
Approximate Response Time Analysis of
Real-Time Task Graphs

Nan Guan1,2, Chuancai Gu1, Martin Stigge2, Qingxu Deng1 and Wang Yi2

1 Northeastern University, China
2 Uppsala University, Sweden

Abstract—The response time analysis problem is intractable
for most existing real-time task models, except the simplest ones.
Exact solutions for this problem in general have exponential
complexity, and may run into scalability problems for large-scale
task systems. In this paper, we study approximate analysis for
static-priority scheduling of the Digraph Real-Time task model,
which is a generalization of most existing graph-based real-time
task models. We present two approximate analysis methods RBF
and IBF, both of which have pseudo-polynomial complexity. We
quantitatively evaluate their analysis precision using the metric
speedup factor. We prove that RBF has a speedup factor of
2, and this is tight even for dual-task systems. The speedup
factor of IBF is an increasing function with respect to k, the
number of interfering tasks. This function converges to 2 as k
approaches infinity and equals 1 when k = 1, implying that the
IBF analysis is exact for dual-task systems. We also conduct
simulation experiments to evaluate the precision and efficiency
of RBF and IBF with randomly generated task sets. Results show
that the proposed approximate analysis methods have very high
efficiency with low precision loss.

I. INTRODUCTION

Traditionally, real-time task systems are modeled as col-

lections of periodically repeating computational requests [9],

[1]. However, behaviors that are not entirely periodic cannot

be expressed accurately with this simple periodic task model.

Examples include variable rate-dependent behavior in con-

trollers for fuel injection in combustion engines [6] and frame

dependent execution times in video codecs [11]. A natural

representation of these complex structures is a task graph. Over

years, more and more expressive graph-based task models are

proposed to precisely describe complex embedded real-time

systems [11], [5], [2], [3], [4], [14], [15].

Unfortunately, response time analysis of static-priority (SP)

scheduling is intractable for most existing real-time task

models, except the simplest ones. Figure 1 summarizes the

time complexity of response time analysis for some common

task models, as well as the generalization relations among

them [13]. Pseudo-polynomial solutions only exist for the very

simple L&L [9] and sporadic [1] task models, and the problem

becomes strongly coNP-hard as soon as branching or phas-

ing is allowed [17]. Algorithms with aggressive optimization

techniques [18], [16] have been proposed to prune away a

significant portion of state-space to be explored. However,

these algorithms are still with exponential time complexity in

general and may run into scalability problems with large-scale

systems.

In this paper we study approximate response time analysis

for real-time task graph models. In particular, we assume

the Digraph Real-Time (DRT) task model [14], as it is a

generalization of most existing graph-based real-time task

models. We present two approximate response time analysis

methods RBF and IBF, both with pseudo-polynomial time

complexity and can handle large-scale task systems in very

short time.

The main theoretical contribution of this paper is to provide

quantitative performance guarantees for the proposed methods

using the metric speedup factor [8], which is widely used

in performance analysis of approximate algorithms for many

scheduling problems. Our main results can be summarized as

follows:

1) RBF has a speedup factor of 2, and this is tight, even

for dual-task systems.

2) IBF has a speedup factor of 1 +
√
k2−k
k

, where k is the

number of interfering tasks (tasks with priorities higher

than the one under analysis).

As a direct implication of 2), IBF turns out to be an exact

analysis method for dual-task systems, since 1 +
√
k2−k
k

= 1

when k = 1. Moreover, since 1 +
√
k2−k
k

is a monotonically

increasing function with respect to k, the pessimism of IBF
increases as the number of interfering tasks increases. As k
approaches infinity, the speedup factor of IBF converges to 2,

which is the same as RBF.

We also conduct simulation experiments to evaluate the

analysis precision and efficiency of RBF and IBF. Experiment

results show that our proposed approximate analysis methods

(especially IBF) have precision rather close to the exact

analysis, and confirm the trend that IBF is more precise for

task sets with fewer tasks as indicated by its speedup factor.

On the other hand, the analysis efficiency of the approximate

analysis methods are very high. The analysis with both RBF
and IBF finishes in at most several seconds for large-scale task

systems (for which the exact analysis may take hours).

A. Related Work
Much work has been done to study the expressiveness and

analysis efficiency of different task models, as summarized

in Figure 1 (taken from [13]). Except for the very simple

L&L and sporadic task models, the response time analysis

problem of all these models are strongly coNP-hard. Although

the proposed approximate analysis methods in this paper are

2014 IEEE Real-Time Systems Symposium

1052-8725/14 $31.00 © 2014 IEEE

DOI 10.1109/RTSS.2014.20

304

L&L sporadic

MF

RB

GMF

ncRRTRRT

DRT

strongly coNP-hard

pseudo-polynomial

Figure 1. Classification of task models into tractable (pseudo-polynomial
solutions exist) versus intractable (strongly coNP-hard) for the response time
analysis problem, taken from [13]. The L&L is Liu and Layland’s implicit-
deadline periodic task model [9]; the sporadic task model is proposed in [1];
MF is the Multi-frame task model [11]; GMF is the Generalized Multi-frame
task model [5]; RB is the Recurring Branching task model [2]; RRT is the
Recurring Real-time task model [3]; ncRRT is the non-cyclic Recurring Real-
time task model [4]; DRT is the Digraph Real-Time task model [14].

presented in the context of the DRT task model, they are

directly applicable to other more restricted task models in

Figure 1. The speedup factors derived in this paper also hold

for other models in the figure.

The approximate analysis methods in this paper are closely

related to the pseudo-polynomial algorithm in [14] for EDF

scheduling analysis of DRT tasks (which is a tractable problem

in contrast to the SP scheduling analysis problem studied in

this paper). The IBF analysis proposed in this paper uses the

same idea for workload abstraction as in [19], which aims

at analyzing a more restricted GMF (generalized multi-frame)

model. The method in [19] can be viewed as a special case

of the IBF analysis proposed in this paper. It was claimed in

[19] that using this abstraction gives an exact solution with

pseudo-polynomial complexity for SP scheduling analysis of

GMF, which is actually not true as pointed out in [17]. Indeed,

the analysis for SP scheduling of GMF is strongly coNP-hard

[17], so no pseudo-polynomial solution exists unless P=NP.

To the best of our knowledge, no existing work has been done

on the approximate analysis of any of these task graph models

with quantitative performance guarantees.

The offset-based task model [20], [7] is widely used in the

modeling and analysis of distributed real-time systems. This

model has a close relation to task graph models in Figure 1.

