
1

Modular Performance Analysis of
Energy-Harvesting Real-Time Networked Systems

Nan Guan1, Mengying Zhao2, Chun Jason Xue2, Yongpan Liu3 and Wang Yi4

1Northeastern University, China
2City University of Hong Kong, Hong Kong

3Tsinghua University, China
4Uppsala University, Sweden

Abstract—This paper studies the performance analysis prob-
lem of energy-harvesting real-time network systems in the Real-
Time Calculus (RTC) framework. The behavior of an energy-
harvesting node turns out to be a generalization of two known
components in RTC: it behaves like an AND connector if the
capacitor used to temporally store surplus energy has unlimited
capacity and there is no energy loss, while it behaves like a
greedy processing component (GPC) if the size of the capacitor
is zero and thus surplus energy is lost or passed to other nodes
immediately.

In this paper, methods are developed to analyze the worst-
case performance, in terms of delay and backlog, of energy-
harvesting nodes as well as compute upper/lower bounds of their
data and energy outputs. Moreover, with the proposed analysis
methods, we disclose some interesting properties of the worst-
case behaviors of energy-harvesting systems, which provide useful
information to guide system design. Experiments are conducted
to evaluate our theoretical contributions and also confirm that
the disclosed properties are not just the result of our analysis,
but indeed hold in realistic system behaviors.

I. INTRODUCTION

Cyber-physical systems (CPS) integrate digital computation
and physical processes, where sensors, actuators and embed-
ded computers are networked to sense, monitor, and control
the physical world [18]. Due to close interaction with physical
world, the computation in CPS are typically subject to timing
constraints. Violating timing constraints in such system may
lead to seriously degrade the quality of service and even lead
to catastrophic consequences such as loss of human life.

Many CPS consist of a large number of sensing, computing
and actuating devices that are deeply embedded into the
surrounding environment. For such systems, it is usually not
practical to recharge the devices or replace their batteries.
Using environmental regenerative energy, e.g., kinetic, elec-
tromagnetic radiation (including photovoltaic), and thermal
energy, to power the devices in such systems is a promising
approach. There are increasing interests in research of energy-
harvesting systems, but little work has been done to analyze
their real-time behaviors.

In this paper we study the worst-case performance analysis
problem of energy-harvesting real-time networked systems.
We use Real-Time Calculus (RTC) as the modeling and analy-
sis framework. RTC has proved to be powerful in performance

analysis of real-time networked systems. RTC is rooted in and
significantly extends Network Calculus (NC), which has a rich
theoretical background [2]. The modular analysis approach of
RTC is especially suitable for the design and analysis of large-
scale and complex networked systems. More importantly, the
variability characterization curves (VCC) used in RTC are
suitable to model energy availability, since the energy input is
typically unstable and difficult to be characterized by closed-
form expressions in energy-harvesting systems.

VCC can model a wide range of infinitely regenerative
resources, such as computation and communication time. At
the first glance, existing RTC theory seems to be directly
applicable to energy-harvesting systems, since energy is also
a type of infinite and regenerative resource. However, there is
actually a fundamental difference between energy and time:
energy is storable, but time is not. Computation time is
simply wasted if there is currently no work to do. In contrast,
surplus energy may be saved in the capacitor and used in the
future. Note that in energy-harvesting systems it is necessary
to use capacitors to temporally store energy as the energy input
is highly unstable, and the capacitors are usually small as
they are used as energy buffers but not the primary energy
source. To the best of our knowledge, this is the first work to
study the modeling and analysis of systems using resources
with limited storage, with general setting in the RTC/NC
framework. We introduce a new component ERC (Energy-as-
Resource Component), to model an energy-harvesting node in
the network, and analyze worst-case performance of networked
ERC systems.

It turns out that ERC is a generalization of two important
models in RTC: the Greedy Processing Component (GPC) and
the AND connector. GPC models processing with traditional
resource that are not storable, such as computation time. AND
connector is used to model the partnering logic of two input
event streams. Data arriving on one input port must be buffered
until partner data arrive on the other input port. Partnering data
join together and immediately pass the AND connector. When
the energy store is of unlimited size, each node in our system
behaves like an AND connector: energy can be viewed as type
of data and consuming energy to process data is essentially
the same as joining data from two input streams. No energy
loss occurs since the capacitor is of unlimited size. On the

other hand, when the capacitor is of zero size, each node in
our system behaves like a GPC since surplus energy will be
dropped immediately. We develop analysis methods for ERC,
and particularly:

● We proved that the delay and backlog bounds can be
derived in the same way as AND connectors.

● We proved that the remaining energy bounds can be
computed in the same way as GPC.

● The data output behavior of ERC is more complex, and
we developed several methods to compute the output ar-
rival curves from different perspectives. The combination
of these methods let us get good analysis precision with
different parameter characteristics.

Moreover, with the developed analysis methods, we observe
some interesting properties of ERC:

● With given workload and energy input, the worst-case
performance of an ERC only depends on the initial fill
level of the capacitor, but not its total size. If the capacitor
is initially poorly charged, the worst-case performance
will not be improved no matter how much the capacitor
size is increased. This suggests a basic rule in the design
of such systems: the capacitor should be fully charged
before the system starts running.

● If the capacitor is initially fully charged, the maximal
and minimal energy loss at an ERC is independent from
the capacitor size. This phenomenon is somehow counter-
intuitive, since using a large capacitor seems to be able to
store more energy and thus reduce energy loss. However,
as disclosed by our analysis, although a larger capacitor
may reduce energy loss in some time intervals, the global
maximum and minimum remains unchanged.

● Although increasing the capacitor of an ERC is always
good for improving the worst-case performance of this
ERC itself, it may be harmful to the worst-case perfor-
mance of other ERCs in the network.

Note that the above properties are not only the results of our
analysis, but indeed exist in the realistic behaviors of ERC as
confirmed by our simulation experiments using RTS Toolbox
[4] (which is extended to support the new ERC component).
The theoretical results of this paper are implemented in RTC
Toolbox [20].

A. Related Work

Existing work on energy harvesting systems can mainly
be summarized into three categories pertaining to energy
modeling, energy-harvesting aware system optimization and
scheduling analysis and design. A comprehensive survey of
energy-harvesting sensor nodes can be found in [17].

Lu et al. [11] proposed an accurate method for modeling
energy dissipation and constructed a runtime scheme to predict
future harvested energy for energy-harvesting systems. In or-
der to fully utilize the harvested energy, Liu et al. [7] proposed
to manage system power by considering both the battery
charging/discharging overheads and the maximum power point
of the energy-harvesting devices.

Several work are done on optimization of energy-harvesting
powered networked systems. Zhang et al. [22] suggested to

maximize the energy preserving within corresponding time in-
tervals in order to improve the sensor nodes’ resilience. Instead
of focusing on individual sensor nodes, later, they developed
algorithms to maximize the minimal energy reservation for
all nodes in the network [21]. Zhang et al. [15] proposed a
framework to model and adapt system parameters, such as
task activation rates, for various optimization objectives in the
presence of fluctuating energy-harvesting. The work in [23]
and [14] aim to maximize network utility and system reward
in energy-harvesting networked systems respectively.

