
Improving the Response Time Analysis of Global
Fixed-Priority Multiprocessor Scheduling

Youcheng Sun∗, Giuseppe Lipari∗†, Nan Guan‡§ and Wang Yi§,
Scuola Superiore Sant’Anna∗, LSV - ENS Cachan and CNRS†, Northeastern University, China‡, Uppsala University§

{y.sun, lipari}@sssup.it, guannan@ise.neu.edu.cn, yi@it.uu.se

Abstract—In this paper we address the problem of schedulabil-
ity analysis for a set of sporadic tasks with arbitrary deadlines
running on a multiprocessor system with global fixed-priority
preemptive scheduling.

We prove the existence of a class of critical instants for releasing
a task, one of which results in the worst-case response time of
that task.

Then, we propose a new analysis that improves over current
state-of-the-art Response Time Analysis (RTA) by reducing its
pessimism. We also observe that, in the case of unconstrained
deadlines, the current RTA may underestimate the carry-in
workload, and we propose a new formulation that corrects the
problem. Finally, we evaluate the performance improvement of
our new response time analysis method by empirical experiments
with randomly generated task sets. Experimental results show
that our new analysis method can successfully accept a consider-
able amount of task sets that have to be treated as unschedulable
by existing methods.

I. INTRODUCTION

The rapid development of multi-core processors leads to
an increasing trend of deploying real-time embedded systems
on multi-core platforms. This trend demands efficient tech-
niques to schedule real-time workloads on parallel computing
architectures. The analysis of global multiprocessor scheduling
is a significantly more difficult problem than uniprocessor
scheduling, as noted by Liu in 1969 [1]: “The simple fact that a
task can use only one processor even when several processors
are free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.”

The analysis techniques of fixed-priority (FP) scheduling
on uniprocessor are built upon the concept of critical instant,
an instant at which a request for the considered task will have
the largest response time. It is known that on uniprocessors the
critical instant occurs when all competing tasks simultaneously
release computation requests [2]. Unfortunately, the critical
instant of global FP scheduling is generally unknown; the
above synchronous release pattern does not necessarily lead to
the worst-case response time. Therefore, brute-force enumer-
ation of all the possible run-time release patterns is required
for exact schedulability analysis, which is not applicable to
realistic-size systems due to serious state-space explosion.

Techniques based on approximation have been proposed to
efficiently decide the schedulability of global FP scheduling.
A common approximation strategy is to add a safe margin (the
so-called carry-in) to each competing task’s workload in the
considered time interval. The state-of-the-art analysis method

for this problem is RTA-LC proposed by Guan et al. [3],
which limits the number of competing tasks with carry-in to
the number of processors minus one. This greatly reduces the
pessimism when counting the competing tasks’ workload, and
yields the best analysis precision among all existing schedula-
bility analysis methods. RTA-LC has been borrowed by related
fields such as the analysis of WirelessHART Networks [4].

In this paper we revisit RTA-LC and address both pessimism
and optimism problems in its current form:
• We prove that the limited carry-in technique used

by RTA-LC indeed corresponds to a certain form of
critical instant in global FP scheduling, even for the
unconstrained-deadline task systems where the unfinished
computation request may accumulate over the next re-
lease time.

• We reformulate the calculation of the workload of carry-
in tasks. On one hand, our new formulation is more
precise than the original calculation in RTA-LC, and more
interestingly, leads to the (somehow counter-intuitive) fact
that a task with carry-in actually may contribute fewer
workload than the case without carry-in. On the other
hand, our new formulation fixes the potential underesti-
mation of the workload of carry-in tasks in RTA-LC when
they bring more than one carry-in jobs into the considered
time interval.

• We propose a more precise method to handle the problem
of unknown categorisation of carry-in and non-carry-in
tasks in the response time bound calculation procedure.

These insights result in a new response time analysis
method, called RTA-CE (RTA with Carry-in tasks Enumer-
ation).

We evaluate the performance improvement of our new
response time analysis method over existing methods by com-
paring the acceptance ratio with a large amount of randomly
generated task sets. It is shown that our new response time
analysis method can successfully accept a considerable amount
of task sets that have to be treated as unschedulable by existing
methods.

A. Related Work

Andersson et al. [5] derived utilisation bounds for fast
schedulability test of global FP scheduling. Baker [6] de-
veloped sophisticated schedulability analysis techniques by
limiting the maximal amount of carry-in workload of each
individual task. Bertogna et al. [7] discovered that for each

competing task with very high workload in the considered time
interval, the part of its workload that has to execute in parallel
with the analysed task should not be taken into account in the
actual interference. This yields a more precise schedulability
test than all previous tests. Bertogna and Cirinei [8] later
applied this technique to iterative response time analysis of
global scheduling, which greatly improves analysis precision
over previous response time analysis techniques [9], [10], [11]
for the same problem.