The reduction techniques used in [17] can be easily adapted to

prove that the SP scheduling analysis problem of offset-based

tasks is also coNP-hard in the strong sense. [10] proposed

a similar workload abstraction as in [19] (and also the one

used by IBF) for approximate analysis of offset-based tasks.

However, only experimental evaluations are conducted but

no quantitative performance guarantee is provided in [10].

Our major theoretical contribution over the work in [19]

and [10] is to quantify performance guarantee of different

workload abstractions when finding the exact critical instant

is intractable due to combinatorial explosion. Actually, the

speedup factor results of this paper also hold for the analysis

proposed in [10] with the offset-based task model.

II. DIAGRAPH TASK MODEL

A. Syntax
A task set consists of N independent tasks {T1,⋯, TN}.

A task T is represented by a directed graph G(T) =
(V (T),E(T)) with V (T) denoting the set of vertices and

E(T) the set of edges of the graph.
The vertices V (T) = {v1,⋯, vn} represent the types of

all jobs that can be released by T . Each vertex v is labeled

with a tuple ⟨e(v), d(v)⟩, where e(v) ∈ N denotes the worst-

case execution time (WCET), d(v) ∈ N denotes the relative

deadline. We implicitly assume the relation e(v) ≤ d(v) for

all job types v.
The edges of G(T) represent the order in which jobs

generated by T are released. Each edge (u, v) ∈ E(T) is

labeled with p(u, v) ∈ N denoting the minimum inter-release

separation time between u and v. The general DRT task model

in [14] does not regulate the relation between the deadline of a

vertex and the inter-release separations marked on the outgoing

edges of the vertex, but in this paper we assume deadlines to

be constrained, i.e., for each vertex u we have d(u) ≤ p(u, v)
for all edges.

B. Semantics
A job J is represented by a tuple (r, e) consisting of an

absolute release time r and an execution time e. The semantics

of a DRT task system is defined as the set of job sequences
it may generate: σ = [(r0, e0), (r1, e1), ...] is a job sequence

if all jobs are monotonically ordered by release times, i.e.,

ri ≤ rj for i ≤ j. A job sequence σ = [(r0, e0), (r1, e1), ...] is

generated by T if π = (v0, v1,⋯) is a path in G(T) and for

all i ≥ 0:

1) ri+1 − ri ≥ p(vi, vi+1) and

2) ei ≤ e(vi)
Combining the job sequences of individual tasks results in a

job sequence of the task set.

Example 1. Figure 2 shows an example to illustrate the
semantics of DRT tasks. When the system starts, T re-
leases its first run-time job by an arbitrary vertex. Then
the released sequence corresponds to a particular di-
rect path through G(T). Consider the job sequence σ =
[(2,3), (10,1), (25,4), (37,1)] which corresponds to path π =
(v1, v2, v3, v2) in G(T). Note that this example demonstrates
the “sporadic” behavior allowed by the semantics of the DRT
model. The first job in σ (corresponds to v1) is released at
time 2, and the second job in σ (v2) is released 2 time units
later than its earliest possible release time, while the job of
v3 and the second job of v2 are released as early as possible.

C. SP Scheduling and Worst-Case Response Time
We use the static-priority (SP) scheduling algorithm to

schedule jobs released by all tasks. Each task is assigned a

static priority in a priori, and each of its released job inherits

this priority. At each time instant during runtime, the job with

the highest priority among all the jobs that have been released

but not finished yet is selected for execution.

Definition 1 (Worst-Case Response Time). Given a task set
τ , the worst-case response time of vertex v ∈ V (T) for a task

305

v1 ⟨3,6⟩

v2⟨1,10⟩

v3 ⟨4,8⟩

6

15

12

8

Figure 2. An example task containing three different job types.

T ∈ τ is the maximal time between release and finish of any
job corresponding to v in all job sequences generated by τ .

A vertex v is schedulable if its worst-case response time

is no larger than its relative deadline d(v). The worst-case

response time of a vertex is not affected by the workload of

tasks with lower priorities. Moreover, it is not affected by other

vertices from the same task assuming that other vertices are

all schedulable (since d(u) ≤ p(u, v) for all edges (u, v) ∈
E(T)). Thus, we can analyze the worst-case response time of

each vertex v independently under the interference of higher-

priority task set τ . We use R(v, τ) to denote the worst-case

response time of v with interfering task set τ .

III. APPROXIMATE RESPONSE TIME ANALYSIS

This section introduces two approximate response time

analysis methods RBF and IBF, both of which have pseudo-
polynomial complexity. Before presenting them, we first

briefly review some basic concepts and the exact response

time analysis method with exponential complexity [18], [16].

The workload of a path π can be abstracted with a request
function [18], which for each t returns the maximal accumu-

lated execution requirement of all jobs that π may release until

time t (suppose the first job of π is released at time 0).

Definition 2 (Request Function). For a path π = (v0,⋯, vl)
through the graph G(T) of a task T , we define its request

function as

rfπ(t) ∶=max{ e(π′) ∣ π′ is prefix of π and p(π′) < t}
where e(π) ∶= ∑l

i=0 e(vi) and p(π) ∶= ∑l−1
i=0 p(vi, vi+1).

rfπ(t) is a non-decreasing staircase function with respect

to t. Each horizontal segment is left-open and right-closed. In

particular, rfπ(0) = 0.

Let Π(T) denote the set of paths in G(T) and Π(τ) ∶=
Π(T1) ×Π(T2) ×⋯×Π(Tn), i.e., the set of all combinations

of paths from tasks in task set τ = {T1, T2,⋯, Tn}. Further, let

π̄ = (π1, π2,⋯, πn) denote an element of Π(τ), i.e., a single

combination of paths of different tasks. If we are analyzing

the response time of vertex v with interfering task set τ , then

the total request function of v with a path combination π̄ is

rf(v,π̄)(t) = e(v) + ∑
πi∈π̄

rfπi(t)

We can express the response time of a vertex v with this

particular path combination as:

R(v, π̄) =min
t>0
{ t ∣ rf(v,π̄)(t) ≤ t} (1)

The overall worst-case response time of v with interfering task

set τ is the maximum over all path combinations:

R(v, τ) = max
π̄∈Π(τ)

{R(v, π̄)} (2)

The number of path combinations in Π(τ) is exponential

and using (2) to compute the exact worst-case response

time R(v) has an exponential complexity. The exponential

explosion comes from two sources: (1) the number of paths

in each task, and (2) the number of combinations of paths

from different tasks. A refinement-based strategy [18] has been

developed to rule out a significant portion of path combinations

in the computation using (2), but it still has exponential

complexity in general and may run into scalability problems

with large-scale task systems. Indeed, computing the exact

worst-case response time is coNP-hard in the strong sense [17],

so no (pseudo-)polynomial solution exists unless P=NP.