Moser et al. [13] proposed a lazy scheduling algorithm for
energy-harvesting systems. To minimize the deadline viola-
tion, they proposed optimal online algorithms to dynamically
assign energy to arrived tasks. Methods were proposed to
test the schedulability and decide the minimum capacity
requirement. Liu et al. [9] extended the work in [13] by
introducing dynamic voltage scaling and frequency selection.
They proposed to dynamically adjust the task execution speed
based on the available energy, to efficiently use task slacks and
further reduce the deadline miss rate. In the context of voltage
selection, the work in [10] and [8] investigated task speedup
and slowdown under the energy and timing constraints. Lu
and Qiu [12] studied the scheduling and mapping problem on
multi-core processors for energy-harvesting systems.

Our work shares similarities with [13], as both of them
use RTC as the basic modeling framework. However, a key
difference between them is that [13] assumed predefined task
deadlines, which significantly simplifies the analysis problem.
In contrast, we do not assume any deadline constraint and aim
to establish a general foundation for modeling and analysis of
energy-harvesting systems in RTC.

A key feature making our problem difficult is energy loss
due to the limited-size capacitor (otherwise it can be analyzed
in the same way as AND connectors [19]). In Network
Calculus theory, there are methods to analyze the so-called
lossy systems [2], [3], [1], where the workload buffer is of
limited size and input data are dropped when the buffer over-
flows (while in our problem the energy capacitor is limited).
Unfortunately, the analysis techniques for these lossy systems
are not applicable to our problem. Specifically, in these lossy
systems the processing operator enjoys a nice property of
being upper semi-continuous, and thus the system analysis
can be performed by the closure of the operator with certain
shifts. However, this property does not hold for our energy-
harvesting node with limited-size capacitors. To the best of our
knowledge, this work is the first to study general systems with
limited-size resource buffer in the RTC/NC theory framework.

II. SYSTEM MODEL

We consider a networked system consisting of a number
of nodes. Each node is powered by an energy generator, e.g.,
a solar panel or a mini wind turbine. Each node i is also
equipped with a capacitor of size Mi, to temporally store
surplus energy. Several nodes may share the same energy
generator (while each of them has its own capacitor). In
this case, we assume these nodes are prioritized to receive
energy from the generator: at any time point, the generator

(a) System architecture.

(b) Node 1. (c) Node 2.

Figure 1. An example illustrating the system model.

only charges the highest-priority nodes’s capacitor. We assume
the energy are dispatched to different nodes in a prioritized
manner rather than a controlled shared manner since (i) this
is good for system predictability (analog to the fixed-priority
scheduling with CPU time as resource), and (ii) in practice
this can be implemented by simple circuits (details are shown
in the appendix).

A dataflow traverses through multiple nodes. For simplicity,
we assume time to be continuous and use a fluid workload
model. In real systems, there is always a minimum granularity
in both time and data (bit, word, cell or packet). In that case the
theory of this paper can also be applied by taking into account
the extra costs in both space and time due to the minimum
granularity. It takes a constant amount of energy for the node
to process one unit of data. When the capacitor is empty and
there is no energy input, the node will not process any data
and all the input data are stored in the memory buffer, and
wait until there is available energy. Data stored in the memory
buffer are processed in the FIFO order. There is no predefined
limitation of the data buffer size.

As in traditional RTC, we do not make any particular
assumption to network topology, except that the network is
acyclic. Nevertheless, the techniques of this paper can be
generalized to handle cyclic networked systems by the iterative
approach as introduced in [6].

Figure 1 shows an example to illustrate the system model
described above, where the output data stream is the input data
stream of nodes 2, and the remaining energy of node is the
energy input of node 2. Node 1 has a capacitor of size M1 = 2

and node 2 has a capacitor of size M2 = 3.
The problem to solve in this paper is to compute upper

bounds of (i) the delay at each node (the time between the
arrival time of a datum and the time when it is processed) and
(ii) the buffer requirement at each node.

III. RTC FRAMEWORK

A. Arrival and Service Curves
RTC uses variability characterization curves (curves for

short) to describe timing properties of event streams and
available resource:

Definition 1 (Arrival Curve). Let R(s, t] denote the total
amount of requested capacity to process in time interval (s, t].
Then, the corresponding upper and lower arrival curves are
denoted as αu and αl, respectively, and satisfy:

∀s < t, αl(t − s) ≤ R(s, t] ≤ αu(t − s) (1)

where αu(0) = αl(0) = 0.

Definition 2 (Service Curve). Let C(s, t] denote the amount
of data that the resource can process in time interval (s, t].
Then, the corresponding upper and lower service curves are
denoted as βu and βl, respectively, and satisfy:

∀s < t, βl(t − s) ≤ C(s, t] ≤ βu(t − s) (2)

where βu(0) = βl(0) = 0.

B. Greedy Processing Component (GPC)
A widely used abstract component used in RTC is the

Greedy Processing Component (GPC) . A GPC processes data
from input (described by arrival curves αu and αl) in a greedy
fashion, as long as it complies with the availability of resources
(described by service curves βu and βl). A GPC produces
an output data stream, described by output arrival curves α′u

and α′l, and output remaining service, described by remaining
service curves β′u and β′l:

α′ugpc(∆) = min{sup
0≤λ

{ inf
0≤µ≤λ+∆

{αu(µ) + βu(λ +∆ − µ)}

− βl(λ)}, βu(∆)}

α′lgpc(∆) = min{ inf
0≤µ≤∆

{sup
0≤λ

{αl(µ + λ) − βu(λ)}

+ βl(∆ − µ)}, βl(∆)}

β′ugpc(∆) = inf
∆≤λ

{βu(λ) − αl(λ)}+

β′lgpc(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)}

where {a}+ means sup{a,0}.
The amount of data in the input buffer, i.e., the backlog,

can be bounded by max(0, V (αu, βl)), where V (f, g) gives
the maximal vertical distance from curve f to curve g:

V (f, g) ≜ sup
λ≥0

{f(λ) − g(λ)}

The delay of data can be bounded from above by H(αu, βl),
where H(f, g) gives the maximal horizontal distance from
curve f to curve g

H(f, g) ≜ sup
λ≥0

{inf{ε ≥ 0 ∶ f(λ) ≤ g(λ + ε)}}

Multiple GPCs can be connected into a network to model
systems with resource sharing and networked structures. The
output arrival and resource curves of one GPC are used as the
input for the analysis of the downstream nodes along the data
and resource flow.

