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Abstract We generalize the commonly used mixed-criticality sporadic task model
to let all task parameters (execution-time, deadline and period) change between criti-
cality modes. In addition, new tasks may be added in higher criticality modes and the
modes may be arranged using any directed acyclic graph, where the nodes represent
the different criticality modes and the edges the possible mode switches. We for-
mulate demand bound functions for mixed-criticality sporadic tasks and use these to
determine EDF-schedulability. Tasks have different demand bound functions for each
criticality mode. We show how to shift execution demand between different criticality
modes by tuning the relative deadlines. This allows us to shape the demand character-
istics of each task. We propose efficient algorithms for tuning all relative deadlines of
a task set in order to shape the total demand to the available supply of the computing
platform. Experiments indicate that this approach is successful in practice. This new
approach has the added benefit of supporting hierarchical scheduling frameworks.

Keywords Real-time · Mixed-criticality · Demand bound functions · Earliest
deadline first · Schedulability analysis

1 Introduction

An increasing trend in real-time systems is to integrate functionalities of different
criticality, or importance, on the same platform. Such mixed-criticality systems lead
to new research challenges, not least from the scheduling point of view. The major
challenge is to simultaneously guarantee temporal correctness at all different levels
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of assurance that are mandated by the different criticalities. Typically, at a high level
of assurance, we need to guarantee correctness under very pessimistic assumptions
(e.g., worst-case execution times from static analysis), but only for the most critical
functionalities. At a lower level of assurance, we want to guarantee the temporal cor-
rectness of all functionalities, but under less pessimistic assumptions (e.g., measured
worst-case execution times).

We adapt the concept of demand bound functions (Baruah et al. 1990) to the
mixed-criticality setting, and derive such functions for mixed-criticality sporadic
tasks. These functions can be used to establish whether a task set is schedulable by
EDF on a uniprocessor. In the mixed-criticality setting, each task has different de-
mand bound functions for different criticality modes. We show that a task’s demand
bound functions for different modes are inherently connected, and that we can shift
demand from one function to another by tuning the parameters of the task, specifi-
cally the relative deadline.

We are free to tune the relative deadlines of tasks as long as they are never larger
than the true relative deadlines that are specified by the system designer. By such
tuning we can shape the demand characteristics of a task set to match the available
supply of the computing platform, specified using supply bound functions (Mok et al.
2001). We present efficient algorithms that automatically shape the demand of a task
set in this manner.

The standard mixed-criticality task model, which is used in most prior work, is
generalized to allow arbitrary changes in task parameters between criticality modes.
The generalized model also enables the addition of tasks in higher criticality modes
(e.g., to implement hardware functionality in software in case of hardware faults).
The manner in which a system can switch between different criticality modes is ex-
pressed with any directed acyclic graph, giving the system designer the tools neces-
sary to express orthogonal criticality dimensions in a single system. To the best of
our knowledge, systems with non-linearly ordered criticality modes have not been
considered before. The adaptation of all results to the generalized model is the main
new contribution of this paper, which extends a preliminary version (Ekberg and Yi
2012).

Experimental evaluations indicate that, for most settings, the acceptance ratio of
randomly generated task sets is higher with this scheduling approach than with pre-
vious approaches from the literature.

Because we allow the supply of the computing platform to be specified with sup-
ply bound functions, this scheduling approach directly enables the use of mixed-
criticality scheduling within common hierarchical scheduling frameworks that em-
ploy such abstractions.

1.1 Related work

Vestal (2007) extended fixed-priority response-time analysis of sporadic tasks to the
mixed-criticality setting. His work can be considered the first on mixed-criticality
scheduling. Response-time analysis for fixed-priority scheduling has since been im-
proved by Baruah et al. (2011b).

A number of papers have considered the more restricted problem of scheduling a
finite set of mixed-criticality jobs (e.g., Baruah et al. 2010, 2012a). It has been shown
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by Baruah et al. (2012a) that the problem of deciding whether a given set of jobs
is schedulable by an optimal scheduling algorithm is NP-hard in the strong sense.
Work on mixed-criticality scheduling has since been focused on finding scheduling
strategies that, while being suboptimal, still work well in practice.

One of the strategies developed for scheduling a finite set of mixed-criticality
jobs is the own criticality based priority (OCBP) strategy by Baruah et al. (2010).
It assigns priorities to the individual jobs using a variant of the so-called Audsley
approach (Audsley 2001). This scheduling strategy was later extended by Li and
Baruah (2010) to systems of mixed-criticality sporadic tasks, where priorities are cal-
culated and assigned to all jobs in a busy period. A problem with this approach is that
some runtime decisions by the scheduler are computationally very demanding. This
was mitigated to some degree by Guan et al. (2011), who presented an OCBP-based
scheduler for sporadic task sets where runtime decisions are of at most polynomial
complexity.

An EDF-based approach called EDF-VD for scheduling implicit-deadline mixed-
criticality sporadic task sets was proposed by Baruah et al. (2011a). An improve-
ment to the schedulability analysis for EDF-VD was later described by Baruah et al.
(2012b). In EDF-VD, smaller (virtual) relative deadlines are used in lower criticality
modes to ensure schedulability across mode changes, similar to how EDF is used in
this paper. There are important differences in how relative deadlines are assigned in
EDF-VD and in this paper: EDF-VD applies a single scaling factor to the relative
deadlines of all tasks, and we allow them to be set independently. The main differ-
ence lies, however, in the schedulability analysis: EDF-VD uses a schedulability test
based on the utilization metric, while we formulate demand bound functions. We be-
lieve that schedulability analysis based on demand bound functions is typically more
precise, and is easier to generalize to more complex system models. The former is
supported by the evaluation in Sect. 8 and the latter is supported in part by the fact
that we have adapted our solution to a generalized system model in this paper.

An alternative mixed-criticality system model, which lets tasks’ periods change
between criticality modes instead of their execution-time budgets, was proposed by
Baruah (2012). He also provided a schedulability analysis for EDF-based scheduling
of such tasks. This system model can be encoded as a special case of the generalized
mixed-criticality system model described in this paper, as will be shown in Sect. 8.2.

Mixed-criticality scheduling on multiprocessors has been considered by Li and
Baruah (2012), who combined results from the uniprocessor scheduling of EDF-VD
with global EDF-based schedulability analysis of regular multiprocessor systems.
Pathan (2012) instead combined ideas from fixed-priority response-time analysis
for uniprocessor mixed-criticality scheduling with regular response-time analysis for
fixed-priority multiprocessor scheduling.

2 Preliminaries

2.1 Simple system model and notation

In the first part of this paper we use the same system model as in most previous
work on the scheduling of mixed-criticality tasks (e.g., Li and Baruah 2010; Guan
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et al. 2011; Baruah et al. 2011a, 2011b, 2012b; Vestal 2007). This is a straightforward
extension of the classic sporadic task model (Mok 1983) to a mixed-criticality setting,
allowing worst-case execution times to vary between criticality levels.1 Formally,
each such task τi in a mixed-criticality sporadic task set τ = {τ1, . . . , τk} is defined
by a tuple (Ci(LO),Ci(HI),Di, Ti,Li), where:

– Ci(LO),Ci(HI) ∈N>0 are the task’s worst-case execution time budgets in low- and
high-criticality mode, respectively,

– Di ∈N>0 is its relative deadline,
– Ti ∈N>0 is its minimum inter-release separation time (also called period),
– Li ∈ {LO, HI} is the criticality of the task.

We assume constrained deadlines and also make the standard assumptions about
the relations between low- and high-criticality worst-case execution times:

∀τi ∈ τ : Ci(LO) ≤ Ci(HI) ≤ Di ≤ Ti.

We will generalize the above model in Sect. 5. In the generalized model, all task
parameters, including relative deadlines and periods, can change between criticality
levels. It also allows the addition of new tasks in higher criticality modes and the use
of an arbitrary number of modes that are structured as any directed acyclic graph.

Let LO(τ )
def= {τi ∈ τ | Li = LO} denote the subset of low-criticality tasks in τ , and

HI(τ )
def= {τi ∈ τ | Li = HI} the subset of high-criticality tasks. We define low- and

high-criticality utilization as

ULO(τi)
def= Ci(LO)/Ti,

UHI(τi)
def= Ci(HI)/Ti,

ULO(τ )
def=

∑

τi∈τ

ULO(τi),

UHI(τ )
def=

∑

τi∈HI(τ )

UHI(τi).

For compactness of presentation we use the notation �·�c and �·�c to constrain an

expression from below or above, such that �A�c
def= max(A, c) and �A�c def= min(A, c).

Also, �A�c′
c

def= � �A�c �c′
.

The semantics of the system model is as follows. The system starts in low-
criticality mode, and as long as it remains there, each task τi ∈ τ releases a (pos-
sibly infinite) sequence of jobs 〈J 1

i , J 2
i , . . .〉 in the standard way for sporadic tasks: if

r(J ), d(J ) ∈ R are the release time and deadline of job J , then

– r(J k+1
i ) ≥ r(J k

i ) + Ti ,
– d(J k

i ) = r(J k
i ) + Di .

1The cited works differ in the assumption of implicit, constrained or arbitrary deadlines.
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The time interval [r(J ), d(J )] is called the scheduling window of job J . If any job
executes for its entire low-criticality worst-case execution time budget without signal-
ing that it has finished, the system will immediately switch to high-criticality mode.
This switch signifies that the system’s behavior is not consistent with the assump-
tions made at the lower level of assurance (in particular, the worst-case execution
time estimates are invalid). After the switch we are not required to meet any dead-
lines for low-criticality jobs, but we must still meet all deadlines for high-criticality
jobs, even if they execute for up to their high-criticality worst-case execution times
(i.e., the high-criticality tasks get increased execution-time budgets). In practice, the
low-criticality jobs can continue to execute whenever the processor would otherwise
be idle, but from the modeling perspective we simply view all low-criticality tasks
in LO(τ ) as being discarded along with their active jobs at the time of the switch.
The tasks in HI(τ ) carry on unaffected. If the system has switched to high-criticality
mode, it will never switch back to low-criticality.2

For such a system to be successfully scheduled, all (non-discarded) jobs must al-
ways meet their deadlines. Note that the only jobs that exist in high-criticality mode
are from tasks in HI(τ ). Since low-criticality jobs do not run in high-criticality mode,
we omit to specify high-criticality worst-case execution times for low-criticality
tasks.

