
123

WCET Analysis with MRU Cache: Challenging LRU for Predictability

NAN GUAN, Northeastern University, China, and Uppsala University, Sweden
MINGSONG LV, Northeastern University, China
WANG YI, Northeastern University, China, and Uppsala University, Sweden
GE YU, Northeastern University, China

Most previous work on cache analysis for WCET estimation assumes a particular replacement policy called
LRU. In contrast, much less work has been done for non-LRU policies, since they are generally considered
to be very unpredictable. However, most commercial processors are actually equipped with these non-LRU
policies, since they are more efficient in terms of hardware cost, power consumption and thermal output,
while still maintaining almost as good average-case performance as LRU.

In this work, we study the analysis of MRU, a non-LRU replacement policy employed in mainstream
processor architectures like Intel Nehalem. Our work shows that the predictability of MRU has been sig-
nificantly underestimated before, mainly because the existing cache analysis techniques and metrics do
not match MRU well. As our main technical contribution, we propose a new cache hit/miss classification,
k-Miss, to better capture the MRU behavior, and develop formal conditions and efficient techniques to decide
k-Miss memory accesses. A remarkable feature of our analysis is that the k-Miss classifications under MRU
are derived by the analysis result of the same program under LRU. Therefore, our approach inherits the
advantages in efficiency and precision of the state-of-the-art LRU analysis techniques based on abstract
interpretation. Experiments with instruction caches show that our proposed MRU analysis has both good
precision and high efficiency, and the obtained estimated WCET is rather close to (typically 1%∼8% more
than) that obtained by the state-of-the-art LRU analysis, which indicates that MRU is also a good candidate
for cache replacement policies in real-time systems.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms: Verification, Reliability

Additional Key Words and Phrases: Hard real time, worst-case execution times, cache replacement, MRU

ACM Reference Format:
Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. 2014. WCET analysis with MRU cache: Challenging LRU for
predictability. ACM Trans. Embedd. Comput. Syst. 13, 4s, Article 123 (March 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2584655

1. INTRODUCTION

For hard real-time systems, one must ensure that all timing constraints are satisfied.
To provide such guarantees, a key problem is to bound the worst-case execution time
(WCET) of programs [Wilhelm et al. 2008]. To derive safe and tight WCET bounds,
the analysis must take into account the timing effects of various microarchitecture
features of the target hardware platform. Cache is one of the most important hardware
components affecting the timing behavior of programs: the timing delay of a cache
miss could be several orders of magnitude greater than that of a cache hit. Therefore,

M. Lv was partially sponsored by NSFC project (61100023).
Authors’ address: N. Guan and W. Yi, Uppsala University, Sweden; email: {nan.guan, yi}@it.uu.se; M. Lv
and G. Yu, Northeastern University, China; email: {lvmingsong, yuge}@ise.neu.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2014 ACM 1539-9087/2014/03-ART123 $15.00

DOI: http://dx.doi.org/10.1145/2584655

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:2 N. Guan et al.

analyzing the cache access behavior is a key problem in WCET estimation. However,
the cache analysis problem of statically determining whether each memory access is a
hit or a miss is challenging.

Much work has been done on cache analysis for WCET estimation in the last two
decades. Most of the published works assume a particular cache replacement pol-
icy, called LRU (Least-Recently-Used), for which researchers have developed successful
analysis techniques to precisely and efficiently predict cache hits/misses [Wilhelm et al.
2008]. In contrast, much less attention has been paid to other replacement policies like
MRU (Most-Recently-Used)1 [Malamy et al. 1994], FIFO (First-In-First-Out) [Grund
and Reineke 2009] and PLRU (Pseudo-LRU) [Heckmann et al. 2003]. In general, re-
search in the field of real-time systems assumes LRU as the default cache replacement
policy. Non-LRU policies in general, in fact, are considered to be much less predictable
than LRU, and it would be very difficult to develop precise and efficient analyses for
them. It is recommended to only use LRU caches when timing predictability is a major
concern in the system design [Wilhelm et al. 2009].

However, most commercial processors actually do not employ the LRU cache re-
placement policy. The reason is that the hardware implementation logic of LRU is
rather expensive [Hennessy and Patterson 2006], which results in higher hardware
cost, power consumption and thermal output. On the other hand, non-LRU replace-
ment policies like MRU, FIFO, and PLRU enjoy simpler implementation logic, but still
have almost as good average-case performance as LRU [Al-Zoubi et al. 2004]. Therefore,
hardware manufacturers tend to choose these non-LRU replacement policies in proces-
sor design, especially for embedded systems subject to strict cost, power and thermal
constraints.

In this article, we study one of the most widely used cache replacement policies MRU.
MRU uses a mechanism similar to the clock replacement algorithm in virtual memory
mapping [Tanenbaum 2007]. It only uses one bit for each cache line to maintain age in-
formation, which is very efficient in hardware implementation. MRU has been employed
in mainstream processor architectures like Intel Nehalem (the architecture codename
of processors like Intel Xeon, Core i5 and i7) [Eklov et al. 2011] and UltraSPARC T2
[Kongetira et al. 2005]. A previous work comparing the average-case performance of
cache replacement policies with the SPEC CPU2000 benchmark showed that MRU has
almost as good average-case performance as LRU [Al-Zoubi et al. 2004]. To the best
of our knowledge, there has been no previous work dedicated to the analysis of MRU
in the context of WCET estimation. The only relevant work was performed by Jan
Reineke et. al. [Reineke et al. 2007; Reineke and Grund 2008], which studies general
timing predictability properties of different cache replacement policies. The cited work
argues that MRU is a very unpredictable policy.

However, this article shows that the predictability of MRU actually has been sig-
nificantly underestimated. The state-of-the-art cache analysis techniques are based
on qualitative classifications, to determine whether the memory accesses related to a
particular point in the program are always hits or not (except the first access that may
be a cold miss). This approach is highly effective for LRU since most memory accesses
indeed exhibit such a “black or white” behavior under LRU. In this work, we show that
the memory accesses may have more nuanced behavior under MRU: a small number of
the accesses are misses while all the other accesses are hits. By the existing analysis

1The name of the MRU replacement policy is inconsistent in the literature. Sometimes, this policy is called
Pseudo-LRU because it can be seen as a kind of approximation of LRU. However, we use the name MRU
to keep consistency with previous works in WCET research [Reineke et al. 2007; Reineke 2008], and to
distinguish it from another Pseudo-LRU policy PLRU [Heckmann et al. 2003] which uses tree structures to
store access history information.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:3

framework based on qualitative classifications, such a behavior has to be treated as if
all the accesses are misses, which inherently leads to very pessimistic analysis results.

In this article, we introduce a new cache hit/miss classification k-Miss (at most k
accesses are misses while all the others are hits). In contrast to qualitative classi-
fications, k-Miss can quantitatively bound the number of misses incurred at certain
program points, hence it can more precisely capture the nuanced behavior in MRU.
As our main technical contribution, we establish formal conditions to determine k-Miss
memory accesses, and develop techniques to efficiently check these conditions. Notably,
our technique uses the cache analysis results of the same program under LRU to derive
k-Miss classification under MRU. Therefore, our technique inherits the advantages in
both efficiency and precision from the state-of-the-art LRU analysis based on abstract
interpretation (AI) [Theiling et al. 2000].

We conduct experiments with benchmark programs with instruction caches to eval-
uate the quality of our proposed analysis, which show that our MRU analysis has both
good precision and efficiency: the estimated WCET obtained by our MRU analysis is
on average 2%∼10% more than that obtained by simulations, and the analysis of each
benchmark program terminates within 0.1 second on average. Moreover, the estimated
WCET by our MRU analysis is close to (typically 1%∼8% more than) that obtained
by the state-of-the-art LRU analysis. This suggests that MRU is also a good candidate
for instruction cache replacement policies in real-time systems, especially considering
MRU’s other advantages in hardware cost, power consumption and thermal output.

Although the experimental evaluation in this article only considers instruction
caches, the properties of MRU disclosed in this article also hold for data caches and
our analysis techniques can be directly applied to systems with data caches. We didn’t
include experiments with data caches because predicting data cache behaviors heav-
ily relies on value analysis [Wilhelm et al. 2008], which is another important topic
in WCET estimation but orthogonal to the cache analysis issue studied in this paper.
Since our prototype does not yet support high-quality value analysis functionalities,
we currently cannot provide a meaningful evaluation with data caches. The evaluation
of the proposed MRU analysis with data caches is left as our future work.

The rest of the article is organized as follows. Related work on cache analysis in
WCET estimation is surveyed in Section 2. Section 3 introduces the problem model and
basic concepts, and Section 4 reviews the state-of-the-art LRU cache analysis technique.
Section 5 proposes a new classification k-Miss and presents our MRU cache analysis
techniques. Experimental results are given in Section 6. Finally, Section 7 concludes
the article and discusses possible future work.

2. RELATED WORK

Most previous work on cache analysis for static WCET estimation assumes the LRU
replacement policy. Li et al. [Li and Malik 1995; Li et al. 1996] uses ILP-only approaches
where the cache behavior prediction is formulated as part of the overall integer linear
programming (ILP) problem. These approaches suffer from serious scalability problems
due to the exponential complexity of ILP, and thus cannot handle realistic programs on
modern processors. Mueller et al. [Arnold et al. 1994; Mueller 1994, 2000] proposed a
technique called static cache simulation, which iteratively calculates the instructions
that may be in the cache at the entry and exit of each basic block until the collective
cache state reaches a fixed point, and then uses this information to categorize the
caching behavior of each instruction.