C. AND Connector

Another useful abstract component is the AND connector
[19], which combines two input data streams into a single
combined stream. Data arriving on one input stream must be
buffered until partner data arrive on the other input stream.
Partnering data join together and immediately pass the AND
connector, and consequently either of the internal buffers is
empty at any point of time. The two input data streams are
characterized by arrival curves αu1 , α

l
1 and αu2 , α

l
2, then the

output data stream can be bounded by arrival curves

αuand=max(min(sup
λ≥0

{αu(∆+λ)−γl(λ)}+B1−B2, γ
u
(∆)),

min(sup
λ≥0

{γu(∆ + λ)−αl(λ)}+B2−B1, α
u
(∆)))

αland=max(min(inf
λ≥0

{αl(∆+λ)−γu(λ)}+B1−B2, γ
l
(∆)),

min(sup
λ≥0

{γl(∆+λ)−αu(λ)}+B2−B1, α
l
(∆)))

where B1 and B2 denote the initial buffer fill level of the two
input streams (min(B1,B2) = 0).

The delay of data at two inputs is bounded by

dmax,1 ≤H(αu1 +B1, α
l
2 +B2)

dmax,2 ≤H(αu2 +B2, α
l
1 +B1)

and the backlog at the two input buffers are bounded by

bmax,1 ≤ max(0, V (αu1 +B1, α
l
2 +B2))

bmax,2 ≤ max(0, V (αu2 +B2, α
l
1 +B1))

D. Our Model Generalizes both GPC and AND

We model each node in the energy-harvesting system by an
abstract component ERC (Energy-as-Resource Component) in
the RTC framework, and connect multiple ERCs to model the
overall network. In the following, we first discuss the similarity
and difference between GPC and AND, and then show that
ERC is actually a generalization of both GPC and AND.

We can view the resource input of GPC as a kind of
data, and interpret the semantics of GPC in a similar way
to AND: GPC has two data input ports, and partnering data
from two input ports join together and immediately pass the
GPC. However, different from AND, one of the input port
of GPC (corresponding to the resource input in the original
interpretation) has no buffer, while the other input still has
unbounded buffer as in AND. When a datum arrives at the
buffer-less input port, if the buffer at the other input is empty,
this newly arrived datum is dropped. Otherwise, the newly
arrived datum will join with a partner in the other input’s
buffer and pass the GPC immediately.

On the other hand, we can also view one of the two input
streams of AND as a kind of resource, and the data from the
other input port is processed only if there is available resource.

Figure 2. Illustration of GPC, AND and ERC.

However, different from GPC, the resource can be stored in
a buffer if there is currently no data to process. There is no
limitation of the amount of resource stored in the buffer, so
the resource may be infinitely accumulated if there are fewer
data than resource in the long term. In summary, the essential
difference between GPC and AND lies in whether it has the
storage capability at the “resource” input port.

Now we look at ERC, in which the resource input port has
a capacitor of a certain size M . So both GPC and AND can
be viewed as special cases of ERC: the behavior of ERC is
the same as GPC if M = 0, while is the same as AND if
M → +∞ (or M is sufficiently large and it is guaranteed that
no energy loss occurs), as shown in Figure 2.

In the following sections, we develop techniques to analyze
the delay bound, backlog bound and compute the output arrival
curves and remaining service curves of ERC. Our analysis
techniques is the same as established analysis methods of
GPC when M = 0, and the same as that of AND when M is
sufficiently large.

IV. DELAY AND BACKLOG ANALYSIS

In this section, we present how to bound the the maximal
delay and backlog of an ERC.

We use R′(s, t] to denote the amount of output data created
in (s, t], and use C ′(s, t] to denote the amount of remaining
energy in (s, t]. We use cap(t) to denote the amount of energy
stored in the capacitor at time t, and buf(t) the number of
unprocessed data backlogged in the buffer at time t.

We assume the system starts running at an arbitrarily early
time point p (i.e., p → −∞). We further assume the buffer
is initially empty buf(p) = 0, and the initial fill level of the
capacitor is cap(p) =M0 ≤M . We first introduce some basic
properties.

Lemma 1. At any time point, at most one of the buffer and
the capacitor is not empty.

Lemma 2. For any time interval (s, t] it holds:

R′
(s, t] = R(s, t] + buf(s) − buf(t)

Lemma 3. For any time interval (s, t], it holds:

R′
(s, t] = C(s, t] + cap(s) − cap(t) −C ′

(s, t]

The correctness of the above lemmas is easy to verify and
complete proofs are omitted.

Theorem 1. The maximal backlog of input data is bounded
from above by BCK:

BCK = max(0, V (αu, βl +M0
)) (3)

Proof. First, it is trivial BCK ≥ 0. In the following we prove
the backlog is bounded by V (αu, βl +M0).

We prove by contradiction, assuming at some time points
the backlog is strictly larger than V (αu, βl +M0). Let t be
the earliest one among such time points and thus cap(t) = 0.
Let s be the earliest time point before t such that the capacitor
fill level is at most M0 at any time point in (s, t], and thus
we have C ′(s, t] = 0, cap(s) =M0 and buf(s) = 0. Note that
since cap(p) =M0 and cap(t) = 0, there must exist such an
s. Then by Lemma 2 and 3 we have

buf(t) = R(s, t] + buf(s) −C(s, t] − cap(s) + cap(t) +C ′
(s, t]

= R(s, t] −C(s, t] −M0
≤ V (αu, βl +M0

)

which contradicts buf(t) > V (αu, βl +M0).

Theorem 2. The maximal delay of data is bounded from above
by DLY:

DLY =H(αu, βl +M0
)

Proof. Let r be the arrival time of an arbitrary piece of datum.
Let s be the latest time point no later than r such that cap(s) =
M0. Note there must exist such an s since cap(p) =M0. Let
λ′ = r − s.

Let ε∗ =H(αu, βl +M0), so we have

ε∗ ≥ inf{ε ≥ 0 ∶ αu(λ′) ≤ βl(λ′ + ε) +M}

so there exists ε ≤ ε∗ such that

αu(λ′) ≤ βl(λ′ + ε) +M0

and since R(s, r] ≤ αu(λ′) and C(s, r + ε] ≥ βl(λ′ + ε), we
have

R(s, r] ≤ C(s, r + ε] +M0

Since buf(s) = 0, we know all the data released in (s, r] have
been processed by time r + ε, so the delay of the considered
datum is bounded by ε ≤H(αu, βl +M0).

We can see that the backlog and delay bounds of ERC
are computed in exactly the same way as that of the AND
connector, where input port 1 corresponds to the data stream,
input port 2 corresponds to energy resource, B1 = 0 and
B2 =M

0.

Worst-Case Performance Depends on M0, but not M

Theorem 1 and 2 imply an interesting phenomenon: given
fixed αu and βl, the backlog and delay bounds only depend
on the initial level M0 of the capacitor, but is independent
of the total capacitor size M . Note that this phenomenon is
not only a result of our analysis, but indeed exists in the real
system behavior. In Section VII we will further discuss this
phenomenon with simulation experiments.

This phenomenon gives us important guidance in designing
such systems. To optimize the worst-case performance of a
component, the system designer should increase the initial fill
level of the capacitor. If the initial fill level of the capacitor is
low, the worst-case performance won’t be improved no matter
how much we increase the size of the capacitor. Therefore,
a basic rule for any reasonable design of such systems is to

fully charge the capacitor before the system starts running. In
the remaining of this paper, we assume the systems obey the
above rule, i.e., M0 =M .

