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A large class of embedded systems is distinguished from general-purpose computing systems by the need
to satisfy strict requirements on timing, often under constraints on available resources. Predictable system
design is concerned with the challenge of building systems for which timing requirements can be guaranteed
a priori. Perhaps paradoxically, this problem has become more difficult by the introduction of performance-
enhancing architectural elements, such as caches, pipelines, and multithreading, which introduce a large
degree of uncertainty and make guarantees harder to provide. The intention of this article is to summa-
rize the current state of the art in research concerning how to build predictable yet performant systems.
We suggest precise definitions for the concept of “predictability”, and present predictability concerns at dif-
ferent abstraction levels in embedded system design. First, we consider timing predictability of processor
instruction sets. Thereafter, we consider how programming languages can be equipped with predictable
timing semantics, covering both a language-based approach using the synchronous programming paradigm,
as well as an environment that provides timing semantics for a mainstream programming language (in this
case C). We present techniques for achieving timing predictability on multicores. Finally, we discuss how to
handle predictability at the level of networked embedded systems where randomly occurring errors must be
considered.
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1. INTRODUCTION

Embedded systems distinguish themselves from general-purpose computing systems
by several characteristics, including the limited availability of resources and the re-
quirement to satisfy nonfunctional constraints, for instance, on latencies or throughput.
In several application domains, including automotive, avionics, or industrial automa-
tion, many functionalities are associated with strict requirements on deadlines for
delivering results of calculations. In many cases, failure to meet deadlines may cause
a catastrophic or at least highly undesirable system failure, associated with risks for
human or economical damages.

Predictable system design is concerned with the challenge of building systems in
such a way that requirements can be guaranteed from the design. This means that
an off-line analysis should demonstrate satisfaction of timing requirements, subject
to assumptions made on operating conditions foreseen for the system [Stankovic and
Ramamritham 1990]. Devising such an analysis is a challenging problem, since timing
requirements propagate down in the system hierarchy, meaning that the analysis
must foresee timing properties of all parts of a system: Processor and instruction set
architecture, language and compiler support, software design, runtime system and
scheduling, communication infrastructure, etc. Perhaps paradoxically, this problem
has become more difficult by the trend to make processors more performant, since
the introduced architectural elements, such as pipelines, out-of-order execution, on-
chip memory systems, etc., lead to a large degree of uncertainty in system execution,
making guarantees harder to provide.

One strategy to the problem of guaranteeing timing requirements, which is some-
times proposed, is to exploit performance-enhancing features that have been developed
and over-provision whenever the criticality of the software is high. The drawback is
that, often, requirements cannot be completely guaranteed anyway, and that resources
are wasted, for instance, when a low energy budget is important.

It is therefore important to develop techniques that really guarantee timing require-
ments that are commensurate with the actual performance of a system. Significant
advances have been made in the last decade on analysis of timing properties (see,
e.g., Wilhelm et al. [2008] for an overview). However, these techniques cannot make
miracles. They can only make predictions if the analyzed mechanisms are themselves
predictable, that is, if their relevant timing properties can be foreseen with sufficient
precision. Fortunately, the understanding of how to design systems that reconcile ef-
ficiency and predictability has increased in recent years. An earlier tutorial paper
by Thiele and Wilhelm [2004] examined the then state of the art regarding techniques
for building predictable systems, with the purpose to propose design principles and out-
line directions for further work. Recent research efforts include European projects, such
as PREDATOR1 and MERASA [Ungerer et al. 2010], that have focused on techniques
for designing predictable and efficient systems, as well as the PRET project [Edwards
and Lee 2007; Liu et al. 2012], which aims to equip instruction set architectures with
control over timing.

1http://www.predator-project.eu.
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The intention of this article is to survey some recent advances in research on building
predictable yet performant systems. Thiele and Wilhelm [2004] listed performance-
enhancing features of modern processor architectures, including processor pipelines
and memory hierarchies, and suggested design principles for handling them when
building predictable systems. In this article, we show how the understanding of pre-
dictability properties of these features has increased, and survey techniques that have
emerged. Since 2004, multicore processors have become mainstream, and we survey
techniques for using them in predictable system design. Thiele and Wilhelm [2004]
also discussed the influence of the software structure on predictability, and suggested
disciplined software design, for instance, based on some predictability-supporting com-
putation paradigm, as well as the integration of development techniques and tools
across several layers. In this article, we describe how compilation and timing analysis
can be integrated with the goal to make the timing properties of a program visible di-
rectly to the developer at design-time, enabling control over the timing properties of a
system under development. We also describe a language-based approach to predictable
system design based on the synchronous programming paradigm. To keep our scope
limited, we will not discuss particular analysis methods for deriving timing bounds
(again, see Wilhelm et al. [2008]).

In a first section, we discuss basic concepts, including how “predictability” of an
architectural mechanism could be defined precisely. The motivation is that a better un-
derstanding of “predictability” can preclude efforts to develop analyses for inherently
unpredictable systems, or to redesign already predictable mechanisms or components.
In the sections thereafter, we present techniques to increase predictability of architec-
tural elements that have been introduced for efficiency.

In Section 3, we consider the predictability of various microarchitectural components.
Important here is the design of processor pipelines and the memory system.

In Sections 4 and 5, we move up one level of abstraction, to the programming lan-
guage, and consider two different approaches for putting timing under the control of
a programmer. Section 4 contains a presentation of synchronous programming lan-
guages, PRET-C and Synchronous-C, in which constructs for concurrency have a de-
terministic semantics. We explain how they can be equipped with predictable timing
semantics, and how this timing semantics can be supported by specialized processor
implementations. In Section 5, we describe how a static timing analysis tool (aiT) can
be integrated with a compiler for a widely-used language (C). The integration of these
tools can equip program fragments with timing information (given a compilation strat-
egy and target platform). It also serves as a basis for assessing different compilation
strategies when predictability is a main design objective.

In Section 6, we consider techniques for multicores. Such platforms are finding their
way into many embedded applications, but introduce difficult challenges for predictabil-
ity. Major challenges include the arbitration of shared resources such as on-chip mem-
ories and buses. Predictability can be achieved only if logically unrelated activities can
be isolated from each other, for instance, by partitioning communication and memory
resources. We also discuss concerns for the sharing of processors between tasks in
scheduling.

In Section 7, we discuss how to achieve predictability when considering randomly
occurring errors that, for instance, may corrupt messages transmitted over a bus be-
tween different components of an embedded system. Without bounding assumptions on
the occurrence of errors (which often cannot be given for actual systems), predictabil-
ity guarantees can only be given in a probabilistic sense. We present mechanisms for
achieving such guarantees, for instance, in order to comply with various standards for
safety-critical systems. Finally, Section 8 presents conclusions and challenges for the
future.
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Table I. Examples for Intuition behind Predictability

more predictable less predictable
pipeline in-order out-of-order
branch prediction static dynamic
cache replacement LRU FIFO, PLRU

scheduling static dynamic preemptive
arbitration TDMA priority-based

2. FUNDAMENTAL PREDICTABILITY CONCEPTS

Predictable system design is made increasingly difficult by past and current develop-
ments in system and computer architecture design, where more powerful architectural
elements are introduced for performance, but make timing guarantees harder to pro-
vide [Cullmann et al. 2010; Wilhelm et al. 2009]. Hence, research in this area can be
divided into two strands: On the one hand, there is the development of ever better
analyses to keep up with these developments. On the other hand, there is the effort to
influence future system design in order to avert the worst problems for predictability
in future designs. Both these lines of research are very important. However, we argue
that they need to be based on a better and more precise understanding of the concept of
“predictability.” Without such a better understanding, the first line of research might
try to develop analyses for inherently unpredictable systems, and the second line of
research might simplify or redesign architectural components that are in fact perfectly
predictable. To the best of our knowledge, there is no agreement—in the form of a
formal definition—what the notion “predictability” should mean. Instead, criteria for
predictability are based on intuition, and arguments are made on a case-by-case basis.
Table I gives examples for this intuition-based comparison of predictability of different
architectural elements, for the case of analyzing timing predictability. For instance,
simple in-order pipelines like the ARM7 are deemed more predictable than complex
out-of-order pipelines as found in the POWERPC 755.

In the following, we discuss key aspects of predictability and therefrom derive a
template for predictability definitions.

2.1. Key Aspects of Predictability

What does predictability mean? A lookup in the Oxford English Dictionary provides
the following definitions:

predictable: adjective, able to be predicted;
to predict: say or estimate that (a specified thing) will happen in the future
or will be a consequence of something.

Consequently, a system is predictable if one can foretell facts about its future, that
is, determine interesting things about its behavior. In general, the behaviors of such a
system can be described by a possibly infinite set of execution traces. However, a predic-
tion will usually refer to derived properties of such traces, for instance, their length or
whether some interesting event(s) occurred. While some properties of a system might
be predictable, others might not. Hence, the first aspect of predictability is the property
to be predicted.

Typically, the property to be determined depends on something unknown, for in-
stance, the input of a program, and the prediction to be made should be valid for all
possible cases, for instance, all admissible program inputs. Hence, the second aspect of
predictability are the sources of uncertainty that influence the prediction quality.

Predictability will not be a Boolean property in general, but should preferably offer
shades of gray and thereby allow for comparing systems. How well can a property be
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predicted? Is system A more predictable than system B (with respect to a certain prop-
erty)? The third aspect of predictability thus is a quality measure on the predictions.

Furthermore, predictability should be a property inherent to the system. Only be-
cause some analysis cannot predict a property for system A while it can do so for
system B does not mean that system B is more predictable than system A. In fact, it
might be that the analysis simply lends itself better to system B, yet better analyses
do exist for system A.

With these key aspects, we can narrow down the notion of predictability as follows.

Thesis 2.1. The notion of predictability should capture if, and to what level of
precision, a specified property of a system can be predicted by a system-specific optimal
analysis.2 It is the sources of uncertainty that limit the precision of any analysis.

Refinements. A definition of predictability could possibly take into account more
aspects and exhibit additional properties.

—For instance, one could refine Thesis 2.1 by taking into account the complexity/cost of
the analysis that determines the property. However, the clause “by any analysis not
more expensive than X” complicates matters: The key aspect of inherence requires a
quantification over all analyses of a certain complexity/cost.

—Another refinement would be to consider different sources of uncertainty separately
to capture only the influence of one source. We will have an example of this later.

—One could also distinguish the extent of uncertainty. For instance, is the program
input completely unknown or is partial information available?

—It is also desirable that predictability of a system is characterized in a compositional
fashion. This way, the predictability of a composed system could be determined by a
composition of the predictabilities of its components.

2.2. A Predictability Template

Besides the key aspect of inherence, the other key aspects of predictability depend
on the system under consideration. We therefore propose a template for predictabil-
ity [Grund et al. 2011] with the goal of enabling a concise and uniform description of
predictability instances. It consists of the abovementioned key aspects (a) property to
be predicted, (b) sources of uncertainty, and (c) quality measure.

In this section, we illustrate the key aspects of predictability at the hand of timing
predictability.

—The property to be determined is the execution time of a program assuming uninter-
rupted execution on a given hardware platform.

—The sources of uncertainty are the program input and the hardware state in which
execution begins. Figure 1 illustrates the situation and displays important notions.
Typically, the initial hardware state is completely unknown, that is, the prediction
should be valid for all possible initial hardware states. Additionally, schedulability
analysis cannot handle a characterization of execution times in the form of a func-
tion depending on inputs. Hence, the prediction should also hold for all admissible
program inputs.

