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Abstract—Real-time embedded systems usually integrate
multiple functionalities of different criticality levels on a
shared hardware platform. For these mixed-criticality real-
time systems it is a challenging problem to efficiently utilize
system resource to satisfy all the timing constraints on differ-
ent criticality levels. A simple yet efficient algorithm EDF-VD
has recently been proposed to schedule mixed-criticality real-
time systems, and shown promising real-time performance.
However, the competency of EDF-VD has not been fully
exploited due to the imprecise underlying analysis techniques.
In this paper, we develop new schedulability analysis methods
for EDF-VD. Different from previous analysis methods that
separate the analysis on each individual criticality level, our
new analysis looks into system behavior crossing multiple
criticality levels to obtain more precisely analysis results. Ex-
periments show that our new analysis method can significantly
improve guaranteed schedulability of EDF-VD, especially
for systems with more criticality levels. The price paid for
improved schedulability is higher analysis complexity, but a
combination of our new techniques and previous methods
can obtain a good balance between the analysis precision and
efficiency.

I. INTRODUCTION

An increasing trend in embedded systems is to integrate
functionalities of different criticality levels on a shared
platform for better cost and power efficiency. In such mixed-
criticality systems, we need to guarantee the temporal
correctness of high-criticality functionalities at a higher
level of assurance, using very pessimistic assumptions (e.g.,
with worst-case execution time upper bounds obtained by
static analysis) which are unlikely to occur in reality. At
a lower level of assurance, we want to guarantee the
temporal correctness of all functionalities, but under less
pessimistic assumptions (e.g., with measured worst-case
execution times).

Mixed-criticality systems bring significant challenges
to the design of real-time systems. Traditional real-time
scheduling algorithms like EDF and RM may lead to great
resource waste. In recent years, several new scheduling
algorithms have been proposed to improve the resource
usage efficiency by systematically exploring the asymmetry
among different criticality levels. Among those, Earliest-
Deadline-First with Virtual Deadlines (EDF-VD) has shown
clearly better performance than others in both schedulability
and run-time efficiency. The idea of EDF-VD, as suggested
by its name, is to use EDF as the underlying scheduling
decision policy, and balances the schedulability on different

criticality levels by setting different virtual deadlines of a
task when it executes in on different criticality modes.

Although EDF-VD has shown better performance than
traditional real-time scheduling algorithms and other newly
developed algorithms, its advantage actually has not been
fully exploited. The state-of-the-art analysis techniques for
EDF-VD are still rather pessimistic, which may reject
a considerable amount of task systems that are indeed
schedulable. The aim of this paper is to develop new
techniques to more precisely analyze the schedulability of
EDF-VD.

The challenge of analyzing EDF-VD is raised by the
criticality mode switch behavior at run time, which is
triggered by the overrun of certain tasks. It is generally
unknown when the criticality mode switch happens and
what is the system state at the mode switch point (e.g., how
much work has been accomplished of the current instance
of each task). It is computationally infeasible to enumerate
all the possibilities, and people resort to over-approximation
to trade precision for analysis efficiency. Ekberg and Yi in
[11], [12] proposed schedulability analysis techniques for
EDF-VD, which we called the EY analysis in this paper.
The main idea of EY analysis is to separate the analysis of
different criticality levels by approximating the workload
that is carried from a lower criticality level to a higher one.
However, such an approximation is very inaccurate and
the workload estimation error accumulates over multiple
criticality levels. Therefore, the analysis results are rather
pessimistic, especially for systems with more criticality
levels.

In this paper, we develop new analysis techniques for
EDF-VD. Different from the EY analysis that separates the
analysis of different criticality levels, our analysis considers
the system behavior crossing multiple criticality levels to
more precisely bound the system workload and yields more
precisely analysis results.

Experiments show that the new analysis presented in this
paper promises much better performance over the EY anal-
ysis. And as the number of criticality levels increases, the
superiority of our new analysis method is more significant.
The price we pay for the improving analysis precision is
a higher analysis complexity. However, by combining our
new analysis and the EY analysis we can gain a good
balance between the analysis accuracy and efficiency.



II. RELATED WORK

The mixed-criticality scheduling problem was first iden-
tified and formalized by Vestal in [18], where he proposed a
fixed-priority algorithm to schedule such systems and a re-
sponse time analysis technique to analyze its schedulability.
Dorin et. al. [9] proved that the algorithm in [18] is optimal
in the scope of fixed-task-priority preemptive algorithms.
However, as pointed out by Baruah and Vestal [5], the
algorithm in [18] is not optimal if we are not restricted
to fixed-task priority preemptive algorithms, and is actually
incomparable with the EDF algorithm.

Baruah et. al. conducted a series of fundamental works
on a simpler model consisting of a finite set of jobs
with fixed release times. They showed that deciding the
feasibility of such job sets is strongly NP-hard even if all
the jobs are released at the same time [1]. They proposed
an effective heuristic algorithm OCBP [4], which has a
quantitative performance guarantee in terms of the golden
ratio speedup factor. OCBP is then extended to mixed-
criticality sporadic task systems by Li and Baruah [16] with
a runtime adjustment algorithm with pseudo-polynomial
complexity, and later is improved with more efficiency
algorithms with quadratic and linear complexity [15], [13].
The response time analysis problem of mixed criticality
systems is studied in [3], where the effect of different
runtime support to the schedulability is evaluated.