A milestone in the research of static WCET estimation is establishing the framework
combining micro-architecture analysis by abstract interpretation (AI) and path analysis
by implicit path enumeration technique (IPET) [Theiling et al. 2000]. The AI-based
cache analysis statically categorizes the caching behavior of each instruction by sound

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:4 N. Guan et al.

Must, May, and Persist analyses, which have both high efficiency and good precision
for LRU caches. The IPET-based path analysis uses the cache behavior classification
to derive a delay invariant for each instruction and encodes the WCET calculation
problem in into ILP formulation. Such a framework forms the common foundation for
later research in cache analysis for WCET estimation. For example, it has been refined
and extended to deal with nested loops [Ballabriga and Casse 2008; Cullmann 2011],
data caches [Ferdinand and Wilhelm 1998; Sen and Srikant 2007; Huynh et al. 2011],
multilevel caches [Hardy and Puaut 2008; Sondag and Rajan 2010], shared caches
[Liang et al. 2012; Chattopadhyay et al. 2010] and cache-related preemption delay
[Staschulat and Ernst 2007; Altmeyer et al. 2010].

In contrast, much less work has been done for non-LRU caches. Although some
important progress has been made in the analysis of policies like FIFO [Grund and
Reineke 2009, 2010a] and PLRU [Grund and Reineke 2010b], in general these analyses
are much less precise than for LRU. To the best of our knowledge, there has been no
work dedicated to the analysis of MRU in the context of WCET estimation.

Jan Reineke et al. [Reineke et al. 2007; Reineke and Grund 2008, 2013; Reineke
2008] have conducted a series of fundamental studies on predictability properties of
different cache replacement policies. Reineke et al. [2007] defines several predictability
metrics, regarding the minimal number of different memory blocks that are needed to
(i) completely clear the original cache content (evict), (ii) reach a completely known
cache state (fill), (iii) evict a block that has just been accessed (mls). Reineke and Grund
[2013] studies the sensitivity of different cache replacement policies, which expresses
to what extent the initial state of the cache may influence the number of cache hits
and misses during program execution. According to all the above metrics, LRU appears
significantly more predictable than other policies like MRU, FIFO, and PLRU. Reineke
and Grund [2008] studies the relative competitiveness between different policies by
providing upper (lower) bounds of the ratio on the number of misses (hits) between
two different replacement policies during the whole program execution. By such infor-
mation, one can use the cache analysis result under one replacement policy to predict
the number of cache misses (hits) of the program under another policy. This approach
is different in many ways from our proposed analysis based on k-Miss classification.
First, while the relative competitiveness approach provides bounds on the number of
misses of the whole program,2 the k-Miss classification bounds the number of misses at
individual program points. Second, while the bounds on the number of misses provided
by the relative competitiveness analysis is linear with respect to the total number of
accesses, our k-Miss analysis provides constant bounds. Third, the k-Miss classification
for MRU does not necessarily rely on the analysis result of LRU, and one can identify
k-Miss by other means, for example, directly computing the maximal stack distance as
defined in Section 4. Overall, our proposed analysis based on k-Miss can better capture
MRU cache behavior and support a much more precise WCET estimation than the
relative competitiveness approach.

Finally, we refer to Puschner and Burns [2000] and Wilhelm et al. [2008] for compre-
hensive surveys on WCET analysis techniques and tools, which cover many relevant
references that are not listed here.

3. BASIC CONCEPTS

In this article, we assume an abstract processor architecture model: The processor
has a perfect pipeline and instructions are fetched sequentially. The processor has a

2The relative competitiveness also can be used as Must/May analysis to predict the cache access behavior at
individual program points. However, this relies on the analysis under other policies with typically a much
smaller cache sizes (to get 1-competitiveness), which generally yields very pessimistic results.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:5

Fig. 1. An control-flow-graph example.

cache between the processing core and the main memory. The execution delay of each
instruction only depends on whether the corresponding memory content is in the cache
or not, and the time to deliver data from the main memory to the cache is constant.
Other factors affecting the execution delay are not considered in this article.

We assume that the cache is set-associative or fully-associative. In set-associative
caches, the accesses to memory references mapped to different cache sets do not affect
each other, and each cache set can be treated as a fully-associative cache and analyzed
independently. We present the cache analysis techniques in the context of a fully-
associative cache for simplicity of presentation, and the experiments in Section 6 are
all conducted with set-associative caches. Let the cache have L ways, that is, the cache
consists of L cache lines. The memory content that fits into one cache line is called a
memory block.

We consider the common class of programs represented by control-flow-graphs (CFG).
Programs that are difficult to be modeled by CFGs, for example, self-modified programs,
are usually not suitable for safe-critical systems and out of the scope of this article. A
CFG can be defined on the basis of individual nodes as follows.

Definition 3.1 (CFG on the Basis of Nodes). A CFG is a tuple G = (N, E, nst):

—N = {n1, n2, . . .} is the set of nodes in the CFG;
—E = {e1, e2, . . .} is the set of directed edges in the CFG;
—nst ∈ N is the unique starting node of the CFG.

A CFG can also be represented as a digraph of basic blocks [Allen 1970].

Definition 3.2 (CFG on the Basis of Basic Blocks). A CFG is a tuple G = (B, E, bbst):

—B = {bb1, bb2, . . .} is the set of basic blocks in the CFG;
—E = {e1, e2, . . .} is the set of directed edges connecting the basic blocks in the CFG;
—bbst ∈ B is the unique starting basic block of the CFG.

Figure 1 shows a CFG example on the basis of individual nodes and basic blocks
respectively. Letter a, b, . . . inside each node denotes the memory block accessed by the
node. When we mention the CFG in the rest of this article, it is by default on the basis
of nodes unless otherwise specified.

At runtime, when (a node of) the program accesses a memory block, the processor
first checks whether the memory block is in the cache. If yes, it is a hit, and the program
directly accesses this memory block from the cache. Otherwise, it is a miss, and this
memory block is first installed in the cache before the program accesses it.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:6 N. Guan et al.

Fig. 2. Illustration of LRU cache update with L = 4, where the left part is a miss and the right part is a hit.

A memory block only occupies one cache line regardless of how many times it is
accessed. So the number of unique accesses to memory blocks, that is, the number
of pairwise different memory blocks in an access sequence is important to the cache
behavior. We use the following concept to reflect this.

Definition 3.3 (Stack Length). The Stack Length of a memory access sequence cor-
responding to a path p in the CFG, denoted by sl(p), is the number of pairwise different
memory blocks accessed along p.

For example, the stack length of the access sequence

a → b → c → a → d → a → b → d

is 4, since only 4 memory blocks a, b, c and d are accessed in this sequence.
The number of memory blocks accessed by a program is typically far greater than

the number of cache lines, so a replacement policy must decide which block to be
replaced upon a miss. In the following, we describe the LRU and MRU replacement
policy, respectively.

3.1. LRU Replacement

The LRU replacement policy always stores the most recently accessed memory block
in the first cache line. When the program accesses a memory block s, if s is not in the
cache (miss), then all the memory blocks in the cache will be shifted one position to the
next cache line (the memory block in the last cache line is removed from the cache),
and s is installed to the first cache line. If s is in the cache already (hit), then s is moved
to the first cache line and all memory blocks that were stored before s’s old position
will be shifted one position to the next cache line. Figure 2 illustrates the update upon
an access to memory block s in an LRU cache of four lines. In the figure, the uppermost
block represents the first (lowest-index) cache line and the lowermost block is the last
(highest-index) one. All figures in this article follow this convention.

A metric defined in Reineke et al. [2007] to evaluate the predictability of a replace-
ment policy is the minimal-life-span (mls), the minimal number of pairwise different
memory blocks required to evict a just-visited memory block out of the cache (not count-
ing the access that brought the just-visited memory block into the cache). The following
is known [Reineke et al. 2007].

LEMMA 3.4. The mls of LRU is L.

Recall that L is the number of lines in the cache. The mls metric can be directly used
to determine cache hits/misses for a memory access sequence: if the stack length of the
sequence between two successive accesses to the same memory block is smaller than
mls, then the later access must be a hit. For example, for a memory access sequence

a → b → c → c → d → a → e → b

on a 4-way LRU cache, we can easily conclude that the second access to memory block
a is a hit since the sequence between two accesses to a is b → c → c → d, which has
stack length 3. The second access to b is a miss since the stack length of the sequence

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:7

Fig. 3. An example illustrating MRU and its mls.

c → c → d → a → e is 4. Clearly, replacement policies with larger mls are preferable,
and the upper bound of mls is L.

3.2. MRU Replacement

For each cache line, the MRU replacement policy stores an extra MRU-bit, to approxi-
mately represent whether this cache line was recently visited. An MRU-bit at 1 indicates
that this line was recently visited, while at 0 indicates the opposite. Whenever a cache
line is visited, its MRU-bit will be set to 1. Eventually, there will be only one MRU-bit at
0 in the cache. When the cache line with the last MRU-bit at 0 is visited, this MRU-bit is
set to 1 and all the other MRU-bits change back from 1 to 0, which is called a global-flip.

More precisely, when the program accesses a memory block s, MRU replacement
first checks whether s is already in the cache. If yes, then s will still be stored in the
same cache line and its MRU-bit is set to 1 regardless of its original state. If s is not
in the cache, MRU replacement will find the first cache line whose MRU-bit is 0, then
replace the originally stored memory block in it by s and set its MRU-bit to 1. After
these operations, if there still exists some MRU-bit at 0, the remaining cache lines’ states
are kept unchanged. Otherwise, all the remaining cache lines’ MRU-bits are changed
from 1 to 0, which is a global-flip. Note that the global-flip operation guarantees that
at any time there is at least one MRU-bit in the cache being 0.