—In multicore systems (cf. Section 6), execution time is also influenced by contention on
shared resources [Fernandez et al. 2012; Nowotsch and Paulitsch 2012; Radojković
et al. 2012] induced by resource accesses of co-running threads. It is possible to
consider the state and inputs of the corunning threads as part of the initial hardware

2Due to the undecidability of all nontrivial properties, no system-independent optimal analysis exists.
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Fig. 1. Distribution of execution times ranging from best-case to worst-case execution time (BCET/WCET).
Sound but incomplete analyses can derive lower and upper bounds (LB, UB).

state and program inputs, respectively. This is what we do in the following. It may,
however, be interesting to separate the uncertainty induced by contention on shared
resources in the future.

—Usually, schedulability analysis requires a characterization of execution times in
the form of bounds on the execution time. Hence, a reasonable quality measure is
the quotient of Best-Case Execution Time (BCET) over Worst-Case Execution Time
(WCET); the closer to 1, the better.

—The inherence property is satisfied, as BCET and WCET are inherent to the system.

Let us introduce some basic definitions. Let Q denote the set of all hardware states
and let I denote the set of all program inputs. Furthermore, let Tp(q, i) be the execution
time of program p starting in hardware state q ∈ Q with input i ∈ I. Now, we are ready
to define timing predictability.

Definition 2.2 (Timing Predictability). Given uncertainty about the initial hardware
states Q ⊆ Q and uncertainty about the program inputs I ⊆ I, the timing predictability
of a program p is

Prp(Q, I) := min
q1,q2∈Q

min
i1,i2∈I

Tp(q1, i1)
Tp(q2, i2)

. (1)

The quantification over pairs of states in Q and pairs of inputs in I captures the
uncertainty. The property to predict is the execution time Tp. The quotient is the
quality measure: Prp ∈ [0, 1], where 1 means perfectly predictable.

Timing predictability as defined in Equation (1) is incomputable for most systems.
So, it is not possible to construct a general procedure that, given a system, computes its
predictability exactly. However, it is possible to develop procedures that compute ap-
proximations, that is, upper and/or lower bounds on a system’s predictability. As in the
study of the computational complexity of mathematical problems, the determination of
the predictability of some systems will always require human participation.

Refinements. The above definitions allow analyses of arbitrary complexity, which
might be practically infeasible. Hence, it would be desirable to only consider analyses
within a certain complexity class. While it is desirable to include analysis complexity
in a predictability definition, it might become even more difficult to determine the
predictability of a system under this constraint: To adhere to the inherence aspect of
predictability however, it is necessary to consider all analyses of a certain complexity/
cost.

A refinement of this definition is to distinguish hardware- and software-related
causes of unpredictability by separately considering the sources of uncertainty.
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Definition 2.3 (State-Induced Timing Predictability).

SIPrp(Q, I) := min
q1,q2∈Q

min
i∈I

Tp(q1, i)
Tp(q2, i)

. (2)

Here, the quantification expresses the maximal variance in execution time due to differ-
ent hardware states, q1 and q2, for an arbitrary but fixed program input, i. It therefore
captures the influence of the hardware only. The input-induced timing predictability
is defined analogously. As a program might perform very different actions for different
inputs, this captures the influence of software.

Definition 2.4 (Input-Induced Timing Predictability).

IIPrp(Q, I) := min
q∈Q

min
i1,i2∈I

Tp(q, i1)
Tp(q, i2)

. (3)

Clearly, by definition, Prp(Q, I) ≤ IIPrp(Q, I) and Prp(Q, I) ≤ SIPrp(Q, I) for all Q
and I. Somewhat less obviously, it can be shown that IIPrp(Q, I) ∗ SIPrp(Q, I) ≤
Prp(Q, I) for all Q and I. Together, this implies that if either of IIPrp or SIPrp equals 1,
then Prp equals the respective other one.

Example 2.5 (Predictable Software). Consider a program that executes the same
sequence of instructions regardless of the program inputs. For such a program, one
would possibly expect IIPrp(Q, I) to be 1. However, this need not be true. One example
where IIPrp(Q, I) < 1 is a system that features variable-latency instructions (e.g.,
division) and whose operands depend on the program input.

Example 2.6 (Unpredictable Software). Consider a program containing a loop
whose iteration count is determined by an input value. For such a program, IIPrp(Q, I)
will be close to 0, given that different inputs, i1 and i2, that trigger vastly different
iteration counts are contained in I.

Example 2.7 (Predictable Hardware). Consider a micro-architecture where execu-
tion times of instructions do not depend on the hardware state, for instance,
PTARM [Liu et al. 2012]. For such a system, SIPrp(Q, I) = 1 holds.

Example 2.8 (Unpredictable Hardware). Consider a program that transmits a sin-
gle message over Ethernet. Ethernet employs a binary exponential backoff mechanism
to retransmit messages after collisions on the channel: After n collisions, retransmis-
sion of data is delayed for a random number of slots taken from [0, 2n −1). If one initial
state, q1, triggers a series of collisions, while another one, q2, does not, and both are
contained in Q, then SIPrp(Q, I) will be low.

2.3. Related Work

At this point, we discuss related work that tries to capture the essence of predictability
or aims at a formal definition.

The question about the meaning of predictability was already posed in Stankovic
and Ramamritham [1990]. The main answers given in this editorial is that “it should
be possible to show, demonstrate, or prove that requirements are met subject to any
assumptions made.” Hence, it is rather seen as the existence of successful analysis
methods than an inherent system property.

Bernardes Jr. [2001] considers a discrete dynamical system (X, f ), where X is a met-
ric space and f describes the behavior of the system. Such a system is considered
predictable at a point a, if a predicted behavior is sufficiently close to the actual behav-
ior. The actual behavior at a is the sequence ( f i(a))i∈N and the predicted behavior is a
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sequence of points in δ-environments, (ai)i∈N, where ai ∈ B( f (ai−1), δ), and the sequence
starts at a0 ∈ B(a, δ).

Thiele and Wilhelm [2004] measure timing predictability as difference between the
worst- (best-) case execution time and the upper (lower) bound as determined by an
analysis. This emphasizes the qualities of particular analyses rather than inherent
system properties.

Henzinger [2008] describes predictability as a form of determinism. Several forms of
nondeterminism are discussed. Only one of them influences observable system behav-
ior, and thereby qualifies as a source of uncertainty in our sense.

The work presented in this section was first introduced in a presentation3 at a work-
shop during ESWEEK 2009. The main point, as opposed to almost all prior attempts,
is that predictability should be an inherent system property. In Grund et al. [2011], we
extend that discussion, introduce the herein repeated predictability template, and cast
prior work in terms of that template.

3. MICROARCHITECTURE

In this and the following sections, we consider predictability of architectural elements
at different levels in the system hierarchy. This section discusses microarchitectural
features, focusing primarily on pipelines (Section 3.1), predictable multithreading
mechanisms (Section 3.2), caches and scratchpads (Section 3.3), and dynamic RAM
(Section 3.4).

An instruction set architecture (ISA) defines the interface between hardware and
software, that is, the format of software binaries and their semantics in terms of
input/output behavior. A microarchitecture defines how an ISA is implemented on a
processor. A single ISA may have many microarchitectural realizations. For example,
there are many implementations of the X86 ISA by INTEL and AMD.

Execution time is not in the scope of the semantics of common ISAs. Different im-
plementations of an ISA, that is, different microarchitectures, may induce arbitrarily
different execution times. This has been a deliberate choice: Microarchitects exploit
the resulting implementation freedom introducing a variety of techniques to improve
performance. Prominent examples of such techniques include pipelining, superscalar
execution, branch prediction, and caching.

As a consequence of abstracting from execution time in ISA semantics, WCET anal-
yses need to consider the microarchitecture a software binary will be executed on. The
aforementioned microarchitectural techniques greatly complicate WCET analyses. For
simple, nonpipelined microarchitectures without caches, one could simply sum up the
execution times of individual instructions to obtain the exact execution time of a se-
quence of instructions. With pipelining, caches, and other features, execution times
of successive instructions overlap, and—more importantly—they vary depending on
the execution history4 leading to the execution of an instruction: A read immediately
following a write to the same register incurs a pipeline stall; the first fetch of an in-
struction in a loop results in a cache miss, whereas subsequent accesses may result in
cache hits, etc.

Classification of Microarchitectures. In previous work [Wilhelm et al. 2009], the fol-
lowing classification of microarchitectures into three categories has been provided. It
classifies microarchitectures based on the presence of timing anomalies and domino
effects, which will be discussed in the following text.

3See http://rw4.cs.uni-saarland.de/∼grund/talks/repp09-preddef.pdf.
4In other words: The current state of the microarchitecture.
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Fig. 2. Speculation and scheduling anomalies, taken from Reineke et al. [2006].

—Fully timing compositional architectures. The (abstract model of an) architecture
does not exhibit timing anomalies. Hence, the analysis can safely follow local worst-
case paths only. One example for this class is the ARM7. Actually, the ARM7 allows
for an even simpler timing analysis. On a timing accident, all components of the
pipeline are stalled until the accident is resolved. Hence, one could perform analyses
for different aspects (e.g., cache, bus occupancy) separately and simply add all timing
penalties to the best-case execution time.

—Compositional architectures with constant-bounded effects. These exhibit timing
anomalies but no domino effects. In general, an analysis has to consider all paths. To
trade precision with efficiency, it would be possible to safely discard local non-worst-
case paths by adding a constant number of cycles to the local worst-case path. The
Infineon TriCore is assumed, but not formally proven, to belong to this class.

—Noncompositional architectures. These architectures, for instance, the POWERPC 755
exhibit domino effects and timing anomalies. For such architectures, timing analyses
always have to follow all paths since a local effect may influence the future execution
arbitrarily.

Timing Anomalies. The notion of timing anomalies was introduced by Lundqvist
and Stenström [1999]. In the context of WCET analysis, Reineke et al. [2006] present
a formal definition and additional examples of such phenomena. Intuitively, a timing
anomaly is a situation where the local worst case does not contribute to the global
worst case. For instance, a cache miss—the local worst case—may result in a globally
shorter execution time than a cache hit because of scheduling effects, cf. Figure 2(a)
for an example. Shortening instruction A leads to a longer overall schedule, because
instruction B can now block the “more” important instruction C. Analogously, there are
cases where a shortening of an instruction leads to an even greater shortening of the
overall schedule.

Another example occurs with branch prediction. A mispredicted branch results in
unnecessary instruction fetches, which might miss the cache. In case of cache hits, the
processor may fetch more instructions. Figure 2(b) illustrates this.

Domino Effects. A system exhibits a domino effect [Lundqvist and Stenström 1999]
if there are two hardware states q1, q2 such that the difference in execution time of the
same program path starting in q1 respectively q2 is proportional to the path’s length,
that is, there is no constant bounding the difference for all possible program paths. For
instance, the iterations of a program loop never converge to the same hardware state
and the difference in execution time increases in each iteration.

Let p be a program that may execute arbitrarily long instruction sequences, de-
pending on its inputs. Then, let In denote the subset of program inputs I that yield
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executions of instruction sequences of length exactly n. A system exhibits a domino
effect if such a program exists and limn→∞ SIPrp(Q, In) < 1.

Example of Domino Effects. Schneider [2003] describes a domino effect in the pipeline
of the POWERPC 755. It involves the two asymmetrical integer execution units, a greedy
instruction dispatcher, and an instruction sequence with read-after-write dependen-
cies. The dependencies in the instruction sequence are such that the decisions of the
dispatcher result in a longer execution time if the initial pipeline state is empty, and in
a shorter execution time if the initial state is partially filled. This can be repeated arbi-
trarily often, as the pipeline states after the execution of the sequence are equivalent
to the initial pipeline states. For n subsequent executions of the instruction sequence
considered in Schneider [2003], execution takes 9n + 1 cycles when starting in one
state, q∗

1, and 12n cycles when starting in the other state, q∗
2.

