technique. If the input prob-
lem P contains negative instances, one of them is returned. Otherwise, the procedure returns false.

6 Static Job-Type Priorities

In this section, we extend the above methods to static job-type priorities. That is, we
assume a priority order Pr for all vertices in all graphs, but vertices of a task may
have different priorities. A central observation is that the concept of lowest-priority
feasibility as introduced in Section 3.1 can be defined for vertices as well. We also
show that Audsley’s Algorithm can be applied to this setting. However, we will see
that a busy-window extension technique is necessary since tasks may suffer from
indirect self-interference.

6.1 Lowest-Priority Feasibility for Vertices

We generalize lowest-priority feasibility as defined for tasks in Definition 3 to ver-
tices, as follows.
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Definition 9 For a task set τ , a vertex v∈V (τ) is lowest-priority feasible in τ if there
is a priority order Pr with Pr(v) = ‖τ‖ such that jobs corresponding to v do not miss
any deadlines if τ is SJP scheduled with Pr.

As for lowest-priority feasibility of tasks, this notion for vertices is independent of
the relative order of vertices with higher priorities. With this property, we can reduce
both SJP schedulability and SJP feasibility to lowest-priority feasibility of vertices.
We provide two lemmas which are similar to the counterparts for SP from Sections
3.2 and 3.3. For a task T and a vertex v ∈ V (T ), we write T [6 v] for a modification
of T in which all vertices v′ with Pr(v′)> Pr(v) have their WCET parameters set to
e(v′) = 0, i.e., only vertices of higher priority than v are actually executing. Further,
we write τ[6 v] in which all tasks T ∈ τ are either replaced with T [6 v] or removed
altogether in case all v′ ∈V (T ) are of lower priority.

Lemma 5 A task set τ is SJP schedulable with a priority order Pr if and only if each
v ∈V (τ) is lowest-priority feasible in task set τ[6 v].

Proof Similar to Lemma 2. Note that a task T [6 v] may be essentially deactivated if
all vertices of T have lower priority than v. ut

The next lemma generalizes Audsley’s Algorithm from tasks to job types and
thereby provides a method for synthesizing a feasible priority order of job types. We
write τ[< v] for τ with similar modifications as τ[6 v], but excluding v itself.

Lemma 6 A task set τ is SJP feasible if and only if either it is empty or there is a
v ∈V (τ) which is lowest-priority feasible in τ and τ[< v] is SJP feasible.

Proof Similar to Lemma 3. ut

In summary, the problem reduces again to solving a lowest-priority feasibility
problem, this time for vertices.

6.2 Busy-Window Extension

As before, in order to test any particular vertex v, we can pick a set of paths through
all graphs and use these to simulate a synchronous arrival sequence while skipping
jobs of lower priority. The framework of using request functions as path abstractions
and abstraction refinement for efficiency can be applied in a straightforward way.
However, it is not sufficient to only focus on the scheduling window of v, as the
following example demonstrates.

Example 4 We construct a schedule where a job has a response time that is strictly
larger than the one obtained in a synchronous arrival sequence. Consider the task set
shown in Figure 12(b). Assume that v is experiencing interference from task T ′, i.e.,
jobs of T ′ have a higher priority than v. Further, assume that u has an even higher
priority, so jobs of T ′ do experience interference from jobs corresponding to u.

Figure 12(a) sketches a schedule which illustrates the relative job priorities. Note
that v does not finish by its deadline since it experiences a total of 6 time units of inter-
ference from T ′. This is because of indirect interference of u to v. In a synchronous
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arrival sequence in which T ′ would have started to release jobs together with v, u
would be ignored and this deadline miss would not occur.

T ′
t

T

Scheduling window
u v

t
0 2 4 6 8 10 12 14 16 18 20

Extension x = 7 Response time t = 11

x+ t

(a) A possible schedule

w

〈4,10〉

10

u
〈5,7〉

v
〈5,10〉

7

(b) Release structures

Fig. 12 Example demonstrating that the worst-case response time may be achieved by a job sequence
which is not an SAS but rather a busy window extension with x = 7. Details are discussed in Example 4.