Example 1 As a running example we will use the following simple task set. It consists
of three tasks (τ1, τ2 and τ3), one of low- and two of high-criticality:

Task C(LO) C(HI) D T L

τ1 2 4 5 LO

τ2 1 2 6 7 HI

τ3 2 4 6 6 HI

This task set is not schedulable by any fixed-priority scheduler on a dedicated unit-
speed processor, as can be verified by trying all 6 possible priority assignments. We
can also see that the task set is not schedulable directly by EDF: in the scenario where
all tasks release a job at the same time, EDF would execute τ1 first, leaving τ2 and τ3
unable to finish on time if they need to execute for C2(HI) and C3(HI), respectively.
Neither does the task set pass the schedulability tests for OCBP (Li and Baruah 2010;
Guan et al. 2011) or EDF-VD (Baruah et al. 2011a, 2012b), even if deadlines are
increased to be implicit, as is required by EDF-VD. However, we will see that its
demand characteristics can be tuned using the techniques presented in this paper until
it is schedulable by EDF.

2.2 Demand bound functions

A successful approach to analyzing the schedulability of real-time workloads is to use
demand bound functions (Baruah et al. 1990). A demand bound function captures the
maximum execution demand of a task in any time interval of a given size.

2One could easily find a time point where it is safe to switch back, e.g., at any time the system is idle, but
it is out of scope of this paper.
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Definition 1 (Demand bound function) A demand bound function dbf(τi, �) gives an
upper bound on the maximum possible execution demand of task τi in any time inter-
val of length �, where demand is calculated as the total amount of required execution
time of jobs with their whole scheduling windows within the time interval.

There exist methods for precisely computing the demand bound functions for
many popular task models in the normal (non-mixed-criticality) setting. For exam-
ple, the demand bound function for a given � can be computed in constant time for a
standard sporadic task (Baruah et al. 1990).

A similar concept is the supply bound function sbf(�) (Mok et al. 2001), which
lower bounds the amount of supplied execution time of the platform in any time
window of size �. For example, a unit-speed, dedicated uniprocessor has sbf(�) = �.
Other platforms, such as virtual servers used in hierarchical scheduling, have their
own particular supply bound functions (e.g., Mok et al. 2001; Shin and Lee 2003).
We say that a supply bound function sbf is of at most unit speed if

sbf(0) = 0 and ∀�, k ≥ 0: sbf(� + k) − sbf(�) ≤ k.

We assume that a supply bound function is linear in all intervals [k, k + 1] between
consecutive integer points k and k + 1. The assumption of piecewise-linear supply
bound functions is a natural one, and to the best of our knowledge, all proposed
virtual resource platforms in the literature have such supply bound functions.

The key insight that make demand and supply bound functions useful for the anal-
ysis of real-time systems is the following known fact.

Proposition 1 (See, e.g., Shin and Lee 2003) A non-mixed-criticality task set τ is
successfully scheduled by the earliest deadline first (EDF) algorithm on a (uniproces-
sor) platform with supply bound function sbf if

∀� ≥ 0:
∑

τi∈τ

dbf(τi, �) ≤ sbf(�).

3 Demand bound functions for mixed-criticality tasks

We extend the idea of demand bound functions to the mixed-criticality setting. For
each task we will construct two demand bound functions, dbfLO and dbfHI, for
the low- and high-criticality modes, respectively. Proposition 1 is extended in the
straightforward way:

Proposition 2 A mixed-criticality task set τ is schedulable by EDF on a platform
with supply bound function sbfLO in low-criticality mode and sbfHI in high-criticality
mode if both of the following conditions hold:

Condition SLO: ∀� ≥ 0:
∑

τi∈τ

dbfLO(τi, �) ≤ sbfLO(�),
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Condition SHI: ∀� ≥ 0:
∑

τi∈HI(τ )

dbfHI(τi, �) ≤ sbfHI(�).

Conditions SLO and SHI capture the schedulability of the task set in low- and high-
criticality mode. While the two modes can be analyzed separately with the above
conditions, we will see that the demand in high-criticality mode depends on what can
happen in low-criticality mode.

We assume, without loss of generality, that sbfLO is of at most unit speed. This
can always be achieved by simply scaling the parameters of the task set together with
sbfLO and sbfHI. Note that sbfLO and sbfHI may be different, allowing a change of
processor speed or virtual server scheduling policy when switching to high-criticality
mode.

How then do we construct these demand bound functions? In the case of dbfLO it
is simple. In low-criticality mode, each task τi behaves like a normal sporadic task,
and all of its jobs are guaranteed to execute for at most Ci(LO) time units (other-
wise the system, by definition, would switch to high-criticality mode). We can there-
fore use the standard method for computing demand bound functions for sporadic
tasks (Baruah et al. 1990).

With dbfHI it gets more tricky because we need to consider the high-criticality jobs
that are active during the switch to high-criticality mode.

Definition 2 (Carry-over jobs) A job from a high-criticality task that is active (re-
leased, but not finished) at the time of the switch to high-criticality mode is called a
carry-over job.

3.1 Characterizing the demand of carry-over jobs

In high-criticality mode we need to finish the remaining execution time of carry-over
jobs before their respective deadlines. The demand of carry-over jobs must therefore
be accounted for in each high-criticality task’s dbfHI. Conceptually, when analyzing
the schedulability in high-criticality mode, we can think of a carry-over job as a
job that is released at the time of the switch. However, the scheduling window of
such a job is the remaining interval between switch and deadline (see Fig. 1), and
can therefore be shorter than for other jobs of the same task. Because it might have
executed for some time before the switch, its execution demand may also be lower.

Fig. 1 After a switch to high-criticality mode, the remaining execution demand of a carry-over job must
be finished in its remaining scheduling window
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For the sake of bounding the demand in high-criticality mode (in order to meet
Condition SHI), we can assume that the demand is met in low-criticality mode (Con-
dition SLO), or the task set would be deemed unschedulable anyway. In other words,
we seek to show SLO ∧ SHI by showing SLO ∧ (SLO → SHI). For a system scheduled
by EDF, we can therefore assume that all deadlines are met in low-criticality mode
when we bound the demand in high-criticality mode.

Consider then what we can show about the remaining execution demand of carry-
over jobs. At the time of the switch to high-criticality mode, a carry-over job from
high-criticality task τi has x time units left until its deadline, for some x ≥ 0. The
remaining scheduling window of this job is therefore of length x. Since this job would
have met its deadline in low-criticality mode if the switch had not happened, there
can be at most x time units left of its low-criticality execution demand Ci(LO) at
the time of the switch (this follows directly from the assumption that sbfLO is of at
most unit speed). The job must therefore have executed for at least �Ci(LO) − x�0

time units before the switch. Since the system has switched to high-criticality mode,
the job may now execute for up to Ci(HI) time units in total. The total execution
demand remaining for the carry-over job after the switch is therefore at most Ci(HI)−
�Ci(LO) − x�0. Unfortunately, as x becomes smaller, this demand is increasingly
difficult to accommodate, and leads to dbfHI(τi,0) = Ci(HI)−Ci(LO) in the extreme
case. Clearly, with such bounds we cannot hope to satisfy Condition SHI. Next we
will show how this problem can be mitigated.

3.2 Adjusting the demand of carry-over jobs

The problem above stems from the fact that EDF may execute a high-criticality job
quite late in low-criticality mode. When the system switches to high-criticality mode,
a carry-over job can be left with a very short scheduling window in which to finish
what remains of its high-criticality worst-case execution demand. In order to increase
the size of the remaining scheduling window we separate the relative deadlines used
in the different modes. For a task τi we let EDF use relative deadlines Di(LO) and
Di(HI), such that if a job is released at time t , the priority assigned to it by EDF is
based on the value t +Di(LO) while in low-criticality mode and based on t +Di(HI)

while in high-criticality mode. This is essentially the same run-time scheduling as
that of EDF-VD (Baruah et al. 2011a, 2012b).

We can safely lower the relative deadline of a task because meeting the earlier
deadline implies meeting the original (true) deadline. We can gain valuable extra
slack time for a carry-over job from high-criticality task τi by lowering Di(LO), al-
beit at the cost of a worsened demand in low-criticality mode. We therefore want
Di(LO) = Di if Li = LO and Di(LO) ≤ Di(HI) = Di if Li = HI. Also, Ci(LO) ≤
Di(LO) is assumed, just as with the original deadline. Note that Di(LO) is not an
actual relative deadline for τi in the sense that it does not necessarily correspond to
the timing constraints specified by the system designer. However, it is motivated to
call it a “deadline”, because we construct each dbfLO and use EDF in low-criticality
mode as if it was the relative deadline. With separated relative deadlines we can make
stronger guarantees about the remaining execution demand of carry-over jobs:



56 Real-Time Syst (2014) 50:48–86

Fig. 2 A carry-over job of τi has a remaining scheduling window of length x after the switch to high-crit-
icality mode. Here the switch happens before the job’s low-criticality deadline

Lemma 1 (Demand of carry-over jobs) Assume that EDF uses relative deadlines
Di(LO) and Di(HI) with Di(LO) ≤ Di(HI) = Di for high-criticality task τi , and that
we can guarantee that the demand is met in low-criticality mode (using Di(LO)).
If the switch to high-criticality mode happens when a job from τi has a remaining
scheduling window of x time units left until its true deadline, as illustrated in Fig. 2,
then the following hold:

1. If x < Di(HI) − Di(LO), then the job has already finished before the switch.
2. If x ≥ Di(HI) − Di(LO), then the job may be a carry-over job, and no less than

�Ci(LO)−x +Di(HI)−Di(LO)�0 time units of the job’s work were finished before
the switch.

Proof In the first case, the switch to high-criticality mode happens after the low-
criticality deadline. Since we assume that the demand is met in low-criticality mode
(using relative deadline Di(LO)), EDF is guaranteed to finish the job by this deadline,
and therefore it was finished by the time of the switch.

In the second case, there are x − (Di(HI) − Di(LO)) time units left until the low-
criticality deadline. Since the demand is guaranteed to be met in low-criticality mode,
and the supply of the platform is of at most unit speed, there can be at most x −
(Di(HI) − Di(LO)) time units left of the job’s low-criticality execution demand. At
least �Ci(LO) − x + Di(HI) − Di(LO)�0 time units of the job’s work must therefore
have been finished already by the time of the switch. �

Next we will show how to define dbfLO(τi, �) and dbfHI(τi, �) for a given Di(LO).
An algorithm for computing reasonable values for Di(LO) for each task τi ∈ τ is
presented in Sect. 4.