An application of Definition 2.3 is the quantitative characterization of domino effects.
Let p be a program that, depending on its inputs, executes the instruction sequence
described above arbitrarily often. Then, let In denote the inputs to p that result in
executing the instruction sequence exactly n times. For this program p, the state-
induced predictability can be bounded as follows:

SIPrp(Q, In) = min
q1,q2∈Qn

min
i∈In

Tp(q1, i)
Tp(q2, i)

≤ Tp
(
q∗

1, i∗)

Tp
(
q∗

2, i∗) = 9n + 1
12n

, (4)

with limn→∞ SIPrp(Q, In) ≤ 3
4 < 1.

Another example for a domino effect is given by Berg [2006], who considers the PLRU
replacement policy of caches. In Section 3.3, we describe results on the state-induced
cache predictability of various replacement policies.

3.1. Pipelines

For nonpipelined architectures, one can simply add up the execution times of individual
instructions to obtain a bound on the execution time of a basic block. Pipelines increase
performance by overlapping the executions of different instructions. Hence, a timing
analysis cannot consider individual instructions in isolation. Instead, they have to
be considered collectively—together with their mutual interactions—to obtain tight
timing bounds.

The analysis of a given program for its pipeline behavior is based on an abstract
model of the pipeline. A transition in the model of the pipeline corresponds to the
execution of a single machine cycle in the processor. All components that contribute
to the timing of instructions have to be modeled conservatively. Depending on the
employed pipeline features, the number of states the analysis has to consider varies
greatly.

Contributions to Complexity. Since most parts of the pipeline state influence tim-
ing, the abstract model needs to closely resemble the concrete hardware. The more
performance-enhancing features a pipeline has, the larger is the search space. Super-
scalar and out-of-order execution increase the number of possible interleavings. The
larger the buffers (e.g., fetch buffers, retirement queues, etc.), the longer the influence
of past events lasts. Dynamic branch prediction, cache-like structures, and branch
history tables increase history dependence even more.

All these features influence execution time. To compute a precise bound on the exe-
cution time of a basic block, the analysis needs to exclude as many timing accidents as
possible. Such accidents may result from data hazards, branch mispredictions, occupied
functional units, full queues, etc.
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Abstract states may lack information about the state of some processor components,
for instance, caches, queues, or predictors. Transitions between states of the concrete
pipeline may depend on such information. This causes the abstract pipeline model
to become nondeterministic, although a more concrete model of the pipeline would
be deterministic. When dealing with this nondeterminism, one could be tempted to
design the WCET analysis such that only the “locally worst-case” transition is chosen,
for instance, the transition corresponding to a pipeline stall or a cache miss. However,
such an approach is unsound in the presence of timing anomalies [Lundqvist and
Stenström 1999; Reineke et al. 2006]. Thus, in general, the analysis has to follow all
possible successor states.

In particular if an abstract pipeline model may exhibit timing anomalies, the size
of its state space strongly correlates with analysis time. Initial findings of a study
into the tradeoffs between microarchitectural complexity and analysis efficiency are
provided by Maksoud and Reineke [2012]. Surprisingly, reducing the sizes of buffers
in the load-store unit may sometimes result in both improved performance as well as
reduced analysis times.

The complexity of WCET analysis can be reduced by regulating the instruction flow
of the pipeline at the beginning of each basic block [Rochange and Sainrat 2005].
This removes all timing dependencies within the pipeline between basic blocks. Thus,
WCET analysis can be performed for each basic block in isolation. The authors take
the stance that efficient analysis techniques are a prerequisite for predictability: “a
processor might be declared unpredictable if computation and/or memory requirements
to analyze the WCET are prohibitive.”

3.2. Multithreading

With the advent of multicore and multithreaded architectures, new challenges and
opportunities arise in the design of timing-predictable systems: Interference between
hardware threads on shared resources further complicates analysis. On the other hand,
timing models for individual threads are often simpler in such architectures. Recent
work has focused on providing timing predictability in multithreaded architectures.

One line of research proposes modifications to simultaneous multithreading architec-
tures [Barre et al. 2008; Mische et al. 2008]. These approaches adapt thread-scheduling
in such a way that one thread, the real-time thread, is given priority over all other
threads, the non-real-time threads. As a consequence, the real-time thread experiences
no interference by other threads and can be analyzed without having to consider its
context, that is, the non-real-time threads. This guarantees temporal isolation for the
real-time thread, but not for any other thread running on the core. If multiple real-time
tasks are needed, then time sharing of the real-time thread is required.

Earlier, a more static approach was proposed by El-Haj-Mahmoud et al. [2005] called
the virtual multiprocessor. The virtual multiprocessor uses static scheduling on a mul-
tithreaded superscalar processor to remove temporal interference. The processor is
partitioned into different time slices and superscalar ways, which are used by a sched-
uler to construct the thread execution schedule offline. This approach provides temporal
isolation to all threads.

The PTARM [Liu et al. 2012], which is a precision-timed (PRET) machine [Edwards
and Lee 2007] that implements the ARM instruction set, employs a five-stage thread-
interleaved pipeline. The thread-interleaved pipeline contains four hardware threads
that run in the pipeline. Instead of dynamically scheduling the execution of the threads,
a predictable round-robin thread schedule is used to remove temporal interference.
The round-robin thread schedule fetches an instruction from a different thread in
every cycle, removing data hazard stalls stemming from the pipeline resources. While
this scheme achieves perfect utilization of the pipeline, it limits the performance of
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Table II.
State-induced cache predictability, more precisely limn→∞ SICPrp(n), for
different replacement policies at associativities 2 to 8. PLRU is only
defined for powers of two. For example, row 2, column 4 denotes
limn→∞ SICPrFIFO(4)(n).

2 3 4 5 6 7 8
LRU 1 1 1 1 1 1 1

FIFO 1
2

1
3

1
4

1
5

1
6

1
7

1
8

PLRU 1 - 0 - - - 0
RANDOM 0 0 0 0 0 0 0

each individual hardware thread. Unlike the virtual multiprocessor, the tasks on each
thread need not be determined a priori, as hardware threads cannot affect each other’s
schedule. As opposed to Mische et al. [2008], all the hardware threads in the PTARM
can be used for real-time purposes.

3.3. Caches and Scratchpad Memories

There is a large gap between the latency of current processors and that of large memo-
ries. Thus, a hierarchy of memories is necessary to provide both low latencies and large
capacities. In conventional architectures, caches are part of this hierarchy. In caches,
a replacement policy, implemented in hardware, decides which parts of the slow back-
ground memory to keep in the small fast memory. Replacement policies are hardwired
into the hardware and independent of the applications running on the architecture.

The Influence of the Cache Replacement Policy. Analogously to the state-induced
timing predictability defined in Section 2, one can define the state-induced cache pre-
dictability of cache replacement policy p, SICPrp(n), to capture the maximal variance
in the number of cache misses due to different cache states, q1, q2 ∈ Qp, for an arbitrary
but fixed sequence of memory accesses, s, of length n, that is, s ∈ Bn, where Bn denotes
the set of sequences of memory accesses of length n. Given that Mp(q, s) denotes the
number of misses of policy p accessing sequence s starting in cache state q, SICPrp(n)
is defined as follows:

Definition 3.1 (State-Induced Cache Predictability).

SICPrp(n) := min
q1,q2∈Qp

min
s∈Bn

Mp(q1, s)
Mp(q2, s)

(5)

To investigate the influence of the initial cache states in the long run, we have studied
limn→∞ SICPrp(n). A tool called RELACS5, described in Reineke and Grund [2012], is able
to compute limn→∞ SICPrp(n) automatically for a large class of replacement policies.
Using RELACS, we have obtained sensitivity results for the widely used policies LRU,
FIFO, and PLRU at associativities ranging from 2 to 8. For truly random replacement,
the state-induced cache predictability is 0 for all associativities.

Table II depicts the analysis results. There can be no cache domino effects for LRU.
Obviously, 1 is the optimal result and no policy can do better. FIFO and PLRU are
much more sensitive to their state than LRU. Depending on its state, FIFO(k) may
have up to k times as many misses. At associativity 2, PLRU and LRU coincide. For
greater associativities, the number of misses incurred by a sequence s starting in state
q1 cannot be bounded by the number of misses incurred by the same sequence s starting
in another state q2.

5The tool is available at http://rw4.cs.uni-saarland.de/∼reineke/relacs.
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Summarizing, both FIFO and PLRU may in the worst case be heavily influenced by
the starting state. LRU is very robust in that the number of hits and misses is affected
in the least possible way.

Interference on Shared Caches. Without further adaptation, caches do not provide
temporal isolation: The same application, processing the same inputs, may exhibit
wildly varying cache performance depending on the state of the cache when the appli-
cation’s execution begins [Wilhelm et al. 2009]. The cache’s state is in turn determined
by the memory accesses of other applications running earlier. Thus, the temporal behav-
ior of one application depends on the memory accesses performed by other applications.
In Section 6, we discuss approaches to eliminate and/or bound interference.

Scratchpad Memories. Scratchpad memories (SPMs) are an alternative to caches in
the memory hierarchy. The same memory technology employed to implement caches is
also used in SPMs: Static Random Access Memory (SRAM), which provides constant
low-latency access times. In contrast to caches, however, an SPM’s contents are under
software control: The SPM is part of the addressable memory space, and software can
copy instructions and data back and forth between the SPM and lower levels of the
memory hierarchy. Accesses to the SPM will be serviced with low latency, predictably
and repeatably. However, similar to the use of the register file, it is the compiler’s
responsibility to make correct and efficient use of the SPM. This is challenging, in
particular when the SPM is to be shared among several applications, but it also presents
the opportunity of high efficiency, as the SPM management can be tailored to the specific
application, in contrast to the hardwired cache replacement logic. Section 5.2 briefly
discusses results on SPM allocation and the related topic of cache locking.

3.4. Dynamic Random Access Memory

At the next lower level of the memory hierarchy, many systems employ Dynamic Ran-
dom Access Memory (DRAM). DRAM provides much greater capacities than SRAM, at
the expense of higher and more variable access latencies.

Conventional DRAM controllers do not provide temporal isolation. As with caches,
access latencies depend on the history of previous accesses to the device. In addition,
over time, DRAM cells leak charge. As a consequence, each DRAM row needs to be
refreshed at least every 64ns, which prevents loads or stores from being issued and
modifies the access history, thereby influencing the latency of future loads and stores
in an unpredictable fashion.

Modern DRAM controllers reorder accesses to minimize row accesses and thus access
latencies. As the data bus and the command bus, which connect the processor with the
DRAM device, are shared between all of the banks of the DRAM device, controllers
also have to resolve contention for these resources by different competing memory
accesses. Furthermore, they dynamically issue refresh commands at—from a client’s
perspective—unpredictable times.

Recently, several predictable DRAM controllers have been proposed [Akesson et al.
2007; Paolieri et al. 2009b; Reineke et al. 2011]. These controllers provide a guar-
anteed maximum latency and minimum bandwidth to each client, independently of
the execution behavior of other clients. This is achieved by a hybrid between static
and dynamic access schemes, which largely eliminate the history dependence of access
times to bound the latencies of individual memory requests, and by predictable arbitra-
tion mechanisms: CCSP in Predator [Akesson et al. 2007] and TDM in AMC [Paolieri
et al. 2009b] allow to bound the interference between different clients. Refreshes are
accounted for conservatively assuming that any transaction might interfere with an
ongoing refresh. Reineke et al. [2011] partition the physical address space following the
internal structure of the DRAM device. This eliminates contention for shared resources
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within the device, making accesses temporally predictable and temporally isolated. Re-
placing dedicated refresh commands with lower-latency manual row accesses in single
DRAM banks further reduces the impact of refreshes on worst-case latencies.