Guan et al [3] developed RTA-LC (Response Time Anal-
ysis with Limited Carry-in), the state-of-the-art technique
for schedulability analysis of global FP scheduling. RTA-LC
integrates Bertogna and Cirinei’s response time analysis and
Baruah’s technique for global EDF scheduling of limiting the
number of carry-in tasks. One important discovery in [3] is
that the worst-case response time upper bound of a task can be
found in an interval starting at an instant when all processors
are occupied by higher priority tasks and before which at least
one processor is idle. Later [12] proved that, for constrained-
deadline tasks, such a release pattern indeed will lead to the
exact worst-case response time of a task. In this paper we
prove the same fact also holds for unconstrained-deadline task
systems.

II. SYSTEM MODEL

We consider global fixed-priority scheduling on a multi-
processor system. A system consists of a task set T with n
sporadic tasks that run on m processors. Each task is denoted
as τi = (Ci, Di, Ti) where Ci is the worst-case execution time
(WCET), Di is the relative deadline, and Ti is the minimum
interarrival time between two successive releases of the task
(sometimes also called period). A task is said to have a
constrained deadline if its relative deadline is smaller than
or equal to its period; otherwise, if it has relative deadline
larger than period, it is said to be an unconstrained-deadline
task. In this paper we consider arbitrary deadlines, i.e. Di can
be smaller than, equal to or larger than the period Ti. And
the utilization of a task is defined as Ui = Ci

Ti
. Every task

is assigned a fixed and unique priority. By convention, tasks
with lower index have higher priorities: i < j implies that τi
has higher priority than τj .

A real-time task τi releases a sequence of jobs Ji,k, with
k = 0, 1, A job Ji,k is characterised as follows:
• ri,k is the job’s release (or arrival) time;
• di,k = ri,k +Di is the job’s absolute deadline;
• fi,k is the job’s finishing time;
• Ri,k = fi,k − ri,k is the job’s response time.
We say that a task is active if it has been released but has

not completed its execution. The release of a higher priority
task can preempt the execution of a lower priority task. In
practical implementations of global multiprocessor schedulers,
successive jobs of the same task are not allowed to execute
in parallel. Therefore, we assume that job Ji,k+1 cannot
start executing until the previous job Ji,k has completed. We
assume a discrete time model, where all task parameters are

non-negative integers and all events (e.g., job release, job
finishing) occur at integer time instants.

The worst-case response time (WCRT) Ri of a task is
defined as the largest response time among all its jobs. A task
τi is schedulable if and only if Ri ≤ Di.

III. CRITICAL INSTANTS FOR GLOBAL FP SCHEDULING

In this section, we define the concept of “critical instants”
for a task τk and we prove that the worst-case response time
of τk happens when it is released precisely at one of these
critical instants. This notion has already been proposed by
Guan et al. [3]; later Davis et al. [12] independently proved
that, for constrained-deadline tasks, releasing a task at one of
its “critical instants” will result in the WCRT.

Here we prove it directly for the general case of arbitrary
deadlines.

Clearly, it makes no sense to discuss the critical instants for
the m highest priority tasks, since they can execute whenever
eligible and their WCRTs simply equal to their WCETs. In the
following context, when using the notion of critical instants
and response time analysis, we only refer to tasks other than
the m highest priority ones.

Definition 1. A critical instant for task τk is an instant t such
that:

• At least m tasks with priority higher than τk are active
at t;

• At most m − 1 tasks with priority higher than τk are
active just before t.

The critical instant defined above does not precisely corre-
spond to a concrete system state at runtime. Instead, it covers
a set of possible system states, one of which will lead to the
worst-case response time as we will prove in the following.
In particular, there can be up to m − 1 higher priority tasks
executing before t and we do not know which are these tasks,
when these tasks have been activated and how much of their
computation time is left at t.

Apart from the critical instants defined above, we also claim
that the worst-case response time of a task occurs when this
task releases jobs “as fast as possible”, which is formally
captured by the following definition:

Definition 2. Given a sporadic task τk, a chain of consecutive
jobs (or chain for short) Jk,s, . . . , Jk,h, with arrival times
rk,s, . . . , rk,h, respectively, is defined as follows:

• The job preceding Jk,s (if any) has completed before rk,s;
• every job Jk,j , j = s, . . . , h− 1 completes after rk,j+1.

The chain is said to be tight if ∀j = s + 1, . . . h, rk,j =
rk,j−1 + Tk.

Note that every job in the system is included in some chain.
For instance, in the special case of a constrained-deadline task
with (Dk ≤ Tk), every tight chain only contains one job.

Lemma 1. The worst-case response time of τk is found with
a job Jk,h in a tight chain.

Proof: We prove the lemma by showing that for an
arbitrary chain Jk,s, . . . , Jk,h of task τk, if we shift the release
time of every job Jk,j in the chain to r′k,j = rk,s + (j − s)Ti,
thus obtaining a tight chain, the finishing time of every job
fk,j , j = s, . . . , h does not change.