In the following, we present two approximate response time

analysis methods, both with pseudo-polynomial complexity.

The idea is to use abstractions to over-approximate the work-

load of each task, such that the workload approximation of

each task and the workload composition of different tasks both

can be performed efficiently.

A. RBF: Analysis by Request Bound Functions
Our first approximate analysis method RBF is based on the

abstraction Request Bound Function:

Definition 3 (Request Bound Function). For a task T , we
define its request bound function rbfT (t) as

rbfT (t) ∶= max
π∈Π(T)

{rfπ(t)}

The total request bound function for a vertex v under analysis
with interfering task set τ is

rbf(v,τ)(t) ∶= e(v) + ∑
T ∈τ

rbfT (t)

Theorem 1 (RBF Analysis). Given a vertex v with interfering
task set τ , RRBF(v, τ) is a safe upper bound of its worst-case
response time:

R(v, τ) ≤ RRBF(v, τ) ∶=min
t>0
{ t ∣ rbf(v,τ)(t) ≤ t} (3)

Proof: By the definition of rbf(v,τ)(t) we know

rbf(v,τ)(t) ≥ rf(v,π̄)(t) for any path combination π̄, which

implies RRBF(v, τ) ≥maxπ̄∈Π(τ){R(v, π̄)} = R(v, τ).
Example 2. Consider a vertex v with e(v) = 3 and interfering
task set τ containing only one task T , as shown in Figure 3-
(a). G(T) consists of two vertices v1 and v2 connected by an
edge (v1, v2), with e(v1) = 2, e(v2) = 5 and p(v1, v2) = 5.
G(T) has two paths π1 = (v1, v2) and π2 = (v2). rf(v,{π1})(t)
and rf(v,{π2})(t) intersects with the diagonal at t = 5 and
t = 8, respectively, so the worst-case response time of v is 8.
However, rbf(v,τ)(t) intersects with the diagonal at t = 10 and
thus RRBF(v, τ) = 10.

In (3), the individual request bound functions of tasks

are summed up to over-approximate the total computational

requests of tasks in τ , which solves the second source of

306

v1

⟨2,2⟩

v2

⟨5,5⟩

7

(a) T

0 2 4 6 8 10 12 14 16

2

4

6

8

10
rbf(v,τ) × rf(v,{π1})

rf(v,{π2})

(b) RRBF(v, τ)

Figure 3. Illustration of computing RRBF(v, τ) by rbf(v,τ).

1: Ω0 ← {⟨e(u),0, u⟩∣u ∈ G(T)}
2: for k=1 to t do
3: Ωk = ∅
4: for all ⟨e, r, u⟩ ∈ Ωk−1 do
5: for all edges (u,w) ∈ G(T) do
6: e′ ← e + e(w)
7: r′ ← r + p(u,w)
8: if r′ ≤ t then
9: Ωk ← Ωk ∪ {⟨e′, r′,w⟩}

10: end if
11: end for
12: end for
13: end for
14: return max{ e ∣ ⟨e, r, u⟩ ∈ ⋃k≤tΩk }
Figure 4. Algorithm for computing rbfT (t).

the exponential explosion, i.e., the combination of paths from

different tasks. The first source of the exponential explosion,

the number of paths of each individual task, can be tamed

by the path abstraction technique proposed in [14]. We can

use the path abstraction technique to compute rbfTi(t) for

each task Ti with O(t2n) time complexity where n is the

number of vertices in G(Ti). Figure 4 shows the pseudo-

code of the algorithm for computing rbfTi(t). We only need

to compute rbfTi(t) for t up to d(v) to decide whether a

vertex is schedulable or not. So the overall time complexity of

RBF is pseudo-polynomial. Several optimizations [14] can be

applied to significantly improve the efficiency of the algorithm

in Figure 4. We refer to [14] for details of these optimizations,

as well as the intuition of the path abstraction technique. Note

that rbfTi(t) is a left-open and right-closed staircase function.

By this algorithm we get a left-closed and right-open staircase

function, but it can be easily transferred into a corresponding

left-open and right-closed function in polynomial time with

respect to t.

B. IBF: Analysis by Interference Bound Functions

Our second approximate analysis IBF uses a more precise

abstraction interference bound function to represent the work-

load of each task. We first introduce the interference function
of individual paths and path combinations:

Definition 4 (Interference Function). For a path π =
(v0,⋯, vl) through the graph G(T) of a task T , we define

0 2 4 6 8 10121416

2
4
6 rfπ2(t)

ifπ2(t)

0 2 4 6 8 10121416

2
4
6 rfπ1(t)

ifπ1(t)

(a) rf and if of π1 and π2

0 2 4 6 8 10121416

2
4
6
8
10
12
14
16 rf(v,{π1,π2})(t)

if(v,{π1,π2})(t)

(b) rf and if of (v,{π1, π2})

Figure 5. Illustration of the different between rf and if .

its interference function as

ifπ(t) ∶=max{ ee(π′) ∣ π′ is prefix of π and p(π′) < t}
where p(π) ∶= ∑l−1

i=0 p(vi, vi+1) and

ee(π) ∶=
l−1
∑
i=0

e(vi) +min (e(vl),max(0, t − p(π)))

Given vertex v under analysis and a path combination π̄
generated by the interfering task set, the total interference

function for v and π̄ is

if(v,π̄)(t) = ∑
πi∈π̄

ifπi + e(v)

The interference function ifπ(t) of a single path is a slanted

staircase function. The slope of each slanted segments in

ifπ(t) is either 0 or 1. if(v,π̄)(t) is also a slanted staircase

function, but it may contain slanted segments with slope

greater than 1 when ifπ of several paths increases at the

same time. Figure 5 illustrates the interference function of

two paths π1 and π2, and the total interference function of

path combination {π1, π2} and a vertex v with e(v) = 2.

Actually, if(v,π̄) and rf(v,π̄) are identical if they are used

for calculating the exact response time by enumerating all path

combinations, as stated in the following theorem:

Theorem 2. The exact worst-case response time of v with
interfering path combination π̄ is computed by

R(v, π̄) =min
t>0
{ t ∣ if(v,π̄)(t) ≤ t} (4)

and the total worst-case response time of v is computed by:

R(v, τ) = max
π̄∈Π(τ)

{R(v, π̄)} (5)

To see the correctness of the theorem, it is sufficient to

show that the worst-case response time of v with a particular

path combination π̄ computed using if(v,π̄)(t) and rf(v,π̄)(t)
are the same, i.e., the RHS of (1) equals the RHS of (4).