A solution to this problem is the common busy window extension technique (Lehoczky
1990). The idea is as follows. The maximal interference to v is caused by an arrival
sequence where all tasks T ′ 6= T (v) synchronously release their jobs at some time
point before the release of v. Together with jobs from T (v), the processor is kept
continuously busy until v is released and finally finishes. This period is called the
busy window. It is difficult to predict the exact size of the busy window leading to
the maximal interference for v, but an upper bound can be given by computing the
maximal size L of any busy window3 for τ . With this upper bound, all possibilities
can be enumerated.

We now give details of this procedure for analyzing a vertex v in a task T . We
consider extensions of the analyzed window, which initially is just the scheduling
window of v. We extend this window by additional x time units into the past, i.e.,
to the left, cf. Figure 12. For each integer x > 0, we analyze a scenario in which all
tasks T ′ 6= T start releasing their jobs at time 0 while the job corresponding to v is
released at time x and has its deadline at x+ d(v), i.e., its scheduling window is the
interval [x,x+ d(v)]. In addition to this job, T releases other jobs before time x as
late as possible, corresponding to a path through G(T ) ending in v. This construction
maximizes the interference experienced by v for a particular x. In Figure 12 this is
the case for x = 7 where T is following path (u,v). In order to find the worst-case
interference, all x are enumerated up to the size L of the maximal busy window. (In
practice, not all x need to be enumerated as discussed as an optimization in Section 6.4
below.)

Formally, we can use request functions as before to describe the interference to
v by tasks T ′ 6= T . In addition to that, we also need to have a way of describing the

3 A bound L for the size of the maximal busy window can be easily computed by finding smallest
interval size t for which ∑T∈τ mrf (T )(t)6 t.
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interference of jobs from T that are released before v, since they can cause indirect in-
terference (by delaying jobs of some T ′ which then interfere with v). For this purpose,
we define a suffix request function which is defined similarly to a request function but
is built “backwards” from the end of the path. This ensures that the last vertex of a
path is always included in the workload.

Definition 10 (Suffix Request Function) For a path π = (π0, . . . ,πl) in the graph
G(T ) of a task T , we define its suffix request function as

rf sfx
π (t) := max

{
e(π ′) | π ′ is suffix of π and p(π ′)6 t.

}
Example 5 We give an example in Figure 13.

rf sfx(t)

t
0 3 6 9 12 15 18 21 24 27 30

0

3

6

9 rf sfx
π

π

v3 v4 v1

t
−21 −18 −15 −12 −9 −6 −3 0 3 6

Fig. 13 Example of a suffix request function on [0,28] for π = (v3,v4,v1) from G(T ) in Figure 1. We also
show the job sequence in a graphical schedule, with time 0 being the release time of the job from v1. This
illustrates that rf sfx

π builds backwards from the release of the last vertex in π .

6.3 The Full Algorithm

We can now give the full condition. As before, let CRF(T ) denote the set of critical
request functions for a task T and let CRF(τ) denote the product set of all CRF(T ).
Further, let RFsfx(T,v) denote the set of all (critical) suffix request functions for a task
T which represent paths ending in v ∈V (T ). We can express a condition for lowest-
priority feasibility of a vertex v as follows, assuming T is the task containing v and τ

is a task set excluding T .

∀rf sfx ∈ RFsfx(T [6 v],v), r̄f ∈ CRF(τ[6 v]),x 6 L : ∃t 6 d(v) :

rf sfx(x)+ ∑
T∈τ

rf (T )(x+ t)6 x+ t. (6)

This condition quantifies over all (critical) suffix request functions for T ending
in v, all combinations of (critical) request functions for all other tasks, and all busy
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window extensions x up to its size bound L. For all these combinations, there must
be a time point t at which all workload from T , represented by term rf sfx(x), together
with all workload from other tasks, represented by the summation term, finish. Com-
binatorial abstraction refinement can be applied to the first two universal quantifiers,
i.e., all combinations of request functions.

Note that Condition (6) is a generalization of Condition (4) for the SP case, if we
set x = 0. The rf sfx(x) term generalizes e(v). For x = 0 we have rf sfx(x) = e(v), but
for sufficiently large x, it also includes other vertices from T . This condition can be
tested using combinatorial abstraction refinement for r̄f as well as rf sfx, making this
an efficient procedure.