3.5. Conclusions and Challenges

Considerable efforts have been undertaken to construct safe and precise analyses of the
execution time of programs on complex microarchitectures. What makes a microarchi-
tecture “predictable” and even what that is supposed to mean is understood to a lesser
extent. Classes of microarchitectures have been identified that admit efficient analyses,
for instance, fully timing compositional architectures. Microarchitectures are currently
classified into these classes based on the beliefs of experienced engineers. So far, only
microarchitectures following very simple timing models such as the PTARM [Liu et al.
2012] can be classified with very high certainty. A precise, formal definition of timing
compositionality and effective mechanisms to determine whether a given microarchi-
tecture is timing compositional, though, are yet lacking.

The situation is a little less dire when it comes to individual microarchitectural
components such as private caches or memory controllers. However, guidelines for the
construction of timing-compositional yet truly high-performance microarchitectures,
possibly from predictable components, are so far elusive.

4. SYNCHRONOUS PROGRAMMING LANGUAGES FOR PREDICTABLE SYSTEMS

Embedded systems typically perform a significant number of different activities that
must be coordinated and that must satisfy strict timing constraints. A prerequisite
for achieving predictability is to use a processor platform with a timing predictable
ISA, as discussed in the previous section. However, the timing semantics should also
be exposed to the programmer. Coarsely, there are two approaches to this challenge.
One approach, described in Section 5, retains traditional techniques for constructing
real-time systems, in which tasks are programmed individually (e.g., in C), and equips
program fragments with timing information supplied by a static timing analysis tool.
This relieves the programmer from the expensive procedure of assigning WCETs to
program segments, but does not free him from designing suitable scheduling and co-
ordination mechanisms to meet timing constraints, avoid critical races and deadlocks,
etc. Another approach, described in this section, is based on synchronous programming
languages, in which explicit constructs express the coordination of concurrent activi-
ties, communication between them, and the interaction with the environment. These
languages are equipped with formal semantics that guarantee deterministic execution
and the absence of critical races and deadlocks.

4.1. Context: The Synchronous Language Approach to Predictability

The Essence of Synchronous Programming Languages. In programming languages,
the synchronous abstraction makes reasoning about time in a program a lot easier,
thanks to the notion of logical ticks: A synchronous program reacts to its environment
in a sequence of discrete reactions (called ticks), and computations within a tick are
performed as if they were instantaneous and synchronous with each other [Benveniste
et al. 2003]. Thus, a synchronous program behaves as if the processor executing it was
infinitely fast. This abstraction is similar to the one made when designing synchronous
circuits at the HDL level: At this abstraction level, a synchronous circuit reacts in
a sequence of discrete reaction and its logical gates behave as if the electrons were
flowing infinitely fast.

In contrast to asynchronous concurrency, synchronous languages avoid the in-
troduction of nondeterminism by interleaving. On a sequential processor, with the
asynchronous concurrency paradigm, two independent, atomic parallel tasks must be
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executed in some nondeterministically chosen sequential order. The drawback is that
this interleaving intrinsically forbids deterministic semantics, which limits formal
reasoning such as analysis and verification. On the other hand, in the semantics of
synchronous languages, the execution of two independent, atomic parallel tasks is si-
multaneous. The concept of logical execution time, as exemplified in Giotto [Henzinger
et al. 2003] or PTIDES [Zou et al. 2009], also provides a concurrent semantics that
is independent from concrete execution times, but does not have the concept of a
logical tick with instantaneous interthread communication within one tick. Another
characteristic of synchronous languages is that they are finite state, for instance, they
do not allow arbitrary looping or recursion, another prerequisite for predictability.

To take a concrete example, the Esterel [Berry 2000] statement “every 60 second
emit minute” specifies that the signal minute is exactly synchronous with the 60th

occurrence of the signal second. At a more fundamental level, the synchronous ab-
straction eliminates the nondeterminism resulting from the interleaving of concurrent
behaviors. This allows deterministic semantics, thereby making synchronous programs
amenable to formal analysis and verification, as well as certified code generation. This
crucial advantage has made possible the successes of synchronous languages in the
design of safety-critical systems; for instance, Scade (the industrial version of Lus-
tre [Halbwachs et al. 1991]) is widely used both in the civil airplane industry [Brière
et al. 1995] and in the railway industry [LeGoff 1996].

The recently proposed synchronous time-predictable programming languages that
we present in this section take also advantage of this deterministic semantics.

Validating the Synchronous Abstraction. Of course, no processor is infinitely
fast, but it does not need to be so, it just needs to be faster than the environment.
Indeed, a synchronous program is embedded in a periodic execution loop of the form:
“loop {read inputs; react; write outputs} each tick.” Hence, when program-
ming a reactive system using a synchronous language, the designer must check the
validity of the synchronous abstraction. This is done by (a) computing the Worst-Case
Response Time (WCRT) of the program, defined as the WCET of the body of the periodic
execution loop; and (b) checking that this WCRT is less than the real-time constraint
imposed by the system’s requirement. The WCRT of the synchronous program is also
known as its tick length.

To make the synchronous abstraction practical, synchronous languages impose re-
strictions on the control flow within a reaction. For instance, loops within a reaction
are forbidden, that is, each loop must have a tick barrier inside its body (e.g., a pause
statement in Esterel or an EOT statement in PRET-C). It is typically required that the
compiler can statically verify the absence of such problems. This is not only a con-
servative measure, but is often also a prerequisite for proving that a given program
is causal, meaning that different evaluation orders cannot lead to different results
(see Berry [2000] for a more detailed explanation), and for compiling the program into
deterministic sequential code executable in bounded time and bounded memory.

Finally, these control flow restrictions not only make the synchronous abstraction
work in practice, but are also a valuable asset for timing analysis, as we will show in
this section.

Requirements for Timing Predictability. Maximizing timing predictability, as defined
in Definition 2.2, requires more than just the synchronous abstraction. For instance, it
is not sufficient to bound the number of iterations of a loop; it is also necessary to know
exactly this number to compute the exact execution time. Another requirement is that,
in order to be adopted by industry, synchronous programming languages should offer
the same full power of data manipulations as general-purpose programming languages.
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This is why the two languages we describe (PRET-C and SC) are both predictable
synchronous languages based on C (Section 4.2).

The language constructs that should be avoided are those commonly excluded by
programming guidelines used by the software industry concerned with safety-critical
systems (at least by the companies that use a general-purpose language such as C). The
most notable ones are: Pointers, recursive data structures, dynamic memory allocation,
assignments with side effects, recursive functions, and variable length loops. The ra-
tionale is that programs should be easy to write, to debug, to proof-read, and should
be guaranteed to execute in bounded time and bounded memory. The same holds for
PRET programming: What is easier to proofread by humans is also easier to analyze
by WCRT analyzers.

4.2. Language Constructs to Express Synchrony and Timing

We now illustrate how synchronous programming and timing predictability interact
in concrete languages. As space does not permit a full introduction to synchronous
programming, we will restrict our treatment to a few representative concepts. Read-
ers unfamiliar with synchronous programming are referred to the excellent introduc-
tions given by Benveniste et al. [2003] and Berry [2000]. We here consider languages
that incorporate synchronous concepts into the C language, to illustrate how syn-
chronous concepts can be incorporated into a widely used sequential programming
language. However, one must then avoid programming constructs that break ana-
lyzability again, such as unbounded loops or recursion. Our overview is based on a
simple producer/consumer/observer example (PCO). This program starts three threads
that then run forever (i.e., until they are terminated externally) and share an integer
variable buf (cf. Figure 3). This is a typical pattern for reactive real-time systems.

The Berkeley-Columbia PRET Language. The original version of PCO (cf. Figure 3(a))
was introduced to illustrate the programming of the Berkeley-Columbia PRET archi-
tecture [Lickly et al. 2008]. The programming language is a multithreaded version
of C, extended by a special deadline instruction, called DEAD(t), which behaves as
follows: The first DEAD(t) instruction executed by a thread terminates as soon as at
least t instruction cycles have passed since the start of the thread; subsequent DEAD(t)
instructions terminate as soon as at least t instruction cycles have passed since the
previous DEAD(t) instruction has terminated.6 Hence, a DEAD instruction can only en-
force a lower bound on the execution time of code segment. However, by assigning
values to the DEAD instructions that are conservative with respect to the WCET, it is
therefore possible to design predictable multithreaded systems, where problems such
as race conditions will be avoided thanks to the interleaving resulting from the DEAD
instructions. Assigning the values of the DEAD instructions requires to know the exact
number of cycles taken by each instruction. Fortunately, the Berkeley-Columbia PRET
architecture [Lickly et al. 2008] guarantees that.

In Figure 3(a), the first DEAD instructions of each thread enforce that the Producer
thread runs ahead of the Consumer and Observer threads. The subsequent DEAD in-
structions enforce that the threads iterate through the for-loops in lockstep, one iter-
ation every 26 instruction cycles. This approach to synchronization exploits the pre-
dictable timing of the PRET architecture and alleviates the need for explicit scheduling
or synchronization facilities of the language or the operating system (OS). However, this
comes at the price of a brittle, low-level, nonportable scheduling style.

6The DEAD() operator is actually a slight abstraction from the underlying processor instruction, which also
specifies a timing register. This register is decremented every six clock cycles, corresponding to the six-stage
pipeline of the PRET [Lickly et al. 2008].
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Fig. 3. Two variants of the Producer Consumer Observer example, extended by preemptions.

As it turns out, this lockstep operation of concurrent threads directly corresponds to
the logical tick concept used in synchronous programming. Hence it is fairly straight-
forward to program the PCO in a synchronous language, without the need for low-level,
explicit synchronization, as illustrated in the following.

Synchronous C and PRET-C. Synchronous C (originally introduced as SyncCharts
in C [von Hanxleden 2009]) and PRET-C [Andalam et al. 2010] are both lightweight,
concurrent programming languages based on C. A Synchronous C (SC) program con-
sists of a main() function, some regular C functions, and one or more parallel threads.
Threads communicate via shared variables, and the synchronous semantics guaran-
tees both a deterministic execution and the absence of race conditions. The thread
management is done fully at the application level, implemented with plain C goto or
switch statements and C labels/cases hidden in the SC macros defined in the sc.h file.
PRET-C programs are analogous.

Figure 3(b) shows the SC variant of an extended PCO example. The extended PCO
variant includes additional behavior that restarts the threads when buf has reached
the value 10, and that terminates the threads when the loop index k has reached the
value 20. A loop in main() repeatedly calls a tick() function which implements the
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reactive behavior of one logical tick. This behavior consists of a MainThread, running
at priority 1, which contains the states PCO and Done. The state PCO forks the three
other threads specified in tick(). The reactive control flow is managed with the SC
operators FORKn (which forks n threads with specific priorities), TRANS (which aborts its
child threads, transfer control), TERM (which terminates its thread), and PAUSE (which
pauses its thread until the next tick). Moreover, the execution states of the threads
are stored statically in global variables declared in sc.h. This behavior is similar to
the tick() function synthesized by an Esterel compiler. Finally, the return value of the
tick() function is computed and returned by the TICKEND macro.

Hence, an SC program is a plain, sequential C program, fully deterministic, without
any race conditions or OS dependencies. The same is true for PRET-C programs.

Compared again to the original PCO example in Figure 3(a), the SC variant illus-
trates additional preemption functionality. Also, physical timing and functionality are
separated, using PAUSE instructions that refer to logical ticks rather than DEAD instruc-
tions that refer to instruction cycles. However, with both SC and PRET-C, it is the
programmer who specifies the execution order of the threads within a tick. This order
is the priority order specified in the FORK3 instruction: The priority of the Producer
thread is 4, and so on.

Unlike SC, PRET-C specifies that loops must either contain an EOT (the equivalent to
a PAUSE), or must specify a maximal number of iterations (e.g., “while (1) #n {...}”,
where n is the maximal number of iterations of the loop); this ensures the timing
predictability of programs with loops. Conversely, SC offers a wider range of reactive
control and coordination possibilities than PRET-C, such as dynamic priority changes.