Baruah et. al. [2] proposed an efficient algorithm EDF-
VD (EDF with Virtual Deadlines) to schedule mixed-
criticality task systems. The idea of this algorithm is to set
different virtual deadlines for a task on different criticality
levels, such that a higher-criticality task expect to finish
its low-criticality workload early and save enough time to
finish the extra workload before its deadline if criticality
mode switch occurs. Ekberg and Yi [11] developed tech-
niques for EDF-VD (the EY analysis) to bound the demand
bound of each task on different criticality levels, quantified
the negative effects and positive effects of shortening the
virtual deadline of a task in the low criticality level,
and proposed an algorithm to search for suitable virtual
deadline configurations. This analysis technique is then
generalized in [12] to the case of more general models with
more criticality levels with other criticality-sensitive task
parameters. Recently, Easwaran improves the EY analysis
for dual-criticality systems [10]. The idea of Easwaran’s
work inspire the new analysis method of this paper. While
Easwaran’s analysis is only applicable to dual-criticality
systems, the main contribution of this paper is to improve
the schedulability of systems with more than two criticality
levels. The EDF-VD algorithm has also been applied to
multiprocessor platforms, with both global and partitioned
scheduling algorithms [6], [17], [14].

Despite a relatively short history since Vestal’s first
paper formalizing the mixed-criticality real-time scheduling
problem, a surprisingly large amount of attentions have
been drawn in the real-time systems research community
to this important yet challenging problem. Many important

literatures are not listed here due to the space limit, and we
finally refer to [8], a comprehensive survey of the work on
real-time scheduling for mixed-criticality systems.

III. PRELIMINARIES

A. Mixed-Criticality Task Systems

The mixed-criticality task system τ , as a generalization
of traditional sporadic task systems, consists of a set of
independent recurring tasks. Each mixed-criticality task
τi ∈ τ is characterized by a tuple (Ti, Di, `i, Ci):

• Ti is τi’s minimum inter-release separation time.
• Di is τi’s relative deadline.
• `i ∈ {1, · · · , L} is the criticality level, where L is the

total number of criticality levels of the system. We use
a small number to denote a lower criticality level.

• Ci = (C1
i , · · · , CLi ) is τi’s WCET vector, where Cli

denotes the task’s WCET on the lth criticality level.
We assume x < y ⇒ Cxi ≤ C

y
i

Each task τi releases potentially infinitely many jobs. We
use Jki to denote the kth job released by τi. If τi releases
a job at time r, then this job’s absolute deadline is at time
d = r + Di. For simplicity of notation, we also use Ji to
denote a job of task τi when the context is clear.

The system starts with criticality mode 1. If any job
of a task τi executes for C1

i without signaling that it has
finished, the system will immediately switch to the 2nd

criticality mode. After that, it is not required to meet any
deadlines for tasks with `i = 1, but jobs of other tasks
may instead execute for up to their C2

i . Similarly, if any
job of a task τi executes for C2

i without signaling that it
has finished, the system will immediately switch to the 3rd

criticality mode. In practice, the system can switch back
from a higher criticality mode to a lower criticality mode
when, e.g., the processor is idle, but from the modeling
perspective we simply view tasks of criticality l or lower
as being discarded along with its active jobs at the time
when the system switches from the criticality l to l + 1.
Since τi is immediately aborted as soon as the system is
switched to criticality mode l, there is no need to define Cli
for task τi for all l : l > `i. We call criticality mode l− 1
and l+ 1 the preceding and succeeding mode of criticality
mode l, respectively.

We use τ(l) to denote the set of tasks of criticality l, i.e.,
τ(l) = {τi|`i = l}. Then we can define the schedulability
of the system:

Definition 3.1 (Schedulability): The mixed-criticality
task set is schedulable if and only if all tasks in

⋃
k≥l

τ(k)

meet their deadlines when the system is running in
criticality mode l.

For clarity, in the special case where the system has dual-
criticality (i.e., `i ∈ {1, 2}), we use LO instead of 1 and
HI instead of 2 to represent the low and high criticality,
respectively.



TABLE I
MIXED-CRITICALITY TASK SET EXAMPLE

tasks CLO
i CHI

i Ti(Di) `i DLO
i DHI

i

τ1 4 − 9 LO 9 −
τ2 4 8 10 HI 7 10

(a) unschedulable by EDF

(b) schedulable by EDF-VD

Fig. 1. Illustration of the task set in Table I scheduled by EDF-VD.

B. The EDF-VD Algorithm

EDF is optimal to schedule traditional sporadic task
systems (with only one criticality level). However, EDF
may lead to poor performance when applied to mixed-
criticality task systems introduced in above. For example,
we schedule the dual-criticality task set in Table I by EDF,
assuming both tasks synchronously release the first jobs
at time 0. The second job of the HI-criticality task τ2 has
executed for its CLO

2 = 4 without signalling completion,
which triggers the criticality mode switch at time 17. Then
τ1 is aborted, but τ2 has to execute for up to CHI

2 = 8,
which causes a deadline miss. The example illustrates that
a HI-criticality job may need to be prioritized for execution
in the LO-criticality even if its absolute deadline is later, in
order to save enough slack time to finish its extra workload
on the HI-criticality level in case of a mode switch occurs.

EDF-VD [2] uses different “virtual” deadlines for a task
when the system executes in different criticality modes. The
scheduler uses these virtual deadlines to decide the priority
order of active jobs. We use DHI

i to DLO
i to denote the HI-

criticality and LO-criticality virtual deadline of τi in a dual-
criticality system, and use Dl

i to denote the virtual deadline
of τi in criticality mode l. In criticality mode l, the virtual
deadline of a task with `i < l is undefined since this task
has been aborted. If we set DLO

2 = 7 (and keep all other
virtual deadlines the same as the original deadlines), the
scheduling sequence of the task set is shown in Figure 1-
(b), where the second job of τ2 is prioritized for execution
over the second job of τ1. When τ2 overruns and triggers
the criticality mode switch, there are enough slack time for
it to finish CHI

2 by its real absolute deadline.
By using the virtual deadlines, we can obtain extra slack

time for jobs crossing the mode switch point and decrease

the workload of a HI-criticality task τi “carried over” into
the HI-mode. On the other hand, it becomes more difficult to
successfully schedule the system in the LO-criticality mode
if we enforce shorter virtual deadlines of some tasks. So it is
a tradeoff between the schedulability in different criticality
modes when choosing appropriate virtual deadlines.