In the following, we present the MRU replacement policy formally. Let M be the
set of all the memory blocks accessed by the program plus an element representing
emptiness. The MRU cache state can be represented by a function C : {1, . . . , L} →
M×{0, 1}. We use C(i) to denote the state of the ith cache line. For example, C(i) = (s, 0)
represents that cache line i currently stores memory block s and its MRU-bit is 0.
Further, we use C(i).ω and C(i).β to denote the resident memory block and the MRU-bit
of cache line i. The update rule of MRU replacement can be described by the following
steps, where C and C′ represent the cache state before and after the update upon an
access to memory block s, respectively, and δ denotes the cache line where s should be
stored after the access.

(1) If there exists h such that C(h).ω = s, then let δ ← h, otherwise let δ = h such that
C(h).β = 0 and C( j).β = 1 for all j < h.

(2) C′(δ) ← (s, 1).
(3) If C(h).β = 1 for all h �= δ, then let C′( j) ← (C( j).ω, 0) for all j �= δ (i.e., global-flip),

otherwise C′( j) ← C( j) for all j �= δ.

Figure 3 illustrates MRU replacement with a 4-way cache. First, the program accesses
memory block s, which is already in the cache. So s still stays in the same cache line,
and the corresponding MRU-bit is changed to 1. Then the program accesses e, which
is not in the cache yet. Since only the 4th cache line’s MRU-bit is 0, e is installed in
that line and triggers the global-flip, after which the 4th cache line’s MRU-bit is 1 and
all the other MRU-bits are changed to 0. Then, the program accesses f and s in order,
which are both not in the cache, so they will be installed to the first and second cache
line with MRU-bits at 0 and change these bits to 1.

In MRU caches, an MRU-bit can roughly represent how old the corresponding memory
block is, and the replacement always tries to evict a memory block that is relatively

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:8 N. Guan et al.

old. So MRU can be seen as an approximation of LRU. However, such an approximation
results in a very different mls [Reineke et al. 2007].

LEMMA 3.5. The mls of MRU is 2.

The example in Figure 3 illustrates this lemma, where only two memory blocks e and
f are enough to evict a just-visited memory block s. It is easy to extend this example
to arbitrarily many cache lines, where we still only need two memory blocks to evict s.
Partly due to this property, MRU has been believed to be a very unpredictable replace-
ment policy, and to the best of our knowledge it has never been seriously considered as
a good candidate for timing-predictable architectures.

4. A REVIEW OF THE ANALYSIS FOR LRU

As we mentioned in Section 1, the MRU analysis proposed in this article uses directly
the results of the LRU analysis for the same program. Thus, before presenting our
new analysis technique, we first provide a brief review of the state-of-the-art analysis
technique for LRU.

Exact cache analysis suffers from a serious state space explosion problem. Hence,
researchers resort to approximation techniques separating path analysis and cache
analysis for good scalability [Theiling et al. 2000]. Path analysis requires an upper
bound on the timing delay of a node whenever it is executed. Therefore, the main
purpose of the LRU cache analysis is to decide the cache hit/miss classification (CHMC)
for each node [Arnold et al. 1994; Theiling et al. 2000].

—AH (always hit). The node’s memory access is always hit whenever it is executed.
—FM (first miss). The node’s memory access is miss for the first execution, but always

hit afterwards. This classification is useful to handle “cold miss” in loops.
—AM (always miss). The node’s memory access is always miss whenever it is executed.
—NC (non-classified). Cannot be classified into any of the above categories. This cate-

gory has to be treated as AM in the path analysis.

Among this CHMC, we call AH and FM positive classification since they ensure that
(the major portion of) the memory accesses of a node to be hits, and call AM and NC
negative classification.

Recall that the mls of LRU is L, and one can directly use this property to decide the
hit/miss of a node with linear access sequences. However, a CFG is generally a digraph,
and there may be multiple paths between two nodes.

The following concept captures the maximal number of pairwise different memory
blocks between two nodes accessing the same memory block in the CFG.

Definition 4.1 (Maximal Stack Distance). Let ni and nj be two nodes accessing the
same memory block s. The Maximal Stack Distance from ni to nj , denoted by dist(ni, nj),
is defined as:

dist(ni, nj) =
{

max{sl(p) | p ∈ �(ni, nj)} if �(ni, nj) �= ∅
0 if �(ni, nj) = ∅

where �(ni, nj) is the set of paths satisfying

—ni and nj is the first and last node of the path, respectively;
—None of the nodes in the path, except the first and last, accesses s.

Note that the maximal stack distance between two nodes is direction sensitive, that
is, dist(ni, nj) may not be equal to dist(nj, ni). The example in Figure 4 illustrates the
maximal stack distance using a CFG with three nodes n1, n3 and n7 accessing the same

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:9

Fig. 4. Illustration of Maximal Stack Distance.

memory block s. We have dist(n1, n7) = 5 since �(n1, n7) contains a path

n1 → n4 → n5 → n8 → n4 → n6 → n8 → n4 → n7

in which s, a, c, d and e are accessed. We have dist(n1, n3) = 2 since n1 → n2 → n3
is the only path in �(n1, n3) (any other path from n1 to n3 does not satisfy the second
condition for �). We have dist(n3, n7) = 0 since any path from n3 to n7 has to go through
n1 which also accesses s.

Now one can use the maximal stack distance to judge whether the CHMC of a node
ni is positive: nj falls into the positive classification (AH or FM), if dist(ni, nj) ≤ L holds
for any node ni that accesses the same memory block s as nj . This is because there are
not enough pairwise different memory blocks to evict s along any path to ni since the
last access to s.

However, computing the exact maximal stack distance is, in general, very expensive.
Therefore, the LRU analysis resorts to overapproximation by abstract interpretation.
The main idea is to define an abstract cache state and iteratively traverse the program
until the abstract state converges to a fixed point, and use the abstract state of this
fixed point to determine the CHMC. There are mainly three fixed-point analyses:

—Must analysis to determine AH nodes,
—May analysis to determine AM nodes,
—Persist analysis to determine FM nodes.

A node is a NC if it cannot be classified by any of these analyses. We refer to Ferdinand
[1997] and Huynh et al. [2011] for details of these fixed-point analyses.

5. THE NEW ANALYSIS OF MRU

In this section, we present our new analysis for MRU. First, we show that the existing
CHMC in the LRU analysis as introduced in last section is actually not suitable to
capture the cache behavior under MRU, and thus we introduce a new classification
k-Miss (Section 5.1). After that, we introduce the conditions for nodes to be k-Miss
(Section 5.2), and show how to efficiently check these conditions (Section 5.3). Then, the
k-Miss classification is generalized to more precisely analyze nested-loops (Section 5.4).
Finally, we present how to apply the cache analysis results in the path analysis to
obtain the WCET estimation (Section 5.5).

5.1. New Classification: k-Miss

First, we consider the example in Figure 5(a). We can easily see that dist(n1, n1) = 4,
that is, 4 pairwise different memory blocks appear in each iteration of the loop no
matter which branch is taken. Since dist(n1, n1) is larger than 2 (the mls of MRU), n1
cannot be decided as a positive classification using mls.

Now we have a closer look into this example, considering a particular execution
sequence in which the two branches are taken alternatively, as shown in Figure 5(b).
Assume that the memory blocks initially stored in the cache (denoted by “?”) are all

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:10 N. Guan et al.

Fig. 5. An example motivating the k-Miss classification.

different from the ones that appear in Figure 5(a), and initial MRU-bits are shown in
the first cache state of Figure 5(b).

We can see that the first three executions of s are all misses. The first miss is a cold
miss which is unavoidable anyway under our initial cache state assumption. However,
the second and third accesses are both misses because s is evicted by other memory
blocks. Indeed, node n1 cannot be determined as AH or FM, and one has to put it into
the negative classification and treat it as being always miss whenever it is executed.

However, if the sequence continues, we can see that when n1 is visited for the fourth
time, s is actually in the cache, and most importantly, the access of n1 will always be
a hit afterwards (we do not show a complete picture of this sequence, but this can be
easily seen by simulating the update for a long enough sequence until a cycle appears).

The existing positive classification AH and FM are inadequate to capture the behavior
of nodes like n1 in this example, which only encounters a smaller number of misses,
but will eventually go into a stable state of being always hits. Such behavior is actually
quite common under MRU. Therefore, the analysis of MRU will be inherently very
pessimistic if one only relies on the AH and FM classification to claim cache hits.

This phenomenon shows the need for a more precise classification to capture the
MRU cache behavior. As we show in Section 5.2, the number of misses under MRU may
be bound not only for individual nodes, but also for a set of nodes that access the same
memory block. This leads us to the definition of the k-Miss classification as follows.

Definition 5.1 (k-Miss). A set of nodes S = {n1, . . . , ni} is k-Miss iff at most k accesses
by nodes in S are misses while all the other accesses are hits.

The traditional classification FM can be viewed as a special case of k-Miss with a
singleton node set and k = 1. Note that although the k-Miss classification can bound
the number of misses for a set of nodes, it does not say anything about when do these
k times of misses actually occur. The misses do not necessarily occur at the first k
accesses of these nodes. It allows the misses and hits to appear alternatively, as long
as the total number of misses does not exceed k.

5.2. Conditions for k-Miss

In this section, we establish the conditions for a set of nodes to be k-Miss. We start with
an important property of MRU.

LEMMA 5.2. At least k pairwise different memory blocks are needed to evict a memory
block in cache line k with MRU-bit at 1.