3.3 Formulating the demand bound functions

As described above, while the system is in low-criticality mode, each task τi behaves
as a normal sporadic task with parameters Ci(LO), Di(LO) and Ti . Note that it uses
relative deadline Di(LO), where Di(LO) = Di if Li = LO and Di(LO) ≤ Di(HI) =
Di if Li = HI. A tight demand bound function of such a task is known (Baruah et al.
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Fig. 3 After fitting a number of full jobs into an interval of length �, there are � mod Ti time units left for
either another full job, a carry-over job, or no job at all. In this figure it is enough for a carry-over job

1990):

dbfLO(τi, �)
def=

�(⌊
� − Di(LO)

Ti

⌋
+ 1

)
· Ci(LO)

�

0
. (1)

The demand bound function for task τi in high-criticality mode, dbfHI(τi, �), must
provide an upper bound on the maximum execution demand of jobs from τi with
scheduling windows inside any interval of length �. This may include one carry-over
job. From Lemma 1 we know that the (remaining) scheduling window of a carry-over
job from τi is at least Di(HI) − Di(LO) time units long. A time interval of length
Di(HI)−Di(LO) is therefore the smallest in which we can fit the scheduling window
of any job from τi . More generally, the smallest time interval in which we can fit
the scheduling windows of k jobs is of length (Di(HI) − Di(LO)) + (k − 1) · Ti . The
execution demand of τi in an interval of length � is therefore bounded by

fullHI(τi, �)
def=

�(⌊
� − (Di(HI) − Di(LO))

Ti

⌋
+ 1

)
· Ci(HI)

�

0
. (2)

The function fullHI(τi, �) is disregarding that a carry-over job may have finished
some execution in low-criticality mode (i.e., it is counting Ci(HI) for all jobs). We
can check whether all jobs that contributed execution demand to fullHI(τi, �) can fit
their scheduling windows into an interval of length � without one of them being a
carry-over job. If one must be a carry-over job, we can subtract the execution time
that it must have finished before the switch according to Lemma 1.

As shown in Fig. 3, for a time interval of length �, there are at most x = � mod Ti

time units left for the “first” job (which may be a carry-over job). If x ≥ Di(HI), it
is enough for the scheduling window of a full job, and we cannot subtract anything
from fullHI(τi, �). If x < Di(HI) − Di(LO), all jobs that contributed to fullHI(τi, �)

can fit their entire periods inside the interval, so there is again nothing to subtract.
Otherwise, we use Lemma 1 to quantify the amount of work that must have been
finished in low-criticality mode:

doneHI(τi, �)
def=

⎧
⎪⎨

⎪⎩

�Ci(LO) − x + Di(HI) − Di(LO)�0,

if Di(HI) > x ≥ Di(HI) − Di(LO)

0, otherwise,

(3)
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Fig. 4 Demand bound
functions for task τ3 from
Example 1 with two different
values for D3(LO)

where x = � mod Ti . Note that by maximizing the remaining scheduling window of
the carry-over job (to � mod Ti ) we also maximize its remaining execution demand.

The two terms can now be combined to form the demand bound function in high-
criticality mode:

dbfHI(τi, �)
def= fullHI(τi, �) − doneHI(τi, �). (4)

Example 2 Consider task τ3 from Example 1. Part of the demand bound functions
for τ3 are shown in Fig. 4, using two different values for D3(LO). Note that a smaller
D3(LO) leads to a lessened demand in high-criticality mode, at the cost of an in-
creased demand in low-criticality mode.

4 Tuning relative deadlines

In the previous section we constructed demand bound functions for mixed-criticality
sporadic tasks, where the relative deadlines used by EDF may differ in low- and high-
criticality mode for high-criticality tasks. The motivation for separating the relative
deadlines used is that by artificially lowering the relative deadline Di(LO) used in
low-criticality mode, we can lessen τi ’s demand in high-criticality mode at the cost
of increasing the demand in low-criticality mode. By choosing suitable values for
Di(LO) for all tasks τi ∈ HI(τ ), we are increasing our chances of fitting the total
demand under the guaranteed supply in both modes, and thereby make both Condi-
tions SLO and SHI of Proposition 2 hold.
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We are constrained to pick a value for Di(LO) such that Ci(LO) ≤ Di(LO) ≤ Di .
This gives us

∏

τi∈HI(τ )

(
Di − Ci(LO) + 1

)

possible combinations for the task set. The number of combinations is exponentially
increasing with the number of high-criticality tasks, and it is infeasible to simply
try all combinations. We instead seek a heuristic algorithm for tuning the relative
deadlines of all tasks. In this section we present one such algorithm, which is of
pseudo-polynomial time complexity for suitable supply bound functions.

The following lemma is a key insight for understanding the effects of changing
relative deadlines. A proof is given in the Appendix.

Lemma 2 (Shifting) If high-criticality tasks τi and τj are identical (i.e., have equal
parameters), except that Di(LO) = Dj(LO) − δ for δ ∈ Z, then

dbfLO(τi, �) = dbfLO(τj , � + δ),

dbfHI(τi, �) = dbfHI(τj , � − δ).

In other words, if we consider the demand bound functions graphically as in Fig. 4,
then by decreasing Di(LO) by δ, we are allowed to move dbfHI(τi, �) by δ steps to the
right at the cost of moving dbfLO(τi, �) by δ steps to the left. Informally, we can think
of the problem as moving around the dbfLO and dbfHI of each task until we hopefully
find a configuration where the total demand of the task set is met by the supply in
both low- and high-criticality mode.

Algorithm 1 tunes the demand of a task set in a somewhat greedy fashion. Let
SLO(�) and SHI(�) be predicates corresponding to the inequalities found in Condi-
tions SLO and SHI, respectively:

SLO(�)
def=

∑

τi∈τ

dbfLO(τi, �) ≤ sbfLO(�),

SHI(�)
def=

∑

τi∈HI(τ )

dbfHI(τi, �) ≤ sbfHI(�).

The general idea is to check SLO(�) and SHI(�) for increasing time interval lengths �

(from 0 up to an upper bound �max described in Sect. 4.1). As soon as it finds a value
for � for which either condition fails, it changes one relative deadline (or terminates)
and goes back to � = 0:

• If SHI(�) fails, the low-criticality relative deadline of one task is decreased by 1. It
picks the task τi which would see the largest decrease in dbfHI(τi, �) when Di(LO)

is decreased by 1 (ties broken arbitrarily).
• If SLO(�) fails, the latest deadline change is undone. If there is no change to undo,

the algorithm fails. Note that it backtracks at most one step in this way.

The algorithm terminates with SUCCESS only if it has found low-criticality rela-
tive deadlines with which SLO(�) and SHI(�) hold for all � ∈ {0,1, . . . , �max}. This
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Algorithm 1: GreedyTuning(τ )

1 begin
2 candidates ← {i | τi ∈ HI(τ )}
3 mod ←⊥
4 �max ← upper bound for � in Conditions SLO and SHI

5 repeat
6 changed ← false
7 for � = 0,1, . . . , �max do
8 if ¬SLO(�) then
9 if mod =⊥ then

10 return FAILURE

11 Dmod(LO) ← Dmod(LO) + 1
12 candidates ← candidates \ {mod}
13 mod ←⊥
14 changed ← true
15 break

16 else if ¬SHI(�) then
17 if candidates = ∅ then
18 return FAILURE

19 mod ← arg maxi∈candidates(dbfHI(τi, �) − dbfHI(τi, � − 1))

20 Dmod(LO) ← Dmod(LO) − 1
21 if Dmod(LO) = Cmod(LO) then
22 candidates ← candidates \ {mod}
23 changed ← true
24 break

25 until ¬changed
26 return SUCCESS

implies that both Conditions SLO and SHI hold, as will be shown in Sect. 4.1. There-
fore, the algorithm terminates with SUCCESS only if the task set is schedulable ac-
cording to Proposition 2. If the algorithm terminates with FAILURE, it has failed to
find relative deadlines with which both Conditions SLO and SHI hold. This does not
necessarily mean that such relative deadlines can not be found in some other way.

Example 3 Consider how Algorithm 1 assigns values to D2(LO) and D3(LO) for
the two high criticality tasks τ2 and τ3 in the task set from Example 1. We assume
a dedicated platform (sbfLO(�) = sbfHI(�) = �). Figure 5 shows the demand bound
functions for this task set with unmodified relative deadlines. In the first iteration,
SHI(0) fails, and D3(LO) is decreased by 1. In the second iteration, SHI(0) fails
again, but this time D2(LO) is decreased by 1. In the third iteration, SHI(1) fails and
D3(LO) is decreased by 1 again. This is then repeated two more times where SHI(�)

fails at � = 2 and � = 3, respectively, and D3(LO) is lowered two more times. Both
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Fig. 5 Demand bound
functions for the tasks from
Example 1 with unmodified
low-criticality relative deadlines
(Di(LO) = Di(HI) = Di )

Fig. 6 Demand bound
functions for the tasks from
Example 1 after having
low-criticality relative deadlines
tuned by Algorithm 1

SLO(�) and SHI(�) then hold for all � ∈ {0,1, . . . , �max}, and the algorithm termi-
nates with D2(LO) = 5 and D3(LO) = 2, resulting in the demand bound functions
shown in Fig. 6.
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4.1 Complexity and correctness of the algorithm

For the complexity of Algorithm 1, note that each τi ∈ HI(τ ) will have its deadline
Di(LO) changed at most Di − Ci(LO) + 1 times. In every iteration of the outer loop
some low-criticality relative deadline is changed, or the algorithm terminates, so the
outer loop is iterated at most

∑

τi∈HI(τ )

(
Di − Ci(LO) + 1

)

times. The inner for-loop is iterated at most �max + 1 times for every iteration of the
outer loop. The algorithm is therefore of pseudo-polynomial time complexity if �max
is pseudo-polynomial. We will see that a pseudo-polynomial �max can be found in the
common setting where the supply is from a dedicated platform.

The algorithm terminates with SUCCESS only if it has found relative deadlines
with which both SLO(�) and SHI(�) hold for all � ∈ {0,1, . . . , �max}. However, in
Proposition 2, the inequalities SLO(�) and SHI(�) should hold for all � ≥ 0. We
will show here that �max can be found such that if SLO(�) and SHI(�) hold for
� ∈ {0,1, . . . , �max}, then they hold for all � ≥ 0.

Consider first why it is enough to check only integer-valued �. Both sbfLO and
sbfHI are linear in all intervals [k, k + 1] between consecutive integer points k and
k + 1. All dbfLO and dbfHI are non-decreasing in � and also linear in all intervals
[k, k + 1) for consecutive integers k and k + 1 (and so are the left-hand sides of
SLO(�) and SHI(�)). It follows directly that if SLO(�) or SHI(�) does not hold for an
� ∈ [k, k + 1] with k ∈ N≥0, then it also does not hold for either k or k + 1.