C. Existing Analysis Methods of EDF-VD
For a mixed-criticality system, we want to answer the

question that whether we can find a configuration of the
task virtual deadlines on each criticality level such that the
system is schedulable by EDF-VD. Two problems need to
be solved to answer the above question:

1) Schedulability Test. Given a fixed virtual deadline
configuration, how to decide whether the system is
schedulable under EDF-VD.

2) Tuning Virtual Deadlines. Given a certain schedula-
bility test method, how to configure the task virtual
deadlines to make the system schedulable.

Schedulability Test
Ekberg and Yi studied the schedulability test problem of

EDF-VD in [11]. They assumes a dual-criticality system.
The schedulability of the LO-criticality mode is tested by
the standard demand bound function analysis method [7].
To analyze the schedulability of the HI-criticality mode,
each HI-criticality job that may cross the criticality switch
point is divided into two parts, the sub-job before its HI-
criticality virtual deadline, and the sub-job (called the carry-
over job) between its HI-criticality virtual deadline and
original deadline. The analysis then only looks into the
time intervals starting at or after the system switches to
HI-criticality mode.

Applying the EY analysis described above to the task
set in Table I, the carry-over job has execution time lager
than the time interval between its “release” and its deadline
(CHI

2 −CLO
2 > DHI

2 −DLO
2 ), so the task system is determined

as unschedulable, as shown in Figure 2. The main reason
why the EY analysis makes such a pessimistic decision is
that it assumes the LO-criticality computation requests are
finished just by before DLO

i and its extra workload in HI-
criticality mode (CHI

i − CLO
i ) all need to be executed in

the time interval between the two virtual deadlines DLO
i

and DHI
i . At runtime the LO-criticality computation request

actually may be finished much earlier than DLO
i , which

cannot be explored by the EY analysis.
The schedulability test in [2] (referred to as BA test) uses

the similar approach with the EY analysis, but is based
on utilization bound rather than demand bound function.
The BA test suffers the same problem as the EY analysis
as described above, and is even more pessimistic (due to
the workload approximation to derive an elegant utilization
bound).

Tuning Virtual Deadlines
In [2] the virtual deadlines are chosen by setting fixed

ratios between the virtual deadlines on different criticality



Fig. 2. Illustration of EY analysis

levels for all HI-criticality tasks. A finer grained tuning
strategy is used in [11], [12], which set task virtual
deadlines from the highest to the lowest criticality, and
greedily shortens individual task’s virtual deadline in a
lower criticality mode to improve the schedulability of the
higher criticality modes.

IV. NEW SCHEDULABILITY ANALYSIS

As we introduced in the last section, the EY analysis
method in [11], [12] suffers the inaccurate estimation of the
workload of jobs crossing the criticality mode switch point.
Particularly, the analysis of a particular criticality mode
assumes that each crossing job performs its execution in
the preceding mode as late as possible. However, at runtime
some of these crossing jobs may already have finished
earlier. The separate analysis cannot explore this as it only
looks into intervals that start from the mode switch points.

To solve the above problem and improve the analysis
accuracy, we propose a new schedulability analysis method.
The new analysis method looks into time intervals crossing
the criticality mode switch points, to obtain a more com-
prehensive view of the system behavior and thus provide a
more accurate schedulability analysis.

In the following, we first present the new analysis method
with dual-criticality systems (only have two criticality
modes LO and HI) and then generalize it to the case of
more criticality levels.

A. Dual-Criticality Systems

To prove the schedulability of a dual-criticality task
system, we need to show that:

1) All tasks (of both criticality level LO and HI) meet
their deadlines when the system is executing in the
LO criticality mode.

2) All the HI-criticality tasks (tasks in τ(HI)) meet their
deadlines when the system is executing in the HI
criticality mode.

We can simply use the standard demand bound function
based schedulability test condition [7] to check whether 1)
holds or not:

∀x :
∑
τi∈τ

dbfLO
i (x) ≤ x

where
dbfLO

i (x) = ni(x)× CLO
i (1)

is the demand bound function of task τi in the LO-criticality
mode, where ni(x) is the maximal number of jobs of τi

with both release times and absolute deadlines in a time
interval of length x [7]:

ni(x) = max(b(x−Di)/Tic+ 1, 0)

However, it is more difficult to check whether 2) holds
or not. It is not sufficient to use ni(x)×CHI

i as the demand
bound of task τi in the HI-criticality mode, since there exists
a “transition phase” after the criticality mode switch point.
In the following we focus on the analysis of 2).

We look into a time interval [t1, td], where td is an
arbitrary time point after the mode switch point ts, and
t1 is the earliest time point no later than td such that at
any time point in [t1, ts] τ(HI) has at least one active job
(released but not finished yet) with deadline no later than
td. If t1 is later than ts, we know all the jobs released before
ts have finished by t1, and the workload in time interval
[t1, td] are all contributed by jobs release after t1, which
is bounded by the standard demand bound function dbf.
In the following, we focus on the more interesting case of
t1 ≤ ts. We define x = td − t1 and y = td − ts.