4.3. Instruction Set Architectures for Synchronous Programming

Synchronous languages can be used to describe both software and hardware, and a
variety of synthesis approaches for both domains are covered in the literature [Potop-
Butucaru et al. 2007]. The family of reactive processors follows an intermediate ap-
proach where a synchronous program is compiled into machine code that is then run
on a processor with an ISA that directly implements synchronous reactive control flow
constructs. With respect to predictability, the main advantage of reactive processors
is that they offer direct ISA support for crucial features of the languages (e.g., pre-
emption, synchronization, interthread communication), therefore allowing a very fine
control over the number of machine cycles required to execute each high-level instruc-
tion. This idea of jointly addressing the language features and the processor/ISA was
at the root of the Berkeley-Columbia PRET solution [Edwards and Lee 2007; Lickly
et al. 2008].

In summary, ISAs for synchronous programming are the dual to synchronous lan-
guage constructs, in that the former provide predictability at the execution platform
level, whereas the latter provide predictability at the language level.

The first reactive processor, called REFLIX, was designed by Salcic et al. [2002],
followed by a number of follow-up designs [Yuan et al. 2009]. This concept of reactive
processors was then adapted to PRET-C with the ARPRET platform (Auckland Reactive
PRET). It is built around a customized Microblaze softcore processor (MB), connected
via two fast simplex links to a so-called Functional Predictable Unit that maintains the
context of each parallel thread and allows thread context switching to be carried out
in a constant number of clock cycles, thanks to a linked-lists based scheduler inspired
from CEC’s scheduler [Edwards and Zeng 2007]. Benchmarking results show that this
architecture provides a 26% decrease in the WCRT compared to a stand-alone MB.

Similarly, the Kiel Esterel Processor (KEP) includes a Tick Manager that minimizes
reaction time jitter and can detect timing overruns [Li and von Hanxleden 2012]. The
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ISA of reactive processors has strongly inspired the language elements introduced by
both PRET-C and SC.

4.4. WCRT Analysis for Synchronous Programs

Compared to typical WCET analysis, the WCRT analysis problem here is more chal-
lenging because it includes concurrency and preemption; in classical WCET computa-
tion, concurrency and preemption analysis is often delegated to the OS. However, the
synchronous deterministic semantics on one hand, and the coding rules on the other
hand (e.g., absence of loops without a tick barrier), make it feasible to reach tight
estimates.

Concerning SC, a compiler including a WCRT analysis was developed for KEP to
compute safe estimates for the Tick Manager [Boldt et al. 2008]), further improved
with a modular, algebraic approach that also takes signal valuations into account to
exclude infeasible paths.

Similarly, a WCRT analyzer was developed for PRET-C programs running on
ARPRET, where the Control Flow Graph (CFG) is decorated with the number of ma-
chine cycles required to execute it on ARPRET, and then is analyzed with UPPAAL to
compute the WCRT. Combining the abstracted state space of the program with expres-
sive data flow information allows infeasible execution paths to be discarded [Andalam
et al. 2011].

Finally, Ju et al. [2008] improved the timing analysis of C code synthesized from
Esterel with the CEC compiler by taking advantage of the properties of Esterel. They
developed an integer-linear programming (ILP) formulation to eliminate infeasible
paths in the code. This allows more predictable code to be generated.

4.5. Conclusions and Challenges

The synchronous semantics of PRET-C and SC directly provides several features that
are essential for the design of complex predictable systems, including determinism,
thread-safe communication, causality, absence of race conditions, and so on. These
features relieve the designer from concerns that are problematic in languages with
asynchronous timing and asynchronous concurrency. Numerous examples of reactive
systems have been reimplemented with PRET-C or SC, showing that these languages
are easy to use [Andalam et al. 2010].

Originally developed mainly with functional determinism in mind, the synchronous
programming paradigm has also demonstrated its benefits with respect to timing de-
terminism. However, synchronous concepts still have to find their way into mainstream
programming of real-time systems. At this point, this seems less a question of the ma-
turity of synchronous languages or the synthesis and analysis procedures developed for
them, but rather a question of how to integrate them into programming and architec-
ture paradigms firmly established today. Possibly, this is best done by either enhancing
a widely used language such as C with a small set of synchronous/reactive operations,
or by moving from the programming level to the modeling level, where concurrency
and preemption are already fully integrated.

5. COMPILATION FOR TIMING PREDICTABLE SYSTEMS

Software development for embedded systems typically uses high-level languages like
C, often using tools like, for instance, Matlab/Simulink, which automatically generate
C code. Compilers for C include a vast variety of optimizations. However, they mostly
aim at reducing Average-Case Execution Times (ACETs) and have no timing model. In
fact, their optimizations may highly degrade WCETs. Thus, it is common industrial
practice to disable most if not all compiler optimizations. The compiler-generated code
is then manually fed into a timing analyzer. Only after this very final step in the entire
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design flow, it can be verified if timing constraints are met. If not, the graphical design
is changed in the hope that the resulting C and assembly codes lead to a lower WCET.

Up to now, no tools exist that assist the designer to purposively reduce WCETs
of C or assembly code, or to automate the above design flow. In addition, hardware
resources are heavily oversized due to the use of unoptimized code. Thus, it is desirable
to have a WCET-aware compiler in order to support compilation for timing predictable
systems. Integrating timing analysis into the compiler itself has the following benefits:
First, it introduces a formal worst-case timing model such that the compiler has a clear
notion of a program’s worst-case behavior. Second, this model is exploited by specialized
optimizations reducing the WCET. Thus, unoptimized code no longer needs to be used,
cheaper hardware platforms tailored towards the real software resource requirements
can be used, and the tedious work of manually reducing the WCET of auto-generated
C code is eliminated. Third, manual WCET analysis is no more required since this is
integrated into and done transparently by the compiler.

5.1. Fundamentals of WCET-aware Compilation

In order to obtain a compiler performing code generation and optimization for timing
predictable systems, it is not enough to simply develop novel aggressive optimizations.
Instead, such novel WCET-aware optimizations rely on massive support by an infra-
structure providing formal timing, control flow and hardware models. The following
subsections describe key components of such a WCET-aware compiler infrastructure.

Integration of Static WCET Analysis into the Compiler. For a systematic considera-
tion of worst-case execution times by a compiler, it is mandatory to provide a formal
and safe WCET timing model. The easiest way to achieve this goal is to integrate static
WCET analysis tools into the compiler.

A very first approach was proposed by Zhao et al. [2005a] where a proprietarily
developed WCET analyzer was integrated into a compiler operating on a low-level
Intermediate Representation (IR). Control flow information is passed to the analyzer
that computes the worst-case timing of paths, loops and functions and returns this data
to the compiler. However, the timing analyzer works with only very coarse granularity
since it only computes WCETs of paths, loops and functions. WCETs for basic blocks or
single instructions are unavailable, thus preventing the optimization of smaller units
like basic blocks. Furthermore, important data beyond the WCET itself is unavailable,
for instance, execution frequencies of basic blocks, value ranges of registers, predicted
cache behavior, etc. Finally, WCET optimization at higher levels of abstraction like,
for instance, source code level is infeasible since timing-related data is not provided at
source code level.

These issues were cured within the WCET-aware C Compiler [WCC 2014] where the
compiler’s back-end integrates the static WCET analyzer aiT. During timing analysis,
aiT stores the program under analysis and its analysis results in an IR called CRL2.
aiT is integrated into WCC by translating the compiler’s assembly code IR to CRL2 and
vice versa. This way, the compiler produces a CRL2 file modeling the program for which
worst-case timing data is required. Fully transparent to the compiler user, aiT is called
on this CRL2 file. After timing analysis, the results obtained by aiT are imported back
into the compiler. Among others, this includes: Worst-case execution time of a whole
program, or per function or basic block; worst-case execution frequency per function or
basic block; approximations of register values; cache misses per basic block.

Specification of Memory Hierarchies. The performance of many systems is dominated
by the memory subsystem. Obviously, timing estimates also heavily depend on the
memories so that a WCET-aware compiler must provide the timing analyzer with
detailed information about the underlying memory hierarchy. Thus, such a compiler
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must be aware of a processor’s memories which is usually delegated to the linker in a
classical compilation flow. Furthermore, the compiler exploits this memory hierarchy
infrastructure to apply memory-aware optimization by assigning parts of a program to
fast memories.

As an example, WCC allows to simply specify memory hierarchies. For each physical
memory, attributes like, for instance, base address, length, access latency, etc. can be
defined. Cache parameters like, for instance, size, line size or associativity can be spec-
ified. Memory allocation of program parts is now done by the compiler instead of the
linker by allocating functions, basic blocks or data to these memory regions. Moreover,
physical memory addresses provided by compiler’s memory hierarchy infrastructure
are exploited during WCET analysis such that physical addresses for basic blocks
are determined and passed to aiT. Targets of jumps, which are represented by sym-
bolic block labels, are translated into physical addresses for a highly accurate WCET
analysis.

Flow Fact Specification and Transformation. A program’s execution time (on a given
hardware) largely depends on its control flow, for instance, on loops or conditionals.
Since loop iteration counts are crucial for precise WCETs, and since they cannot be
computed in general, they must be specified by the user of a timing analyzer. These
user-provided annotations are called flow facts. In an environment where the timing
analyzer is tightly integrated into the compilation flow, it is critical that the compiler
provides highly accurate flow facts to the WCET analyzer.

A very first approach to integrate WCET techniques into a compiler was presented
by Börjesson [1996]. Flow facts used for timing analysis were annotated manually via
pragmas within the source code, but are not updated during optimization. This turns
the entire approach tedious and error-prone, since compiler optimizations potentially
restructure the code and invalidate originally specified flow facts.

While mapping high-level code to object code, compilers apply various optimizations
so that the correlation between high-level flow facts and the optimized object code
becomes very low. To keep track of the influence of compiler optimizations on high-level
flow facts, co-transformation of flow facts is proposed by Engblom [1997]. However, the
co-transformer has never reached a fully working state, and several standard compiler
optimizations cannot be modeled at all due to insufficient data structures.

Techniques to transform program path information which keep high-level flow facts
consistent during GCC’s standard optimizations have been presented by Kirner and
Puschner [2001]. Their work fully supports source-level flow facts by means of ANSI-C
pragmas and was thoroughly tested and led to precise WCET estimates.

Inspired by Kirner and Puschner [2001], WCC’s flow facts are specified similarly in
ANSI-C [Falk and Lokuciejewski 2010]. Loop bound flow facts limit the iteration counts
of regular loops. In contrast to previous work, they allow to specify minimum and
maximum iteration counts allowing to annotate data-dependent loops. For irregular
loops or recursions, flow restrictions can be used to relate the execution frequency of one
C statement with that of others. Furthermore, WCC’s optimizations are fully flow-fact
aware. All operations of the compiler’s IRs creating, deleting or moving statements or
basic blocks now inherently update flow facts. Thus, always safe and precise flow facts
are maintained, irrespective of how and when optimizations modify the IRs.

5.2. Examples of WCET-aware Optimizations

On top of a compiler infrastructure sketched above, a large number of novel WCET-
aware optimizations has been proposed recently. The following sections briefly present
three of them: Scratchpad allocation, code positioning and cache partitioning.
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Scratchpad Memory Allocation and Cache Locking. As already motivated in Sec-
tion 3.3, scratchpad memories or locked caches are ideal for WCET-centric optimiza-
tions since their timing is fully predictable. Optimizations allocating parts of a pro-
gram’s code and data onto these memories have been studied intensely in the past [Liu
et al. 2009; Wan et al. 2012].