How a bound �max can be found depends on the supply bound functions used. It is
always possible to use the hyperperiod as the bound �max. However, for a dedicated
uniprocessor (sbfLO(�) = sbfHI(�) = �) we can use established methods (Baruah et al.
1990) to calculate a pseudo-polynomial �max as long as ULO(τ ) and UHI(τ ) are a
priori bounded by a constant smaller than 1. To see this, we first create mappings
fLO and fHI from mixed-criticality sporadic tasks to normal (non-mixed-criticality)
sporadic tasks (C,D,T ) in the following way:

fLO(τi)
def= (

Ci(LO),Di(LO), Ti

)
,

fHI(τi)
def= (

Ci(HI),Di(HI) − Di(LO), Ti

)
.

Note that using the classic demand bound function dbf for normal sporadic tasks,
first described by Baruah et al. (1990), we have dbf(fLO(τi), �) = dbfLO(τi, �) and
dbf(fHI(τi), �) = fullHI(τi, �) ≥ dbfHI(τi, �). Also, if U gives the utilization of a nor-
mal sporadic task, we have U(fLO(τi)) = ULO(τi) and U(fHI(τi)) = UHI(τi).

Baruah et al. (1990) showed how to construct a pseudo-polynomial bound for nor-
mal sporadic task sets such that the inequality in Proposition 1 holds for all � larger
than the bound (using a dedicated uniprocessor), as long as the utilization of the task
set is bounded by a constant smaller than 1. Clearly, if we construct such a bound
�LO

max for the task set {fLO(τi) | τi ∈ τ }, it is also valid for Condition SLO in Propo-
sition 2. Similarly, such a bound �HI

max for the task set {fHI(τi) | τi ∈ HI(τ )} is valid
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for Condition SHI of Proposition 2. We can therefore use �max = max(�LO
max, �

HI
max) for

Algorithm 1.3

5 Generalizing the mixed-criticality task model

In Sect. 2 we described the standard mixed-criticality sporadic task model, which
is used in most previous work on mixed-criticality scheduling (e.g., Li and Baruah
2010; Guan et al. 2011; Baruah et al. 2011a, 2011b, 2012b; Vestal 2007). This task
model is execution-time centric, as it focuses solely on differences in the worst-case
execution-time parameter between criticality levels. Arguably, if one has to pick a
single parameter to focus on, the execution time is a good choice because it is almost
always an approximation, and its value typically varies greatly with the level of as-
surance that is desired. There are cases where it is desirable to vary other parameters,
though. Consider, for example, a task that is triggered by external events. The period
of such a task should be an under-approximation of the time interval between two
consecutive trigger events. At different criticality levels, different values for the pe-
riod parameter might be more suitable, depending on the required assurance that it is
a safe under-approximation. Baruah (2012) introduced a task model where the period
parameter differs between criticality levels, instead of the execution-time parameter.

We would like the task model to be as general as possible, without forcing an in-
terpretation of it on the system designer. It should be up to the system designer to
decide what it means for the system to be in any one particular criticality mode, e.g.,
which tasks should run there; what parameters they should have; and which events
trigger the system to switch to or from that criticality mode, be it an execution-time
budget overrun, a hardware malfunction or anything else. Note that such generaliza-
tions bring the notion of mixed criticality closer to that of regular mode switches (see,
e.g., Real and Crespo 2004). We think that this is a proper development, as long as we
retain the differences between mixed criticality on the one hand, and regular mode
switches on the other. We argue that the most important difference between these con-
cepts is that while a regular mode switch often is controlled, a change of criticality
modes is forced upon the system by immediate and unexpected events. Such events
cannot be handled by deferring task releases as is often done for controlled mode
switches. Instead, the possibility of them must be prepared for in advance as is done
in mixed-criticality scheduling. Still, the border between these concepts is somewhat
fuzzy, and we think that it is not unlikely that some existing solutions regarding the
scheduling of regular mode switching systems can be adapted for mixed-criticality
scheduling. One can look at mixed-criticality systems as mode switching systems
with a particular class of mode change protocols.

We will generalize the mixed-criticality sporadic task model to allow all task pa-
rameters to change between criticality modes. It will also be possible to add new

3A small technical issue is that the bound by Baruah et al. (1990) is dependent on the relative deadlines of
tasks, which are changed by Algorithm 1. The issue is easily avoided by using the largest bound generated
with any of the possible relative deadlines that may be assigned (this is simply Di(LO) = Ci(LO) for all
τi ∈ HI(τ )). An even easier solution is to use an alternative bound that is independent of relative deadlines,
e.g., the one described by Stigge et al. (2011).
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Fig. 7 An example structure of
a system’s criticality modes

tasks to the system when it switches to a higher criticality mode. To motivate the
latter, consider as an example a system where a hardware malfunction triggers the
creation of a new task that compensates for the missing functionality in software;
in this system a hardware fault triggers a switch to a higher criticality mode, where
some new tasks are added and possibly some old tasks are suspended or have their
parameters changed. Another example is a distributed system where a node failure
causes some critical tasks to be migrated to another node. From the point of view of
the node receiving the tasks, there is a switch to a new criticality mode where it must
accommodate the new tasks.

In addition, we will lift the restriction to only two criticality modes, and allow
an arbitrary number of modes that are not necessarily linearly ordered. The ways
in which criticality modes can be changed are expressed using any directed acyclic
graph (DAG), as in Example 4. To the best of our knowledge, non-linearly ordered
criticality modes have not been considered for mixed-criticality scheduling before.

Example 4 Consider a system that the designer wants to have different criticality
levels with different worst-case execution time budgets, in the standard manner for
mixed-criticality systems. Also, the designer wants to be able to compensate for miss-
ing hardware functionality in software in the case of some specific hardware failures,
and therefore wishes to add one or more tasks and possibly modify others in the face
of such an event. The criticality modes of this system could be arranged as in Fig. 7.
The system would start running in the mode entitled mNORMAL, which is its normal op-
erating mode. In the event of an attempted execution-time overrun, it would switch to
the mode mWCET where some non-critical tasks may be suspended, and the remaining
tasks get higher worst-case execution time budgets. In the event of a hardware fault,
the system instead switches to the mode mHW, in which some new tasks are added.
In order to accommodate the new tasks, the designer may wish to suspend some old
ones, or lower the demand of some tasks by, for example, increasing their periods or
relative deadlines. In the event that both execution-time overruns and hardware faults
occur, the system switches to the mode mWCET+HW, where the designer must decide
which tasks are most critical for the system in such extreme conditions.

5.1 Formalizing the generalized system model

A generalized mixed-criticality sporadic task system is formally defined by a pair
(τ,G), where τ is a set of tasks, {τ1, . . . , τk}, and G is a DAG describing the structure
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of the criticality modes. The vertex set V (G) contains the possible criticality modes
and the edge set E(G) the ways in which criticality modes may change. The graph
G is called the criticality-mode structure of the system.

Each task τi ∈ τ is defined by a set Li , and a tuple (Ci(m),Di(m),Ti(m)) for each
m ∈ Li , where:

– Li ⊆ V (G) is the set of criticality modes in which τi is active,
– Ci(m) ∈N>0 is the task’s worst-case execution time in criticality mode m,
– Di(m) ∈N>0 is its relative deadline in criticality mode m,
– Ti(m) ∈ N>0 is its minimum inter-release separation time (also called period) in

criticality mode m.

We assume that for each τi ∈ τ and for each m ∈ Li that Ci(m) ≤ Di(m) ≤ Ti(m),
similar to the assumptions about the standard task model. However, there are no re-
strictions on the relations between the parameters of a task in different criticality
modes, i.e., all its parameters may change to arbitrary values.

Utilization is defined in the natural way:

Um(τi)
def=

{
Ci(m)/Ti(m), if m ∈ Li ,

0, otherwise,

Um(τ)
def=

∑

τi∈τ

Um(τi).

The new model generalizes the standard mixed-criticality task model described
in Sect. 2. Note that the criticality-mode structure G for the standard model would
have only two vertices, V (G) = {LO, HI}, which are connected by a single edge,
E(G) = {(LO, HI)}.

The semantics of the generalized model is very similar to the semantics of the
standard model: In criticality mode m, each task τi that is active in m releases jobs as
if it was a normal sporadic task with parameters (Ci(m),Di(m),Ti(m)). The system
may switch from criticality mode m to another mode m′ if (m,m′) ∈ E(G), where
G is the criticality-mode structure. If the system switches from m to m′, each task τi

can be affected in different ways:

– If m ∈ Li and m′ �∈ Li , the task is suspended and its active jobs discarded.
– If m �∈ Li and m′ ∈ Li , the task is activated and may immediately start releasing

jobs.
– If m,m′ ∈ Li , the task remains active, but its parameters are immediately changed

to those at criticality level m′. This also affects any active (carry-over) job of the
task, which will have its absolute deadline and execution-time budget immediately
updated. If Ci(m) > Ci(m

′) and a carry-over job has already executed for at least
Ci(m

′) before the mode switch, the job’s execution-time budget in m′ is considered
to be spent, but not exceeded; the job must therefore be stopped or trigger another
mode switch. The first new job of τi in m′ can be released Ti(m

′) time units after
the task’s last job release in previous modes.

The system may start in any criticality mode m ∈ V (G) that has no incoming edges
in E(G). The set of such vertices is denoted roots(G). We expect most systems to
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have only one possible start mode. Also, let pred(m)
def= {m′ | (m′,m) ∈ E(G)} and

succ(m)
def= {m′ | (m,m′) ∈ E(G)}.

Another aspect of the semantics that must be revisited is when a system should
switch between criticality modes. In Sect. 2 we stated, in common with previous
work on mixed-criticality scheduling, that a system switches to a higher criticality
mode if some job has executed for its entire execution-time budget without signaling
completion, i.e., if a job behaves in a manner that is not valid in the current criticality
mode. Similarly, the generalized task model requires that a system must switch to a
new criticality mode if any job or task fails to behave in a valid manner for the current
mode.4 However, while the system must switch modes in such a situation, it is also
allowed to switch to a new criticality mode at any other point in time, for whatever
reason the system designer deems relevant, e.g., because of hardware malfunctions
or changes in the system’s environment. In fact, the analysis presented so far for the
standard mixed-criticality model is already safe in the face of such arbitrary mode
switches, because nowhere does it assume that some job has depleted its execution-
time budget at the time point where a mode switch occurs. There are no restrictions
on how long the system stays in any particular criticality mode before some event
triggers a mode switch; it may stay there indefinitely or move on to a new mode
immediately.