V. REMAINING SERVICE CURVES

In this section, we present how to compute the remaining
service curves of an ERC.

Lemma 4. The system starts running at an arbitrarily early
time point p with cap(p) =M and buf(p) = 0. For any time
point t it holds

C ′
(p, t] = sup

p≤u≤t
{C(p, u] −R(p, u]}+ (4)

Proof. We let u be the latest time point earlier than t such
that cap(u) =M . Applying Lemma 2 and 3 to (p, u] gives

C(p, u]+cap(p)−cap(u)−C ′
(p, u] = R(p, u]+buf(p)−buf(u)

By cap(p) = cap(u) =M and buf(p) = buf(u) = 0, this can
be written as C ′(p, u] = C(p, u]−R(p, u]. On the other hand,
since the capacitor is not full in (u, t], we have C ′(p, t] =

C ′(p, u]. In summary, we have

C ′
(p, t] = C(p, u] −R(p, u] (5)

In the following we prove that

∀v ∈ (p, t] ∶ C(p, v] −R(p, v] ≤ C(p, u] −R(p, u] (6)

We prove in two cases:
● v < u. Since buf(u) = 0, so applying Lemma 2 and 3 to

(v, u] gives

C(v, u] + cap(v) − cap(u) −C ′
(v, u] = R(v, u] + buf(v)

⇒ C(v, u] + cap(v) −M −C ′
(v, u] = R(v, u] + buf(v)

Since cap(v) −M ≤ 0, this is written as

C(v, u] ≥ R(v, u]

⇒ C(p, u] −R(p, u] ≥ C(p, v] −R(p, v]

● v > u. In this case, By the definition of u and v > u, we
know the capacitor is not full in (u, v], so C ′(u, v] = 0.
We also know buf(u) = 0 since cap(u) = M . Applying
Lemma 2 and 3 to (u, v] gives

C(u, v] +M − cap(v) = R(u, v] − buf(v)

⇒ C(u, v] ≤ R(u, v]

⇒ C(p, u] −R(p, u] ≥ C(p, v] −R(p, v]

In summary, we have proved (6) for both cases. The lemma
is proved by combining (5) and (6).

Although proved in a different way, the result of Lemma 4
is exactly the same as its counterpart in the analysis of GPC
[19], and thus the remaining service curves can be computed
in the same way as in GPC.

Theorem 3. The remaining energy is bounded from above and
from below by the curves β′u and β′l,

β′u(∆) =β′ugpc(∆)

β′l(∆) =β′lgpc(∆)

where β′ugpc and β′lgpc are defined in Section III-B.

Proof. With Lemma 4, the proof is the same as that for β′ugpc
and β′lgpc in [19].

Remaining Energy Bounds are Independent of M

Theorem 3 suggests an interesting (and somehow counter-
intuitive) phenomenon: both upper and lower bounds of re-
maining energy in a time interval is independent of the size
of the capacitor.

An ERC passes remaining energy only when the capacitor
is full. The capacitor is full when the system starts running
at p. We let the resource come as fast as possible since the
system starts, and data come as slow possible, which leads to
the same maximal remaining energy as in GPC.

However, it is a bit counterintuitive that the lower bound
of the remaining energy also does not change with a larger
capacitor. Intuitively, using a large capacitor to store surplus
energy seems to be able to decrease energy loss, and therefore
the remaining energy of an ERC should decrease. Indeed, a
larger capacitor may reduce energy loss in some time intervals,
however, the global minimum still keeps unchanged. Note
that this phenomenon is not only the result of our analysis,
but indeed exists in the real system behavior. In Section
VII we will further discuss this phenomenon with simulation
experiments.

VI. OUTPUT ARRIVAL CURVES

The analysis of output arrival curves of ERC is more
complicated. Unlike the remaining service curves that can be
computed in exactly the same way as GPC, the characteristics
of the output data stream may be very different under dif-
ferent parameter configurations. To see this, we consider the
following special cases:

1) The capacitor never underflows. In this case, there is
available energy whenever data arrive, so the output
arrival curves are the same as the input arrival curves.

2) The capacitor size is 0. In this case, surplus energy is
passed immediately and an ERC behaves in the same
way as a GPC.

3) The capacitor never overflows. In this case, there is no
energy loss and an ERC behaves in the same way as an
AND connector.

The above observations suggest us to analyze ERC from
different perspectives. In the following, we present three
methods to compute the output arrival curves. Each method is
designed for systems that behaves closer to one of the above
special cases. As will be shown in Section VII, these three
methods are in general incomparable, i.e., each method may
performs better than others with different system parameters.
Therefore, unifying the three methods gives us more precise
results than any of them.

A. Method I: Comparing with Input Curves

The first method is designed for systems that behaves closer
to the first special case in above. Recall the backlog and delay
bounds in Theorem 1 and 2:

DLY =H(αu, βl +M0
) (7)

When M0 is the same as or larger than V (αu, βl) (the
maximal vertical distance from αu and βl), BCK = DLY = 0
and thus the output arrival curve perfect matches the input
arrival curve. When M0 is a bit smaller than V (αu, βl), a
datum may experience a small delay and there will be a
small variance between the input and output arrival curves.
By adding such variance into the input arrival curves we can
compute the output arrival curves as stated in the following
theorem.

Theorem 4. The output data stream is bounded from above
and from below by the curves α′u and α′l, where ∀∆ ≥ 0:

α′uI (∆) = αu(∆ +DLY) (8)

α′lI (∆) = αl(∆ −DLY) (9)

The idea for proving the theorem is the same as in [16]. A
complete proof is omitted here.

For systems where DLY and BCK is small, the output
curves α′uI and α′uI computed in Theorem 4 are rather precise.
However, as DLY and BCK increase, Theorem 4 becomes less
and less precise. When the long-term slope of βl is smaller
than αu, DLY and BCK are unbounded, with which α′uI is +∞
and α′lI is 0. Experimental evaluations showing this trend will
be presented in Section VII.

B. Method II: GPC-based Analysis

The second method is designed for systems that behave
closer to the second special case listed in the beginning of
Section VI.

Method I in last subsection performs good when the capac-
itor is sufficiently large (to compensate V (αu, βl), so that the
output follows the input as much as possible). In the following,
we present Method II that performs good when the capacitor
is very small. In this case, the behavior of ERC is closer to
GPC, and the output arrival curves in Method II is derived in
a way similar to that in GPC [19].