The total number of jobs of a HI-criticality task τi with
both release times and deadlines within a time interval of
size x is bounded by ni(x). If a job is finished before ts,
it can only execute for at most CLO

i , since otherwise the
criticality mode switch should have been triggered before
ts. So our target is to bound the number of jobs, among
these ni(x) jobs, that can execute in [ts, td]. This number,
not only depends on the value of x, but also depends on y,
so we denote it by mi(x, y). Therefore, the total workload
of task τi in [t1, td] is calculated by

dbfHI
i (x, y) = mi(x, y)× CHI

i +
(
ni(x)−mi(x, y)

)
× CLO

i

(2)
It is clear that the jobs that are released after the criticality
mode switch point should be counted in mi(x, y). The
question is whether we should count the crossing job, which
is defined as follows.

Definition 4.1 (Crossing Job): A crossing job has its re-
lease time before and absolute deadline after the criticality
mode switch point, respectively.
In the following we will show conditions to safely rule out
the crossing job from mi(x, y), by which upper bounds of
mi(x, y) are derived.

Lemma 4.2: If a HI-criticality task τi can meet its LO-
criticality deadline DLO

i in the LO-criticality mode, then
mi(x, y) is bounded by pi(x, y):

pi(x, y) =

{
ni(y), y mod Ti < Si

min(ni(y) + 1, ni(x)), otherwise

where Si = DHI
i −DLO

i .
Proof: Let ta be the time point at which the crossing

job Ji either signalled completion or had executed for CLO
i ,

and let tb be the absolute deadline of Ji.
If ta < ts, as shown in Figure 3-(a), the crossing job must

have signalled completion by ta (otherwise the criticality
mode switch occurs before ts). In this case only normal



(a) ta < ts (b) ta ≥ ts

Fig. 3. Illustration of the proof of Lemma 4.2

(a) dc < ds (b) dc ≥ ds

Fig. 4. Illustration of the proof of Lemma 4.3

jobs of τi can execute in [ts, td], the number of which is
bounded by ni(y).

If ta ≥ ts, as shown in Figure 3-(b), the crossing job
may be unfinished by ts. In this case both the crossing job
and the normal jobs can execute in [ts, td], and the total
number of them is bounded by ni(y)+1. Furthermore, this
bound can be tightened by ni(x) to exclude the case that
the crossing job is released before t1. In summary, in this
case mi(x, y) is bounded by min(ni(y) + 1, ni(x)).

The remaining of the proof is to show how to decide
whether it holds ta < ts. We consider the worst-case release
pattern1 of task τi where its jobs are released as fast as
possible and one of its job’s deadline aligns with td, as
illustrated in Figure 3, by which we conclude that

y mod Ti < tb − ta ⇒ ta < ts (3)

Since τi can meet its LO-criticality deadline DLO
i in the LO-

criticality mode, we know ta ≤ tr + DLO
i where tr is the

release time of Ji. On the other hand we have tb = tr+D
HI
i .

So it holds
tb − ta ≥ DHI

i −DLO
i (4)

Combining (3) and (4) we have y mod Ti < DHI
i −DLO

i ⇒
ta < ts

Lemma 4.3: Let S be defined as

S = min
τi∈τ(HI)

{DHI
i −DLO

i }

then mi(x, y) is bounded by qi(x, y):

qi(x, y) = max

(
min

(⌈
y − S
Ti

⌉
, ni(x)

)
, ni(y)

)
. (5)

Proof: Assume τs is the task in τ(HI) that triggers the
criticality mode switch, i.e., a job Js of τs has executed
for its LO-criticality WCET without signalling completion.
We let ds be Js’s absolute deadline. If ds > td, then any
job with deadline in [t1, td] has higher priority than Js, so
only jobs released after the criticality mode switch point ts

1This leads to the worst-case scenario for upper-bounding mi(x, y),
which can be proved by comparing the bound obtained under this
particular pattern with that obtained by “shifting” the release times to
earlier or later time points. Details are omitted due to space limit.

(the normal jobs) can execute in HI-criticality mode. The
number of normal jobs, i.e., jobs with both released time
and deadline in [ts, td] is simply bounded by ni(y). In the
following we focus on the case of ds ≤ td.

Again, we consider the worst-case release pattern of task
τi where its jobs are released as fast as possible and one
of its job’s deadline aligns with td. We use Jc to denote
the crossing job, and let dc be the crossing job’s absolute
deadline.

If dc < ds, as illustrated in Figure 4-(a), the crossing job
has priority higher than Js, and must have been finished
when Js is executing at ts. Therefore, this crossing job
cannot execute in HI-criticality mode and thus should be
excluded from mi(x, y). Otherwise, as illustrated in Figure
4-(b), the crossing job may execute after Js, and cannot be
excluded from mi(x, y).

By the above discussions, we know that a job in [t1, td]
can execute in HI-criticality mode if it holds any of the
following two conditions: (1) its deadline is in [ds, td]; (2) it
is a normal job. The number of jobs satisfying condition (1)
is bounded by d(td−ds)/Tie, and can be further tightened
by ni(x) to exclude the case that the crossing job is released
before t1. In summary, the number of jobs satisfying (1) is
bounded by min(d(td−ds)/Tie, ni(x)). The number of jobs
satisfying condition (2) (i.e., the normal jobs) is bounded
by ni(y).

Summarizing the above discussions, we conclude that

mi(x, y) ≤ max

(
min

(⌈
td − ds
Ti

⌉
, ni(x)

)
, ni(y)

)
.