By checking the definitions of if(v,π̄)(t) and rf(v,π̄)(t), it is

easy to see that they overlap with each other in the horizontal

segments of if(v,π̄)(t). Moreover, since each segment of

if(v,π̄)(t) is either horizontal, or has a slope at least 1, both

if(v,π̄)(t) and rf(v,π̄)(t) intersect with the diagonal only in

the horizontal segments of if(v,π̄)(t), as illustrated by Figure

5. Therefore we can conclude that if(v,π̄)(t) and rf(v,π̄)(t)

307

intersect with the diagonal at exactly the same points, and

thus the worst-case response time of v with a particular path

π̄ computed using if(v,π̄)(t) and rf(v,π̄)(t) are the same. A

formal proof is omitted here.

Again, enumerating the interference functions for all path

combinations is computationally intractable. In the following

we introduce the interference bound function abstraction and

the corresponding approximate analysis method. The interfer-
ence bound function is defined in a way analog to the request
bound function, but results in better analysis precision.

Definition 5 (Interference Bound Function). For a task T , we
define its interference bound function ibfT (t) as

ibfT (t) ∶= max
π∈Π(T)

{ifπ(t)}

The total interference bound function for a vertex v under
analysis with interfering task set τ is

ibf(v,τ)(t) ∶= e(v) + ∑
T ∈τ

ibfT (t)

Theorem 3 (IBF Analysis). Given a vertex v with interfering
task set τ , RIBF(v, τ) is a safe upper bound of its worst-case
response time:

R(v, τ) ≤ RIBF(v, τ) ∶=min
t>0
{ t ∣ ibf(v,τ)(t) ≤ t} (6)

Proof: ibfTi(t) over-approximates ifπi(t) for any path

πi ∈ G(Ti), so RIBF(v, τ) over-approximates R(v, τ) com-

puted by if(v,π̄)(t) enumerating all path combinations.

The algorithm in Figure 4 can be reused to compute

ibf(v,T)(t) for each task T in pseudo-polynomial time, with

the last line modified as:

“return max{ e +min(e(u), t − r) ∣ ⟨e, p, u⟩ ∈ ⋃k≤tDTk}”

The IBF analysis method strictly dominates RBF, denoted

by IBF ≻ RBF:

Theorem 4 (IBF ≻ RBF). For any vertex v it holds
RIBF(v, τ) ≤ RRBF(v, τ) and there exists some v for which
it holds RIBF(v, τ) < RRBF(v, τ).

Proof: RIBF(v, τ) ≤ RRBF(v, τ) holds since if is a

more precise abstraction than rf . The task system in Ex-

ample 2 witnesses RIBF(v, τ) < RRBF(v, τ). Figure 6 shows

RIBF(v, τ) = 8, which is smaller than RRBF(v, τ) = 10.

For the task set in Example 2, RIBF(v, τ) equals v’s

exact worst-case response time R(v, τ). However, in general

RIBF(v, τ) is an over-approximation of R(v, τ). An example

in which RIBF(v, τ) is strictly larger than R(v, τ) can be found

in [17].

C. Some Properties
We use RF and IF to denote the exact response time analysis

using the request function rf and interference function if
respectively. Then we know the following relations:

IF ≻ IBF

= ≻

RF ≻ RBF

0 2 4 6 8 10 12 14 16

2

4

6

8

10
ibf(v,τ)

×
if(v,{π1})
if(v,{π2})

Figure 6. Illustration of ibf(v,τ).

where “≻” denotes the strict domination relation introduced in

above.

Before ending this section, we introduce some auxiliary

lemmas, which are useful in the next section for deriving the

speedup factors of RBF and IBF.

First, we shall clarify that for each particular t, rbf(v,τ)(t)
and ibf(v,τ)(t) do not introduce any pessimism as they indeed

capture the exact worst-case workload (interference) incurred

by some path combinations in a time interval of length t, as

stated in the following lemma:

Lemma 1. Given a vertex v and interfering task set τ , for
any t ≥ 0 it holds:

rbf(v,τ)(t) = max
π̄∈Π(τ)

{rf(v,π̄)(t)} (7)

ibf(v,τ)(t) = max
π̄∈Π(τ)

{if(v,π̄)(t)} (8)

Proof: We prove (7), and (8) can be proved similarly. First

it is easy to see the relation ≥ between the LHS and RHS of

(7). In the following we show the relation ≤ also holds. We

start with the definition of rbf(v,τ)(t):
rbf(v,τ)(t) = rbfT1(t) +⋯ + rbfTn(t) + e(v)

= max
π∈Π(T1)

{rfπ(t)} +⋯ + max
π∈Π(Tn)

{rfπ(t)} + e(v)

Let πi be the path in Π(Ti) s.t. rfπi(t) ≥ rfπ(t) for all π ∈
Π(Ti), then

rbf(v,τ)(t) = rfπ1(t) +⋯ + rfπn(t) + e(v)
= rf(v,{π1⋯πn})(t)
≤ max

π̄∈Π(τ)
{rf(v,π̄)(t)}

Definition 6 (Lifting Point). We say z is a lifting point of a
(slanted) staircase function f(t) iff

f(z) = f(z − ε) ∧ f(z) < f(z + ε)
where ε is a positive number arbitrarily close to 0.