For the remainder of this paper we make one simplifying assumption to the above
model: If m,m′ ∈ Li and (m,m′) ∈ E(G), then it makes no sense to have Di(m) >

Di(m
′) because any job of τi has to be finished within Di(m

′) of its release also in
mode m, or it would have already missed its deadline in case the system switches
to m′ after that time. We therefore assume that Di(m) ≤ Di(m

′) if m,m′ ∈ Li and
(m,m′) ∈ E(G). We refer to this as the non-decreasing deadline invariant.5

6 Extending the schedulability analysis to the generalized task model

The schedulability analysis in Sect. 3 must be adapted to the generalized task model.
This is mainly done by generalizing the demand bound functions presented previ-
ously.

Let dbfm,m′(τi, �) denote a demand bound function of task τi for a time-interval
length �, when the system is currently in criticality mode m′ and was in criticality
mode m before that. If there was no previous mode to m′, i.e., if m′ ∈ roots(G), the
demand bound function is instead denoted dbf⊥,m′(τi, �). To avoid naming collisions,
we assume that no criticality mode is ever denoted with the symbol ⊥. The reason
demand bound functions must be formulated with both a current and a previous criti-
cality mode in mind is that we must know if and how a task can have carry-over jobs
from the previous mode.

4If the behavior is not valid in any criticality mode that the system can switch to either, the system is
considered erroneous.
5In practice, a preprocessing step can just set Di(m) ← Di(m

′) if Di(m) > Di(m
′) in such a case. The

purpose of the non-decreasing deadline invariant is not to restrict the expressiveness of the task model, but
to increase the conciseness of the schedulability analysis by removing cases that can trivially be seen to
not lead to schedulability.
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Note that a demand bound function dbfm,m′(τi, �), as defined above, must always
provide a safe upper bound on the demand of τi in m′ when reached from m, for
any possible time interval of length �. In particular, it must provide a safe bound no
matter how the system earlier reached mode m, and no matter how long the system
stayed in m before switching to m′. A dbfm,m′(τi, �) is therefore an abstraction of all
concrete system traces where m′ is reached from m.

With the above notation for demand bound functions, Proposition 2 has a natural
extension:

Proposition 3 A (generalized) mixed-criticality task set τ with criticality-mode
structure G is schedulable by EDF if the following holds for all m ∈ V (G):

Condition S(m): ∀m′ ∈ P(m): ∀� ≥ 0:
∑

τi∈τ

dbfm′,m(τi, �) ≤ sbfm(�),

where

P(m) =
{

pred(m), if pred(m) �= ∅,

{⊥}, otherwise,

and where the platform’s supply in criticality mode m is characterized by supply
bound function sbfm.

For each criticality mode m ∈ V (G), Condition S(m) captures the schedulability
of the system in that mode. Condition S(m) generalizes Conditions SLO and SHI from
Proposition 2, and expresses that the system’s execution demand never exceeds the
available supply in mode m. If Condition S(m) holds, then m is schedulable when
reached from all of m’s possible predecessor modes in G, or as a start mode if m has
no predecessors. If S(m) holds for all m ∈ V (G), then all modes of the system are
schedulable, no matter how they are reached, as is stated by Proposition 3.

When formulating the demand bound functions later in this section, we will make
two assumptions:

1. Each supply bound function sbfm is of at most unit speed if succ(m) �= ∅, similarly
to what was assumed of sbfLO in Sect. 3. This is, again, simply a matter of scaling
the parameters.

2. When formulating dbfm,m′ , where m �= ⊥, we assume that m is schedulable by
EDF. This is analogous to what was done in Sect. 3, where the demand in HI was
bounded under the assumption that LO is schedulable.

The second assumption clearly restricts the correctness of the demand bound func-
tions to certain cases.6 However, our purpose with the demand bound functions is to
use them with Proposition 3 to show that a system is schedulable, and restricting
them in this way does not invalidate their use in Proposition 3. In other words, if

6This is not an issue that can be avoided. Some knowledge about a system’s behavior prior to entering a
new criticality mode must be assumed in order to provide any usable bound at all.
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S(m) holds for all m ∈ V (G), the system is schedulable despite the above assump-
tions made for the demand bound functions. To see this, consider a sequence T that is
any topological ordering 〈m0,m1, . . .〉 of G. The assumptions made when bounding
the demand in a mode m are that all of m’s predecessors are schedulable. For m0,
the first mode in T, this is trivially true (as m0 can have no predecessors), and we
can conclude that the bounds are valid and therefore that m0 is schedulable. If m1,
the next mode in T, has any predecessor in G, it must be m0. We have already con-
cluded that m0 is schedulable, so any assumptions about the schedulability of m1’s
predecessors are also true and m1 is also schedulable. The same reasoning can then
be applied, in order, to the remaining modes T to see that they are all schedulable.

6.1 Formulating the generalized demand bound functions

There can be no carry-over jobs in any of the criticality modes in roots(G) because
there are no previous modes from which they can be carried over. The demand bound
function dbf⊥,m therefore does not take carry-over jobs into account, and can be
based on the standard demand bound function for sporadic tasks (Baruah et al. 1990),
just like dbfLO in (1). The only difference is that dbf⊥,m is defined to be equal to 0 for
tasks that are not active in m.

dbf⊥,m(τi, �)
def=

{ �(⌊
�−Di(m)

Ti (m)

⌋ + 1
) · Ci(m)

�
0, if m ∈ Li ,

0, otherwise.
(5)

Similarly, dbfHI from (4) can be used as the basis for the new dbfm,m′ , as it captures
the demand in modes that can be switched to and must consider carry-over jobs for
tasks that are active in both m and m′. In the same manner as dbfHI, the function
dbfm,m′ provides a safe upper bound on the demand in m′ under the assumption that
m is schedulable. Note that as Di(m) ≤ Ti(m) for all τi ∈ τ and m ∈ Li , there can be
at most one active job per task at any time point (as long as no deadline is missed).
This holds also at the time of a mode switch, and so we need to consider at most one
carry-over job per demand bound function, like before with dbfHI. Recall that dbfHI

was built from the two functions fullHI and doneHI, from (2) and (3), respectively. We
start by generalizing these two auxiliary functions.

The challenge in extending fullHI and doneHI to the generalized task model lies
in dealing with the fact that all of a task’s worst-case execution time, relative dead-
line and period may change between m and m′. However, the actual changes needed
to the functions are few. The execution-time parameter could change between crit-
icality modes already in the standard model, although it could only increase in the
new mode, and changing relative deadlines were already introduced as a technique
for scheduling and analysis. The new aspects that must be considered are therefore
only the possibilities for a task to get a decreased worst-case execution time, and a
decreased or increased period. It turns out that changing the period parameter when
switching to a new mode does not complicate the demand bound functions at all, as it
does not affect the way we calculate demand for carry-over jobs or for jobs released
in the new mode. Figure 8 illustrates this. The only new thing that needs to be handled
is then the case where the execution-time parameter decreases.
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Fig. 8 The carry-over job is unaffected by the fact that the period of τi was changed at the switch from
m to m′. The minimum (remaining) scheduling window of a carry-over job is still the difference between
the relative deadlines in the new and old mode, just as before with the standard model. As before, the
remaining execution time budget for the job in the old mode m can be no larger the length of the interval
between switch and deadline in m (the shaded interval)

The function fullm,m′(τi, �) captures the demand of τi in the new mode m′ without
considering that carry-over jobs can be partly executed in m, i.e., it counts a full
Ci(m

′) also for carry-over jobs. For this it does not matter what the execution-time
parameter was in m, so the function only needs to be updated to use the relevant
parameters of the generalized model:

fullm,m′(τi, �)
def=

�(⌊
� − (Di(m

′) − Di(m))

Ti(m′)

⌋
+ 1

)
· Ci

(
m′)

�

0
. (6)

The function donem,m′(τi, �) quantifies the amount of work that must have been
finished before switching to m′ for any carry-over job included in fullm,m′(τi, �). If
Ci(m) > Ci(m

′), it is possible that the amount of work already finished before m′ ex-
ceeds Ci(m

′). In such a case the carry-over job’s execution-time budget in m′ is con-
sidered to be completely spent, but not exceeded (as per the semantics in Sect. 5.1),
and we can only subtract Ci(m

′) from fullm,m′(τi, �). This is achieved by simply
bounding the value of donem,m′(τi, �) by Ci(m

′) from above, otherwise it is a direct
adaptation of doneHI.

donem,m′(τi, �)
def=

⎧
⎪⎪⎨

⎪⎪⎩

�Ci(m) − x + Di(m
′) − Di(m)�

Ci(m
′)

0 ,

if Di(m
′) > x ≥ Di(m

′) − Di(m),

0, otherwise,

(7)

where x = � mod Ti(m
′).

With these auxiliary functions generalized we can formulate dbfm,m′ . For a task
that is not active in m, the new mode m′ is equivalent to a start mode in which the
task may be activated, and its demand can be captured with dbf⊥,m′ . For a task that is
active in both modes, the demand is given by the difference of fullm,m′ and donem,m′ .

dbfm,m′(τi, �)
def=

{
fullm,m′(τi, �) − donem,m′(τi, �), if m,m′ ∈ Li ,

dbf⊥,m′(τi, �), otherwise.
(8)

Note that if a standard two-level mixed-criticality task set is described in the gen-
eralized syntax, we have dbfLO = dbf⊥,LO and dbfHI = dbfLO,HI as expected. Also
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note that the dbfm,m′ presented above depends only on the parameters of jobs in m

and m′, and not on any execution history except for the assumption of schedulability
in m. It is indifferent to the origin mode of carry-over jobs, i.e., if they are released in
m or in an earlier mode and carried over via m to m′.

7 Tuning parameters for the generalized task model

In Sect. 4 we showed how it is possible to shape the demand of a task set by tuning
the relative deadlines of tasks. For the standard task model, the demand of carry-over
jobs in HI was reduced by decreasing the corresponding relative deadlines in LO.
A similar approach can be used to shape the demand of a generalized task system
(τ,G): If (m,m′) ∈ E(G) and m,m′ ∈ Li , the demand of carry-over jobs of τi in
mode m′, when reached from m, can be reduced by decreasing Di(m).

Lemma 2 provided insights about the effects of tuning relative deadlines for the
standard task model. It can be extended to the generalized model:

Lemma 3 (Generalized shifting) If tasks τi and τj are active in mode m and are
identical (i.e., have equal parameters in all modes and Li = Lj ), with the exception
that Di(m) = Dj(m) − δ for δ ∈ Z, then

∀m′ ∈ P(m, τi): dbfm′,m(τi, �) = dbfm′,m(τj , � + δ),

∀m′ ∈ S(m, τi): dbfm,m′(τi, �) = dbfm,m′(τj , � − δ),

where P(m, τi) = (pred(m) ∩Li ) ∪ {⊥} and S(m, τi) = succ(m) ∩Li .