(6)
The last step of the proof is to find an upper bound for

td−ds. Since Js triggers criticality mode switch at ts, i.e.,
Js has executed for CLO

i at ts, so the distance between ts
and its absolute deadline is no smaller than DHI

i −DLO
i , i.e.,

ds − ts ≥ DHI
i −DLO

i

⇔ td − ds ≤ y − (DHI
i −DLO

i )

⇒ td − ds ≤ y − S

Applying this to (6) completes the proof.
Using the upper bounds for mi(x, y) in the above lem-

mas, we can establish the schedulability test condition for
a dual-criticality task system τ :

Theorem 4.4: The dual-criticality task system τ is
schedulable if it holds

∀x ≥ y ≥ 0 :
∑

τi∈τ(LO)

dbfLO
i (x−y)+

∑
τi∈τ(HI)

dbfHI
i (x, y) ≤ x

(7)
where dbfLO

i (x− y) is calculated by (1) and dbfHI
i (x, y) is

calculated by (2) with

mi(x, y) = min(pi(x, y), qi(x, y)) (8)

Proof: By the definition of dbfHI
i (x, y), dbfHI

i (x, y) =
dbfLO

i (x) when y = 0, so condition (7) can be rewritten as

∀x ≥ 0 :
∑
τi∈τ

dbfLO
i (x) ≤ x.



This is exactly the standard EDF schedulability test formula
based on demand bound function [7], which implies the
schedulability of the whole task system in the LO-criticality
mode.

In the following we will prove the HI-criticality tasks all
meet their deadlines in the HI-criticality mode. We prove
by contradiction, assuming Ji is the first job missing its
deadline at time td. We reuse the definition of t1 and ts as
defined earlier in this section. There are two cases regarding
the order between t1 and ts: (1) t1 > ts, (2) t1 ≤ ts.

We first consider case (1). Since t1 > ts, all LO-criticality
tasks have been aborted by time t1. So only jobs of HI-
criticality tasks with release times and absolute deadlines
in [t1, td] can execute in [t1, td]. The total workload of such
jobs of task τj is bounded by

Wj = nj(td − t1)× CHI
j .

Since Ji misses its deadline, we know∑
τj∈τ(HI)

Wj > td − t1.

On the other hand, by the definition of pi(x, y) we have

nj(td − t1) ≤ pj(td − t1, td − t1)

so Wj is bounded by dbfHI
j (td − t1, td − t1). Putting these

together we have∑
τj∈τ(HI)

dbfHI
j (td − t1, td − t1) > td − t1

which contradicts condition (7).
Now we consider case (2). Since a LO-criticality task is

aborted at time ts, only jobs that are released in [t1, ts) can
execute in [t1, td]. So the workload of a LO-criticality task
τj in [t1, td] is bounded by nj(ts − t1) × CLO

j . For each
HI-criticality task, the number of its jobs with deadline no
later than td is bounded by nj(td− t1). By Lemma 4.2 and
4.3, among these jobs, the number of those executing for
CHI
j is bounded by mj(td − t1, td − ts) as defined by (8),

so the total workload of jobs with both release times and
deadlines in [t1, td] is bounded by dbfHI

i (td − t1, td − ts).
And since Ji misses its deadline at td, so the total workload
of jobs with release times and deadlines in [t1, td] of the
whole task system is strictly larger than td − t1.∑
τi∈τ(LO)

dbfLO
i (ts−t1)+

∑
τi∈τ(HI)

dbfHI
i (td−t1, td−ts) > td−t1

which contradicts (7). In summary, both cases lead to
contradictions, and so the assumption that a HI-criticality
job misses deadline cannot be true.

Later in Section IV-C we will discuss the range of x and
y values to be checked in test condition (7).

B. Multi-Criticality Systems

This subsection generalizes the schedulability test intro-
duced above to the case of more than two criticality levels.

We generalize dbfHI
i (x, y) to dbfli(x1, x2, · · · , xl) to

bound the total demand of all jobs of task τi in time interval
[t1, td]. dbfli(x1, x2, · · · , xl) is calculated by

dbfli(x1, x2, · · · , xl) =

l∑
j=1

N j
i × C

j
i (9)

where N j
i is iteratively computed by

N j
i = max(N j

i −N
j+1
i , 0)

with N l+1
i = 0 and

N1
i = ni(x1)

N j
i = min(pji (x1, xj), q

j
i (x1, xj))

pji (x1, xj) =


ni(xj),

if xj mod Ti < Dj
i −D

j−1
i

min(ni(xj) + 1, ni(x1)), otherwise

qji (x1, xj) = max

(
min

(⌈
xj − Sj

Ti

⌉
, ni(x1)

)
, ni(xj)

)
.

Sj = min
τi∈

⋃
l≥j τ(l)

{Dj
i −D

j−1
i }

Before stating and proving the schedulability test condition,
we first introduce an auxiliary lemma:

Lemma 4.5: Given three sequences of number
{µ1, µ2, · · · , µK}, {N1, N2, · · · , NK} and
{C1, C2, · · · , CK} satisfying the following conditions:

1) ∀1 ≤ k ≤ K :
∑K
l=k µl ≤

∑K
l=kNl

2) C1 ≤ C2 ≤ · · · ≤ CK
then it holds:

K∑
l=1

µl × Cl ≤
K∑
l=1

Nl × Cl (10)

Proof: We prove the lemma by induction.
Base Case: When l = K, as

∑K
l=K µl ≤

∑K
l=K Nl, i.e.,

µK ≤ NK ⇒ µK × CK ≤ NK × CK

which satisfies (10).
Inductive Step: Given the inductive hypothesis that (10)

holds for l = k+ 1, k+ 2, · · · ,K, we shall prove that (10)
still holds for l = k. Consider two cases:

(a) µk ≤ Nk :

K∑
l=k+1

µl × Cl ≤
K∑

l=k+1

Nl × Cl

⇒ µk × Ck +

K∑
l=k+1

µl × Cl ≤ Nk × Ck +

K∑
l=k+1

Nl × Cl

⇔
K∑
l=k

µl × Cl ≤
K∑
l=k

Nl × Cl

which satisfies (10).