Theorem 5. The output data stream is bounded from above
and from below by curves α′u and α′l, where ∀∆ ≥ 0:

α′uII(∆) = min(sup
0≤λ

{ inf
0≤θ≤∆

{x(λ, θ) + z(θ)}} , βu(∆) +M)

α′lII(∆) = min(inf
0≤θ≤∆

{sup
0≤λ

{y(λ, θ)}, βl(∆)}) −M

where

x(λ, θ) = αu(λ + θ) + βu(∆ − θ) − βl(λ)

y(λ, θ) = αl(λ + θ) + βl(∆ − θ) − βu(λ)

z(θ) = min(M,max(0, sup
ξ≤θ

{βu(ξ) − αl(ξ)}))

Figure 3. When the capacitor size increases, the upper bound of output may
become higher and the lower bound may become lower.

The proof of this theorem is rather long and we present it
in the appendix.

Essentially, the output curves obtained by Theorem 5
adds/substracts the amount of energy stored in the capacitor on
the basis of the upper and lower output arrival curves of GPC.
Figure 3 shows an example to illustrate this. For simplicity, in
the example we view both energy and data as discrete events.
Nevertheless it is the principle for continuous energy and data
inputs. When M = 0, output data are created at the same
rate as the energy input. When M = 1, the energy stored in
the capacitor can lead to a more bursty output: the maximal
amount of output data in a time interval of length 2 + ε is 3
when M = 1, while is 2 when M = 0. Note that the lower
bound also may become lower: the minimal amount of output
data in a time interval of length 10−ε is 0 when M = 1 (time
interval (0,10)), while is 1 when M = 0.

Note that we can already get a safe upper output arrival
curve of ERC by directly adding M to the upper output arrival
curve of GPC. However, α′uII(∆) in Theorem 5 is a bit more
precise than that as z(θ) is potentially smaller than M . This
captures the following fact: if there are backlogged data at
the start of a time interval (and thus the capacitor is empty),
the amount of surplus energy stored into the capacitor in this
time interval (i.e., the amount of extra energy to forward more
data comparing with in GPC) is bounded by the difference
between the maximal energy input and the minimal data input,
which is potentially smaller than M . In this case, it is will be
pessimistic to simply add M to the upper output arrival curve
of GPC.

C. Method III: AND-based Analysis

The third method is designed for systems whose behaviors
are closer to the third special case: ERC behaves like AND
when the capacitor never overflows. In order to analyze ERC
in the way analog to AND, we shall zoom in the internal
structure of ERC, as shown in Figure 4. We can view ERC as
an AND connector equipped with a controller. The controller
guarantees the fill level of the buffer at the energy input port
in the AND connector never exceeds M . In this way, a part
of energy input is dropped (sent to the output port), and the
remaining part is sent to the AND connector. We use E(s, t]
to denote the amount of energy that are actually sent into the
AND connector, and γu and γl are the upper and lower curves
bounding E in the interval domain. If γu and γl are known,
then the output arrival curves can be computed in the same
way as αand in Section III-C, with α and γ as two inputs.
Now the question is how to compute γu and γl.

Figure 4. Modeling the internal structure of ERC based on AND.

Since the energy sent into ERC is either passed to the energy
output or sent to the AND connector, we have the following
relation:

Lemma 5. For any time interval (s, t] it holds:

C(s, t] = E(s, t] +C ′
(s, t]

By transferring this relation to the interval domain, we can
compute γ by β and β′ as follows:

Lemma 6. For any time interval (s, t] with t−s = ∆, E(s, t]
is upper and lower bounded by

γu(∆) = inf
λ≥∆

{βu(λ) − β′l(λ)}

γl(∆) = sup
0≤λ≤∆

{βl(λ) − β′u(λ)}

Proof. For any time interval (a, b] with a ≤ s and b ≥ t, it
holds E(s, t] ≤ E(a, b], so we have

E(s, t] = inf
a≤s∧b≥t

{E(a, b]} = inf
a≤s∧b≥t

{C(a, b] −C ′
(a, b]}

≤ inf
λ≥∆

{βu(λ) − β′l(λ)}

For any time interval (c, d]with s ≤ c ≤ d ≤ t, it holds E(s, t] ≥
E(c, d], so we have

E(s, t] = sup
s≤c≤d≤t

{E(c, d]} = sup
s≤c≤d≤t

{C(c, d] −C ′
(c, d]}

≥ sup
λ≤∆

{βl(λ) − β′u(λ)}

Note that β′u and β′l can be computed by Theorem 3. Then
we can compute the output arrival curves in the same way as
AND connector:

Theorem 6. The output data stream is bounded from above
and below by the curves α′uIII and α′lIII , where ∀∆ ≥ 0:

α′uIII(∆) = α′uand(∆)

α′lIII(∆) = α′land(∆)

where α′uand and α′land are defined in Section III-C, α1 = α,
α2 = γ, B1 = 0 and B2 =M .

Figure 5. Input arrival (red) and service (blue) curves of the experiments in
Section VII-A.

D. Summary

We have presented three methods to compute the output
arrival curves. Each of these three methods may outperform
the other two under certain circumstances. Finally, combining
these three methods yields more precise output arrival curves:

Theorem 7. The output data stream is bounded from above
and below by the curves α′u and α′l, where ∀∆ ≥ 0:

α′u(∆) = min(α′uI (∆), α′uII (∆), α′uIII(∆))

α′l(∆) = max(α′lI (∆), α′lII(∆), α′lIII(∆))

VII. EXPERIMENTS

The proposed analysis methods of this paper are imple-
mented in RTC Toolbox [20]. We also implement ERC in RTS
Toolbox [4] to compare the analysis results with real system
behaviors and validate the properties of ERC suggested by the
theoretical results. RTS Toolbox is a discrete-event simulator,
which can generate discrete event traces from VCC curves,
simulate them, and transform the output traces back to VCC
curves. Note that as a non-exhausted simulator, RTS Toolbox
does not guarantee to find the best/worst-case behavior of the
system. So the behavior represented by VCC obtained by RTS
Toolbox are under-approximations of the real best/worst-case
behavior.

We implement ERC by the logic in Figure 4, based on
the build-in AND connector of RTS Toolbox. Since the
AND connector accepts discrete events, in our experiments
we also use staircase curves for energy inputs, in order to
keep the consistency between our analysis and the simulation
semantics.

A. Delay and Backlog

We first evaluate how does the worst-case delay and backlog
of an ERC change with different capacitor size M and the
initial capacitor fill level M0. We use the input arrival and
service curves in Figure 5. Table I shows the worst-case delay
and backlog of this component with a fixed initial capacitor fill
level M0=3 and changing capacitor size M = 3,6,⋯,18. The
backlog and delay values in the rows of “RTC” are obtained
by our analysis in Theorem 1 and 2, and the values of “RTS”
are obtained by simulation. According to Theorem 1 and 2,
the backlog and delay bounds by our analysis only depend on
M0 and thus must be the same with different M . From the

table we can see that the maximal backlog and delay observed
in the simulation also keep unchanged with different M .

Table II shows the results under the same setting but with a
fixed M and changing M0. The maximal delay and backlog
becomes larger as we decrease the initial capacitor fill level,
in both our analysis and simulations.