PROOF. Only the memory block in a cache line with MRU-bit at 0 can be evicted, so
before the eviction of s there must be a global-flip to change the MRU-bit of cache line

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:11

Fig. 6. Illustration of Lemma 5.3.

k from 1 to 0. Right after the global flip, the number of 0-MRU-bits among cache lines
{1, . . . , k} is at least k − 1, so k − 1 pairwise different memory blocks (which are also
different from the one triggering the global-flip) are needed to fill up these 0-MRU-bit
cache lines. In total, the number of pairwise different memory blocks required is at
least k.

Lemma 5.2 indicates that the minimal-life-span of memory blocks installed to dif-
ferent cache lines are asymmetric: a cache line with a greater index provides a larger
minimal-life-span guarantee (while the mls metric does not distinguish different posi-
tions but simply captures the worst case). To provide a better analysis than the mls
approach, one needs information about where a memory block is installed. However,
under MRU a memory block may be installed to any cache line without restricting the
cache state beforehand. Since the initial cache state is unknown, and the precise cache
state information is lost quickly during the abstract analysis, it is difficult to precisely
predict the position of a memory block in the cache.

However, Lemma 5.2 indeed gives us opportunities to do a better analysis. When a
memory block is installed to a cache line with a larger index, it becomes more difficult
to be evicted. So the main idea of our analysis is to verify whether a memory block
will eventually be installed to a “safe position” (a cache line with large enough index)
and stay there afterwards (as long as it executes in the scope of the program under
analysis). The k times of misses in k-Miss happens before the memory block is installed
to the “safe position”, and after that all the accesses will be hits. In the following, we
show the condition for a memory block to have such behavior. We first introduce an
auxiliary lemma.

LEMMA 5.3. On an L-way MRU cache, L pairwise different memory blocks are ac-
cessed between two successive global-flips (including the ones triggering these two global-
flips).

PROOF. Right after a global-flip, there are L− 1 cache lines whose MRU-bits are 0. In
order to have the next flip, all these cache lines of which the MRU-bits are 0 need to be
accessed, that is, it needs L−1 pairwise different memory blocks that are also different
from the one causing the first global-flip. So in total L pairwise different memory blocks
are involved in the access sequence between two successive global-flips.

Lemma 5.3 is illustrated by the example in Figure 6 with L = 4. The access to
memory block a triggers the first global-flip, after which three MRU-bits are 0. To
trigger the next global-flip, these three MRU-bits have to be changed to 1, which needs
three pairwise different memory blocks. So, in total, four pairwise different memory
blocks are involved in the access sequence between these two global-flips. With this
auxiliary lemma, we are able to prove the following key property.

LEMMA 5.4. Suppose that under MRU at some point a memory block s is accessed by
node nx at cache line i (either hit or miss), and the next access to s is a miss caused by ny
upon which s is installed to cache line j. We have j > i if the following condition holds:

dist(nx, ny) ≤ L. (1)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:12 N. Guan et al.

Fig. 7. Illustration of Lemma 5.4.

Figure 7 illustrates Lemma 5.4, where nx and ny are two nodes accessing the same
memory block s and satisfying Condition (1). We focus on a particular path as shown
in Figure 7(a). Figure 7(b) shows the cache update along this path: first nx accesses s
in the second cache line. After s is evicted out of the cache and is loaded back again, it
is installed to the third cache line, which is one position below the previous one. In the
following, we give a formal proof of the lemma.

PROOF. Let event evx be the access to s at cache line i by nx as stated in the lemma,
and event evy the installation of s to cache line j by ny. We prove the lemma by
contradiction, assuming j ≤ i.

The first step is to prove that there are at least two global-flips in the event sequence
{evx+1, . . . , evy−1} (evx+1 denotes the event right after evx and evy−1 the event right
before evy).

Before evy, s has to be first evicted out of the cache. Let event evv denote such an
eviction of s, which occurs at cache line i. By the MRU replacement rule, a memory
block can be evicted from the cache only if the MRU-bit of its resident cache line is 0.
So we know C(i).β = 0 right before evv.

On the other hand, we also know that C(i).β = 1 right after event evx. And since only
a global-flip can change an MRU-bit from 1 to 0, we know that there must exist at least
one global-flip among the events {evx+1, . . . , evv−1}.

Then we focus on the event sequence {evv, . . . , evy−1}. We distinguish two cases.

—i = j. Right after the eviction of s at cache line i (event evv), the MRU-bit of cache line
i is 1. On the other hand, just before the installation of s to cache line j (event evy),
the MRU-bit of cache line j must be 0. Since i = j, there must be at least one global-
flip among the events {evv+1, . . . , evy−1}, in order to change the MRU-bit of cache line
i = j from 1 to 0.

—i > j. By the MRU replacement rule, we know that just before s is evicted in event
evv, it must be true that ∀h < i : C(h).β = 1, and hence C( j).β = 1. On the other hand,
just before the installation of s in event evy, the MRU-bit of cache line j must be 0.
Therefore, there must be at least one global-flip among the events {evv, . . . , evy−1}, in
order to change the MRU-bit of cache line j from 1 to 0.

In summary, there is at least one global-flip among the events {evv, . . . , evy−1}.
Therefore, we can conclude that there are at least two global-flips among the events

{evx+1, . . . , evy−1}. By Lemma 5.3, we know that at least L pairwise different memory
blocks are accessed in {evx+1, . . . , evy−1}. Since evy is the first access to memory block s
after evx, there is no access to s in {evx+1, . . . , evy−1}, so at least L+ 1 pairwise different
memory blocks are accessed in {evx, . . . , evy}.

On the other hand, let p be the path that leads to the event sequence {evx, . . . , evy}.
Clearly, p starts with nx and ends with ny. We also know that no other node along p,
apart from nx and ny, accesses s, since evy is the first event accessing s after evx. So p is a
path in �(nx, ny) (Definition 4.1), and we know dist(nx, ny) ≥ sl(p). Combining this with
Condition (1), we have sl(p) ≤ L, which contradicts with that at least L + 1 pairwise
different memory blocks are accessed in {evx, . . . , evy} as we concluded here.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:13

Fig. 8. An example illustrating the usage of Lemma 5.4.

To see the usefulness of Lemma 5.4, we consider a special case where only one node
n in the CFG accesses memory block s and dist(n, n) ≤ L as shown in Figure 8(a). In
this case, by Lemma 5.4, we know that each time s is accessed (except the first time),
there are only two possibilities:

—the access to s is a hit, or
—the access to s is a miss and s is installed to a cache line with a strictly larger index

than before.

So we can conclude that the access to s can only be miss for at most L times since the
position of s can only “move downwards” for a limited number of times which is bounded
by the number of cache lines. Moreover, we can combine Lemma 5.2 and Lemma 5.4 to
have a stronger claim: if condition dist(n, n) ≤ k holds for some k ≤ L, then the access to
s can only be miss for at most k times, since the number of pairwise different memory
blocks along the path from n back to n is not enough to evict s as soon as it is installed
to cache line k.

However, in general, there could be more than one node in the CFG accessing the
same memory block, where Lemma 5.4 cannot be directly applied to determine the
k-Miss classification. Consider the example in Figure 8(b), where two nodes n1 and n2
both access the same memory block s, and we have dist(n1, n2) ≤ L and dist(n2, n1) > L.
In this case, we cannot classify n2 as a k-Miss, although Lemma 5.4 still applies to the
path from n1 to n2. This is because Lemma 5.4 only guarantees the position of s will
move to larger indices each time n2 encounters a miss, but the position of s may move
to smaller indices upon misses of n1 (since dist(n2, n1) > L), which breaks down the
memory block’s movement monotonicity.

In order to use Lemma 5.4 to determine the k-Miss classification in the general case,
we need to guarantee a global movement monotonicity of a memory block among all
the related nodes. This can be done by examining the condition of Lemma 5.4 for all
node pairs in a strongly connected component (maximal strongly connected subgraph)
together, as described in the following theorem.

THEOREM 5.5. Let SCC be a strongly connected component in the CFG, let S be the
set of nodes in SCC accessing the same memory block s. The total number of misses
incurred by all the nodes in S is at most k if the following condition holds:

∀nx, ny ∈ S : dist(nx, ny) ≤ k, (2)

where k is bounded by the number of cache lines L.

PROOF. Let ev f and evl be the first and last events triggered during program ex-
ecution. Since S is a subset of the strongly connected component SCC, any event
accessing s in the event sequence {ev f , . . . , evl} has to be also triggered by some node in
S (otherwise, there will be a cycle including nodes both inside and outside SCC, which
contradicts SCC is a strongly connected component).

By k ≤ L, Condition (2), and Lemma 5.4, we know that among the events {ev f , . . . , evl}
whenever the access to s is a miss, s will be installed to a cache line with a strictly

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:14 N. Guan et al.

larger index than before. Since every time after s is accessed in the cache (either hit or
miss), the corresponding MRU-bit is 1, so by Condition (2) and Lemma 5.2, we further
know that among the events {ev f , . . . , evl}, as soon as s is installed to a cache line with
index equal to or larger than k, it will not be evicted. In summary, there are at most k
misses of s among events {ev f , . . . , evl}, that is, the nodes in S have at most k misses in
total.

5.3. Efficient k-Miss Determination

Theorem 5.5 gives us the condition to identify k-Miss node sets. The major task of
checking this condition is to calculate the maximal stack distance dist(). As mentioned
in Section 4, the exact calculation of dist() is very expensive, which is the reason why
the analysis of LRU relies on AI to obtain an over-approximate classification. For the
same reason, we also resort to over-approximation to efficiently check the conditions of
k-Miss. The main idea is to use the analysis result for the same program under LRU to
infer the desired k-Miss classification under MRU.