(b) µk > Nk : Let λl = Nl − µl, then λk < 0. We first
claim

∑K
l=k+1 λl > 0. This is because, if this is not true:∑K

l=k+1 µl ≥
∑K
l=k+1Nl and then

K∑
l=k+1

µl ≥
K∑

l=k+1

Nl ⇒ µk +

K∑
l=k+1

µl > Nk +

K∑
l=k+1

Nl

⇔
K∑
l=k

µl >

K∑
l=k

Nl

which contradicts the condition 1) in the lemma.
So we have

∑K
l=k+1 λl > 0, and by

∑K
l=k µl ≤

∑K
l=kNl

we have:
K∑
l=k

λl = λk +

K∑
l=k+1

λl ≥ 0

and since Ck ≤ Ck+1 ≤ · · · ≤ CK , we know

λk × Ck +
K∑

l=k+1

λl × Cl ≥ 0

⇔ Nk × Ck +

K∑
l=k+1

Nl × Cl ≥ µk × Ck +

K∑
l=k+1

µl × Cl

⇔
K∑
l=k

µl × Cl ≤
K∑
l=k

Nl × Cl

which satisifies (10).
Now we are ready to establish the schedulability test

condition for a task set τ with L criticality levels:
Theorem 4.6: A mixed-criticality task set τ of L criti-

cality levels is schedulable by EDF if it holds:

∀x1 ≥ ... ≥ xL ≥ 0 :

L∑
l=1

∑
τi∈τ(l)

dbfli(x1, · · · , xl) ≤ x1

(11)
where dbfli(x1, · · · , xl) is calculated by (9).

Proof: We prove the theorem by contradiction, assum-
ing a job Ji of criticality l misses its deadline at time td.
Let tl be the time point when the system criticality switches
from mode l − 1 to l. tb is the earliest time point no later
than td such that at any time point in [tb, td] τ(l) has at
least one active job (released but not finished yet) with
deadline no later than td. If we divide the time interval
[t1, td) into segments [t1, t2), [t2, t3), · · · , [tβ , td), and we
let tb ∈ [tα, tα+1)2. We let xl = td − tl. In the following,
we shall prove that the workload of jobs of a task τj in
τ(γ) with both release times and absolute deadlines in time
interval [t1, td] is bounded by ∆ = dbfβi (x1, ..., xβ) where
x1 = x2 = · · · = xα and xγ = xγ+1 = · · · = xβ . If this
is true, it must hold ∆ > x1, which contradicts (11). We
assume at runtime the workload of a task in τ(γ) in time
interval [t1, td] is greater than ∆. We assume at runtime
the number of jobs of task τj with both release times and
deadlines in [t1, td] that execute for more than Cli but no

2We omit the proof for the easy case tb ∈ [tβ , td), where no criticality
switch occurs during the busy period.

Fig. 5. Illustration of the notations

more than Cl+1
i is µl+1

i . Then the total workload of τ(γ)
is bounded by

∑γ
l=α µ

l
i × Cli . On the other hand, by the

definition of dbfli, ∆ =
∑γ
l=αN

l
i × Cli . So we have

γ∑
l=α

µli × Cli >
γ∑
l=α

N l
i × Cli (12)

We let µ =
∑γ
l=α µ

l
i and N =

∑γ
l=αN

l
i , then one of the

following two conditions must be true in order to satisfy
(12): In the following we will prove for both cases (i) µ >
N and (ii)µ ≤ N there are contradictions.

(i)µ > N . By the definition of N l
i , we have N = ni(xα),

which is the maximal number of jobs of task τi with both
release times and deadlines in a time interval of length xα.
It is obvious that µ > N cannot be true.

(ii) µ ≤ N . Let δ be the largest index such that µδi 6= Nδ
i .

Consider two cases: (1) µδi > Nδ
i : In this case, µδi =

µδi + µδ+1
i and Nδ

i = Nδ
i + Nδ+1

i . By the definition of
δ, for any j > δ, µji = N j

i then µδ+1
i = Nδ+1

i . So we
have µδi > Nδ

i . Using the same agrement as in the proof of
Lemma 4.2 and 4.3, pδi (xα, xδ) and qδi (xα, xδ) both bound
the number of jobs in which τi execute in mode δ of higher,
so Nδ

i = min(pδi (xα, xδ), q
δ
i (xα, xδ)) is a safe upper bound

of the number of jobs in which τi execute in mode δ of
higher. So we know µδi > Nδ

i cannot be true, and thus
µδi > Nδ

i is also not true.
(2)µδi < Nδ

i : By lemma 4.5, we have
γ∑
l=α

µli × Cli ≤
γ∑
l=α

N l
i × Cli

which contradicts (12).
In summary, both cases lead to contradictions to (12),

and the assumption that a job Ji of criticality l misses its
deadline cannot be true.

C. Complexity and Efficiency
We first analyze the complexity of our new analysis

method for dual-criticality systems, i.e., the schedulability
test in (7). We first define some notations:

U LO
LO =

∑
τi∈τ(LO)

U LO
i , U LO

HI =
∑

τi∈τ(HI)

U LO
i , UHI

HI =
∑

τi∈τ(HI)

U HI
i

CLO
LO =

∑
τi∈τ(LO)

CLO
i , CLO

HI =
∑

τi∈τ(HI)

CLO
i , CHI

HI =
∑

τi∈τ(HI)

CHI
i

As a common assumption in scheduling of sporadic
tasks, we assume the total utilization is bounded by a



Fig. 6. Illustration of the region of (y, z) that needs to be tested

constant strictly smaller than the long-term proportion of
the allocated resource, i.e., U LO