Intuitively, a lifting point is the x-axis value of the ending

point of a horizontal segment. In Figure 7-(a), z1 is a lifting

point of both rf(v,π̄)(t) and if(v,π̄)(t).
Lemma 2. Given a vertex v and the interfering task set τ .
Let π̄ be an arbitrary path combination in Π(τ). Let f(t) be

308

0 z1 x z2

rf(v,π̄)

×

×

if(v,π̄) x

(a) rf(v,π̄)(t) and if(v,π̄)(t)

0 x-z1 z2-z1 y

rf(v,π̄′)

×

×

if(v,π̄′)
x

×

≤ R

(b) rf(v,π̄′)(t) and if(v,π̄′)(t)

Figure 7. Intuition of Lemma 2

rf(v,π̄)(t) or if(v,π̄)(t) Suppose f(x) > x, and define

z2 ∶=min
t>x
{ t ∣ f(t) ≤ t}

z1 ∶=max
t<x
{ t ∣ f(t) ≤ t ∧ t is a lifing point of f(t) }

then it holds

f(z2) − f(z1) ≤ R(v, τ)

The proof of Lemma 2 is provided in the appendix. The

intuition of the lemma is shown in Figure 7. The part of

rf(v,π̄)(t) between z1 and z2 can be viewed as rf(v,π̄′)(t)
with another path combination π̄′, in which each element

is the suffix of the counter part in π̄ starting from z1,

i.e., rf(v,π̄)(z2) − rf(v,π̄)(z1) = rf(v,π̄′)(z2 − z1). Suppose

rf(v,π̄′)(t) intersects with the diagonal at y, then we know

rf(v,π̄′)(z2 − z1) ≤ rf(v,π̄′)(y) = y ≤ R(v, τ) since the

response time of v with any particular path combination is

bounded by R(v, τ), and thus rf(v,π̄)(z2)−rf(v,π̄)(z1) is also

bounded by R(v, τ). The intuition is similar for the case of

f(t) = if(v,π̄)(t).

IV. SPEEDUP FACTOR

We quantify the performance guarantee of RBF and IBF by

the metric speedup factor [8]:

Definition 7 (Speedup Factor). A method M has a speedup

factor of s if the response time estimation returned by M on a
speed-s processor for any vertex in any task system is bounded
by its exact worst-case response time.

The speedup factor s is tight if on any speed-s′ processor
where s′ < s, there exists some task system in which a vertex’s
response time estimation returned by M is larger than its exact
response time on a speed-1 processor.

If a job executes for e(v) on a speed-1 machine, then it

finishes the same amount of workload in e(v)/s time on a

speed-s machine. So we can reload the request function and

interference function on a speed-s processor as

rfs
π(t) ∶=max{ es(π′) ∣ π′is prefix of π and p(π′) < t}

ifs
π(t) ∶=max{ ees(π′) ∣ π′is prefix of π and p(π′) < t}

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12
if(v,π̄)(t)

if2
(v,π̄)(t)

Figure 8. if2
(v,π̄)(t) and if(v,π̄)(t).

where p(π) ∶= ∑l−1
i=0 p(vi, vi+1) and

es(π) ∶=
l

∑
i=0

e(vi)/s

ees(π) ∶=
l−1
∑
i=0

e(vi)/s +min (e(vl)/s,max(0, t − p(π)))

The notations rfs
(v,π̄)(t), rbfs

T (t), rbfs
(v,τ)(t), ifs

(v,π̄)(t),
ibfs

T (t) and ibfs
(v,τ)(t) are defined in the same way as their

counterpart in the last section, but based on rfs
π(t), ifs

π(t) and

e(v)/s. For simplicity, we omit the subscript s in the above

notations when s = 1.

It is easy to see the following relations:

rfs
π(t) = rfπ(t)/s

rfs
(v,π̄)(t) = rf(v,π̄)(t)/s
rbfs

T (t) = rbfT (t)/s
rbfs
(v,τ)(t) = rbf(v,τ)(t)/s

However, the corresponding relations do not always hold

for interference (bound) functions. They only hold for the

points on horizonal segments of these functions on speed-1
processors:

Lemma 3. Given a total interference function if(v,π̄)(t),
for any point x that is not differentiable or satisfies
dif(v,π̄)(x)/d(x) = 0 (i.e., the points on the horizontal seg-
ments of if(v,π̄)(t)), it holds

ifs
(v,π̄)(x) = if(v,π̄)(x)/s (9)

The lemma can be easily proved by checking the definition

of ifs
(v,π̄). Note that the analog conclusions also hold for

ifs
π(t), ibfs

T (t) and ibfs
(v,τ)(t). In Figure 8, the points in [4,14]

and [16,18] satisfy (9).

A. Speedup Factor of RBF

RBF has a tight speedup factor of 2 as proved in the

following two theorems.

Theorem 5. RBF has a speedup factor of 2.

Proof: Let R = R(v, τ). We shall prove that if v’s worst-

case response time on a speed-1 processor is R, then the

response time estimation by RBF is bounded by R on a speed-

2 processor. We will show that ∀π̄ ∈ Π(τ) it holds

rf2
(v,π̄)(R) ≤ R (10)

309

If this is true, we have maxπ̄∈Π(τ){rf2
(v,π̄)(R)} ≤ R, and

by Lemma 1 we know rbf2
(v,τ)(R) ≤ R, which completes the

proof. Since (10) trivially holds if rf(v,π̄)(R) ≤ R, in the rest

of the proof we focus on the interesting case of rf(v,π̄)(R) >
R. We define:

z2 ∶=min
t>R
{ t ∣ rf(v,π̄)(t) ≤ t}

z1 ∶=max
t<R

{ t ∣ rf(v,π̄)(t) ≤ t ∧ t is a lifing point of rf(v,π̄)(t) }
(We refer to Figure 7-(a) for illustration of the definitions of

z1 and z2 with x = R.)

Thus, by Lemma 2 we know

rf(v,π̄)(z2) − rf(v,π̄)(z1) ≤ R
and since rf(v,π̄)(z1) ≤ z1 < R, we know

rf(v,π̄)(z2) ≤ 2 ⋅R (11)

Since R < z2, we have rf(v,π̄)(R) ≤ rf(v,π̄)(z2), combining

with (11) we have

rf(v,π̄)(R) ≤ 2 ⋅R
Applying the relation rf2

(v,π̄)(R) = rf(v,π̄)(R)/2 to the above

inequality we finally have rf2
(v,π̄)(R) ≤ R.

Theorem 6. The the speedup factor 2 of RBF is tight, even
for dual-task systems.

Proof: We prove the theorem by showing that for any

s = 2− ε where 1 > ε > 0, a dual-task system τ = {T1, T2} can

be constructed such that a vertex v’s exact worst-case response

time on a speed-1 processor is r, but the response time bound

estimation returned by RBF on a speed-s processor is strictly

larger than r. The construction is as follows:

● Let r = ⌈2/ε⌉ + 2, and k = ⌈r/2⌉.
● The higher priority task T1 consists of k + 1 vertices

{v0, v1,⋯, vk}. For each vertex vi, let e(vi) = r − (i+ 1)
and d(vi) = r − i. Each vertex vi with i ∈ [1, k] is con-

nected to v0 via an edge (vi, v0), and let p(vi, v0) = r−i.
● The lower priority task T2 only has one vertex v, with

e(v) = 1 and d(v) = r.