A first approach for WCET-aware SPM allocation was proposed by Suhendra et al.
[2005]. In an integer linear program, inequations model the structure of a function’s
control flow graph. Constants model the worst-case timing per basic block when being
allocated to slow flash memory or to the fast SPM. This way, the ILP is always aware
of that path in a function’s CFG having the longest execution time. Unfortunately, the
ILP of Suhendra et al. [2005] is unable to allocate code onto an SPM and suffers from
several limitations preventing it from being applied to real-life code.

Falk and Kleinsorge [2009] resolved these drawbacks by adding support for SPM
allocation of code, jump penalties, and global control flow to the ILP. As a consequence,
this ILP now is aware of that path of a whole program leading to the longest execution
time and can thus optimally minimize a program’s WCET. A similar optimization
approach can be used to also support cache locking.

Experimental results over a total of 73 different benchmarks from, for instance,
UTDSP, MediaBench and MiBench for the Infineon TriCore TC1796 processor show
that already very small scratchpads, where only 10% of a benchmark’s code fit into,
lead to considerable WCET reductions of 7.4%. Maximum WCET reductions of up to
40% on average over all 73 benchmarks have been observed.

Code Positioning. Code positioning is a well-known compiler optimization improv-
ing the I-cache behavior. A contiguous mapping of code fragments in memory avoids
overlapping of cache sets and thus decreases the number of cache conflict misses. Code
positioning as such was studied in many different contexts in the past, like, for in-
stance, to avoid jump-related pipeline delays [Zhao et al. 2005b] or at granularity of
entire functions or even tasks [Gebhard and Altmeyer 2007].

WCC’s code positioning [Falk and Kotthaus 2011] aims to systematically reduce
I-cache conflict misses and thus to reduce the WCET of a program. It uses a cache
conflict graph (CG) as the underlying model of a cache’s behavior. Its nodes represent
either functions or basic blocks of a program. An edge is inserted whenever two nodes
interfere in the cache, that is, potentially evict each other from the cache. Using WCC’s
integrated timing analysis capabilities, edge weights are computed which approximate
the number of possible cache misses that are caused during the execution of a CG node.

On top of the conflict graph, heuristics for contiguous and conflict-free placement of
basic blocks and entire functions are applied. They iteratively place those two basic
blocks/functions contiguously in memory which are connected by the edge with largest
weight in the conflict graph. After this single positioning step, the impact of this change
on the whole program’s worst-case timing is evaluated by doing a timing analysis. If
the WCET is reduced, this last positioning step is kept, otherwise it is undone.

This code positioning decreases cache misses for 18 real-life benchmarks by 15.5% on
average for an Infineon TC1797 with a 2-way set-associative cache. These cache miss
reductions translate to average WCET reductions by 6.1%. For direct-mapped caches,
even larger savings of 18.8% (cache misses) and 9.0% (WCET) were achieved.

Cache Partitioning for Multitask Systems. The cache-related optimizations presented
so far cannot handle multitask systems with preemptive scheduling, since it is difficult
to predict the cache behavior during context switches. Cache partitioning is a technique
for multitask systems to turn I-caches more predictable. Each task of a system is
exclusively assigned a unique cache partition. The tasks in such a system can only
evict cache lines residing in the partition they are assigned to. As a consequence,
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multiple tasks do not interfere with each other any longer with respect to the cache
during context switches. This allows to apply static timing analysis to each individual
task in isolation. The overall WCET of a multitask system using partitioned caches is
then composed of the worst-case timing of the single tasks given a certain partition
size, plus the overhead for scheduling and context switches.

WCET-unaware cache partitioning has already been examined in the past. Cache
hardware extensions and associativity- and set-based cache partitioning have been
proposed by Chiou et al. [1999] and Molnos et al. [2004], resp. A very recent work on
WCET-aware cache partitioning by Liu et al. [2011] proposes heuristics to assign tasks
to cores and to partition a shared L2 cache, but relies on hardware support for cache
locking. Mueller [1995] presents ideas for purely software-based cache partitioning.
Here, software-based cache partitioning scatters the code of each task over the address
space such that tasks are solely mapped to only those cache lines belonging to the task’s
partition. However, an implementation or evaluation of these ideas is not given.

The cache partitioning of WCC by Plazar et al. [2009] picks up these ideas and uses
an ILP to optimally determine the individual tasks’ partition sizes. Cache partitioning
has been applied to task sets with 5, 10 and 15 tasks, resp. Compared to a naive code
size-based heuristic for cache partitioning, this approach achieves substantial WCET
reductions of up to 36%. In general, WCET savings are higher for small caches and
lower for larger caches. In most cases, larger task sets exhibit a higher optimization
potential as compared to smaller task sets.

5.3. Conclusions and Challenges

This section discussed compiler techniques and concepts for timing predictable systems
by exploiting a WCET timing model. Until recently, not much was known about the
WCET savings achievable in this way. This section provided a survey over work explor-
ing the potential of such integrated compilation and timing analysis. All the presented
optimizations improve the state-induced timing predictability (cf. Definition 2.3) since
they heavily minimize the uncertainty about hardware states of caches (cache locking
and partitioning, code positioning) and flash memories (SPM allocation).

While the works briefly presented in this section are able to reduce the WCET of
single programs, most of them fail if multitask or multicore systems come into play. In
such systems, shared resources like, for instance, pipelines, caches, memories or buses
lead to the situation that the timing of one task can vary, depending on activities of
other tasks running potentially on other cores. These interferences between tasks are
not yet thoroughly handled during code generation and optimization, only very first
works deal with timing analysis and code optimization for such systems with shared
resources. As a consequence, compilation for timing predictable systems has to address
the challenges imposed by multitask and multicore systems in the near future.

6. BUILDING REAL-TIME APPLICATIONS ON MULTICORES

Multicore processors bring a great opportunity for high-performance and low-power
embedded applications. Unfortunately, the current design of multicore architectures
is mainly driven by performance, not by considering timing predictability. Typical
multicore architectures [Albonesi and Koren 1994] integrate a growing number of cores
on a single processor chip, each equipped with one or two levels of private caches. The
cores and peripherals usually share a memory hierarchy including L2 or L3 caches
and DRAM or Flash memory. An interconnection network offers a communication
mechanism between the cores, the I/O peripherals and the shared memory. A shared bus
can hold a limited number of components as in the ARM Cortex A9 MPCORE. Larger-
scale architectures implement more complex Networks on Chip (NoC), like meshes
(e.g., the Tile64 by Tilera) or crossbars (e.g., the P4080 by Freescale), to offer a wider
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communication bandwidth. In all cases, conflicts among accesses from various cores or
DMA peripherals to the shared memory must be arbitrated either in the network or in
the memory controller. In the following, we distinguish between storage resources (e.g.,
caches) that keep information for a while, generally for several cycles, and bandwidth
resources (e.g., bus or interconnect) that are typically reallocated at each cycle.

6.1. Timing Interferences and Isolation

The timing behavior of a task running on a multicore architecture depends heavily on
the arbitration mechanisms of the shared resources and other tasks’ usage of the re-
sources. First, due to the conflicts with other requesting tasks on bandwidth resources,
the instruction latencies may be increased and can even be unbounded. Furthermore,
the contents of storage resources, especially caches, may be corrupted by other tasks,
which results in an increased number of misses. Computing safe WCET estimates
requires taking into account the additional delays due to the activity of co-scheduled
tasks.

To bound the timing interferences, there are two categories of potential solutions.
The first, referred to as joint analysis, considers the whole set of tasks competing for
shared resources to derive bounds on the delays experienced by each individual task.
This usually requires complex computations, and it may provide tighter WCET bounds.
However, it is restricted to cases where all the concurrent tasks are statically known.
The second approach aims at enforcing spatial and temporal isolation so that a task will
not suffer from timing interferences by other tasks. Such an isolation can be controlled
by software and/or hardware.

Joint Analysis. To estimate the WCETs of concurrent tasks, a joint analysis approach
considers all the tasks together to accurately capture the impact of interactions on the
execution times. A simple approach to analyzing a shared cache is to statically identify
cache lines shared by concurrent tasks and consider them as corrupted. Bypassing the
L2 cache for single-usage cache lines is a way to reduce the number of conflicts and
improve the accuracy [Hardy et al. 2009]. The analysis can also be improved by taking
task lifetimes into account: Tasks that cannot be executed concurrently due to the
scheduling algorithm and inter-task dependencies should not be considered as possibly
conflicting. Along this line of work, Li et al. [2009] propose an iterative approach
to estimate the WCET bounds of tasks sharing L2 caches. To further improve the
analysis precision, the timing behavior of cache access may be modeled and analyzed
using abstract interpretation and model checking techniques [Lv et al. 2010]. Other
approaches aim at determining the extra execution time of a task due to contention
on the memory bus [Andersson et al. 2010; Schliecker et al. 2010]. Decoupling the
estimation of memory latencies from the analysis of the pipeline behavior is a way to
enhance analyzability. However, it is safe for fully timing-compositional systems only.

Spatial and Temporal Isolation. Ensuring that tasks will not interfere in shared
resources makes their WCETs analyzable using the same techniques as for single
cores. Task isolation can be controlled by software allowing COTS-based multicores or
enforced by hardware transparent to the applications.

To make the latencies to shared bandwidth resources predictable (boundable), hard-
ware solutions rely on bandwidth partitioning techniques, for instance, round-robin
arbitration [Paolieri et al. 2009a]. To limit the overestimation of worst-case latencies,
long-latency transactions, for instance, atomic synchronization operations, may be ex-
ecuted in split-phase mode [Gerdes et al. 2012].

The Predictable Execution Model [Pellizzoni et al. 2010] requires programs to be
annotated by the programmer and then compiled as a sequence of predictable inter-
vals. Each predictable interval includes a memory phase where caches are prefetched
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and an execution phase that cannot experience cache misses. A high-level schedule of
computation phases and I/O operations enables the predictability of accesses to shared
resources. TDMA-based resource arbitration allocates statically-computed slots to the
cores [Rosen et al. 2007; Andrei et al. 2008]. To predict latencies, the alignment of ba-
sic block timestamps to the allocated bus slots can be analyzed [Chattopadhyay et al.
2010]. However, TDMA-based arbitration is not so common in multicore processors
on the market due to performance reasons. An extended instruction set architecture
with temporal semantics combined with low-level mechanisms that enforce temporal
isolation enhances timing composability and predictability [Bui et al. 2011].

Cache partitioning schemes allocate private partitions to tasks. Paolieri et al. [2011]
consider software-controlled hardware mechanisms: Columnization (a partition is a set
of cache ways) and bankization (a partition is a set of cache banks). The configuration of
partitions is set by software. Their interference-aware allocation algorithm determines
a configuration that makes a given task set schedulable while minimizing the cache
usage. Page-coloring [Guan et al. 2009a] is a software-controlled scheme that allocates
the cache content of each task to certain areas in the shared cache by mapping the
virtual memory addresses of that task to proper physical memory regions. Then, the
avoidance of cache interference does not come for free, as the explicit management of
cache space adds another dimension to the scheduling and complicates the analysis.

6.2. System-Level Scheduling and Analysis

The system predictability heavily depends on how the workload is scheduled at the
system level. For single-processor platforms, well-established techniques (e.g., rate-
monotonic scheduling) for system-level scheduling and schedulability analysis can be
found in both textbooks [Liu 2000; Buttazzo 2011] and industry standards, such as
POSIX. However, the multiprocessor scheduling problem to map tasks onto parallel
architectures is a much harder challenge and lacks well-established techniques, which
brings unique challenges to building timing predictable embedded systems on multicore
processors.

Global Scheduling. One may allow all tasks to compete for execution on all cores.
Global scheduling is a realistic option for multicore systems, on which the task mi-
gration overhead is much less significant compared with traditional loosely-coupled
multiprocessor systems thanks to hardware mechanisms like on-chip shared caches.
Global multiprocessor scheduling is a much more difficult problem than uniprocessor
scheduling, as first pointed out by Liu and Layland [1973]: “The simple fact that a task
can use only one processor even when several processors are free at the same time adds
a surprising amount of difficulty to the scheduling of multiple processors.”