A proof of the above lemma is similar to that of Lemma 2, and is therefore omitted.
Note that the correctness of our schedulability analysis or demand shaping does not
depend on the correctness of this lemma, it serves only as an illustration of the effects
of tuning relative deadlines.

The process of finding suitable values for the relative deadlines is more chal-
lenging for the generalized model due to the presence of arbitrarily many criticality
modes and their non-linear structure. Our approach to the tuning is to first adapt Algo-
rithm 1, which tunes the relative deadlines in one mode (LO), into the slightly more
general Algorithm 3 (TuneMode(m)), which tunes the deadlines of any mode m.
TuneMode(m) tries to lower the deadlines in m until all modes in succ(m) are schedu-
lable when reached from m. Algorithm 2 (TuneSystem(τ,G)) applies Algorithm 3 on
all the modes of the criticality-mode structure G, starting with the terminal nodes and
proceeding in a reverse topological order until it has successfully tuned all modes or
failed in tuning some mode.

TuneMode(m) decreases the relative deadlines of tasks in m to reduce the demand
of those tasks in m’s successor modes. Unless m ∈ roots(G), it does this without con-
sidering of the schedulability in m itself, hoping that m can later be made schedulable
by decreasing deadlines in its predecessor modes. TuneMode(m) will undo changes
to deadlines that would make m unschedulable only if m ∈ roots(G).
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Algorithm 2: TuneSystem(τ , G)

1 begin
2 for m ∈ V (G), sorted in reverse topological order do
3 if TuneMode(m) = FAILURE then return FAILURE

4 return SUCCESS

Algorithm 3: TuneMode(m)

1 begin
2 if succ(m) = ∅ ∧ m �∈ roots(G) then return SUCCESS

3 candidates ← {i | m ∈ Li ∧ Li ∩ succ(m) �= ∅}
4 mods ← empty stack
5 �max ← upper bound for �

6 for i ∈ candidates do
7 Di(m) ← min{Di(m

′) | m′ ∈ (succ(m) ∩Li ) ∪ {m}}
8 if Di(m) = Ci(m) then candidates ← candidates \ {i}
9 if Di(m) < Ci(m) then return FAILURE

10 repeat
11 changed ← false
12 for � = 0,1, . . . , �max do
13 if m ∈ roots(G) then
14 if

∑
τi∈τ dbf⊥,m(τi, �) > sbfm(�) then

15 if mods is empty then return FAILURE

16 i ← mods.pop()

17 Di(m) ← Di(m) + 1
18 candidates ← candidates \ {i}
19 changed ← true
20 break

21 for m′ ∈ succ(m) do
22 if

∑
τi∈τ dbfm,m′(τi, �) > sbfm′(�) then

23 c ← candidates ∩ {i | m′ ∈ Li}
24 if c = ∅ then return FAILURE

25 i ← arg maxj∈c(dbfm,m′(τj , �) − dbfm,m′(τj , � − 1))

26 Di(m) ← Di(m) − 1
27 mods.push(i)

28 if Di(m) = Ci(m) then candidates ← candidates \ {i}
29 changed ← true
30 break

31 if changed then break

32 until ¬changed
33 return SUCCESS
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Note that TuneMode(m) will only return the value SUCCESS if it has found values
for the relative deadlines in m with which all m′ ∈ succ(m) are schedulable when
reached from m (assuming that m itself is ultimately made schedulable). In addi-
tion, if m ∈ roots(G), it will only return SUCCESS if m is also schedulable as a
start mode. It is enough to check all integer � ≤ �max to determine schedulability
by the reasoning given in Sect. 4.1. A value for the bound �max can be computed
as max{�m′

max | m′ ∈ succ(m) ∪ {m}}, where �m
max is easily defined similarly to �LO

max
and �HI

max from Sect. 4.1 when applicable, or as the hyperperiod in m. If �max is
pseudo-polynomial, then so is the complexity of Algorithm 3. Algorithm 2 makes
|V (G)| calls to Algorithm 3, and therefore scales linearly in the number of criticality
modes.

Lines 6–9 and 28 in Algorithm 3 ensure that Ci(m) ≤ Di(m) and the non-
decreasing deadline invariant hold. In contrast to Algorithm 1, which can only undo
the latest deadline change if it harms the schedulability in LO, Algorithm 3 stores
all deadline changes in a stack (mods) and can undo all of them in an effort to re-
store schedulability of a start mode. This does not affect the scalability much, as each
deadline parameter Di(m) can only be changed 2 · (D −Ci(m)) times at most, where
D = Di(m) at the start of Algorithm 3. It is of course possible to define Algorithm 3
without the stack (or Algorithm 1 with it), but we think that it is motivated to be
able to undo more changes in Algorithm 3 as there can be several successor modes
incurring them.

Because Algorithm 2 traverses the DAG in a reverse topological order, we know
that all successor modes of modes tuned so far will be schedulable as long as
we can successfully tune the remaining modes. Example 5 illustrates this pro-
cess.

Example 5 Consider a task set τ with a criticality-mode structure G. Let V (G) =
{m0,m1,m2,m3} and E(G) = {(m0,m1), (m0,m2), (m1,m3), (m2,m3)}, result-
ing in a shape similar to the one in Example 4. A reverse topological ordering
of the criticality modes is 〈m3,m1,m2,m0〉. TuneSystem(τ,G) would first call
TuneMode(m3), which does nothing as m3 has no successors, and then continue
with m1,m2,m0 in order. As shown in Fig. 9, TuneMode(m1) and TuneMode(m2)

will decrease some relative deadlines in m1 and m2, as needed to make m3 schedu-
lable when reached from these modes. TuneMode(m0) will decrease deadlines in m0

to make both m1 and m2 schedulable (using the lowered deadlines previously set in
TuneMode(m1) and TuneMode(m2)). Because m0 ∈ roots(G), TuneMode(m0) will
also make sure that m0 is schedulable as a start mode, or return FAILURE.

8 Experimental evaluation

In this section we evaluate the effectiveness of characterizing mixed-criticality task
sets using the demand bound functions formulated earlier. In order to make the evalu-
ation meaningful, we compare to previous approaches to mixed-criticality scheduling
from the literature and study the acceptance ratios of their corresponding schedula-
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Fig. 9 The order in which modes are tuned by TuneSystem(τ,G), excluding the trivial TuneMode(m3)

bility tests. The previous work only supports dedicated platforms, and therefore we
use that setting for the experiments. Most of the previous work assumes the standard
two-level mixed-criticality sporadic task model described in Sect. 2, so we start by
considering such task sets.

8.1 Evaluation using the standard two-level task model

We compare the following approaches:

GreedyTuning: The test in Proposition 2 using the demand bound functions in (1)
and (4). Relative deadlines are tuned using Algorithm 1.

OCBP-prio: The test for OCBP-based scheduling by Guan et al. (2011), which is
based on whether a priority ordering can be found for all jobs in a busy period.
This test has been shown to dominate the test for OCBP-based scheduling by Li
and Baruah (2010), and is therefore the only test for OCBP included.

EDF-VD: The test for the EDF-VD scheduling algorithm by Baruah et al. (2012b).7

AMC-max: A test based on the most powerful response-time calculation for fixed-
priority scheduling by Baruah et al. (2011b), called AMC-max. Priorities are as-
signed using Audsley’s algorithm, as suggested by Baruah et al. (2011b).

Vestal: A test based on the response-time calculation for fixed-priority scheduling
by Vestal (2007) combined with Audsley’s algorithm. Because we assume that
low-criticality tasks are discarded in high-criticality mode, the budgets of low-
criticality task’s execution times are implicitly enforced. This is therefore equiv-
alent to the algorithm SMC by Baruah et al. (2011b).

Naive: A test based on simply flattening the mixed-criticality sporadic task set into
a normal sporadic task set using resource reservation, and seeing whether the
constructed task set is schedulable. In the case of implicit deadline tasks this is
done by simply checking if the utilization of the constructed task set is at most 1.
If deadlines are not implicit, the exact test by Baruah et al. (1990) is used in-
stead. Each mixed-criticality task τi ∈ τ is mapped to a normal sporadic task with
worst-case execution time Ci(Li), deadline Di and period Ti . This simple test is
included as a baseline for the more sophisticated approaches.

7A similar evaluation performed in a preliminary version of this paper (Ekberg and Yi 2012) used the
original test for EDF-VD (Baruah et al. 2011a). Here we use the improved test (Baruah et al. 2012b).
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Necessary: This is not a schedulability test but an over-approximation of task set fea-
sibility. A task set τ passes the necessary test if both of the normal sporadic task
sets {(Ci(LO),Di, Ti) | τi ∈ τ } and {(Ci(HI),Di, Ti) | τi ∈ HI(τ )} are schedula-
ble according to the exact analysis by Baruah et al. (1990). This test is helpful
in providing a bound on how much improvement upon existing solutions we can
ever hope to achieve. It is not clear, of course, how close the upper bound pro-
vided by this test is to true feasibility. It follows from the work of Baruah et al.
(2012a) that an exact feasibility test, should one be developed, is NP-hard in the
strong sense. We only use the necessary test if deadlines are not implicit, as all
implicit-deadline task sets are guaranteed to pass it.

8.1.1 Task set generation

A random task set is generated by starting with an empty task set τ = ∅, which ran-
dom tasks are successively added to. The generation of a random task is controlled
by five parameters: the probability PHI of being of high-criticality; the maximum ra-
tio RC between high- and low-criticality execution time; the maximum low-criticality
execution time Cmax

LO ; the maximum period T max; and the ratio RD giving the range
of possible relative deadline values. Each new task τi is then generated as follows:

• Li = HI with probability PHI, otherwise Li = LO.
• Ci(LO) is drawn from the uniform distribution over {1, . . . ,Cmax

LO }.
• Ci(HI) is drawn from the uniform distribution over {Ci(LO), . . . ,RC · Ci(LO)} if

Li = HI, otherwise, Ci(HI) = Ci(LO).
• Ti is drawn from the uniform distribution over {Ci(Li), . . . , T

max}.
• Di is drawn from the uniform distribution over {Dmin, . . . , Ti}, where we have

Dmin = �Ci(Li) + RD · (Ti − Ci(Li))�.

We define the average utilization Uavg(τ ) of a mixed-criticality task set τ as

Uavg(τ )
def= ULO(τ ) + UHI(τ )

2
.