6.4 Optimizations

For practical implementations, we briefly discuss two effective optimization tech-
niques that can dramatically speed-up the analysis. The first technique is based on
the observation that Condition (6) does not need to be checked for all integers x 6 L
as significant changes of the left-hand side only occur where rf sfx changes. More
specifically, if the inequality in Condition (6) holds for some x and t and rf sfx(x) =
rf sfx(x+ 1), then the inequality also holds for x′ = x+ 1 and t ′ = t− 1. Thus, x+ 1
does not need to be tested. This optimization reduces the domain of all x to be tested
to the values at which a change in rf sfx occurs. For the situation in Example 4, this is
only the case for x ∈ {0,7}. In general, the number of values for the size x of the busy
window extension that need to be tested is related to the ratio of L to the values of
all edge labels in G(T ). A direction worth exploring in future research is to consider
applying abstraction refinement also on the domain of x itself.

Second, while the number of values for x to be tested can be dramatically reduced
by the above optimization, its bound L may still be large, particularly for task sets
with high utilization. The result is that request functions need to be computed for large
domains. Recall that the time for computing request functions grows dramatically
with larger domains. For static task priorities, this is not a problem, as the domain for
request functions is restricted to scheduling windows in that case. For static job-type
priorities, we need to consider busy window extensions L that can be a few times as
large. An implementation of the proposed method can be optimized by computing
request functions incrementally on-demand, that is, first computing the function on a
prefix of its domain and only computing further values when they are needed. This
optimization has the potential to avoid following branches in graphs that would lead
to exponential yet unnecessary increase in analysis time.

7 Non-Preemptive Scheduling

We now change focus from preemptive to non-preemptive schedulers. For presenta-
tion reasons, we only describe analysis for static task priorities, but an extension to
static job-type priorities is straight forward using the insights from Section 6.
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In non-preemptive scheduling, a job that has started execution cannot be pre-
empted by jobs of higher priority. This has the following consequences for the inter-
ference that needs to be taken into account in a schedulability test.

– When a job is released, the start of its execution may be delayed by interference
from other jobs in the system. However, once the job starts running, no such in-
terference is possible anymore. For our analysis, this means that instead of trying
to find the latest time point where a job finishes, we will search for the latest time
point where it can start executing.

– While preemptive scheduling only needs to consider interference from tasks of
higher priority, tasks scheduled with a non-preemptive scheduler may experience
interference from jobs of lower priority, called blocking. Generally, this interfer-
ence is restricted to a single job of a lower-priority task, as we will see below.

– Blocking from lower-priority tasks has a similar effect as we observed with differ-
ent job-type priorities: it is not sufficient to only focus on the scheduling window
of a job when assessing whether it is schedulable, as illustrated in Figure 14.
Thus, we need to employ the busy window extension technique as in Section 6.

T1
t

T2
t

T3

Scheduling window

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Response time: 7

Fig. 14 Example for a non-preemptive worst-case response time which can only be detected with a busy
window extension, inspired by Davis et al. (2007). Details are discussed in Example 6.

Example 6 Consider a set of periodic tasks with constrained deadlines, i.e., each
task is represented by a value e for the WCET of all its jobs, a value p for the inter-
release separation delay between job releases and a value d for the relative deadline
of all jobs. The task set τ = {T1,T2,T3} is given as:

Task T1: e = 2 and p = d = 5
Task T2: e = 2 and p = d = 7
Task T3: e = 2 and p = 7, d = 6

The first job of task T3 finishes in time, but the second job misses its deadline, cf.
Figure 14. The effect is similar to the one observed above for static job-type priorities:
jobs of task T3 indirectly delay jobs of the same task.
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In the rest of this section, we describe the necessary changes to the methods pre-
sented above for preemptive schedulers.

7.1 Adjusted Condition

We start by introducing the test condition for a single vertex, before presenting the
bigger picture below in Section 7.2. Assume a task set τ with a priority order Pr. We
want to test whether jobs corresponding to a vertex v ∈ G(T ) of a task T ∈ τ will
always be able to meet their deadlines. Recall the busy window extension approach
from Section 6. In Condition (6), for each combination r̄f of request functions for all
tasks T ′ 6= T , each suffix request function rf sfx for paths in G(T ) ending in v, and
each busy window extension x 6 L, the condition tests whether the tested job could
finish before its deadline. That is, there is a time point t 6 d(v) such that

rf sfx(x)+ ∑
T∈τ

rf (T )(x+ t)6 x+ t.