The major obstacle in precisely analyzing global scheduling is the lack of a known
critical instant. In uniprocessor fixed-priority scheduling, the critical instant is the
situation where all the interfering tasks release their first instance simultaneously
and all the following instances are released as soon as possible. Unfortunately, the
critical instant in global scheduling is in general unknown. The critical instant in
uniprocessor scheduling, with a strong intuition of resulting in the maximal system
workload, does not necessarily lead to the worst-case situation in global fixed-priority
scheduling [Lauzac et al. 1998]. Therefore, the analysis of global scheduling requires
effective approximate techniques. Much work has been done on tightening the workload
estimation by excluding impossible system behavior from the calculation (e.g., [Baker
2003; Baruah 2007]). Guan et al. [2009b] established the concept of the abstract critical
instant for global fixed-priority scheduling, namely the worst-case response time of a
task occurs under the situation that all higher-priority tasks, except at most M − 1
of them (M is the number of processors), are released in the same way as the critical
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instant in uniprocessor fixed-priority scheduling. Although the abstract critical instant
does not provide an accurate worst-case release pattern, it restricts the analysis to a
significantly smaller subset of the overall state space.

Partitioned Scheduling. For a long time, the common wisdom in multiprocessor
scheduling is to partition the system into subsets, each of which is scheduled on a single
processor [Carpenter et al. 2004]. The design and analysis of partitioned scheduling
is relatively simple: As soon as the system has been partitioned into subsystems that
will be executed on individual processors each, the traditional uniprocessor real-time
scheduling and analysis techniques can be applied to each individual subsystem/pro-
cessor. Similar to the bin-packing problem, partitioned scheduling suffers from resource
waste due to fragmentation. Such a waste will be more significant, as multicores evolve
in the direction to integrate a larger number of less powerful cores and the workload
of each task becomes relatively heavier compared to the processing capacity of each
individual core. Theoretically, the worst-case utilization bound of partitioned schedul-
ing cannot exceed 50% regardless of the local scheduling algorithm on each processor
[Carpenter et al. 2004].

To overcome this theoretical bound, one may take a hybrid approach where most
tasks may be allocated to a fixed core, while only a small number of tasks are allowed
to run on different cores, which is similar to task migration but in a controlled and pre-
dictable manner as the migrating tasks are mapped to dedicated cores statically. This is
sometimes called semi-partitioned scheduling. Similar to splitting the items into small
pieces in the bin-packing problem, semi-partitioned scheduling can very well solve the
resource waste problem in partitioned scheduling and exceed the 50% utilization bound
limit. On the other hand, the context-switch overhead of semi-partitioned scheduling is
smaller than that of global scheduling as it involves less task migration between differ-
ent cores. Several different partitioning and splitting strategies have been applied to
both fixed-priority and EDF scheduling (e.g., [Kato and Yamasaki 2008; Lakshmanan
et al. 2009]). Recently, a notable result is obtained in Guan et al. [2010], which gener-
alizes the famous Liu and Layland’s utilization bound N ∗ (2

1
N − 1) [Liu and Layland

1973] for uniprocessor fixed priority scheduling to multicores by a semi-partitioned
scheduling algorithm using RM [Liu and Layland 1973] on each core.

Implementation and Evaluation. To evaluate the performance and applicability of
different scheduling paradigms in Real-Time Operating Systems (RTOS) supporting
multicore architectures, LITMUSRT [Calandrino et al. 2006], a Linux-based testbed
for real-time multiprocessor scheduling, has been developed. Much research has been
done using the testbed to account for the (measured) run-time overheads of various mul-
tiprocessor scheduling algorithms in the respective theoretical analysis (e.g., [Bastoni
et al. 2010b]). The runtime overheads include mainly the scheduler latency (typically
several tens μs in Linux) and cache-related costs, which depends on the application
work space characterization, and can vary between several μs and tens of ms [Bastoni
et al. 2010a]. Their studies indicate that partitioned scheduling and global scheduling
have both pros and cons, but partitioned scheduling performs better for hard real-time
applications [Bastoni et al. 2010b]. Recently, evaluations have also been done with semi-
partitioned scheduling algorithms [Bastoni et al. 2011] indicating that semi-partitioned
scheduling is indeed a promising scheduling paradigm for multicore real-time systems.

6.3. Conclusions and Challenges

On multicore platforms, to predict the timing behavior of an individual task, one must
consider the global behavior of all tasks on all cores and also the resource arbitra-
tion mechanisms. To trade timing composability and predictability with performance
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decreases, one may partition the shared resources with performance decreases. For
storage resources, page-coloring may be used to avoid conflicts and ensure bounded
delays. Unfortunately, it is not clear how to partition a bandwidth resource unless
a TDMA-like arbitration protocol is used. To map real-time tasks onto the proces-
sor cores for system-level resource management and integration, a large number of
scheduling techniques has been developed in the area of multiprocessor scheduling.
However, the known techniques all rely on safe WCET bounds of tasks. Without proper
spatial and temporal isolation, it seems impossible to achieve such bounds. To the best
of our knowledge, there is no work on bridging WCET analysis and multiprocessor
scheduling. Future challenges include also integrating different types of real-time ap-
plications with different levels of criticality on the same platform to fully utilize the
computation resources for low-criticality applications and to provide timing guarantees
for high-criticality applications.

7. RELIABILITY ISSUES IN PREDICTABLE SYSTEMS

In the previous sections, predictability was always achieved under the assumption that
the hardware works without errors. Behavior under errors has been considered as an
exception requiring specific error handling mechanisms that require redundancy in
space and/or time. At the level of integrated circuits, this is still common practice while
at the level of distributed systems, handling of errors, for instance, due to noise, is
usually part of the regular system behavior, such as the extra time needed for retrans-
mission of a distorted message. This approach was justified by the enormous physical
reliability of digital semiconductor system operation. Only at very high levels of safety
requirements, redundancy to increase reliability was needed, which was typically pro-
vided by redundancy in space, masking errors without changing the system timing.
However, the ongoing trend of semiconductor downscaling leads to an increased sen-
sitivity towards radiation, electromagnetic interference or transistor variation. As a
result, the rate of transient errors is expected to increase with every technology gener-
ation [Borkar 2005]. Transient errors are caused by physical effects that are described
by statistical fault models. These statistical fault models have an infinite range, such
that there is always a nonzero probability of an arbitrary number of errors. This is in
fundamental conflict with the usual perception of predictability which aims at bounding
system behavior without any uncertainty.

To predict system behavior under these circumstances, quality standards define prob-
ability thresholds for correct system behavior. Safety standards (predictable systems
are often required in the context of safety requirements) are most rigorous, defining
maximum allowed failure probabilities for different safety classes, such as the Safety
Integrity Level (SIL) classification of the IEC 61508 [2010]. Using redundancy in space,
these reliability requirements can directly be mapped to extra hardware resources and
mechanisms that mask errors with sufficiently high probability. However, redundancy
in space is expensive in terms of chip cost and power consumption, such that redun-
dancy in time, typically in the form of error detection and repetition in case of error,
is preferred in system design. Both approaches are not mutually exclusive, Izosimov
et al. [2006] presented a design synthesis methodology to construct a robust schedule
by applying a combination of redundancy in time and space which sustains a given
number of errors at any time.

Unfortunately, error correction by repetition increases execution time which invali-
dates the predicted worst-case execution time. A straightforward idea would be to just
increase the predicted WCET by the time to correct an error. Given the unbounded
statistic error models, however, the time for repetitions cannot be bounded with a
guaranteed WCET. This dilemma can, however, be solved in the same way as in the
case of redundancy in space, that is, by introducing a probabilistic threshold. This way,
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predictability can be reestablished in a form that is appropriate to design and verify
safety- and timing-critical systems, even in the presence of hardware errors.

7.1. An Example: The Controller Area Network

To explain the approach, we will start with an example from distributed systems design.
The most important automotive bus standard is the Controller Area Network (CAN)
[CAN 1991]. CAN connects distributed systems, consisting of an arbitrary number of
electronic control units in a car. Being used in a noisy electrical environment, CAN
messages might be corrupted by errors, with average error rates strongly depending
on the current environment [Ferreira et al. 2004].

The CAN protocol applies state-of-the-art Cyclic Redundancy Checks (CRC) to detect
the occurrence of transmission errors. Subsequently, a fully automated error signaling
mechanism is used to notify the sender about the error such that the original message
can be retransmitted. This kind of error handling mechanism affects predictability in
different ways. For the case that the message is transmitted correctly, transmission
latency can be bounded using well-known response time calculation methods [Tindell
and Burns 1994; Tindell et al. 1995; Davis et al. 2007]. If errors occur, two different
cases must be distinguished.

(1) The error is detected and a retransmission is initiated. The latency of the corrupted
message increases due to the necessity of a retransmission. Nonaffected messages
might also be delayed due to scheduling effects. In this case, the error affects the
overall timing on the CAN bus.

(2) The error is not detected and the message is considered as being received correctly.
This might happen in rare cases as the error detection of CAN does not provide full
error coverage. In this case, the error directly affects the logical correctness of the
system.

In both cases, the random occurrence of errors might cause a system failure, either a
timing failure due to a missed timing constraint or a logical failure due to invalid data
which are considered to be correct. To predict the probability that the CAN bus trans-
mits data without logical or timing failures, a statistical error model must be given that
specifies probability distributions of errors and correlations between them. This model
must be included in timing prediction for critical systems as well as in error coverage
analysis. This way, it is possible to compute the probability of failure-free operation,
normally measured as a time-dependent function R with R(t) = P(no failure in [0; t]).
This basic thinking is also reflected by current safety standards and can therefore
be adapted for new directions in predictability-driven development. Safety standards
prescribe the consideration of different types of errors which might threat the system’s
safety and recommend different countermeasures. They also define probabilistic mea-
sures for the maximum failure rate, depending on severity on the affected functions.
Examples are the SIL target failure rate in IEC 61508 or the maximum incident rate
in ISO 26262 [2011].

The issue of logical failures for CRC-protected data transmission, usually referred
to as residual error probability, has initially been addressed by a couple of research
work during the 1980’s, where theory of linear block codes has been applied to derive
the residual error probability for CRCs of different length [Wolf et al. 1982; Wolf and
Blakeney 1988]. In Charzinski [1994], similar research has been carried out explicitly
for the CAN bus. It has been shown that the residual error probability on CAN is less
than 10−16 even for a high bit error rate of 10−5.

Initial work on timing effects of errors on CAN has been presented by Tindell and
Burns [1994]. There, the traditional timing analysis has been extended by an error
term, and error thresholds have been derived. Even though this approach presented a
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first step towards the inclusion of transmission errors into traditional CAN bus tim-
ing analysis, the issue of errors as random events has been neglected. Subsequently,
numerous extensions of this general approach have been presented, assuming prob-
abilistic error models to derive statistical measures for CAN real-time capabilities.
In Broster et al. [2002b], exact distribution functions for worst-case response times of
messages on a CAN bus have been calculated. A more general error model that allows
the consideration of a simple burst error model has been proposed in Navet et al. [2000].
Weakly hard real-time constraints for CAN, that is, constraints that are allowed to be
missed from time to time, have been considered under the aspect of errors in Broster
et al. [2002a]. This approach is not restricted to the worst case anymore. However, it
does not take a stochastic error model into account but relies on a given minimum
interarrival time between errors that is assumed not to be underrun. A more gen-
eral model that overcomes the worst-case assumption and considers probabilistic error
models has been presented by Sebastian and Ernst [2009]. Based on the simplified as-
sumption of bit errors occurring independently from each other, a calculation method
for the overall CAN bus reliability and related measures such as Mean-Time-to-Failure
(MTTF) has been introduced. The approach focuses on timing failures, but would be
combinable with the occurrence probability for logical failures as well. In addition, it
has been shown that reliability analyses for messages with different criticality can be
decoupled, and each criticality level can be verified according to its own safety require-
ments. In Sebastian and Ernst [2009], this technique has been applied to an exemplary
CAN bus setup with an overall failure rate of only a couple of hours, which is normally
not acceptable for any safety-related function. Anyway, by decoupling analyses from
each other, highly critical messages could be verified up to SIL 3, while only a subset
of all messages (e.g., those ones related to best-effort applications) missed any safety
constraint given by IEC 61508. The simplifying assumption of independent bit errors
has been relaxed in Sebastian et al. [2011], where hidden Markov models have been
utilized for modeling and analysis purposes to include arbitrary bit error correlations.
The authors point out the importance of appropriate error models by showing that
the independence assumption is neither optimistic nor pessimistic and can therefore
hardly be applied for a formal verification in the context of safety-critical design.