Each task set is generated with a target average utilization U∗ in mind. Due to
the difficulty of getting an exact utilization with random integer parameter tasks,
we allow the task set’s average utilization to fall within the small interval between

U∗
min

def= U∗ − 0.005 and U∗
max

def= U∗ + 0.005.
As long as Uavg(τ ) < U∗

min, we generate more tasks and add them to τ . If a task is
added such that Uavg(τ ) > U∗

max, we discard the whole task set and start with a new
empty task set. If a task is added such that U∗

min ≤ Uavg(τ ) ≤ U∗
max, the task set is

finished, unless all tasks in τ have the same criticality level or ULO(τ ),UHI(τ ) > 0.99,
in which case the task set is instead discarded.8

8The reason we use a maximum utilization of 0.99 instead of 1 is to be able to use a pseudo-polynomial
upper bound �max for Algorithm 1 instead of the hyperperiod, as described in Sect. 4.1. This speeds up
the run-time of the experiments significantly, which is needed as several million task sets are analyzed in
total.
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Fig. 10 PHI = 0.5, RC = 4,
Cmax

LO = 10, T max = 200 and
RD = 1

8.1.2 Results

Figure 10 shows the acceptance ratio (fraction of schedulable task sets) as a function
of (target) average utilization for task sets generated with PHI = 0.5, RC = 4, Cmax

LO =
10, T max = 200 and RD = 1 (resulting in implicit-deadline tasks). Each data point is
based on 10,000 randomly generated task sets.

Next we study the effects of varying the parameters PHI, RC and RD. We plot the
weighted acceptance ratio (called the weighted schedulability measure by Bastoni
et al. 2010) as a function of the varied parameter. If A(U) is the acceptance ratio for
(target) average utilization U , then the weighted acceptance ratio of a set of target
utilizations U is

A(U)
def=

∑
U∈U U · A(U)∑

U∈U U
.

Using the weighted acceptance ratio we can reduce the number of dimensions in the
plots by one. Note that this measure gives more importance to the acceptance ratios
for larger utilization values, as these are the cases we are generally interested in.

In Figs. 11, 12 and 13 we have plotted the weighted acceptance ratio as a function
of PHI, RC and RD, respectively. The set U of average utilization values are the same
30 values as used in Fig. 10 (U = {(1/30) · (x + 1/2) | x ∈ {0, . . . ,29}}). Except for
the varied parameter, the parameters are also the same as for Fig. 10 to allow easy
comparisons. Each data point is based on 30,000 random task sets (1000 per target
utilization in U). Note that in Fig. 13 we have omitted EDF-VD, as it only supports
implicit deadline tasks. We have instead added the Necessary test to provide an over-
approximation on feasibility.

8.1.3 Discussion

Evidently, for the standard task model there is often a large gap between the accep-
tance ratios of the proposed approach in this paper and those of previous approaches.
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Fig. 11 PHI varying, RC = 4,
Cmax

LO = 10, T max = 200 and
RD = 1

Fig. 12 PHI = 0.5, RC varying,
Cmax

LO = 10, T max = 200 and
RD = 1

Moreover, this gap remains when varying the fraction of high-criticality tasks (PHI) or
the ratio between low- and high-criticality worst-case execution times (RC). However,
the differences between acceptance ratios decrease when relative deadlines become
shorter (RD gets smaller). When relative deadlines can range from being no larger
than worst-case execution times (RD = 0) all compared approaches have quite simi-
lar (weighted) acceptance ratios. The results can of course differ from those presented
if we vary other parameters or the task set generation procedure, but the typical gap
between acceptance ratios is large enough that we think it is safe to say that the pro-
posed approach in this paper marks a significant improvement in the scheduling of
standard mixed-criticality sporadic task sets with two criticality levels.

Among previous approaches, OCBP-prio (Guan et al. 2011), AMC-max (Baruah
et al. 2011b) and EDF-VD (Baruah et al. 2012b) seem to perform best. Of these,
AMC-max and EDF-VD are probably the best choices in practice as they have a
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Fig. 13 PHI = 0.5, RC = 4,
Cmax

LO = 10, T max = 200 and
RD varying

significantly lower run-time overhead than OCBP-based scheduling. The run-time
overhead of our approach is also low because it is basically just plain EDF (potentially
with a change of deadlines at single point in time), the same as EDF-VD.

The weighted acceptance ratios of all approaches remain relatively steady when
varying PHI and RC. The reasons for the slow trends that can be seen in Figs. 11
and 12 remain mostly unclear to us. An exception is RC = 1, with which worst-
case execution times do not differ between low- and high-criticality modes. Such
a task set is actually equivalent to a non-mixed-criticality task set, which is why the
baseline (Naive) and EDF-VD approaches have 100 % acceptance ratios (both reduce
in this case to checking whether the utilization is at most 1). When RD decreases, the
acceptance ratios of all compared approaches decrease as well, as seen in Fig. 13. This
is to be expected as the timing constraints become tougher with smaller deadlines.
The approach proposed in this paper sees a more marked decrease in acceptance ratio
than the others, we think this is explained by its heavy dependency on being able to
shift demand between criticality modes by tuning the relative deadline parameters.
When these become smaller, less demand can be shifted. However, it should be noted
that the upper bound on feasibility provided by the necessary test sees a decrease in
acceptance ratio that is almost as sharp; it may be that the room for improvement in
this regard is fairly limited.

8.2 Evaluation using the pessimistic frequency specification model

Baruah (2012) introduced a system model that is similar to the standard mixed-
criticality model, but where the periods of tasks, instead of their execution-time bud-
gets, can change between the criticality modes LO and HI. Any such task set can be
expressed as an instance (τ,G) of the generalized mixed-criticality model described
in Sect. 5, where V (G) = {LO, HI}, E(G) = {(LO, HI)} and for each task τi ∈ τ :

– Li = {LO} or Li = {LO, HI}.
– If HI ∈ Li , then
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– Ci(HI) = Ci(LO),
– Ti(HI) ≤ Ti(LO),
– Di(LO) = Di(HI) = Ti(HI).

– Otherwise, Di(LO) = Ti(LO).

The following approaches are compared:

TuneSystem: The test in Proposition 3 using the demand bound functions in (5)
and (8). Relative deadlines are tuned using Algorithm 2.

Baruah: The test by Baruah (2012) based on finding a smallest parameter x ∈ (0,1)

satisfying certain requirements, and then abstracting the workload in each critical-
ity mode with normal sporadic tasks, specially constructed using x. It is suggested
by Baruah (2012) that a smallest x satisfying the requirements can be found us-
ing bisection search. We did this and made sure that the precision was at least
0.001. We found that further increasing the precision did not noticeably affect the
results.

Naive: A baseline test based on flattening the mixed-criticality sporadic task set into
a normal sporadic task set using resource reservation, and then checking whether
the utilization of the constructed task set is at most 1. Each mixed-criticality task
τi ∈ τ is mapped to a normal implicit-deadline sporadic task with worst-case
execution time Ci(LO) and period Ti(HI) if HI ∈ Li and period Ti(LO) otherwise.

8.2.1 Task set generation

The generation of random task sets is controlled by four parameters: the probabil-
ity PHI of high criticality; the maximum execution time Cmax; the maximum period
T max; and the minimum ratio RT between the periods in high- and low-criticality
mode. Each random task is generated as follows.

– Li = {LO, HI} with probability PHI, otherwise Li = {LO}.
– Ci(LO) is drawn from the uniform distribution over {1, . . . ,Cmax}.
– Ti(LO) is drawn from the uniform distribution over {Ci(LO), . . . , T max}.
– If HI ∈ Li , then

– Ci(HI) = Ci(LO),
– Ti(HI) is drawn from the uniform distribution over {T min, . . . , Ti(LO)}, where

T min = max(Ci(HI), �RT · Ti(LO)�),
– Di(LO) = Di(HI) = Ti(HI).
If HI �∈ Li , then Di(LO) = Ti(LO).

Average utilization for the generalized task model is defined as

Uavg(τ )
def=

∑
m∈V (G) Um(τ)

|V (G)| .

The task sets are then generated with a target average utilization U∗ in mind, in
the same manner as in Sect. 8.1.1. Only task sets τ with U∗ − 0.005 ≤ Uavg(τ ) ≤
U∗ + 0.005 and with ∀m ∈ V (G): Um(τ) ≤ 0.99 are kept.
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Fig. 14 PHI = 0.5, RT = 0.25,
Cmax = 10 and T max = 200

Fig. 15 PHI = 0.5, RT varying,
Cmax = 10 and T max = 200

8.2.2 Results

Figure 14 shows the acceptance ratios as a function of target average utilization for
task sets generated with PHI = 0.5, RT = 0.25, Cmax = 10 and T max = 200. These
values were chosen to mirror those used for Fig. 10, with the difference that here the
periods in HI may be up to four times shorter, instead of execution times being up to
four times longer. Each data point is based on 10,000 random task sets.

Next we study the effects of varying the value of RT. Figure 15 shows the weighted
acceptance ratio as a function of RT. The set of target utilizations used for the
weighted acceptance ratio is U = {(1/30) · (x + 1/2) | x ∈ {0, . . . ,29}}. Each data
point is based on 30,000 task sets.
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8.2.3 Discussion

From Figs. 14 and 15 it seems that the demand bound functions formulated in this
paper, combined with the heuristic parameter tuning, provides a scheduling approach
that mostly performs better than the currently known alternatives. However, the ac-
ceptance ratio curve of our approach is generally lower for this task model than for the
standard task model, with experiment settings as similar as possible (e.g., compare
Figs. 14 and 10). We think that this is mostly due to the generally lower periods (and
relative deadlines) of critical tasks in this model, which leave less room for parameter
tuning, limiting the ability to shift demand from one criticality mode to another.

As seen in Fig. 15, all compared scheduling approaches improve with larger values
for RT. The naive approach gains rapidly as RT approaches 1, reaching near perfect
acceptance ratio with RT = 0.95. This is similar to the effect seen in Fig. 12, and is
explained by the fact that these task sets are very close to being equivalent to normal
sporadic tasks sets, and so the pessimism introduced by flattening them becomes
relatively insignificant.

8.3 Evaluation using several linearly ordered criticality modes

Some of the scheduling approaches evaluated in Sect. 8.1 support an extension of that
system model with K ≥ 2 linearly ordered criticality modes. Any such task set can
be expressed as an instance (τ,G) of the generalized system model in Sect. 5, where

– V (G) = {m1, . . . ,mK},
– E(G) = {(m1,m2), . . . , (mK−1,mK)}.
– For each task τi ∈ τ ,

– Li = {m1, . . . ,mLi
}, for some 1 ≤ Li ≤ K ,

– Ci(m1) ≤ · · · ≤ Ci(mLi
),

– Di(m1) = · · · = Di(mLi
),

– Ti(m1) = · · · = Ti(mLi
).