LEMMA 5.6. Let ny be a node that accesses memory block s and is classified as AH/FM
by Must/Persist analysis with a k-way LRU cache. For any node nx that also accesses s,
if there exists a cycle in the CFG including nx and ny, then the following must hold:

dist(nx, ny) ≤ k.

PROOF. We prove the lemma by contradiction. Let nx be a node that also accesses s
and there exists a cycle in the CFG including nx and ny. We assume that dist(nx, ny) > k.
Then, by the definition of dist(nx, ny), we know that there must exist a path p from nx
to ny satisfying (i) sl(p) > k and, (ii) no other node accesses s apart from the first
and last node along this path (otherwise, dist(nx, ny) = 0). This implies that under LRU,
whenever ny is reached via path p, s is not in the cache. Furthermore, ny can be reached
via path p repeatedly since there exists a cycle including nx and ny. This contradicts ny
is classified as AH/FM by the Must/Persist analysis with a k-way LRU cache (Must/Persist
yields safe classification, so in the real execution, an AH node will never miss and an
FM node can miss for at most once).

THEOREM 5.7. Let SCC be a strongly connected component in the CFG, and S the set
of nodes in SCC that access the same memory block s. If all the nodes in S are classified
as AH by Must analysis or FM by Persist analysis with a k-way LRU cache, then the node
set S is k-Miss with an L-way MRU cache for k ≤ L.

PROOF. Let nx, ny be two arbitrary nodes in S, so both of them access memory block s
and are classified as AH/FM by the Must/Persist analysis with a k-way LRU cache. Since
S is a subset of a strongly connected component, we also know nx and ny are included
in a cycle in the CFG. Therefore, by Lemma 5.6, we know dist(nx, ny) ≤ k. Since nx, ny
are arbitrarily chosen, this conclusion holds for any pair of nodes in S. Therefore, S
can be classified as k-Miss according to Theorem 5.5.

Theorem 5.7 tells that we can identify k-Miss node sets with a particular k by doing
Must/Persist analysis with an LRU cache of the corresponding number of ways. Actually,
we only need to do the Must and Persist analysis once with an L-way LRU cache, to
identify k-Miss node sets with all different k (≤ L). This is because the Must and Persist
analysis for LRU cache maintains the information about the maximal age of a memory
block at certain point in the CFG, which can be directly transferred to the analysis
result with any cache size smaller than L. For example, suppose by the Must analysis
with an L-way LRU cache, a memory block s has maximal age of k before the access of a
node n, then by the Must analysis with a k-way LRU cache this node n will be classified
as AH. We will not recite the details of Must and Persist analysis for LRU cache or

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:15

Fig. 9. A program with nested loop and its (simplified) CFG.

explain how the age information is maintained in these analysis procedures, but refer
interested readers to Theiling et al. [2000] and Huynh et al. [2011].

Moreover, the maximal age information in the Must and Persist analysis with an
2-way LRU cache can also be used to infer traditional AH and FM classification un-
der MRU according to the relative competitiveness property between MRU and LRU
[Reineke 2008]: an L-way MRU cache is 1-competitive relative to a 2-way LRU cache, so
a Must (Persist) analysis with a 2-way LRU cache can be used as a sound Must (Persist)
analysis with an L-way MRU cache. Therefore, if the maximal age of a node in a Must
(Persist) analysis with an L-way LRU cache is bounded by 2 (L ≥ 2), then this node
can be classified as AH (FM) with an L-way MRU cache. Adding this competitiveness
analysis optimization helps us to easily identify AH nodes when several nodes in a
row access the same memory block. For example, if a memory block (i.e., a cache line)
contains two instructions, then in most cases the second instruction is accessed right
after the first one, so we can conclude that the second node is AH with a 2-way LRU
cache, and thus is also AH with an L-way MRU. Besides dealing with this easy case,
the competitiveness analysis optimization sometimes can do more for set-associative
caches with a relatively large number of cache sets. For example, consider a path ac-
cessing 16 pairwise different memory blocks, and a set-associative cache of 8 sets. On
average only 2 memory blocks on this path are mapped to each set, so competitiveness
analysis may have a good chance to successfully identify some AH and FM nodes.

5.4. Generalizing k-Miss for Nested Loops

Precisely predicting the cache behavior of loops is very important for obtaining tight
WCET estimations. In this article, we simply define a loop LP� as a strongly connected
subgraph in the CFG.3 (Note the difference between a strongly connected subgraph
and a strongly connected component.)

The ordinary CHMC may lead to over-pessimistic analysis when loops are nested.
For example, Figure 9 shows a program containing two-level nested loops and its
(simplified) CFG. Suppose the program executes with a 4-way LRU cache. Since
dist(ns, ns) = 6 > 4 (see s → f → d → e → g → b → d → s), the memory block s
can be evicted out of the cache repeatedly, and thus we have to put ns into the negative
classification according to the the ordinary CHMC, and treat it as being always miss
whenever it is accessed. However, by the program semantics, we know that every time
the program enters the inner loop it will iterate for 100 times, during which s will not
be evicted out of the cache since the inner loop can be fit into the cache entirely. So

3In realistic programs, loop structures are usually subject to certain restrictions (e.g., a natural loop has
exactly one header node which is executed every time the loop iterates, and there is a path back to the header
node [Aho et al. 1986]). However, the properties presented in this section is not specific to any particular
structure, so we define a loop in a more generic way.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:16 N. Guan et al.

node ns has only 5 misses out of the total 500 cache accesses during the whole program
execution. Putting ns into the negative classification and treating it as being always
miss is obviously over-pessimistic.

To solve this problem, Ferdinand [1997] and Ballabriga and Casse [2008] reloaded
the FM classification by relating it to certain loop scopes.

Definition 5.8 (FM Regarding a Loop). A node is FM regarding a loop LP� iff it has at
most one miss (at the first access) and otherwise will be always hit when the program
executes inside LP�.

In this example, node ns is FM regarding the inner loop LP2.
The same problem also arises for MRU. Suppose the program in Figure 9 runs with

a 4-way MRU cache. For the same reason as under LRU, node ns has to be put into
the negative classification category. However, we have dist(ns, ns) = 3 if only looking at
the inner loop, which indicates that ns can be miss for at most 3 times every time it
executes inside the inner loop. As with FM, we can reload the k-Miss classification to
capture this locality.

Definition 5.9 (k-Miss Regarding a Loop). A node is k-Miss regarding a loop LP� of
the CFG iff it has at most k misses and all the other accesses are hits when the program
executes inside LP�.

The sought k-Miss classification under MRU for a loop can be inferred from applying
the FM classification under LRU to the same loop.

THEOREM 5.10. Let LP� be a loop in the CFG, and S the set of nodes in the loop that
access the same memory block s. If all the nodes in S are classified as FM regarding LP�

with a k-way LRU cache (k ≤ L), then the node set S is k-Miss regarding LP� with an
L-way MRU cache.

PROOF. Similar to the proof of Theorem 5.5 and 5.7.

A node may be included in more than one k-Miss node sets regarding different loops.
This typically happens across different levels in nested loops. For example, if the pro-
gram in Figure 9 executes with an 8-way MRU cache, then by Theorem 5.10 {ns} is
classified as 3-Miss regarding the inner loop and 6-Miss regarding the outer loop. The
miss number constraints implied by k-Miss with different k and different loops are
generally incomparable. For example, with the loop bound setting in Figure 9, 3-Miss
regarding the inner loop allows at most 3 × 5 = 15 misses during the whole execution,
which is “looser” than the outer loop 6-Miss which allows at most 6 misses. However,
if we change the outer loop bound to 1, then the inner loop 3-Miss actually poses a
“tighter” constraint as it only allows 3 misses while the outer loop 6-Miss still allows
6 misses. Although it is possible to explore program structure information to remove
redundant k-Miss, we simply keep all the k-Miss classifications in our implementation
since the ILP solver for path analysis can automatically and efficiently exclude such
redundancy, as we illustrate in the next section.

5.5. WCET Computation by IPET

By now, we have obtained the cache analysis results for MRU:

—k-Miss node sets that are identified by Theorem 5.7 and Theorem 5.10,
—AH and FM nodes that are identified using the relative competitiveness property

between MRU and LRU as stated at the end of Section 5.3,
—all the nodes not included in these two categories are NC.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:17

Note that a node classified as AH by the relative competitiveness property may also
be included in some k-Miss node set. In this case, we can safely exclude this node from
the k-Miss node set, since AH provides a strong guarantee and the total number of
misses incurred by other nodes in that k-Miss set is still bounded by k.

In the following, we present how to apply these results in the path analysis by
implicit path enumeration technique (IPET) to obtain the WCET estimation. The path
analysis adopts a similar ILP formulation framework to the standard, but it is extended
to handle k-Miss node sets. All the variables in the following ILP formulation are
nonnegative, which will not be explicitly specified for simplicity of presentation.

To obtain the WCET, the following maximization problem is solved:

Maximize

⎧⎨
⎩

∑
∀bba

costa

⎫⎬
⎭,

where costa denotes the overall execution cost of basic block bba (on the worst-case
execution path). Since a basic block typically contains multiple nodes with different
CHMC, the execution cost for each basic block is further refined as follows.