By the above results we can conclude that the worst-case
performance only depends on the initial capacitor fill level M0,
but not the total capacitor size M . This is true not only in our
analysis results, but also in realistic behaviors of ERC. We
have conducted the same experiment with various parameter
settings of the input curves, the results of which all suggest
the same conclusion.

Table I
DELAY AND BUFFER VALUES WITH CHANGING CAPACITOR CAPACITY.

Fixed initial storage in capacitor: M0=3
M 3 6 9 12 15 18

RTC backlog 4
delay 19

RTS backlog 4 4 4 4 4 4
delay 18 18 18 18 18 18

Table II
DELAY AND BUFFER VALUES WITH CHANGING INITIAL STORAGE IN

CAPACITOR.

Fixed initial level in capacitor: M=10
M0 10 8 6 4 2 0

RTC buffer 0 0 1 3 5 7
delay 0 0 4 14 24 34

RTS buffer 0 0 1 3 5 7
delay 0 0 2 12 22 32

B. Remaining Energy Curves

We experimentally validate the conclusion drawn at the end
of Section V: if the capacitor is initially fully charged, the
maximal and minimal amount of remaining energy in a time
interval of certain length is independent from the capacitor
size M .

We use the same arrival (red) and service (blue) curves as
above for inputs and set M = 0,1,⋯,10. We compute the
remaining service curves using Theorem 3. As expected, the
resulting remaining service curves are all exactly the same.

Then we conduct simulations under the same settings, and
transform the resulting energy output sequence into service
curves. With all different M values, the obtained service
curves also exactly overlap each other.

Therefore, we confirm the conclusion that as long as the
capacitor is initially fully charged, the maximal and minimal
amount of remaining energy in a time interval of certain length
is always the same regardless the capacitor size M .

C. Output Arrival Curves

We evaluate the analysis precision of the three methods to
compute the output arrival curves. We conduct experiments
with two sets of input arrival (red) and service (blue) curves, as
shown in Figure 6-(a1) and (b1). For each setting, we change

(a) System Architecture

(b) Input curves

Figure 7. Example for system-level evluation.

the capacitor size M = 1,3,5. The output arrival curves by
Method I is in green, Method II in blue and Method III in
red. We also add the curves transformed from the simulation
results (black dash lines). From Figure 6 we can see that the
three methods are in general incomparable, and combining
them is indeed considerably more precise then using any of
them independently.

D. System-Level Analysis

We performance analysis and simulation with the system
shown in Figure 7-(a). The output arrival curves of node x are
used as input arrival curves of node y. The initial input arrival
curves α (black dashed) and the three input service curves βx
(red), βy (green) and βz (blue) are shown in Figure 7-(b).

Table III shows the backlog and delay bounds by both our
analysis and RTS Toolbox simulation with different Mx. The
default capacitor size of node x, y and z are 7, 5 and 3
respectively. Then we perform the analysis and run simulation
for all the whole system, the obtained delay and backlog bound
of of each node by our analysis (in columns under “RTC”) and
by simulation (in columns under “RTS”) are recorded in the
row led by Mx = 7. Then we decrease Mx by 1 and repeat
the above procedure, until Mx = 0 are done.

Table III
BACKLOG AND DELAY BOUNDS BY ANALYSIS AND SIMULATION WITH

DIFFERENT Mx

Mx

RTC RTS
backlog delay backlog delay

x y z x y z x y z x y z
7 0 3 7 0 15 50 0 2 4 0 14 25
6 1 3 7 4 15 54 1 2 4 2 13 25
5 2 3 8 9 15 59 2 2 4 7 11 25
4 3 2 8 14 13 58 3 2 4 12 9 25
3 4 2 8 19 12 57 4 2 4 18 9 25
2 5 2 8 24 12 57 5 1 4 22 3 25
1 6 2 8 29 12 57 6 0 3 27 0 23
0 7 2 7 34 10 51 7 0 3 32 0 18

As expected, when increasing the size of Mx, the maximal
backlog and delay by both our analysis and simulation de-

crease. However, as Mx increases, the maximal backlog and
delay at ERC y may increase. The reason can be explained as
follows. At ERC x the input service curves are less bursty
than the input data input (comparing the red line and the
black dashed line). When Mx is small, the behavior of the
output data is dominated by the resource availability (in short
time intervals), and the output arrival curves look more like
the input service curve than the input arrival curve. When
Mx is large, the behavior of the output data is dominated
by the input data arrival, and the output arrival curves look
more like the input arrival curve than the input service curve.
Therefore, as Mx increases, the output arrival curves of ERC
x becomes more bursty, and when they are sent to ERC y, the
maximal backlog and delay at ERC y may become larger (in
both analysis results and simulation behaviors).

As Mx increase, the maximal backlog and delay observed
in the simulation of ERC z also comply with the above
discussion. However, the change in corresponding analysis
results is not monotonic. The backlog and delay bounds first
increase then decrease. This is due to the imprecision of our
analysis methods, but not the real ERC behavior.

VIII. CONCLUSIONS AND FUTURE WORK

This paper studied the modeling and analysis of energy-
harvesting real-time network systems in the RTC framework.
Each node in the system is modeled by an ERC (Energy-
as-Resource Component), which has a limited-size capacitor
at the energy input. If the capacitor size is 0, ERC behaves
just like GPC, where extra energy will be passed immediately.
If the capacitor size is sufficiently large and no energy loss
occurs, ERC behaves just like the AND connector. Therefore,
the analysis problem of ERC is a generalization of, and thus
is more difficult than that of GPC and AND connector.

We extend existing RTC framework to analyze ERC. We
proved that the delay and backlog bounds of ERC can be
analyzed in the same way as AND connectors, and the
remaining energy curves can be computed in the same way as
GPC. The output arrival curves are computed from different
perspectives yield high-quality results with different parameter
characteristics.

Based on our analysis, we also observe some interesting
properties of ERC. First, the worst-case performance of an
ERC only depends on the initial fill level of the capacitor,
but not its total size. Second, the capacitor is initially fully
charged, the maximal and minimal energy loss at an ERC
is independent from the capacitor size. Third, increasing the
capacitor of an ERC is always good for improving the worst-
case performance of this ERC itself, but may decrease the
worst-case performance of other ERCs in the network, and
thus be harmful to the overall worst-case performance of the
whole network system. These observations are confirmed by
experiments with implementation of the analysis methods as
well as simulations.

In this paper energy is the only resource constraint to
decide when a datum is processed. In the next step we will
study the modeling and analysis of real-time network systems
where both energy and computation time poses constraints

Figure 6. Comparison of the three methods to compute the output arrival curves.

to the processing of data. Another future work is to study
holistic properties of ERC networks. A challenge is to apply
the pay-burst-only-once technique [2] to derive tighter end-to-
end delay bounds than summing up the delays of individual
components. We also plan to apply the idea of Finitary Real-
Time Calculus [5] to improve the analysis efficiency of ERC
networks.

REFERENCES

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for
flow control protocols. IEEE/ACM Transactions on Networking, 1999.