The approaches we compare are:

TuneSystem: The test in Proposition 3 using the demand bound functions in (5)
and (8). Relative deadlines are tuned using Algorithm 2.

OCBP-prio: The same test as we used for OCBP-prio in Sect. 8.1. It supports this
setting as well.

Vestal: The same test as in Sect. 8.1 can also be used here.
Naive: A baseline test based on flattening the mixed-criticality sporadic task set into

a normal sporadic task set using resource reservation, and checking whether the
constructed task set is schedulable. Each mixed-criticality task τi ∈ τ is mapped
to a normal sporadic task with worst-case execution time Ci(mLi

), deadline
Di(m1) and period Ti(m1).

8.3.1 Task set generation

Here the task set generation is controlled by four parameters: the number of criti-
cality modes K ; the maximum execution time Cmax

m1
in the lowest criticality mode;
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Fig. 16 RC = 2, Cmax
m1

= 10,
T max = 200 and K = 3

the maximum period T max; and the maximum ratio RC between the execution time
parameter of two consecutive criticality modes. Each task τi is generated as follows:

– Li = {m1, . . . ,mLi
} for an Li drawn from the uniform distribution over {1, . . . ,K},

– Ci(m1) is drawn from the uniform distribution over {1, . . . ,Cmax
m1

},
– Ci(mj ) is drawn from the uniform distribution over {Ci(mj−1), . . . ,RC ·Ci(mj−1)}

for 1 < j ≤ Li ,
– Di(m1) = · · · = Di(mLi

) = Ti(m1) = · · · = Ti(mLi
) are drawn from the uniform

distribution over {Ci(mLi
), . . . , T max}.

Note that we generate tasks with implicit deadlines. This is to enable easier com-
parisons with previous experiments, which are mostly with implicit deadlines as well.
Task sets are generated for a target average utilization in exactly the same way as in
Sect. 8.2.1.

8.3.2 Results

Figure 16 shows acceptance ratio as a function of average utilization for task sets gen-
erated with K = 3, Cmax

m1
= 10, T max = 200 and RC = 2. There are 10,000 task sets

per data point. Note that there are only 28 different target utilizations used, instead
of the 30 used in previous experiments. We have skipped the first and the last point
because it is difficult to generate random task sets fulfilling the criteria and having
a very low (or very high) average utilization. If we extrapolate the acceptance ratio
curves in Fig. 16, it would not seem as if the two skipped points are interesting.

The effects of having more criticality levels are shown in Fig. 17, where we vary
the value of K . We have not included OCBP-prio in Fig. 17 because its schedulability
test becomes prohibitively expensive for larger values of K combined with high av-
erage utilization. The set of target utilizations used for the weighted acceptance ratio
is U = {(1/30) · (x + 1/2) | x ∈ {1, . . . ,28}}. Each data point is based on 30,000 task
sets.
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Fig. 17 RC = 2, Cmax
m1

= 10,
T max = 200 and K varying

8.3.3 Discussion

As seen in Fig. 16, the scheduling approach taken in this paper performs better than
alternative approaches also for standard mixed-criticality task sets extended to three
criticality levels. The difference in performance, however, is much smaller than for
the case with two levels (see, e.g., Fig. 10).

Increasing the number of criticality levels further leads to quickly deteriorating
performance for all evaluated approaches, as shown in Fig. 17. Vestal’s fixed-priority
response-time analysis deteriorates most gracefully though, and for K > 4 it has the
best performance. This is not so surprising as the response-time analysis used for it
suffers comparatively little extra pessimism for increasing K . In contrast, the schedul-
ing approach proposed in this paper would require the tuning to produce a differentia-
tion of the relative deadlines of a task τi between each adjacent criticality mode, such
that if Li = {m1, . . . ,mLi

}, we have Di(m1) ≤ · · · ≤ Di(mLi
). Clearly, when a task

is active in a long “chain” of criticality modes, the room available for differentiating
the relative deadlines between adjacent modes becomes smaller. It may pay off to
shorten such chains, if possible, when modeling the system, i.e., to make a trade-off
between modeling pessimism and analysis pessimism.

9 Conclusions

We have characterized the demand of mixed-criticality sporadic tasks using demand
bound functions. They are based on the observation that upper bounds on the demand
of carry-over jobs can be formulated by assuming that the previous criticality mode
is schedulable. As the goal of schedulability analysis in this context is to show that
all criticality modes are schedulable, such assumptions are sound as long as the base
cases (i.e., the starting criticality modes) can be shown to be schedulable.

We have also generalized the standard mixed-criticality sporadic task model used
in most prior work. The generalized task model allows arbitrary changes of task pa-
rameters and active tasks between criticality modes. We allow the criticality modes
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to be expressed using a DAG, thus enabling the specification of mixed-criticality as-
pects in several dimensions. We would like to have a general model to cover a broad
range of mixed-criticality aspects and leave the interpretations to the system designer.

For the demand bound functions that have been formulated, we have showed that
demand of a task can be shifted between any adjacent criticality modes by tuning the
relative deadlines of the task in different modes. This results in a constraint satisfac-
tion problem where the challenge is to find valid values for all relative deadlines such
that the whole system becomes schedulable. The tuning of parameter values can be
carried out in any manner, for example with general-purpose constraint solvers. We
have also presented heuristic algorithms designed specifically for this problem. Note
that the values of relative deadlines only can decrease with respect to their original
values, meaning that the temporal specification made by the system designer holds
also after the parameter tuning.

Experimental evaluation and comparisons between this and prior work show that
our approach is successful in practice for a wide range of situations. The results show
that EDF-based scheduling in many cases significantly outperforms fixed-priority
scheduling for mixed-criticality systems, mirroring the case for non-mixed-criticality
systems. We think that this is important because it allows us to utilize the performance
of EDF without sacrificing robustness in case of overloads. Often, EDF is quoted as
being too unpredictable in case of overloads since it is practically impossible to pre-
dict which jobs will suffer the extra delays (see Buttazzo 2005 for a more compre-
hensive treatment of this subject). This is not the case for mixed-criticality systems.
In a mixed-criticality system, the designer can specify exactly which tasks are more
important in an overload situation. We believe that this is an appropriate separation
of concerns: The system designer specifies what constitutes an overload situation, or
other critical event, and which tasks must continue to function. The scheduler makes
sure that the system behaves as specified while utilizing platform resources as effi-
ciently as possible.

As future work we plan to address resource sharing or tasks with more complex
job release patterns in the context of mixed-criticality systems. We believe that the
techniques in this paper will generalize to these cases.
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Appendix: Proof of Lemma 2

Before proving Lemma 2, we reformulate the function doneHI(τi, �) from Sect. 3.3
as

done*(τi, �)
def= �

Ci(LO) − ((
�−(

Di(HI)−Di(LO)
))

mod Ti

)�
0

and show that it is an equivalent definition:

Lemma 4

done*(τi, �) = doneHI(τi, �).
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Proof We split the proof into three cases.

First case (Di(HI) > � mod Ti ≥ Di(HI) − Di(LO)): From � mod Ti ≥ Di(HI) −
Di(LO) we know that

(� mod Ti) − (
Di(HI) − Di(LO)

) = (
� − (

Di(HI) − Di(LO)
))

mod Ti. (9)

With (9) we can rewrite done*(τi, �) as

done*(τi, �) = �
Ci(LO) − (

(� mod Ti) − (
Di(HI) − Di(LO)

))�
0

= �
Ci(LO) − (� mod Ti) + Di(HI) − Di(LO)

�
0

= doneHI(τi, �).

Second case (Di(HI) ≤ � mod Ti ): From Di(HI) ≤ � mod Ti the equality (9) fol-
lows again. We can rewrite done*(τi, �):

done*(τi, �) = �
Ci(LO) − (� mod Ti) + Di(HI) − Di(LO)

�
0

= �(
Ci(LO) − Di(LO)

) + (
Di(HI) − � mod Ti

)�
0.

We have Ci(LO) ≤ Di(LO) and Di(HI) ≤ � mod Ti . Therefore,

(
Ci(LO) − Di(LO)

) + (
Di(HI) − � mod Ti

) ≤ 0

and

done*(τi, �) = 0 = doneHI(τi, �).

Third case (� mod Ti < Di(HI) − Di(LO)): From � mod Ti < Di(HI) − Di(LO)

and from Ci(LO) ≤ Di(LO) ≤ Di(HI) ≤ Ti we have9

(
� − (

Di(HI) − Di(LO)
))

mod Ti = Ti − (
Di(HI) − Di(LO)

) + (� mod Ti)

≥ Ti − (
Di(HI) − Di(LO)

)

≥ Di(LO)

≥ Ci(LO).

Therefore,

Ci(LO) − ((
� − (

Di(HI) − Di(LO)
))

mod Ti

) ≤ 0

and

done*(τi, �) = 0 = doneHI(τi, �).
�

We can now prove Lemma 2.

9Note that we interpret mod as positive remainder: a mod b = a − � a
b
� · b.
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Proof of Lemma 2 The lemma follows from straightforward substitutions, first:

dbfLO(τi, �) =
�(⌊

� − Di(LO)

Ti

⌋
+ 1

)
· Ci(LO)

�

0

=
�(⌊

� − (Dj (LO) − δ)

Tj

⌋
+ 1

)
· Cj (LO)

�

0

= dbfLO(τj , � + δ).

To show the dbfHI part, we consider fullHI and doneHI separately:

fullHI(τi, �) =
�(⌊

� − (Di(HI) − Di(LO))

Ti

⌋
+ 1

)
· Ci(HI)

�

0

=
�(⌊

� − (Dj (HI) − (Dj (LO) − δ))

Tj

⌋
+ 1

)
· Cj (HI)

�

0

= fullHI(τj , � − δ).

We use Lemma 4 for doneHI(τi, �) = done*(τi, �):

doneHI(τi, �) = done*(τi, �)

= �
Ci(LO) − ((

� − (
Di(HI) − Di(LO)

))
mod Ti

)�
0

= �
Cj (LO) − ((

� − (
Dj(HI) − (

Dj(LO) − δ
)))

mod Tj

)�
0

= done*(τj , � − δ)

= doneHI(τj , � − δ).

The dbfHI part follows directly:

dbfHI(τi, �) = fullHI(τi, �) − doneHI(τi, �)

= fullHI(τj , � − δ) − doneHI(τj , � − δ)

= dbfHI(τj , � − δ). �
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