This time point t represents the response time of the tested job. We will change the
condition in three ways in order to reflect the behavior of non-preemptive schedulers.

1. Since the job can not be preempted anymore once it starts running, we search for
its starting time instead of its finishing time. For example, in Figure 14, for the first
job of T3, we are looking for t = 4 where the job starts executing. This is achieved
by subtracting e(v) from the left-hand side of the inequality. Equivalently, one
could remove e(v) from rf sfx, but we choose to keep notation consistent. Note
that this change alone would make it possible to compute the latest start time of a
job even for the preemptive setting.

2. In order for the job to be schedulable, its starting time needs to be latest e(v)
time units before its deadline. This condition is also sufficient, as in that case,
the job is guaranteed to finish until the deadline with a non-preemptive scheduler.
Therefore, we search for t 6 d(v)− e(v).

3. Tasks of lower priority can interfere with the tested job as well, which we sum-
marize in a blocking term B(τ>T ). In the worst case, the largest job of all tasks
of lower priority starts execution right before the first job of higher priority in
the busy window is released. This means that the maximal interference caused by
blocking can be given as:

B(τ>T ) = max{e(v) | v ∈ G(T ),T ∈ τ>T} . (7)

Finally, we need to make the request functions that are representing interference from
higher-priority tasks right-continuous, in contrast to the functions used in Sections
4 to 6 which are left-continuous, cf. Definition 5. The difference is in situations where
a higher-priority task releases a job at the same time as the time our test is looking
for, cf. Figure 15. In previous sections, the test is deriving the response time, i.e., the
time where a job finishes execution. If a higher-priority task releases a job right at
that time, we do not want this event to delay the response time further. However, for
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T1 t

T2 t

T3 t
0 1 2 3 4 5

(a) Schedule for a SAS of τ

t
0 1 2 3 4 5 6

0

1

2

3

4

5

LHS

(b) LHS of Condition (8) for T3 with
x = 0 and A = B = 0

Fig. 15 Illustration for why request functions need to be inclusive for a non-preemptive schedulability
test. Task set τ = {T1,T2,T3} contains a periodic task T1 with e = 1, p = 2 and two tasks T2 and T3 that
release just one job each with e = 1. Clearly, T3 can be delayed by 3 time units as shown in Figure 15(a).
An exclusive request function, i.e., left-continuous, would indicate only 2 time units, cf. Figure 15(b).

non-preemptive scheduling, the test is deriving the start time of a job. If a higher-
priority task releases a job at that time, we do want this event to delay the start time
further.

Definition 11 For a path π = (v0, . . . ,vl) through the graph G(T ) of a task T , we
define its inclusive request function as

rf •π(t) := max
{

e(π ′) | π ′ is prefix of π and p(π ′)6 t
}
.

We call request functions rf π from Definition 5 exclusive request functions. Note that
the difference in the definitions of exclusive and inclusive request functions is in the
different comparison relations “<” versus “6” which makes the difference between
left- and right-continuous, respectively.

We use CRF•(τ) to denote the set of all tuples of critical inclusive request func-
tions of all tasks. To summarize, a test for a single vertex v ∈ T is given as

∀rf sfx ∈ RFsfx(T,v), r̄f ∈ CRF•(τ<T ),x 6 L : ∃t 6 d(v)− e(v) :

B(τ>T )︸ ︷︷ ︸
A

+rf sfx(x)− e(v)︸ ︷︷ ︸
B

+ ∑
T ′∈τ<T

rf (T
′)(x+ t)︸ ︷︷ ︸

C

6 x+ t. (8)

Note that the left-hand side is composed of three terms A, B and C, representing the
blocking from lower-priority tasks, the interference from T (v) itself, and the interfer-
ence from higher-priority tasks, respectively.

7.2 The Full Algorithm

We now give the bigger picture. The core of our algorithm is the test of single vertices
for deadline misses, given sets of tasks τ<τ and τ>τ with higher and lower priorities.



28 Martin Stigge, Wang Yi

We adjust Definition 3 for lowest-priority feasibility by adding the notion of blocking
in the non-preemptive setting.