The task set is shown in Figure 9, where only the WCET of

each vertex in T1 is marked as they are all trivially schedulable

and their deadlines are irrelevant to the response time of the

vertex v in T2.

We use πi to denote the path in G(T1) starting with vertex

vi. It is easy to verify the worst-case response time of τ on

a speed-1 processor: with each path πi ∈ G(T1), v’s response

time is exactly r − i. In the following we will show that

rbfs
(v,{T1})(t) > t holds for any time point t ∈ [0, r], which

implies the response time estimation of v by the RBF analysis

on a speed-s processor is strictly larger than r. We discuss two

cases: (1) t ∈ [0, r/2] and (2) t ∈ (r/2, r].
1) t ∈ [0, r/2]. In this case, we have rf(v,π0)(t) = (r − 1)+

1 = r, and since t ≤ r/2 and s < 2 we know rf(v,π0)(t) >
s ⋅ t.

2) t ∈ (r/2, d]. In this case, there exists i ∈ [1, k] satisfying

t ∈ (r − i, r − i + 1]. Consider path πi. By t > r − i we

v1

r − 2

v0

r − 1

v2

r − 3
vk

r − (k + 1)

r − 1

r −
2

r
− k

T1

...

v

⟨1, r⟩
T2

Figure 9. A task set of two tasks T1 and T2 showing the speedup factor 2
of RBF is tight.

have

rf(v,πi)(t) = e(vi) + e(v0) + 1
= 2 ⋅ r − i − 1
= 2 ⋅ (r − i + 1) + (i − 1) − 2
> 2 ⋅ (r − i + 1) + (i − 1) ⋅ ε − r ⋅ ε
= (2 − ε) ⋅ (r − i + 1)
= s ⋅ (r − i + 1)
≥ s ⋅ t

In summary, in both cases there exists a path π in Π(T1) such

that rf(v,π)(t) > s ⋅ t. On the other hand, we know

rbfs
(v,{T1})(t) = rbf(v,{T1})(t)/s

≥ rf(v,π)(t)/s
So ∀t ∈ [0, r], it holds rbfs

(v,{T1})(t) > t, and thereby the

response time estimation of v returned by RBF on a speed-s
processor is strictly larger than r when s < 2.

B. Speedup Factor of IBF

We start with the fact that ifs
(v,π̄)(t) is a Lipschitz continu-

ous function [12] with a Lipschitz constant being the number

of interfering tasks:

Lemma 4. Given a vertex v and the interfering task set τ
consisting of k tasks executing on a speed-s machine. Let π̄ be
an arbitrary path combination in Π(τ), then for any x ≥ y ≥ 0
it holds

ifs
(v,π̄)(x) − ifs

(v,π̄)(y) ≤ k ⋅ (x − y) (12)

Proof: By the definition of ifs
(v,π̄) we know

ifs
(v,π̄)(x) − ifs

(v,π̄)(y) = ∑
πi∈π̄

(ifs
πi
(x) − ifs

πi
(y)) (13)

By the definition of ifs
π(t) we know

ifs
πi
(x) − ifs

πi
(y) ≤ x − y

i.e., the slope of slated segments of ifs
πi
(t) is at most 1, and

since τ consists of k tasks, we know ∑πi∈π̄(ifs
πi
(x)−ifs

πi
(y))

is bounded by k ⋅ (x− y), which together with (13) concludes

the lemma.

Note that speeding up the processor does not increase the

Lipschitz constant of the interference function. Instead, it only

decreases the length of the slanted segments, as shown in

Figure 8.

310

Theorem 7. IBF has a speedup factor of

1 +
√
k2 − k
k

for any vertex v with an interfering task set τ of k tasks.

Proof: Let R = R(v, τ). We shall prove that if v’s exact

worst-case response time on a speed-1 processor is R, then

the response time upper bound returned by IBF on a speed-

s processor is bounded by R, where s ≥ 1 +
√
k2−k
k

. In the

following we will show that for an arbitrary path combination

π̄ ∈ Π(τ) it holds

ifs
(v,π̄)(R) ≤ R (14)

If this is true, we have

max
π̄∈Π(τ)

{ifs
(v,π̄)(R)} ≤ R

and by Lemma 1 we know ibfs
(v,τ)(R) ≤ R, which completes

the proof.

If if(v,π̄)(R) ≤ R, then (14) trivially holds. In the remained

of the proof we focus on the interesting case of if(v,π̄)(R) > R.

We define

z2 ∶=min
t>R
{ t ∣ if(v,π̄)(t) ≤ t}

z1 ∶=max
t<R

{ t ∣ if(v,π̄)(t) ≤ t ∧ t is a lifting point of if(v,π̄)(t) }
(We refer to Figure 7-(a) for illustration of the definitions of

z1 and z2 with x = R.)

Thus, by Lemma 2 we know

if(v,π̄)(z2) − if(v,π̄)(z1) ≤ R (15)

We define x = if(v,π̄)(z1)/R, and discuss two cases: (i)

x ≥ k⋅s−s
k⋅s−1 and (ii) x < k⋅s−s

k⋅s−1 :

1) x ≥ k⋅s−s
k⋅s−1 . By Lemma 4 we have

ifs
(v,π̄)(R) − ifs

(v,π̄)(z1) ≤ k × (R − z1) (16)

By the definition of z1 we know z1 is on a horizontal

segment of if(v,π̄)(t), so by Lemma 3 and if(v,π̄)(z1) ≤
z1 we know

ifs
(v,π̄)(z1) = if(v,π̄)(z1)/s ≤ z1/s (17)

Combining (16) and (17) gives

ifs
(v,π̄)(R) ≤ z1/s + k × (R − z1) (18)

On the other hand

x ≥ (k ⋅ s − s)/(k ⋅ s − 1)
⇒ x/s + k ⋅ (1 − x) − 1 ≤ 0
⇒ if(v,π̄)(z1)/s + k ⋅ (R − if(v,π̄)(z1)) ≤ R
⇒ k ⋅R − if(v,π̄)(z1)(k − 1/s) ≤ R

and since if(v,π̄)(z1) ≤ z1, s > 1 and k ≥ 1, we have

k ⋅R − z1(k − 1/s) ≤ R
applying this to (18) yields

ifs
(v,π̄)(R) ≤ R

2) x < k⋅s−s
k⋅s−1 . Since

s ≥ 1 +
√
k2 − k
k

⇒ k ⋅ s2 − 2k ⋅ s + 1 ≥ 0
⇒ s ≥ 1 + k ⋅ s − s

k ⋅ s − 1
combining this with x < k⋅s−s

k⋅s−1 yields

s ≥ 1 + x
⇒R ≥ (R + if(v,π̄)(z1))/s

and by (15) we know R ≥ if(v,π̄)(z2)/s. On the other

hand, by the definition of z2 we know that z2 is on

some horizontal segment of if(v,π̄)(t), so by Lemma 3

we know ifs
(v,π̄)(z2) = if(v,π̄)(z2)/s. In summary we

have ifs
(v,π̄)(z2) ≤ R, and since R < z2 we have

ifs
(v,π̄)(R) ≤ R

In summary, in both cases it holds ifs
(v,π̄)(R) ≤ R.