We assume the execution delay inside the processing unit is constant for all nodes,
and the total execution delay of a node only differs depending on whether the cache
access is a hit or a miss: Ch upon a hit and Cm upon a miss. Since the accesses of an
AH node are always hits, the overall execution delay of an AH node ni in bba is simply
Ch×xa where the variable xa represents the execution count of bba. Similarly, the overall
execution delay of a NC node is Cm × xa. The remaining nodes are the ones included
in some k-Miss node sets (regarding some loops). For each of such nodes ni, we use a
variables zi (≤ xa) to denote the execution count of ni with cache access being miss. So
the overall execution delay of a node ni in some k-Miss node set is Cm×zi +Ch× (xa −zi).
Putting these discussions together, we have the total execution cost of a basic block
bba:

costa = (πAH × Ch + πNC × Cm) × xa +
∑

ni∈bb∗
a

(
Cm × zi + Ch × (xa − zi)

)
,

where πAH and πNC is the number of AH and NC nodes in bba respectively, and bb∗
a is the

set of nodes in bba that are contained in some k-Miss node sets (regarding some loops).
Since at most k misses are incurred by a k-Miss node set regarding a loop LP� every
time the program enters and iterates inside the loop, we have the following constraints
to bound zi:

∀(S, LP�) such that S is k-Miss regarding LP� :
∑
ni∈S

zi ≤ k ×
∑

e j∈entry�

yj,

where entry� is the set of edges through which the program can enter LP� and we use
variable yj to denote how many times an edge e j ∈ entry� is taken during program
execution. Recall that a node may be contained by multiple k-Miss sets (e.g., k-Miss
regarding both the inner and outer loop with different k), so each zi may be involved in
several of these constraints.

Besides these constraints, the formulation also contains program structural con-
straints which are standard components of the IPET encoding. The WCET of the pro-
gram is obtained by solving this maximization problem, and the execution count for
each basic block along the worst-case path is also returned.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:18 N. Guan et al.

6. EXPERIMENTAL EVALUATION

The main purpose of the experiments is to evaluate

(1) the precision of our proposed MRU analysis, and
(2) the predictability comparison between LRU and MRU.

To evaluate (1), we compare the estimated WCET obtained by our MRU analysis and the
measured WCET obtained by simulation with MRU caches. To evaluate (2), we compare
the estimated WCET obtained by our MRU analysis and that by the state-of-the-art
LRU analysis based on abstract interpretation (Must and May analysis in Theiling
et al. [2000] and Persist analysis in Huynh et al. [2011]). The smaller is the difference
between the estimated WCET by our MRU analysis and by the LRU analysis, the more
confident we are to claim that MRU is also a good candidate for cache replacement
policies in real-time embedded systems, especially taking into account MRU’s other
advantages in hardware cost, power consumption and thermal output.

6.1. Experiment Setup

Hardware Configuration. As presented in Section 5.5, we assume the execution delay
of each node only differs depending on whether the cache access is a hit or miss. The
programs execute with a 1K bytes set-associative instruction cache. Each instruction
is 8 bytes, and each cache line (memory block) is 16 bytes (i.e., each memory block
contains two instructions). All instructions have a fixed latency of 1 cycle. The memory
access penalty is 1 cycle upon a cache hit, and 10 cycles upon a cache miss. To conduct
experiments with cache of different number of ways, we keep the total cache size fixed
and change the number of cache sets correspondingly. Although the experiments in
this article are conducted with instruction caches, the theoretical results of this work
also directly apply to data caches, and we leave the evaluation for data caches as our
future work.

Benchmark. The programs used in the experiments are from the Mälardalen Real-
Time Benchmark suite [Gustafsson et al. 2010]. Some programs in the benchmark are
not included in our experiments since the CFG construction engine (from Chronos [Li
et al. 2007]) used in our prototype does not support programs with particular structures
like recursion and switch-case very well. The loop bounds in the programs that cannot
be automatically inferred by the CFG construction engine are manually set to be 50.
The size of these programs used in our experiments ranges from several tens to about
4000 lines of C code, or from several tens to about 8000 assembly instructions compiled
by a gcc compiler retargeted to the SimpleScaler simulator [Austin et al. 2002] with
−O0 option (no optimization is allowed in the compilation).

Simulation Methodology. Since the benchmark programs have been compiled by a
gcc compiler retargeted to SimpleScalar, a straightforward way of doing the simulation
is to execute the compiled binary on SimpleScalar (configured and modified to match
our hardware configuration). However, the comparison between the measured execu-
tion time by this approach and the estimated WCET may be meaningless to evaluate
the quality of our MRU analysis since (i) simulations may only cover program paths
that are much shorter than the actual worst-case path, and (ii) the precision of the
estimated WCET also depends on other factors, for example, the tightness of the loop
bounds, which is out of the interest of this article. In other words, the estimated WCET
can be always significantly larger than the measured execution time obtained by this
approach, regardless the quality of the cache analysis.

In order to provide meaningful quality evaluation of our MRU cache analysis, we built
an in-house simulator, which is driven by the worst-case path information extracted
from the solution of the IPET ILP formulation and only simulates the cache update

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:19

upon each instruction. This enables us to get closer to the worst-case path in the sim-
ulation and exclude effects of other factors orthogonal to the cache behavior. Note that
the solution of the IPET ILP formulation only restricts how many times a basic block
executes on the worst-case path, which allows the flexibility of arbitrarily choosing
among branches as long as the execution counts of basic blocks still comply with the
ILP solution. In order to obtain execution paths that are as close to the worst-case path
as possible, our simulator always takes different branches alternatively which leads to
more cache misses. The manual and source code of the simulator are online available
[Lv 2012].

6.2. Results and Discussions

Table I is the simulation and analysis results with 4-way caches. In the simulation
with each cache, for each program we record the measured execution time (column
“sim. WCET”) and the number of hits and misses. In the analysis with each cache, for
each program we record the estimated WCET (column “est. WCET”) and the number
of memory accesses that can and cannot be classified as hit (column “hit” and “miss”)
respectively. We calculate the over-estimation ratio of the LRU and MRU analysis re-
spectively (column “over est.”). For example, the “sim. WCET” and “est. WCET” of
program bs under LRU is 3911 and 3947 respectively, then the overestimation ratio is
(3947 − 3911)/3911 = 0.92%. Finally, we calculate the excess ratio of MRU analysis
over LRU analysis (column “exc. LRU”). For example, the estimated WCET of pro-
gram bs under LRU and MRU is 3947 and 4089, respectively, then the excess ratio is
(4089 − 3947)/3947 = 3.60%.

Table I shows that the WCET estimation with our MRU analysis has very good
precision: the overestimation comparing with the simulation WCET is on average
2.06%. We can also see that the estimated WCETs with MRU and LRU caches are very
close: the difference is 1.17% on average.

For several benchmark programs, the simulated WCETs are exactly the same under
LRU and MRU. The reason is that MRU is designed to imitate the LRU policy with a
cheaper hardware logic. In some cases, the cache miss/hit behavior under MRU could
be exactly the same as that under LRU, and thereby we may obtain exactly the same
simulated WCET with MRU and LRU for some programs. Moreover, the total number
of memory accesses in the simulation may be different with two policies for the same
program. This is because our simulator simulates the program execution with each
policy according to the “worst-case” path information obtained from the solution of the
corresponding ILP formula for WCET calculation. Sometimes, the ILP solutions with
these two policies may correspond to different paths in the program, which may lead
to different total numbers of memory accesses.

Then we conduct experiments with 8-way and 16-way caches (with the same total
cache size but different number of cache sets). Note that it is rare to see set-associative
caches with more than 16 ways in embedded systems, since a large number of ways
significantly increases hardware cost and timing delay but brings little performance
benefit [Hennessy and Patterson 2006]. So we did not conduct experiments with caches
with more than 16 ways. Figure 10 summarizes the results with 8-way and 16-way
caches, where the WCETs are normalized as the ratio versus the simulation results
under LRU. The overestimation by our MRU analysis is 4.59% and 9.81% for 8-way
and 16-way caches respectively, and the difference between the MRU and LRU analysis
is 3.56% and 8.38%. Overall, our MRU analysis still provides quite good precision on
8-way and 16-way caches.

We observe that for most programs the overestimation ratio of the WCET by our
MRU analysis scales about linearly with respect to the number of ways, the reason of
which can be explained as follows. The k times of misses of k-Miss nodes is merely a

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:20 N. Guan et al.

Table I. Experiment Results with 4-Way Caches

Simulation Analysis
sim. est. over exc.

Program policy hit miss WCET hit miss WCET est. LRU
adpcm LRU 1,161,988 56,622 2,946,818 1,158,440 60,170 2,978,750 1.08%

MRU 1,162,890 55,920 2,490,900 1,155,008 63,802 3,011,838 2.41% 1.11%
bs LRU 1,741 39 3,911 1,737 43 3,947 0.92%

MRU 1,740 39 3,909 1,720 59 4,089 4.61% 3.60%
bsort LRU 146,781 69 294,321 146,773 77 294,393 0.02%

MRU 146,781 69 294,321 146,718 132 294,888 0.19% 0.17%
cnt LRU 198,496 103 398,125 198,489 110 398,188 0.02%

MRU 198,496 103 398,125 198,443 156 398,602 0.12% 0.10%
crc LRU 104,960 222 212,362 104,947 235 212,479 0.06%

MRU 104,947 227 212,391 104,759 415 214,083 0.80% 0.75%
edn LRU 8,506,404 395,838 21,367,026 8,503,690 398,552 21,391,452 0.11%

MRU 8,506,398 395,844 21,367,080 8,413,450 488,792 22,203,612 3.92% 3.80%
expint LRU 43,633 65 87,981 43,627 71 88,035 0.06%

MRU 43,633 65 87,981 43,530 168 88,908 1.05% 0.99%
fdct LRU 15,269 15,421 200,169 15,268 15,422 200,178 <0.01%

MRU 15,269 15,421 200,169 15,268 15,422 200,178 <0.01% 0
fibcall LRU 1,009 27 2,315 1,006 30 2,342 1.17%