7.2. Predictability for Fault-Tolerant Architectures

The CAN bus is just an example of a fault-tolerant architecture that provides pre-
dictability in form of probabilistic thresholds even in the presence of random errors.
In general, fault tolerance must be handled with care concerning timing impacts and
predictability because of two main reasons. First, fault tolerance adds extra infor-
mation or calculations, causing a certain temporal overhead even during error-free
operation. This overhead can normally be statically bounded, so that it does not affect
predictability, but might delay calculations or data transfers, that is, it might affect
feasibility of schedules. The second issue is temporal overhead that occurs randomly
because of measures to be performed explicitly in case of (random) hardware errors.
As explained above, predictability based on worst-case assumptions is not given in this
case anymore but has to be replaced by the previously introduced concept of probability
thresholds. There is a wide variety of fault tolerance mechanisms protecting networks,
CPU or memories, differing in efficiency, complexity, costs and effects on timing and
predictability. Following above discussion on redundancy concepts, these mechanisms
can basically be categorized in two classes.

The first class aims at realizing error masking without random overhead using
hardware redundancy. A well-established representative of this class is Triple Modular
Redundancy (TMR) [Kuehn 1969]. Three identical hardware units are executing the
same software in lockstep mode, such that a single component error can be corrected
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using a voter. The only effect on timing is given by the voting delay which is normally
constant and does not change its latency in case of errors. Thus, timing of a TMR
architecture is fully predictable. However, as mentioned earlier in this section, it
has several disadvantages, mainly the immense resource and power waste due to
oversizing the system by a factor of 3. Another issue is that the voter is a single point
of failure [Wakerly 1976], thus the reliability of the voter must be at least one order
of magnitude above the reliability of the devices to vote on.

Another solution that realizes error correction without impact on predictability is
the appliance of Forward Error Correction (FEC) using Error Correcting Codes (ECC)
[Van Lint 1999]. It is mainly applicable to memory and communication systems to pro-
tect data against distortion, but it can also be used to harden registers in hardware state
machines [Rokas et al. 2003]. FEC exploits the concepts of information redundancy. It
encodes individual blocks of data by inserting additional bits according to the applied
ECC such that decoding is possible even if errors occurred. While FEC is normally less
hardware- and power-demanding compared to TMR, it often provides only limited error
coverage and is therefore more susceptible to logical failures. Using a Hamming code
with a Hamming distance of 3 for example, only one bit error per block is recoverable.
It is therefore mainly applied for memory hardening and bus communication where
the assumption of single bit errors is reasonable. For this purpose, memory scrubbing
can additionally be used to correct errors periodically before they accumulate over
time [Saleh et al. 1990]. Communication systems which might suffer from burst errors
must use more powerful ECCs such as Reed-Solomon-Codes [Wicker and Bhargava
1999], which in turn significantly increase encoding and decoding complexity as well
as the static transmission overhead.

The second class of fault tolerance mechanisms mainly focuses on error detection
with subsequent recovery. In contrast to error correcting techniques, no or only little
additional hardware is necessary. Instead, the concept of time redundancy is exploited
by initiating recovery measures after an error has been detected. The resulting tempo-
ral overhead occurs randomly according to the component’s error model, that is, only
probabilistic thresholds for the timing behavior can be given anymore. One example
is the previously mentioned retransmission mechanism of CAN. Whenever an error
is detected using CRC, an error frame is sent and the original sender can schedule
the distorted message for retransmission. In this case, the temporal overhead is quite
large: Apart from the error frame and the retransmission, additional queuing delays
might arise due to higher priority traffic on the CAN bus. Analysis approaches have
to take all these issues into account and combine them with the corresponding error
model. This leads to probabilistic predictions of real-time capabilities. FlexRay is an-
other popular transmission protocol that uses CRC. In contrast to CAN, the FlexRay
standard only prescribes the use of CRC for error detection but leaves it to the designer
how to react on errors [Paret and Riesco 2007].

Similar approaches exist for CPUs. Rather than masking errors with TMR, Double
Modular Redundancy (DMR) is used to only detect errors. It is implemented using
two identical hardware units running in lockstep mode. A comparator connected to the
output of both units continuously compares their results. In case of any inconsistencies,
an error is indicated such that the components can initiate (usually time-consuming)
recovery. DMR is a pure hardware solution that protects the overall processing unit
with nearly zero error detection latency (because results are compared continuously
and errors can be signaled immediately). However, it is quite expensive due to large
hardware overhead such that a couple of alternative solutions has been proposed.
The N-version programming approach [Avizienis 1985] executes multiple independent
implementations of the same function in parallel and compares their results after each
version has been terminated. This approach covers random hardware errors as well as
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systematic design errors (software bugs). It poses new challenges on result comparison,
for example when results consist of floating point values. In this case, results might be
unequal not because of errors but due to the inherent loss of precision in floating point
arithmetic which depends on the order of operations. A solution would be to use inexact
voting mechanisms [Parhami 1994], which in turn raise new issues concerning their
applicability for systems with high reliability requirements [Lala and Harper 1994]. A
simplified variant of N-version programming is to execute the same implementation
of a function multiple times [Pullum 2001]. This can be realized in a time-multiplexed
mode on the same CPU (reexecution) or by exploiting space redundancy (replication).
In contrast to DMR, these techniques can be adopted in a more fine-grained way by
protecting only selected tasks, potentially leading to substantial cost savings, because
spare hardware can now be utilized by best-effort applications. While DMR has nearly
no error detection latency, N-version programming, reexecution and replication require
the designer to annotate the code at points where data is to be compared. This can be a
tedious task and is not very flexible. In most cases, a designer will probably decide that
only the final result of the task is subject to voting, thus the error detection latency
can be high. Additionally, dormant errors may stay in the state for arbitrary long time,
since only a subset of the application state is compared.

A hardware solution that addresses these problems has been presented by Smolens
et al. [2004]. Here, the processor pipeline is extended by a fingerprint register which
hashes all instructions and operands on the fly. This hash can then be used as basis for
regular voting, for instance, after a predetermined number of retired instructions. The
key idea is that the hash value for all redundant executions must be the same, unless
errors appear. Since the fingerprint is calculated by dedicated hardware, nearly no
additional time-overhead is introduced in the error-free case. The Fine-Grained Task
Redundancy (FGTR) method [Axer et al. 2011] replicates only selected tasks and per-
forms regular error checks during execution. Checking is realized in hardware using
the fingerprint approach. In the error-free case and under a predictable scheduling
policy, this method also behaves predictably since no additional uncertainty is added.
However, the analysis of such tasks under the presence of errors is not straightfor-
ward due to the mutual dependencies introduced by the comparison and the additional
recovery overhead (similar to a retransmissions in CAN). Every time a comparison
is successful, a checkpoint is created. If an error is detected due to inconsistent fin-
gerprints, the last checkpoint must be restored. FGTR provides a tradeoff between
static overhead due to regular checkpointing and random overhead in case of errors.
In general, the method to analyze error-induced timing effects on the processor under
FGTR is very similar to the analysis of erroneous frames on the CAN bus, besides the
difference in protocol and overhead parameters.

7.3. Conclusions and Challenges

By applying well-known fault-tolerance mechanisms such as DMR, TMR and coding
schemes, it is possible to harden individual components against transient as well as
permanent errors. By system-wide application of these methods (e.g., computation and
on-chip as well as off-chip communication), it is still possible to design a predictable
system which is now annotated by a conservatively bounded safety metric, such as
MTTF. This is sufficient to meet the requirements of safety standards.

One of the major remaining challenges is the expressiveness of the error model. To
get a conservative bound, it is especially important to have an accurate error model
which reflects reality sufficiently. Assuming the standard single-bit error model can be
an optimistic assumption in aggressive environments. On the other hand, if the error
model is of complex nature (i.e., a hidden Markov model with many states), it is likely
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that this leads to a state-space explosion with today’s system analysis and synthesis
approaches.

Due to functional and timing dependencies among components, it is not easily possi-
ble to decompose an error-aware system analysis into independent component analyses.
Thus, system analyses are usually holistic and don’t scale with the size of a complex
system.

8. CONCLUSIONS AND CHALLENGES

In this article, we have surveyed some of the recent advances regarding techniques for
building timing predictable embedded systems. In particular, we have covered tech-
niques whereby architectural elements that are introduced primarily for efficiency, can
also be made timing predictable. Compared to the situation described, for instance, in
the earlier paper by Thiele and Wilhelm [2004], significant advances have been made.

Concerning processor architectural elements, we now understand the predictability
properties of a range of pipelines, memory system designs, etc., as a basis for de-
sign principles for predictability. Also, processor designs with timing as part of their
instruction set semantics have been developed. Concerning multicore platforms, we
have obtained a good understanding of, and some solutions to, the difficult problem
of providing predictability guarantees for program execution: The solutions involve
partitioning the resources and isolating as much as possible each task from interfer-
ence. Unfortunately, current multicore processors provide rather limited support for
solutions.

Thiele and Wilhelm [2004] proposed the integration of development techniques and
tools across several layers as an important path forward. We have described the in-
tegration of compilation and WCET analysis as an important instance of such an
integration. A corresponding tool provides a platform that allows to systematically in-
vestigate the impact on predictability of various common compiler optimizations, and
the trade-off between average- and worst-case execution time. As another such inte-
gration, we described the incorporation of execution time analysis into synchronous C
dialects which provide deterministic coordination and communication constructs
for concurrent threads, resulting in timing predictable synchronous programming
languages.

Sections 2 to 6 considered predictability assuming the absence of hardware errors. In
contrast, Section 7 described how the definition of predictability can accommodate the
unreliability inherent in networked systems, and how this relates to safety standards.

In conclusion, research on predictability of hardware and software features, and how
to analyze them, has produced results that allow predictable systems to be built, at
least on uniprocessor platforms. Since predictability cuts across all levels in system
design, a design flow for predictable system design must carefully integrate solutions
at all these levels. Thiele and Wilhelm [2004] pointed to model-based design as a
promising approach for increasing predictability, since code generators can be tailored
to generate disciplined code. Code generators in existing model-based design tools do
not fully realize this potential since they are typically designed with other goals in
mind.

Concerning multicores, there are still a number of unsolved challenges for truly pre-
dictable system design, including how to strictly isolate tasks, how to share bandwidth
and other resources in a predictable manner. We expect that better solutions for these
challenges must appear before industry-strength timing analyzers can be applied to
multicore systems. Also, processor designers and manufacturers must produce multi-
core platforms that prioritize support for predictability in addition to performance.

Another important future challenge is to provide techniques to integrate different
types of applications with different predictability requirements on the same platform.
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This will allow engineers to fully utilize the computation resources for low-criticality
applications and to provide predictability guarantees for high-criticality applications.
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