Since π̄ is arbitrarily chosen from all path combinations,

we have maxπ̄∈Π(τ){ifs
(v,π̄)(R)} ≤ R. By Lemma 1 we have

ibfs
(v,τ)(R) ≤ R. Thus, the response time estimation returned

by the IBF analysis on a speed-s processor is bounded by R.

When k = 1, 1+
√
k2−k
k

= 1, so when the interfering task set

only has one task the speedup factor of IBF is 1, which gives

the following corollary:

Corollary 1. IBF is an exact analysis for dual-task systems.

In general, the speedup factor 1 +
√
k2−k
k

of IBF is an

increasing function with respect to k, as shown in Figure 10.

That means the pessimism of IBF increases for task systems

with more tasks This is because the total interference (bound)

functions can increase with a larger slope with a larger k.

The value of 1 +
√
k2−k
k

converges to 2 as k approaches

infinity, which is the same as the speedup factor RBF, which

corresponds to the fact that the slanted segments in ibf(v,τ)(t)
becomes “vertical” when infinitely many tasks release work-

load at the same time. There are also cases in which the

maximal slope of ibf(v,τ)(t) is smaller than the number of

interfering tasks (when the interference bound function ibfT (t)
of individual tasks does not increase at the same time). By

a closer look into the proof of Theorem 7, we can see that

the pessimism of the IBF analysis is actually decided by the

maximal slope of ibf(v,τ)(t). The IBF analysis guarantees

to give exact analysis results if the Lipschitz constant of

ibf(v,τ)(t) is 1, regardless of the number of tasks in the system.

V. EVALUATIONS

We use randomly generated task sets to evaluate the two

approximate analysis methods RBF and IBF proposed in this

paper, and compare them with the exact analysis in [18],

denoted by EXACT. We define the utilization of a task T as

the highest ratio of the sum of WCET vertex labels over the

sum of edge labels in all cycles in G(T). The total utilization

of a task set is the sum of individual task utilizations.

311

k
1

1

2

1.71

3

1.82

4

1.87

5

1.89

6

1.91

0

1

2
1 +

√
k2−k
k

Figure 10. The values of 1 +
√

k2−k
k

for different k.

0.2 0.3 0.4 0.5 0.6

Total utilization

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

RBF
IBF
EXACT

Figure 11. Acceptance ratio with different total utilizations.

To create a task, a random number (in the range [7,15]) of

vertices are generated. The output degree of vertex is randomly

chosen in the range [1,6]. Edges are randomly placed but it

is guaranteed that the whole graph is strongly connected. We

define different types of vertices, and the type of each vertex

is randomly chosen. For each type, we specify the range of

WCET values and the range of the release separations of any

output edge of this vertex. For each vertex v, e(v) and p(v, u)
for all edges (v, u) outgoing from v are randomly chosen from

the corresponding range, and d(v) is set to be the minimal

p(v, u) among all outgoing edges (v, u).
The procedure of generating task sets is as follows. First a

task set of two tasks is constructed and evaluated. Then we

randomly generate a new task and add it to the task set in

last step, and repeat this procedure until the total utilization

of the task set exceeds 1. Then a new task set of two newly

generated tasks is constructed. The whole procedure repeats

until a sufficiently large number of task sets are generated and

evaluated.

Figure 11 shows the acceptance ratios of EXACT, RBF and

IBF in different total utilization ranges. The x-axis represents

the total utilization and the y-axis represents the acceptance
ratio: Each point in the figure represents the ratio between the

number of task sets decided as schedulable by a certain method

and the total number of generated task sets, at a certain level

of task set total utilization specified by its x-axis value. The

experiments use two types of vertices. Two types of vertices

are used for the experiments in Figure 11:

Type-I: e(v) ∈ [1,6] and p(v, u) ∈ [20,100].
Type-II: e(v) ∈ [7,9] and p(v, u) ∈ [101,300].
Figure 12 shows the acceptance ratios with different num-

number of tasks 2 3 4 5 6 7 8

x 33 20 15 12 10 8 7

Table I
DIFFERENT UPPER BOUNDS OF e(v) TO GENERATE TASK SETS WITH

DIFFERENT NUMBER OF TASKS.

2 3 4 5 6 7 8

Task set size

50

60

70

80

90

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

RBF
IBF
EXACT

Figure 12. Acceptance ratio with different number of tasks.

bers of tasks in each task set. For this group of experiments we

only use one vertex type: p(v, u) ∈ [50,300] and e(v) ∈ [1, x]
where x is tuned to control the range of utilization of each

task, and thus control the number of tasks contained in each

task set. For each target numbers of tasks, we select generated

task sets with total utilizations in a certain range. The goal

is to maintain the acceptance ratio of EXACT at a relatively

stable level around 80%. The execution time upper bound x
values to generate task sets with different target number of

tasks are shown in Table I. From Figure 12 we can see that

the superiority of IBF over RBF is larger for task sets with

fewer tasks. In particular, IBF is as precise as EXACT for dual-

task systems. These all coincide with the theoretical evaluation

results using the speedup factor metric in Section IV.

We also compare the analysis efficiency of RBF, IBF and

EXACT. The experiments use an implementation in Python

and execute on a desktop computer with an Intel Core i7-

2600 CPU (3.40GH). Experiments show that the analysis time

of RBF and IBF are very close, and are much shorter than

EXACT. In all of our experiments, the time consumption of

RBF and IBF is at most 4 seconds, and is typically below

1 second. However, the time consumption of EXACT is very

unstable. For some task sets, it is also quite efficient (almost

as efficient as RBF and IBF), but for many task sets it is

thousands of times slower than RBF and IBF. There are also

a considerable portion of task sets that EXACT cannot finish

the analysis in hours. In summary, the efficiency improvement

of RBF and IBF against EXACT is significant.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose two approximate response time

analysis methods for real-time task graph models, and quantify

their suboptimality using the metric speedup factor. The first

method RBF has a speedup factor of 2, which is tight even

for task sets containing only two tasks. The second method

312

IBF has a speedup factor of 1+
√
k2−k
k

, where k is the number

of interfering tasks with higher priority than the one under

analysis. For the special case k = 1 this speedup factor equals

1, which implies that IBF gives exact analysis results for task

sets containing two tasks. At the other extreme, IBF’s speedup

factor converges to 2 when k approaches to infinity. We also

conduct experiments to empirically evaluate the precision and

efficiency of RBF and IBF with randomly generated task sets.