MRU 1,009 27 2,315 1,006 30 2,342 1.17% 0
fir LRU 58,034 74 116,882 58,029 79 116,927 0.04% 0.61%

MRU 58,028 74 116,870 57,942 160 117,644 0.66%
insertsort LRU 128,844 53 258,271 128,841 56 258,298 0.01%

MRU 128,844 53 258,271 128,811 86 258,568 0.12% 0.10%
janne LRU 60,794 37 121,995 60,788 43 122,049 0.04%

MRU 60,793 37 121,993 60,779 51 122,119 0.10% 0.06%
jfdctint LRU 17,302 15,540 205,544 17,299 15,543 205,571 0.01%

MRU 17,302 15,540 205,544 17,290 15,552 205,652 0.05% 0.04%
matmult LRU 6,331,762 130 12,664,954 6,331,737 155 12,665,179 <0.01%

MRU 6,331,760 132 12,664,972 6,331,606 286 12,666,358 0.01% 0.01%
minver LRU 21,841,458 9,655 43,789,121 21,840,200 10,913 43,800,443 0.03%

MRU 21,841,102 10,011 43,792,325 21,827,892 23,221 43,911,215 0.27% 0.25%
ndes LRU 968,253 20,448 2,161,434 958,951 29,750 2,245,152 3.87%

MRU 968,333 20,262 2,159,548 947,654 40,941 2,345,659 8.62% 4.48%
ns LRU 245,408,124 77 490,817,095 245,408,119 82 490,817,140 <0.01%

MRU 245,408,124 77 490,817,095 245,408,075 126 490,817,536 <0.01% <0.01%
nsichneu LRU 198,708 198,858 2,584,854 195,706 201,860 2,611,872 1.05%

MRU 198,708 198,858 2,584,854 195,706 201,860 2,611,872 1.05% 0
prime LRU 3,617 63 7,927 3,585 95 8,215 3.63%

MRU 3,617 63 7,927 3,574 106 8.314 4.88% 1.21%
qsort LRU 4,209,245 63 8,419,183 4,206,704 2,604 8,442,052 0.27%

MRU 4,209,245 63 8,419,183 4,205,204 4,104 8,455,552 0.43% 0.16%
qurt LRU 8,417 250 19,584 8,341 326 20,268 3.49%

MRU 8,432 235 19,449 8,227 440 21,294 9.49% 5.06%
select LRU 3,931,319 7,921 7,949,769 3,930,818 8,422 7,954,278 0.06%

MRU 3,931,319 7,921 7,949,769 3,927,618 11,622 7,983,078 0.42% 0.36%
sqrt LRU 2,990 52 6,552 2,984 58 6,606 0.82%

MRU 2,986 52 6,544 2,936 102 6,994 6.88% 5.87%
Continued

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:21

Table I. Continued

Simulation Analysis
sim. est. over exc.

Program policy hit miss WCET hit miss WCET est. LRU
statemate LRU 15,976 17,781 227,543 15,570 18,187 231,197 1.02%

MRU 15,926 17,831 227,993 15,565 18,192 231,242 1.43% 0.02%
ud LRU 11,683,773 5,472 23,427,738 11,683,266 5,979 23,432,301 0.02%

MRU 11,683,765 5,480 23,427,810 11,671,443 17,802 23,538,708 0.47% 0.45%
average LRU 0.78%

MRU 2.06% 1.17%

Fig. 10. Experiment results with 8-way and 16-way caches.

theoretical bound for extreme worst-cases. In the simulation experiments, we observe
that it hardly happens that a k-Miss node really encounters k times of misses. Most
k-Miss nodes actually only incur one miss and exhibit similar behavior to FM nodes
under LRU. For example, suppose a loop that contains k nodes accessing different
memory blocks executes with k-way caches. Under LRU, the maximal ages of these
nodes are all k, so our MRU analysis will classified each of these nodes as k-Miss, and
k × k = k2 misses have to be taken into account for the WCET estimation. However,
in the simulation, these k nodes can be entirely fit into the cache, and each of them
typically only incur one miss, so the number of misses reflected in the simulation WCET

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:22 N. Guan et al.

Fig. 11. Comparison of different analyses.

is typically k, which is k times smaller than that claimed by the analysis. So the ratio
of overestimated misses increases linearly with respect to the number of cache ways,
and thus the overestimation ratio in terms of WCET also scales about linearly with
respect to the number of cache ways.

In this experiments, while our MRU analysis has a precision close to that of LRU anal-
ysis for most programs, it obtains relatively worse performance for several programs
(bs, edn, ndes, prime, qurt and sqrt). While various program structures may lead to
pessimism in our MRU analysis, there is a common reason behind that phenomenon,
which can be explained as follows. The precision of our MRU analysis is sensitive to the
ratio between the k value of k-Miss nodes and the number of times for which the loops
containing these nodes iterate. For example, suppose a node is classified as 6-Miss with
respect to a loop under MRU. If this loop iterates for 10 times, then the total execution
cost of this node is estimated by 11 × 6 + 2 × 4 = 74, where 11 is the execution cost
upon a miss, 6 is the number of misses of this node, 2 is the execution cost upon a cache
hit, and 4 is the number of hits of this node. On the other hand, this node is an FM with
respect to the same loop under LRU, and the total execution cost is 11 × 1 + 2 × 9 = 29.
The estimated execution cost under MRU is about 2.5 times of that under LRU. However,
if this loop iterates for 100 times, the total execution cost of this node under MRU is
11 × 6 + 2 × 94 = 254, which is only 1.2 times of that under LRU (11×1+2×99 = 209).
The high precision of our MRU analysis relies on the big amount of hits predicted by
k-Miss. If a program contains many k-Miss nodes with comparatively large k values but
iterates for a small number of times, the estimated WCET by our MRU analysis is less
precise. This implies that, from the predictability perspective, MRU caches are more
suitable for programs with relatively “small” loops that iterate for a great amount of
times, for example, with large loop bounds or nested-loops inside.

Figure 11 shows comparisons among the LRU analysis, the state-of-the-art MRU
analysis (competitiveness analysis) and our k-Miss-based MRU analysis with various
combinations of different optimization. Each column in the figure represents the nor-
malized WCET (the ratio versus the simulated WCET under LRU) averaged over all
benchmark programs. With each cache setting, the first two columns are simulations,
the next four columns are analyses with nested-loop optimization and the last four
columns are analyses without nested-loop optimization.

—s-LRU: Simulated WCET under LRU
—s-MRU: Simulated WCET under MRU
—e-LRU: Estimated WCET under LRU
—e-MRU: Estimated WCET under MRU by the analysis in this article
—e-MRU-nc: Estimated WCET under MRU by the analysis in this article but excludes

the competitiveness analysis optimization
—e-MRU-comp: Estimated WCET under MRU only by competitiveness analysis,

which is the state-of-the-art MRU analysis before our k-Miss-based analysis
—e-LRU∗: Estimated WCET under LRU but excludes the nested-loop optimization

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:23

—e-MRU∗: Estimated WCET under MRU by the analysis in this article but excludes
the nested-loop optimization

—e-MRU-rtas: Estimated WCET under MRU by the analysis in the previous confer-
ence version of this article [Guan et al. 2012]

—e-MRU-comp∗: Estimated WCET under MRU only by competitiveness analysis, but
excludes the nested-loop optimization

By comparing e-MRU with e-MRU-comp, we can see that our new MRU analysis
greatly improves the precision over the state-of-the-art technique for MRU analysis
(competitiveness analysis), and the improvement is more significant as the number of
cache ways increases. Recall that the competitiveness analysis relies on the analysis
results for the same program with a 2-way LRU cache (with the number of cache sets
unchanged, and thus the cache size scaled down to 2

L of the original L-way cache), so
its results are more pessimistic when L is larger.

By the comparison among e-MRU, e-MRU-nc, e-MRU∗, and e-MRU-rtas, we can
see that both the competitiveness analysis and nested-loop optimization help to im-
prove our MRU analysis precision. However, the contribution by the nested-loop opti-
mization is much more significant.

By comparing columns 3 ∼ 6 with columns 7 ∼ 10, we see that in general adding
nested-loop optimization can significantly improve the analysis precision. The only
exception is e-MRU-comp with more cache ways (thus, fewer cache sets, as we keep
the total cache size unchanged), where even the memory blocks mapped to one cache
set in an inner loop are too many to fit into 2 cache ways.

By comparing e-MRU with e-LRU and comparing e-MRU-rtas with e-LRU∗, we
can see that the nested-loop optimization, which greatly affects the precision of each
analysis, does not significantly affect the ratio between the estimated WCET under
LRU and MRU. This is because our MRU analysis directly uses the LRU analysis results
to find k-Miss nodes. With a more precise LRU analysis, our MRU analysis also becomes
correspondingly more precise. This is why do this article and its earlier conference ver-
sion [Guan et al. 2012] draw similar conclusions about the precipitability comparison
between LRU and MRU, although the analysis results in them are different.

We also evaluate the efficiency of our analysis. As presented in previous sections,
our MRU analysis only requires to do the LRU cache analysis once to infer all the
cache access classifications, so the MRU cache analysis procedure is as efficient as the
state-of-the-art LRU cache analysis based on abstract interpretation. The interesting
problem is the efficiency of the IPET-based path analysis, where more variables are
used to support the constraints for k-Miss nodes. We solve the ILP formulation with an
open source solver lp solve [Berkelaar] on a desktop machine with a 3.4GHZ Core i7
2600 processor. The ILP formulation can be solved very efficiently: the calculation for
each program takes on average 0.1 seconds and at most 0.8 seconds.