[2] J. L. Boudec and P. Thiran. Network calculus - a theory of deterministic
queuing systems for the internet. In LNCS 2050. Springer Verlag, 2001.

[3] C.S. Chang. On deterministic traffic regulation and service guarantee:
A systematic approach by filtering. IEEE Transactions on Information
Theory, 1998.

[4] Computer Engineering and ETH Zurich Networks Laboratory (TIK).
Real-Time Simulation (RTS) Toolbox, 2009.

[5] Nan Guan and Wang Yi. Finitary real-time calculus: Efficient perfor-
mance analysis of distributed embedded systems. In RTSS, 2013.

[6] Bengt Jonsson, Simon Perathoner, Lothar Thiele, and Wang Yi. Cyclic
dependencies in modular performance analysis. In EMSOFT, 2008.

[7] Shaobo Liu, Jun Lu, Qing Wu, and Qinru Qiu. Load-matching adaptive
task scheduling for energy efficiency in energy harvesting real-time em-
bedded systems. In International Symposium on Low-Power Electronics
and Design, pages 325–330, 2010.

[8] Shaobo Liu, Jun Lu, Qing Wu, and Qinru Qiu. Harvesting-aware power
management for real-time systems with renewable energy. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 20(8):1473–
1486, Aug 2012.

[9] Shaobo Liu, Qinru Qiu, and Qing Wu. Energy aware dynamic voltage
and frequency selection for real-time systems with energy harvesting.
In Design, Automation and Test in Europe, pages 236–241, 2008.

[10] Shaobo Liu, Qing Wu, and Qinru Qiu. An adaptive scheduling and
voltage/frequency selection algorithm for real-time energy harvesting
systems. In Design Automation Conference, pages 782–787, 2009.

[11] Jun Lu, Shaobo Liu, Qing Wu, and Qinru Qiu. Accurate modeling
and prediction of energy availability in energy harvesting real-time
embedded systems. In International Green Computing Conference,
pages 469–476, Aug 2010.

[12] Jun Lu and Qinru Qiu. Scheduling and mapping of periodic tasks on
multi-core embedded systems with energy harvesting. In International
Green Computing Conference and Workshops, pages 1–6, 2011.

[13] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time scheduling
with regenerative energy. In 18th Euromicro Conference on Real-Time
Systems, pages 10 pp.–270, 2006.

[14] C. Moser, Jian-Jia Chen, and L. Thiele. Reward maximization for
embedded systems with renewable energies. In International Conference
on Embedded and Real-Time Computing Systems and Applications,
pages 247–256, 2008.

[15] Clemens Moser, Lothar Thiele, Davide Brunelli, and Luca Benini. Adap-
tive power management in energy harvesting systems. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages
773–778, 2007.

[16] Simon Perathoner, Nikolay Stoimenov, and Lothar Thiele. Reliable
mode changes in real-time systems with fixed priority or edf scheduling.
In In Proc. of the Conference on Design, Automation and Test in, 2009.

[17] Sujesha Sudevalayam and Purushottam Kulkarni. Energy Harvesting
Sensor Nodes: Survey and Implications. IEEE Communications Surveys
& Tutorials, 13(3):443–461, 2011.

[18] Terry Tidwell, Robert Glaubius, Christopher D. Gill, and William D.
Smart. Optimizing expected time utility in cyber-physical systems
schedulers. In RTSS, 2010.

[19] Ernesto Wandeler. Modular performance analysis and interface-based
design for embedded real-time systems. In PhD thesis, ETHZ, 2006.

[20] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox, 2006.

[21] Bo Zhang, R. Simon, and H. Aydin. Harvesting-aware energy man-
agement for time-critical wireless sensor networks with joint voltage
and modulation scaling. IEEE Transactions on Industrial Informatics,
9(1):514–526, Feb 2013.

[22] Bo Zhang, Robert Simon, and Hakan Aydin. Joint voltage and modu-
lation scaling for energy harvesting sensor networks. In International
Workshop on Energy Aware Design and Analysis of Cyber Physical
Systems, 2010.

[23] Bo Zhang, Robert Simon, and Hakan Aydin. Maximum utility rate
allocation for energy harvesting wireless sensor networks. In Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, pages 7–16, 2011.

APPENDIX I: PROOF OF THEOREM 5
A. Proof of Upper Bound Curve α′uII
Proof. We will prove that for any time interval (s, t] with
t − s = ∆, it holds R′(s, t] ≤ α′uII (∆). We prove two parts:

R′
(s, t] ≤ βu(∆) +M (10)

R′
(s, t] ≤ sup

0≤λ
{ inf

0≤θ≤∆
{x(λ, θ) + z(θ)}} (11)

We first prove (10). By Lemma 3 we have

R′
(s, t] =C(s, t] + cap(s) − cap(t) −C ′

(s, t]

≤ C(s, t] +M ≤ βu(∆) +M

Then we prove (11), distinguishing two cases: (i) buf(s) =
0, (ii) buf(s) > 0.

(i) buf(s) = 0. In this case by Lemma 2 we know

R′
(s, t] ≤ R(s, t] ≤ αu(∆)

In the following we prove αu(∆) ≥ α′uII (∆). Let λ′ = ∆ − θ,
then we have

α′uII (∆) > sup
λ≥0

{ inf
θ≤∆

{x(λ, θ)}} ≥ inf
θ≤∆

{x(λ′, θ)}

= αu(∆) + βu(λ′) − βl(λ′) ≥ αu(∆)

(ii) buf(s) > 0. Let a be the earliest time point no later than
s such that the buffer is continuously non-empty in (a, s], and
b the earliest time point no later than t such that the buffer is
continuously non-empty in (b, t] (b = t if buf(t) = 0). Note
that a = b if the buffer is continuously non-empty in (s, t].

R′
(s, t] =R′

(a, b] −R′
(a, s] +R′

(b, t]

≤ sup
a≤s

{R′
(a, b] −R′

(a, s] +R′
(b, t]}

We know the following relations:
1) Since the buffer is empty at both a and b, we have

R′(a, b] = R(a, b].
2) Since the buffer is continuously non-empty in (a, s], we

have R′(a, s] = C(a, s].
3) Since the buffer is continuously non-empty in (b, t], we

have R′(b, t] = C(b, t].
Applying these relations to the above inequality gives

R′
(s, t] < sup

a≤s
{R(a, b] −C(a, s] +C(b, t]} (12)

In the following, we prove that ∀b′ ∈ (s, t] it holds:

R(a, b] +C(b, t] ≤ R(a, b′] +C(b′, t] + z(b′ − s) (13)

We prove for two cases:
1) b′ ≥ b. By Lemma 2 and 3 we have

C(b, b′]+cap(b)−cap(b′)−C ′
(b, b′]=R(b, b′]+buf(b)−buf(b′)

Since the buffer is empty at b and is continuously non-
empty in (b, b′], we known buf(b) = 0 and C ′(b, b′] =
cap(b′) = 0. Therefore, the above equation can be
rewritten as

R(b, b′] = C(b, b′] + cap(b) + buf(b′) ≥ C(b, b′]

by which we know C(b, t]−C(b′, t] ≤ R(a, b′]−R(a, b],
and thus (13) holds.