Results show that our proposed approximate analysis methods

can achieve very high efficiency with low precision loss, and

also confirm the trends indicated by the theoretical results of

their speedup factors. In this work we assume the jobs all have

constrained deadlines. In the future we will extend the analysis

methods as well as speedup factor guarantees in this paper to

allow deadlines larger than the inter-release separations on the

outgoing edges.

VII. ACKNOWLEDGEMENT

This work is partially supported by NSF of China (Grant

No. of 61300022, 61370076 and 61472072).

REFERENCES

[1] S. K. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
Real-Time Systems Symposium (RTSS), 1990.

[2] Sanjoy Baruah. Feasibility analysis of recurring branching tasks. In
Real-Time Systems, 1998. Proceedings. 10th Euromicro Workshop on,
pages 138–145. IEEE, 1998.

[3] Sanjoy Baruah. Dynamic-and static-priority scheduling of recurring real-
time tasks. Real-Time Systems, 24(1):93–128, 2003.

[4] Sanjoy Baruah. The non-cyclic recurring real-time task model. In
Proceedings of the IEEE 31st Real-Time Systems Symposium (RTSS),
pages 173–182, Nov 2010.

[5] Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky, and Aloysius K. Mok:.
Generalized multiframe tasks. Real-Time Systems, 1999.

[6] R. I. Davis, T. Feld, V. Pollex, and F. Slomka. Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014.

[7] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability analysis
for tasks with static and dynamic offsets. In RTSS, 1998.

[8] B. Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. In Journal of ACM, 2000.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. In Journal of the ACM, 1973.

[10] Jukka Maki-Turja and Mikael Nolin. Fast and tight response-times for
tasks with offsets. In Proceedings. 17th Euromicro Conference on Real-
Time Systems (ECRTS).

[11] A. K. Mok and D. Chen. A multiframe model for real-time tasks. In
IEEE Transactions on Software Engineering, 1997.

[12] Michealo Searcoid. Metric spaces. Springer undergraduate mathematics
series, Springer-Verlag, section 9.4, 2006.

[13] Martin Stigge. Real-time workload models: Expressiveness vs. analysis
efficiency. In Ph.D. Dissertation, Uppsala University, 2014.

[14] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The Digraph
Real-Time Task Model. In RTAS 2011.

[15] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. On the
tractability of digraph-based task models. 24th Euromicro Conference
on Real-Time Systems (ECRTS), 2011.

[16] Martin Stigge, Nan Guan, and Wang Yi. Refinement-based exact
response-time analysis. In the 26th EUROMICRO Conference on Real-
Time Systems (ECRTS), 2014.

[17] Martin Stigge and Wang Yi. Hardness results for static priority real-
time scheduling. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems (ECRTS), pages 189–198. IEEE, 2012.

[18] Martin Stigge and Wang Yi. Combinatorial abstraction refinement for
feasibility analysis. In Procedings of the 34th IEEE Real-Time Systems
Symposium (RTSS), pages 340–349, 2013.

[19] H. Takada and K. Sakamura. Schedulability of generalized multiframe
task sets under static priority assignment. In Proceedings of the 4th
International Workshop on Real-Time Computing Systems and Applica-
tions (RTCSA), 1997.

[20] Ken Tindell. Using offset information to analyse static priority pre-
emptively scheduled task sets. In Technical Report YCS-182, Dept. of
Computer Science, University of York, England, 1992.

APPENDIX: PROOF OF LEMMA 2
We first introduce an auxiliary lemma to bound the total

workload released in a “busy period” by the worst-case

response time of the analyzed vertex.

Lemma 5. Given a vertex v and an interfering task set
τ . Suppose [t1, t2) is some time interval during which the
processor is continuously busy (executing jobs released by τ
or v). The total workload of jobs released in [t1, t2) is bounded
by R(v, τ).

Proof: We prove by contradiction, assuming the total

workload of jobs released in [t1, t2), denoted by W , is greater

than R. Without loss of generality, we consider the case that v
releases a job at t1. Since the processor is continuously busy

during [t1, t2), the workload of jobs released in [t1, t2) is

finished no earlier than t1 +W , i.e., the job released by v is

finished no earlier than t1 +W , which contradicts that R is

v’s worst-case response time.

Now we are ready to prove Lemma 2:

Proof: We prove the lemma for the case of f(t) =
if(v,π̄)(t), and the case of f(t) = rf(v,π̄)(t) can be proved

similarly.

Suppose each path πi ∈ π̄ releases its first job at time

0. Since z1 is a lifting point of if(v,π̄)(t), we know that

if(v,π̄)(z1) is the total workload released before in time

interval [0, z1), and since if(v,π̄)(z1) ≤ z1, we know all the

jobs released in [0, z1) have been finished by z1, i.e., the

processor is idle just before z1. On the other hand, some job

is released at z1 since z1 is a lifting point. So we can conclude

that the processor becomes busy from idle at time z1.

Then we prove that the processor is continuously busy

during [z1, z2). We prove this by contradiction, assuming that

there is some point z′ ∈ (z1, z2) at which the processor is

idle. Since z′ is idle, all the workload released by z′ has been

finished by z′, so z′ must be in some horizontal segment of

if(v,π̄)(t), and if(v,π̄)(z′) ≤ z′. Let z′′ be the lifting point at

the end of horizontal segment containing z′, so

if(v,π̄)(z′′) ≤ if(v,π̄)(z′) = z′ ≤ z′′
so z2 is a lifting point larger than z1 satisfying if(v,π̄)(t) ≤ t,
which contradicts the definition of z1. So we can conclude

that the processor is continuously busy during [z1, z2).
By Lemma 5 we know that the total workload of jobs

released during [z1, z2) is bounded by R(v, τ). On the other

hand, since z1 is a lifting point, we know f(z2) − f(z1) only

includes workload of jobs released during [z1, z2). So putting

the above discussions together, we have f(z2) − f(z1) ≤
R(v, τ).

313