Definition 12 For task sets τ and τ ′, a task T ∈ τ is lowest-priority feasible in τ

with blocking set τ ′ if there is a priority order Pr with Pr(T ) = ‖τ‖ such that T does
not miss any deadlines if τ is SP scheduled with Pr and experiences non-preemptive
blocking from τ ′.

Lowest-priority feasibility of a task T in a task set τ with blocking set τ ′ can be
tested with the method outlined above in Section 7.1 by applying Condition (8) to all
vertices of G(T ). As in Section 3 for preemptive scheduling, we can use the lowest-
priority feasibility concept to characterize SP schedulability and SP feasibility via
applying it iteratively to all tasks or applying Audsley’s Algorithm, respectively.

7.2.1 SP Schedulability

The only difference to the preemptive case in Section 3.2 is that we need to take the
set of tasks with lower priority into account.

Lemma 7 A task set τ is non-preemptively SP schedulable with a priority order Pr if
and only if each T ∈ τ is lowest-priority feasible in task set τ6T with blocking set τ>T .

Proof By above discussion. ut

7.2.2 SP Feasibility

For non-preemptive SP feasibility, we apply Audsley’s Algorithm as in the preemp-
tive case. For technical reasons, we include blocking set into the SP feasibility con-
cept. On a dedicated platform with no other tasks interfering, the blocking set is
empty.

Lemma 8 A task set τ is non-preemptively SP feasible with a blocking set τ ′ if and
only if either τ is empty or there is a T ∈ τ which is lowest-priority feasible in τ with
blocking set τ ′ and τ \{T} is SP feasible with blocking set τ ′∪{T}.

Proof A proof is similar to that of Lemma 3 which we will not repeat here. However,
care must be taken to deal with the blocking term of Condition (8) correctly. For pre-
emptive scheduling, there is no blocking term. Thus, a task T that is lowest-priority
feasible in a task set τ is also trivially lowest-priority feasible in any subset of τ , mak-
ing Audsley’s Algorithm applicable. For non-preemptive scheduling, a task T that is
lowest-priority feasible in a task set τ with blocking set τ ′ may experience more
blocking if a task T ′ from τ (higher priority) is moved to τ ′ (lower priority). How-
ever, lowest-priority feasibility of T is not lost, since the potentially higher blocking
due to T ′ if it has lower priority than T does never exceed the interference which
T ′ can cause if it has higher priority than T . The reason is that the blocking term in
Condition (8) is only given by one job, cf. Equation (7).
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7.3 Comparison with Preemptive Scheduling

We briefly discuss the contrast between preemptive and non-preemptive scheduling
in our setting, i.e., static priority scheduling of DRT task systems. Intuitively, a pre-
emptive scheduler is more powerful since jobs of higher priority can get access to
the processor at any time. Indeed, task sets that are non-preemptively SP feasible
are commonly also preemptively SP feasible and counterexamples are rather rare.
However, they do exist, as the following example demonstrates, already for periodic
implicit-deadlines task sets.

Example 7 Consider the same task set as in Example 6 but with implicit deadlines,
i.e., τ = {T1,T2,T3} is given as:

Task T1: e = 2 and p = d = 5
Task T2: e = 2 and p = d = 7
Task T3: e = 2 and p = d = 7

With a preemptive SP scheduler, τ is infeasible. Task T1 can obviously not have the
lowest priority. If T2 or T3 have the lowest priority, then the synchronous arrival
sequence leads to a deadline miss since the job of lowest priority is preempted twice
by T1. On the other hand, with a non-preemptive SP scheduler, τ is schedulable if T1
is assigned the highest priority, as a quick evaluation of Condition (8) reveals.

Despite this example, a preemptive SP scheduler is generally able to schedule
more task sets as we will see in Section 8. Of course, factors like preemption over-
heads that are not covered by our model have in practice also an impact on the relative
power of both scheduling approaches. An investigation is outside the scope of this ar-
ticle.