2) b′ < b. by Lemma 3 and buf(b) = 0 we have:

C(b′, b]+cap(b′)−cap(b)−C ′
(b′, b] = R(b′, b]+buf(b′)

⇒ R(b′, b] ≤ C(b′, b] + cap(b′) (14)

Let c be the earliest time point no earlier than s such that
buf(c) = 0. Since the buffer becomes from non-empty
to empty at c, we also know cap(c) = 0. Note that there
must exist such a point c since buf(s) > 0.
Applying Lemma 2 and 3 to (c, b′] gives

C(c, b′]+cap(c)−cap(b′)−C ′
(c, b′] = R(c, b′]+buf(c)

and since buf(c) = 0 and cap(c) = 0, we have

cap(b′) ≤ C(c, b′] −R(c, b′]) ≤ βu(b′ − c) − αl(b′ − c)

≤ sup
ξ≤b′−s

{βu(ξ) − αl(ξ)}

Moreover, it trivially holds 0 ≤ cap(b′) ≤M . So

cap(b′) ≤ z(b′ − s) (15)

Combining (14) and (15) gives

R(b′, b] ≤ C(b′, b] + z(b′ − s)

⇒R(a, b] −R(a, b′] ≤ +C(b′, t] −C(b, t] + z(b′ − s)

so (13) holds for this case.
In summary, we have proved (13) for both cases. Now

putting (12) and (13) together, we have

R′
[s, t)

< sup
a≤s

{ inf
s≤b′≤t

{R(a, b′] −C(a, s] +C(b′, t] + z(b′ − s)}}

= sup
s−a≥0

{ inf
b′ − s ≥ 0

∧t − b′ ≥ 0

{R(a, b′] −C(a, s] +C(b′, t] + z(b′ − s)}}

≤ sup
s−a≥0

{ inf
b′ − s ≥ 0

∧t − b′ ≥ 0

{αu(b′−a)−βl(s−a)+βu(t−b′)+z(b′−s)}}

= sup
0≤λ

{ inf
0≤θ≤∆

{αu(λ + θ) − βl(λ) + βu(∆ − θ) + z(θ)}}

So (11) is also proved.

B. Proof of Lower Bound Curve α′lII
Proof. We will prove that for any time interval (s, t] with
t − s = ∆, it holds R′(s, t] ≥ α′lII(∆).

To this end, we first construct an artificial component G∗,
whose capacitor is of size 0, to process the input events. The
artificial component G∗ works in exactly the same way as the
GPC. Then we bound R′(s, t] from below by comparing the
output event sequences generated by our original component
G and by the artificial component G∗.

We use R′∗(s, t] to denote the number of output events in
the G∗-sequence. We will prove

R′
(s, t] ≥ R′∗

(s, t] −M (16)

The proof is established if this is true, since for GPC we have

R′∗
(s, t] ≥ min(inf

0≤θ≤∆
{sup

0≤λ
{y(λ, θ)}, βl(∆)}) (17)

(a) System model (b) Circuits

Figure 8. An ERC network with prioritized capacitors and the implementation circuits.

In the following we prove (16). Let u∗ be the earliest time
point no later than t such that for any time instant in (u∗, t]
the buffer is non-empty in the G∗-sequence. We will prove
the following two parts, the combination of which gives (16):

R′
(u∗, t] ≥ R′∗

(u∗, t] (18)
R′

(s, u∗] ≥ R′∗
(s, u∗] −M (19)

We first prove (18). Let u be the earliest time point no later
than t such that for any time instant in (u, t] the buffer is
non-empty in the G-sequence. We know u ≥ u∗ since at any
time point the accumulated amount of processed events (from
the system starting time) by G is no smaller than that by G∗.
The the capacitor size is 0 and the buffer is continuously non-
empty in (u, t] in the G∗-sequence, so we have

R′∗
(u, t] = C(u, t] (20)

The buffer is also continuously non-empty in (u, t] in the
G-sequence, so we have

R′
(u, t] = C(u, t] (21)

In the G∗-sequence, empty at buf(u∗) = 0 and the buffer is
continuously busy in (u∗, u], so we know

R′∗
(u∗, u] ≤ R(u∗, u] (22)

On the other hand, in the G-sequence, the buffer is empty at
u in the, so we

R′
(u∗, u] ≥ R(u∗, u] (23)

By (22) and (23) we know R′∗[u∗, u) ≤ R′[u∗, u), which,
together with (20) and (21), proves (18).

Then we prove (19). Let w∗ be the earliest time point no
later than s such that for any time instant in (w∗, s] the buffer
is non-empty in the G∗-sequencers. Let w be the earliest time
point no later than s such that for any time instant in (w, s]
the buffer is non-empty in the G-sequence (w = w∗ = s if
buf(s) = 0). We will prove (19) by three parts

R′
(w∗, u∗] = R′∗

(w∗, u∗] (24)
R′

(w, s] ≤ R′∗
(w, s] (25)

R′
(w∗,w] ≥ R′∗

(w∗,w] −M (26)

We first prove (24). Since the buffer is empty at both w∗ and
u∗ in the G∗-sequence, we know R′∗(w,u∗] = C(w,u∗]. At
any time point the accumulated amount of processed events
(from the system starting time) by G is no smaller than by
G∗, so in the G-sequence, the buffer is also empty at w∗ and
u∗, so we also have R′(w∗, u∗] = C(w∗, u∗]. In summary we
have (24).

Secondly, we prove (25). Since in the G∗-sequence
the buffer is continuously non-empty in (w, s], we have
R′∗(w, s] = C(w, s]. On the other hand, the buffer is also con-
tinuously non-empty in (w, s] in the G-sequence, by Lemma
3 we know R′(w, s] = C(w, s]−cap(s)−C ′(w, s] ≤ C(w, s].
In summary, we have R′(w, s] ≤ R′∗(w, s].

Finally, we prove (26). In the G-sequence, by Lemma 3 we
know

R′
(w∗,w] ≤ C(w∗,w] +M (27)

In the G∗-sequence, the buffer is continuously non-empty
in (w∗,w], so we have

R′∗
(w∗,w] = C(w∗,w] (28)

Combining (27) and (27) proves (26).

APPENDIX II: CIRCUITS FOR PRIORITIZED CAPACITOR

Figure 8-(b) illustrates the circuit to prioritize the capacitors
of three nodes connected as in 8-(a). R1, R2 and R3 represents
the workload to process input data of three ERC nodes 1, 2
and 3 (a switch for each emulate the decision of whether the
data buffer is empty or not). C1, C2 and C3 are the capacitor
of three nodes. The dual differential comparator LM393N
between node 1 and 2 determines whether C1 is full or not.
If yes, the amplifier 2N5551 triggers the relay EDR201A05
and C2 is connected to the charging circuit. The prioritization
between C2 and C3 is implemented similarly.