HI + U LO
LO ≤ ε < 1 and

UHI
HI ≤ ε < 1. The following gives the range of x and y

values to be checked in (7).
Theorem 4.7: Let x = y + z. (7) must hold if no (y, z)

satisfying the following condition violates it:

(1−UHI
HI )×y+(1−U LO

HI −U LO
LO )×z ≤ CLO

LO +CLO
HI +CHI

HI (13)

Proof: A job executes in LO-mode must have its
release time in [t1, ts), so the total workload of such jobs
of τi is no larger than (d ts−t1Ti

e)× CLO
i , which is bounded

by z × U LO
i + CLO

i . A job executes in HI-mode must have
its absolute deadline in (ts, td], so the total workload of
such jobs of τi is no larger than (d td−tsTi

e)×CHI
i , which is

bounded by y × U HI
i + CHI

i . So we know∑
τi∈τ(LO)

dbfLO
i (z) +

∑
τi∈τ(HI)

dbfHI
i (y + z, y) ≤

y × UHI
HI + z × (U LO

HI + U LO
LO ) + CLO

LO + CLO
HI + CHI

HI

Since (7) is violated, i.e., there exists y, z such that∑
τi∈τ(LO)

dbfLO
i (z) +

∑
τi∈τ(HI)

dbfHI
i (y + z, y) ≥ y + z

⇒ y × UHI
HI + z × (U LO

HI + U LO
LO ) + CLO

LO + CLO
HI + CHI

HI ≥ y + z

by which the theorem is proved.
The region of y and z to be checked is illustrated in

Figure 6. By examining the definitions, we can see that
dbfHI

i (x, y) is a stair-case function non-decreasing with
respect to both y and z. Therefore, it is sufficient to check
(7) only with discrete points in the region of Figure 6
at which dbfHI

i (x, y) is non-differentiable, and the overall
complexity of the schedulability test is pseudo-polynomial.

In the same way, we can get the conclusion for multi-
criticality systems with following notations:

∀j ≤ l : U jl =
∑

τi∈τ(l)

U ji =
∑

τi∈τ(l)

Cji /T
j
i ,

∀j ≤ l : Cjl =
∑

τi∈τ(l)

Cji

Theorem 4.8: Let zj = xj − xj+1 and zL = xL. (11)
must be true if all {z1, · · · , zL} satisfying the following
condition does not violates (11):

l∑
j=1

(1−
l∑
i=j

U ji )× zj ≤
l∑

j=1

(

l∑
i=j

Cji ) (14)

The proof of the theorem is similar to that of theorem
4.7, and is omitted due to space limit.

While for dual-criticality systems the region of the y and
z values to be checked is a two-dimensional area, the values
of {z1, · · · , zL} to be checked forms an L-dimensional
space. Given that L is a constant, the computational com-
plexity is still pseudo-polynomial, but in practise may be
very time consuming for systems with a large L.

To solve this problem, we can use a combination of
the schedulability test in (11) and the EY analysis to
balance the precision and efficiency of the analysis. More
specifically, we set a certain limit ζ for the number of
criticality modes to be covered by our analysis. For ex-
ample, consider a task system with 4 criticality levels, and
we set ζ = 2. Then we analyze the schedulability of the
first two criticality levels and last two criticality levels
separately. When we analyze the last two criticality levels,
we shall bound workload of the carry-over jobs from the
2nd criticality level to the 3rd criticality level as in the EY
analysis.

If we set ζ = 3 for a system with 5 criticality levels,
then there are two options to group the criticality levels:
(i) {1, 2} and {3, 4, 5}, (ii) {1, 2, 3} and {4, 5}. The per-
formance comparison of different options will be evaluated
and discussed in Section VI.

V. TUNING VIRTUAL DEADLINES

In the previous sections we presented the new analysis
technique for EDF-VD scheduled mixed-criticality systems
using different “virtual” deadlines for a task when the
system executes in different criticality modes. In this sec-
tion we present a new algorithm to choose suitable virtual
deadlines for each task on different criticality levels.

An important observation in [11], [12] is that, shortening
the relative deadline for a task on criticality level l is
potentially beneficial to the schedulability of criticality
levels l + 1, l + 2, · · · , at the price of decreasing the
schedulability of criticality level l. Therefore, the major
problem to solve in tuning the virtual deadlines is to balance
the schedulability on different criticality levels.

In [11], [12], EY separates the analysis of different
criticality levels and approximate the workload of criticality
mode j by considering the workload carried from its
preceding mode j− 1. Because of this, [11], [12] designed
strategy to tune the relative deadlines from the highest to
lowest criticality level in order: on each criticality level j, it
tunes the relative deadlines in its preceding criticality level
j − 1, to reduce the carry-over workload from criticality
j − 1 as much as possible until the criticality level j is
guaranteed to be schedulable.

Different with EY, dbfji computed by our new analysis
method presented in this paper contains workload crossed
multiple criticality modes lower than j. So we have no idea
about on which criticality level we shall shorten the relative
deadlines, to improve the schedulability of the currently
considered criticality level.