8 Experimental Evaluation

We evaluate our method by running it on task sets of different sizes while measuring
run-times, acceptance ratios and a set of other parameters in order to show the effec-
tiveness of our optimization techniques. We use an implementation in the Python pro-
gramming language running on a standard desktop computer. The implementation is
not optimized down to the last instruction, but is suitable for a qualitative comparison
of scaling properties. Task sets have typical sizes of up to 30 tasks and are analyzed
within a few seconds (while a naı̈ve enumeration approach would already take days
for just five tasks). As we will see, our algorithm for SP feasibility is very effective in
preventing combinatorial explosion and scales very well even though we are dealing
with a coNP-hard problem.

8.1 Task Set Generation

Each task is generated randomly as follows. A random number of vertices is created
with edges connecting them according to a specified branching degree (“fan-out”).
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Edges are placed such that the graph is strongly connected. After choosing edge labels
with uniform probability, deadlines are chosen randomly with a uniform ratio to the
minimal outgoing edge label. Finally, execution time labels are chosen randomly with
a uniform ratio to the vertices deadlines. The following table gives details of the used
parameter ranges.

Vertices Fan-out p d/p e/d

[5,10] [1,3] [100,300] [0.5,1] [0,0.07]

Each task set is generated randomly with a given goal of a task set utilization
which we define as the highest ratio of the sum of WCET vertex labels over the sum
of edge labels in all cycles in G(T ). Tasks are added to a task set until it satisfies the
given goal. Feasible task sets created by this method have sizes up to about 20 tasks
with over 100 individual job types in total.

Note that exact run-times, acceptance ratios etc. may be rather sensitive to the
exact way task sets are created. The evaluation in this section aims at qualitative
insights, such as scaling behaviors and relative strength of acceptance ratios. A thor-
ough study of the influence of task creation parameters is beyond the scope of this
article.

8.2 Run-Time Scaling

The first property we evaluate is the scaling behavior for growing task set sizes. Recall
that task set size and utilization are linearly correlated in our setting where we add
tasks to a task set until a goal utilization is reached.

We compare the state-of-the-art pseudo-polynomial algorithm for EDF feasibil-
ity (Stigge 2014) with our combinatorial abstraction refinement method for SP fea-
sibility. Recall that the latter runs in exponential time in the worst case whereas the
former is pseudo-polynomial. For the resulting run-time plot in Figure 16, we an-
alyzed about 250 task sets per slot of 3% utilization. We see that the EDF test is
outperformed by the SP test until about 70% utilization after which its run-time is
larger by up to 50%.

For low utilizations, the abstraction refinement method has comparable run-time
and has much better scaling behavior for increasing utilizations of feasible task sets.
The reason for the “bump” in the EDF curve at about 70% is caused by a phase
transition between feasible and infeasible task sets (Stigge 2014). The SP test is less
sensitive to phase transition effects. Its phase transition is at about 35% utilization
with a slight increase in computation time, but this bump is almost not noticeable.
The theoretical run-time complexity bound is exponential in the number of tasks, but
the combinatorial abstraction refinement is effective in hiding the exponential growth
for the analyzed tasks.

We also evaluate the SJP and non-preemptive SP feasibility tests introduced in
Sections 6 and 7. We expect both to have significantly increased run-time since they
need to consider analysis of the whole busy window. Figure 17 illustrates that their
run-times are about an order of magnitude higher than the SP feasibility test. We
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also note a clear exponential increase in run-time. This is due to several contribut-
ing factors. Higher utilization results in larger sizes of the maximal busy window.
This means that the busy window extension to be considered grows with increasing
utilization. The domain of request functions increases because of this, leading to in-
creased computational effort for deriving them. Finally, the SJP feasibility analysis
method has to test each job separately with changing interfering tasks and cannot
benefit from re-use of request functions or optimizations like critical jobs for SP fea-
sibility. All three factors have an exponential effect that is independent of the issue
of combinatorial explosion which the abstraction refinement scheme is designed to
solve.
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Fig. 16 Run-times of EDF and SP feasibility analyses. Our method for SP schedulability clearly outper-
forms the EDF test, both in absolute time and in average scaling.

8.3 Analysis Stages

We evaluate two aspects of our SP analysis method in more detail. One is the time
distribution between computation of all critical request functions and checking their
combinations for schedulability. The other aspect is the effectiveness of the abstrac-
tion refinement in terms of avoided combination tests.