In summary, the experiment results show that our MRU analysis has both good preci-
sion and high efficiency. The estimated WCET by our MRU analysis is quite close to that
by LRU analysis under common hardware setting, which indicates that MRU is a good
candidate for cache replacement policies in real-time embedded systems, especially
considering MRU’s other advantages in hardware, power and thermal efficiency.

7. CONCLUSIONS

This article studies the problem of WCET analysis with MRU caches. MRU was con-
sidered to be a very unpredictable replacement policy in the past, due to the lack of
effective techniques to predict its hit/miss behavior. In this article, we disclose impor-
tant properties of MRU, and develop efficient techniques to precisely bound the num-
ber of misses and thereby support high-quality WCET estimations with MRU caches.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:24 N. Guan et al.

Experiments with benchmark programs indicate that the estimated WCET with MRU
caches is rather close to that with LRU. This suggests a great potential for MRU to
be used as the cache replacement policy in real-time embedded systems, especially
considering the MRU’s advantages in better cost, power and thermal efficiency.

The experiments in this article only consider instruction caches. The reason is that
our WCET analysis prototype does not support high-quality value analysis, so currently
we cannot provide a meaningful evaluation with data caches. However, the properties
of MRU disclosed in this article also hold for data caches, and our proposed analysis
techniques can be directly applied to MRU data caches. As future work, we will imple-
ment state-of-the-art value analysis techniques in our WCET analysis prototype and
evaluate the proposed approach in this article with data caches.

We also plan to study the integration between our MRU analysis and the analysis
of other microarchitecture components such as pipelines and memory controllers. Al-
though the k-Miss classification can bound the number of misses that may occur at
certain program points, it does not tell when do these k times of cache misses exactly
occur. It would be an interesting topic to study how to efficiently use the miss num-
ber bounds in the analysis of other components in the presence of timing anomalies.
The potential is that the k-Miss classification can significantly prune away the state
space of other component’s behavior by considerably reducing the number of possible
misses.

REFERENCES

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA.

Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. 2004. Performance evaluation of cache
replacement policies for the spec cpu2000 benchmark suite. In Proceedings of the 42nd Annual Southeast
Regional Conference. ACM-SE 42. ACM, New York, 267–272.

Frances E. Allen. 1970. Control flow analysis. In Proceedings of the Symposium on Compiler Optimization.
Sebastian Altmeyer, Claire Maiza, and Jan Reineke. 2010. Resilience analysis: tightening the crpd bound for

set-associative caches. In Proceedings of the ACM SIGPLAN/SIGBED 2010 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’10). ACM, New York, 153–162.

R. Arnold, F. Mueller, D. B. Whalley, and M. G. Harmon. 1994. Bounding worst-case instruction cache
performance. In Proceedings of RTSS.

Todd Austin, Eric Larson, and Dan Ernst. 2002. Simplescalar: An infrastructure for computer system mod-
eling. Computer 35, 2, 59–67.

Clément Ballabriga and Hugues Casse. 2008. Improving the first-miss computation in set-associative in-
struction caches. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS’08). IEEE
Computer Society, Los Alamitos, CA, 341–350.

M. Berkelaar. lp solve: (Mixed Integer) linear programming problem solver. ftp://ftp.es.ele.tue.nl/pub/
lp solve.

Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. 2010. Modeling shared cache and bus in
multi-cores for timing analysis. In Proceedings of the 13th International Workshop on Software Compilers
for Embedded Systems (SCOPES’10). ACM, New York, 6:1–6:10.

Christoph Cullmann. 2011. Cache persistence analysis: A novel approachtheory and practice. In Proceedings
of the 2011 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES’11). ACM, New York, 121–130.

David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. 2011. Cache pirating: Measuring
the curse of the shared cache. In Proceedings of the International Conference on Parallel Processing
(ICPP’11). IEEE Computer Society, Los Alamitos, CA, 165–175.

C. Ferdinand. 1997. Cache behavior prediction for real-time systems. Ph.D. Thesis, Universitat des Saarlan-
des.

Christian Ferdinand and Reinhard Wilhelm. 1998. On predicting data cache behavior for real-time systems.
In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES’98), Frank Mueller and Azer Bestavros, Eds., Lecture Notes in Computer Science,
vol. 1474, Springer, 16–30.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



WCET Analysis with MRU Cache: Challenging LRU for Predictability 123:25

Daniel Grund and Jan Reineke. 2009. Abstract interpretation of FIFO replacement. In Proceedings of the
16th International Symposium on Static Analysis (SAS’09). Springer-Verlag, Berlin, 120–136.

Daniel Grund and Jan Reineke. 2010a. Precise and efficient FIFO-replacement analysis based on static
phase detection. In Proceedings of the 2010 22nd Euromicro Conference on Real-Time Systems,
(ECRTS’10). IEEE Computer Society, Los Alamitos, CA, 155–164.

Daniel Grund and Jan Reineke. 2010b. Toward precise PLRU cache analysis. In Proceedings of 10th
International Workshop on Worst-Case Execution Time (WCET) Analysis. B. Lisper, Ed., 28–39.

Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. 2012. WCET analysis with MRU caches: Challenging LRU for
predictability. In Proceedings of the IEEE 18th Real Time and Embedded Technology and Applications
Symposium (RTAS’12). IEEE Computer Society, Los Alamitos, CA, 55–64.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The mälardalen WCET bench-
marks: Past, present and future. In Proceedings of the 10th International Workshop on Worst-Case
Execution Time Analysis (WCET’10). B. Lisper, Ed., OASICS Series, vol. 15, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 136–146.

Damien Hardy and Isabelle Puaut. 2008. WCET analysis of multi-level non-inclusive set-associative in-
struction caches. In Proceedings of the 2008 Real-Time Systems Symposium (RTSS’08). IEEE Computer
Society, Los Alamitos, CA, 456–466.

Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. 2003. The influence of
processor architecture on the design and the results of WCET tools. Proc. IEEE 91, 7, 1038–1054.

John L. Hennessy and David A. Patterson. 2006. Computer Architecture: A Quantitative Approach. 4th Ed.
Morgan Kaufmann Publishers Inc., San Francisco, CA.

Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. 2011. Scope-aware data cache analysis for WCET
estimation. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’11). IEEE Computer Society, Los Alamitos, CA, 203–212.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. 2005. Niagara: A 32-way multithreaded
SPARC processor. IEEE Micro 25, 2, 21–29.

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. 2007. Chronos: A timing analyzer for
embedded software. Sci. Comput. Program. 69, 1–3, 56–67.

Y. S. Li, S. Malik, and A. Wolfe. 1996. Cache modeling for real-time software: Beyond direct mapped
instruction caches. In Proceedings of the 1996 Real-Time Systems Symposium (NTSS’96). IEEE
Computer Society, Los Alamitos, CA.

Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of embedded software using implicit
path enumeration. In Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference
(DAC’95). ACM, New York, 456–461.

Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy Suhendra. 2012. Timing
analysis of concurrent programs running on shared cache multi-cores. Real-Time Syst. 48, 6, 638–680.

M. Lv. 2012. CATE: A simulator for Cache Analysis Technique Evaluation in WCET estimation. http://
faculty.neu.edu.cn/ise/lvmingsong/cate/.

A. Malamy, R. Patel, and N. Hayes. 1994. Methods and apparatus for implementing a pseudo-LRU cache
memory replacement scheme with a locking feature. United States Patent 5029072.

F. Mueller. 1994. Static cache simulation and its applications. Ph.D. thesis, Florida State University.
Frank Mueller. 2000. Timing analysis for instruction caches. Real-Time Syst. 18, 2/3, 217–247.
Peter P. Puschner and Alan Burns. 2000. Guest editorial: A review of worst-case execution-time analysis.

Real-Time Syst. 18, 2/3, 115–128.
J. Reineke. 2008. Caches in WCET analysis - predictability, competitiveness, sensitivity. In Ph.D. thesis,

Saarland University.
Jan Reineke and Daniel Grund. 2008. Relative competitive analysis of cache replacement policies. In

Proceedings of the ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’08). ACM, New York, 51–60.

Jan Reineke and Daniel Grund. 2013. Sensitivity of cache replacement policies. ACM Trans. Embed.
Comput. Syst. 12, 1s, 42:1–42:18.

Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. 2007. Timing predictability of cache
replacement policies. Real-Time Syst. 37, 2, 99–122.

R. Sen and Y. N. Srikant. 2007. WCET estimation for executables in the presence of data caches. In
Proceedings of the 7th ACM & IEEE International Conference on Embedded Software (EMSOFT’07).
ACM, New York, 203–212.

Tyler Sondag and Hridesh Rajan. 2010. A more precise abstract domain for multi-level caches for tighter
WCET analysis. In Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS’10). IEEE
Computer Society, Los Alamitos, CA, 395–404.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.



123:26 N. Guan et al.

Jan Staschulat and Rolf Ernst. 2007. Scalable precision cache analysis for real-time software. ACM Trans.
Embed. Comput. Syst. 6, 4.

Andrew S. Tanenbaum. 2007. Modern Operating Systems 3rd Ed. Prentice-Hall.
Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. 2000. Fast and precise WCET prediction by

separated cache and path analyses. Real-Time Syst. 18, 2/3, 157–179.
Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley,

Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. 2008. The worst-case execution-time
problem - Overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7, 3, 36:1–36:53.

Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian Ferdinand.
2009. Memory hierarchies, pipelines, and buses for future architectures in time-critical embedded
systems. Trans. Comput.-Aided Des. Integ. Cir. Sys. 28, 7, 966–978.

Received June 2012; revised January 2013; accepted April 2013

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 123, Publication date: March 2014.