The key idea of our new relative deadline tuning strategy
is to design an effective guidance to choose the criticality
level in which we shall shorten the relative deadline of



some task in each step of the tuning procedure. Again,
shortening a relative deadline on criticality level j may
hurt the schedulability of this criticality level itself, so we
shall choose the criticality level that are “easier” to be
schedulable, i.e., the one with lower workload. We use the
metric load(j) to represent the workload of criticality level
j contributed by all the tasks with criticality no lower than
j:

Definition 5.1 (load): Let load(j) be defined as

load(j) = max
∀x>0

∑
τi∈

⋃
k≥j τ(j)

dbfji (x)

x

where dbfji (x) is the ordinary demand bound function [7]
using Cji as the worst-case execution time.
With the metric load we design a new deadline tuning
algorithm, TuneSys(τ ), the pseudo-code of which is shown
in Algorithm 1. TuneSys(τ ) checks the schedulability of
all L modes in a decreasing ciriticality order. So at each
step, we know that all succeeding modes turned so far
are schedulable as long as we can successfully tune the
remaining modes. As soon as TuneSys(τ ) finds τ is not
schedulable in mode l it selects mode j which has the
minimal load from all modes lower than l and applies
TuneMode(j). After that it recalculates load(j) and repeats
the tuning above until τ is schedulable in the current modes.
The algorithm fails if in a certain mode it is not possible to
shorten the deadlines in any of the lower criticality levels
without violating their schedulability, which is determined
by a fast load-based test condition (load(j) ≥ 1). The
algorithm terminates with SUCCESS if and only if τ is
schedulable on all modes according to (11). The routine
TuneMode(j) randomly select one task and shorten its
relative deadlines in mode j by one time unit.

for l ∈ {L, · · · , 1} do
while τ is not schedulable in mode l do
∀j < l, calculate load(j)
if ∀j < l, load(j)≥ 1 then

return FAILURE
end if
select j such that load(j) is minimal for ∀j < l
TuneMode(j)

end while
end for
return SUCCESS

Algorithm 1: TuneSys(τ )

VI. EXPERIMENTAL EVALUATION

In this section we conduct experiments to evaluate the
performance of the new analysis method presented in this
paper, for task systems with more than two criticality levels
in both its precision and efficiency.

We follow the approach in [11], [12] to generate random
mixed-criticality task sets: P is the probability for a task to
be a higher-criticality task (if τi is a j-criticality task, then
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(d) P = 0.5, O = 3

Fig. 7. Experiment results with different P and O for triple-criticality
task systems

the next generated task τi+1 has a probability of P to be a
(j + 1) criticality task and 1 − P to still be a j-criticality
task), and O is the maximal ratio between the execution
time parameter of two consecutive criticality modes . L
is the total number of criticality levels. For each task τi,
C1
i is uniformly distributed over [1, 10], Ti is uniformly

distributed over [10, 100], and Di = Ti. Task sets are
randomly generated and grouped with different scope of
their average utilization Uavg , which is defined as

Uavg =

L∑
j=1

U j/L, U j =
∑
τi∈τ

U ji

We compare the following two schedulability tests:
• New. The schedulability test in Theorem 4.6 with the

tuning approach presented in Section V.
• EY. The analysis presented in [12] which separates

the analysis of different criticality levels.
We first evaluate the analysis precision improvement of

New over EY. Figure 7 shows the acceptance ratio as a
function of the average utilization for task sets with three
criticality levels (L = 3) and different combinations of P
and O values. For each utilization range at least 10000 task
sets are generated and tested, and the acceptance ratio is
defined by the ratio between the number of task sets that
is determined to be schedulable by a certain test and the
total number of generated task sets. The results in Figure
7 show that our new analysis can significantly improve the
analysis precision over EY with different settings.

We also evaluate the analysis precision improvement of
New for systems with more ciriticality levels. In Figure 8-
(a), we plot the weighted acceptance ratio as a function of
the number of criticality levels L varying from 2 to 5. We
can see that as the number of criticality levels increases, it
becomes more difficult to guarantee the schedulability of



the system, but at the same time the precision improvement
of New over EY is more significant.

The precision improvement of the New analysis comes
at the price of a lower analysis efficiency. Figure 8-(b)
shows the average time consumption for analyzing each
randomly generated task set. We can see that the New anal-
ysis becomes more and more expensive as the number of
criticality levels increases, while the efficiency degradation
of EY is much slower. For task systems with 5 criticality
levels, the analysis of each task set on average takes 50
seconds. This maybe unacceptable for larger-scale systems,
especially those with a large number of criticality levels.

To solve the efficiency problem of the New analysis,
we proposed to use a hybrid analysis technique combining
the New analysis and the EY analysis, as introduced in
the end of Section IV-C. The hybrid analysis balances the
analysis precision and efficiency by setting a upper limit
ζ for the number of criticality levels to be covered in the
analysis. Figure 9 shows the analysis precision of the hybrid
analysis with ζ = 3 for task systems with L = 5. The curve
“New” is the original New analysis that covers all the five
criticality levels, the curve “EY” is the EY analysis. The
curves “New23” and “New32” are the hybrid analysis with
two different criticality grouping strategies {1, 2}+{3, 4, 5}
and {1, 2, 3} + {4, 5}, respectively. From the experiments
we see that in general the two strategies are incomparable
(i.e., there exist task sets schedulable under one strategy
but unscheduale under the other one, and vice versa), but
on average the strategy grouping more criticality levels at
lower criticality levels (“New32” in this experiment) is more
precise than the other option (“New23” in this experiment).
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Fig. 8. Analysis precision and efficiency, with respect to the number of
criticality levels.
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Fig. 9. Evaluation of the hybrid analysis method with different criticality
grouping strategies. L = 5, P = 0.8, O = 3.

VII. CONCLUSION

In this paper, we present new schedulability analysis
methods for mixed-criticality sporadic task systems sched-
uled by EDF-VD. The new analysis improves precision
over the state-of-the-art technique EY [11], [12] for systems
with multiple criticality levels (more than two levels). The
performance improvement of our new analysis comes at the
price of higher complexity. In order to solve the scalability
problem we also proposed to use a hybrid method com-
bining our new analysis technique and state-of-the-art EY
analysis, to balance the precision and efficiency. Experi-
ment results show that the new method indeed significantly
improve the analysis precision over the state-of-the-art. As
the future work, we will investigate heuristic algorithms to
automatically decide how to group the criticality levels in
the hybrid approach.
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