Time Distribution Our analysis has two phases. First, all critical request functions are
derived by traversing all graphs. Second, their combinations are tested using combi-
natorial abstraction refinement. The first phase is linear in the utilization since it is
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Fig. 17 Run-times of EDF, SP (preemptive and non-preemptive) and SJP feasibility analyses. Experiments
were executed with a timeout of 100 seconds which occurred well beyond the non-preemptive SP and SJP
feasibility phase transitions of about 35% and 55% utilization, respectively.

executed in isolation for each task, and the task set size is proportional to the utiliza-
tion. However, the second phase is in the worst case exponential in the number of
tasks. Therefore we expect it to grow exponentially with increasing utilization.

In Figure 18 we show the analysis run-time split into both phases. We see that the
computation of request functions scales linearly as expected. The combination part
grows more than linearly, but our abstraction refinement technique is very effective in
dramatically reducing the combinatorial explosion. Even at a high utilization of 90%
the abstraction refinement phase does not significantly exceed half of the analysis
time.

Combination Testing We captured 105 calls to the iterative abstraction refinement
procedure (Figure 10) and recorded for each call (i) how many tests where executed
(Line 8 in Figure 10), (ii) how many combinations of concrete request functions there
were in total and (iii) its return value. We plot the result in Figure 19 showing that our
method clearly saves work in the order of several magnitudes. In more than 99.9% of
all cases, less than 100 tests were executed.

8.4 Acceptance Ratio

As a last comparison, we look at acceptance ratios for EDF and static task priority
(both preemptive and non-preemptive) as well as static job-type feasibility, shown
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Fig. 18 Run-time of SP feasibility analysis split into computation of request functions and combination
tests.
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Fig. 19 Tested versus total number of combinations of request functions. Crosses represent schedulable,
dots unschedulable cases. Both scales are logarithmic.

in Figure 20. Note that this comparison is not evaluating the quality of our analy-
sis method. It rather compares the relative scheduling abilities of EDF, SP and SJP
sheduling of DRT tasks. To the best of our knowledge, this is the first time that such
a comparison can be made, since we present the first method that is able to efficiently
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and precisely analyze task sets of this size for feasibility with static priority sched-
ulers.

For the comparison of preemptive versus non-preemptive SP scheduling, we see
that while preemptive scheduling appears to be more powerful than the non-preemptive
counterpart, the difference is rather small. This also means that compromises be-
tween preemptive and non-preemptive schedulers, like the fixed preemption points
model (Yao et al. 2010), can be assumed to not have a significant impact on accep-
tance ratios. However, this effect is highly dependent on the choice of task parame-
ters, as a big job blocking a job with a short deadline from another task can easily
cause deadline misses in non-preemptive scheduling. Again, a thorough investigation
of task parameter generation is beyond the scope of this article.

Finally, we see that static job-type priorities do indeed significantly increase schedul-
ing power over static task priorities, albeit at a cost of higher analysis run-times.
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Fig. 20 Acceptance ratios of EDF and static priority schedulers.

9 Conclusions and Future Work

In this article, we have introduced an efficient method for analysing static prior-
ity feasibility and schedulability for DRT task sets. The method is based on dif-
ferent techniques for pruning significant parts of the worst-case exponential search
space. Experiments have shown that our method has better performance than pseudo-
polynomial algorithms for EDF feasibility. The extensions to non-preemptive sched-
ulers and static job-type priorities have also been shown to perform reasonably well.

A key part of our method is the combinatorial abstraction refinement technique.
Using an abstraction lattice, it allows to quickly derive results about models which
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otherwise suffer from combinatorial explosion. We believe that combinatorial ab-
straction refinement can be applied as a general technique to many combinatorial
problems that have a certain abstraction structure which is often the case for real-
time scheduling problems. As future work on this concrete model, we would like to
extend the specific algorithm presented in this article to variants of DRT which are
extended with features like arbitrary deadlines or synchronization primitives.

A challenge appears to be the necessity of testing the whole busy window for
settings like static job-type priorities or non-preemptive scheduling. One possibility
for this problem is to derive conditions which guarantee that only the scheduling
window needs to be tested (Yao et al. 2010). Another line of future research will
be to investigate whether combinatorial abstraction refinement can be applied to busy
window extensions as well, i.e., testing many extensions at once. In a broader context,
we are also planning to apply the general technique to other problems in the theory
of real-time systems.
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