A job cannot start executing until the prior job of the
same task has terminated. However, in the original chain, the
finishing time of every job (except the last one) is after the
arrival time of the successive job. Therefore, when job Jk,j
arrives at ri,j , it must still wait until fk,j−1 before it can be
activated. By shifting its arrival time to r′k,j = rk,s+(j−s)Tk
this precedence relationship is maintained. Therefore, nothing
in the schedule changes, and the finishing time of each job in
the chain remains the same.

We now prove the critical instant defined in Definition 2
indeed leads to the worst-case response time of a task.

Theorem 1. The worst-case response time of τk is found
with a job Jk,h in a tight chain Jk,s, . . . , Jk,h, such that rk,s
coincides with a critical instant for task τk.

Proof: First of all, by Lemma 1, if the job with the worst-
case response time is not in a tight chain, we can find another
job, whose response time is not smaller, in a tight chain. So
in the following we only focus on jobs in tight chains.

We will show that, if worst-case response time of task τk
occurs in a tight chain Jk,s, . . . , Jk,h that does not start at a
critical instant, by modifying the arrival times of the chain we
can construct a tight chain Jk,s, . . . , Jk,h starting at a critical
instant, such that the new response time R′k,h of job Jk,h in
the resulting chain is no smaller than its counterpart Rk,h in
the original chain.

The release time of the first job in the original chain does not
coincide with a critical instant, so we have two possibilities:
• Suppose that at rk,s there are no more than m−1 higher

priority tasks active. Let [A,B] be the first interval after
rk,s such that there are at least m higher priority active
tasks in every instant of [A,B]. It is easy to see that
A < fk,h, because otherwise we could set r′k,s and obtain
a chain with a higher response time, as τk cannot execute
in [A,B].
Therefore, τk executes in [rk,s, A]. If we set r′k,s = A,
the new finishing time of Jk,h is

f ′k,h ≥ fk,h + (A− rk,s)

So the new response time of Jk,h is

R′k,h = f ′k,h − r′k,h
≥ fk,h − (rk,s −A)− r′k,h
= fk,h − (rk,s −A)− (A+ (h− s)Tk)

= fk,h − (rk,s + (h− s)Tk) = fk,h − rk,h = Rk,h

Therefore, the new response time is no smaller than the
original one.

• Suppose that at rk,s and just before rk,s there are at
least m higher priority tasks active. Let A be the latest
time before rk,s such that there are no more than m− 1

higher priority active tasks at A−1. By setting r′k,s = A,
we observe that task τk cannot execute in [A, rk,s],
because all processors are busy executing higher priority
tasks. Also, after rk,s the schedule does not change, and
particularly f ′k,h = fk,h. So the new response time of
Jk,h is

R′k,h = f ′k,h − r′k,h
= fk,h − (rk,h − (rk,s −A))

= Rk,h + (rk,s −A) > Rk,h

i.e., the new response time is strictly larger than the
original one.

IV. REVISTING RTA-LC

The RTA-LC (Response Time Analysis with Limited Carry-
in) in [3] is the most accurate algorithm for response time
analysis of global FP scheduling on multiprocessors. In this
section we briefly review RTA-LC and identify both the
pessimism and optimism in it.

To analyze the schedulability of a task τk, we need to take
all higher priority tasks τ1, . . . , τk−1 into account and compute
the interference that they may cause on τk. To do this, we
consider a time interval of length x containing the jobs of τk
under analysis, namely the problem window. By Theorem 1,
we can restrict the analysis to a problem window starting at a
critical instant for τk.

The workload of higher-priority task τi in a window of
length x is the amount of computation that τi requires within
this time interval. A task τi is called a carry-in task (CI) if
at least one job of τi has been released before the beginning
of the window and executes within the window. If no such
job exists, the task is called non-carry-in task (NC). We use
Wi(x) to denote an upper bound on the workload of task τi
over any time interval of length x. More specifically, we will
use the notation WCI

i (x) if τi is a CI task, and WNC
i if τi is

a NC task.
The interference of a higher-priority task τi on τk in the

problem window is the cumulative length of the intervals
during which jobs of τi execute and jobs of τk have been
released but cannot be executed. The upper bound Ik(τi, x, h)
is the interference that τi causes on the first h jobs of τk
in the problem window: ICIk (τi, x, h) for a CI task τi and
INCk (τi, x, h) for a NC task τi. When h = 1, we often ignore
h in the representation; and such an abbreviation also applies
to other notations in the paper.

For the task τk under analysis, we use T to denote the set
of tasks with higher priority than τk. And T CI ⊂ T is the
set of carry-in tasks. By Theorem 1, there are at most m− 1
carry-in tasks in a problem window starting at a critical instant.
However, we do not know which subset of tasks causes the
worst possible interference on τk. We denote with Z the set of
all possible carry-in task sets with no more than m−1 higher
priority tasks.

Lemma 2. (Lemma 2 in [3]) The workload bounds can be
computed with

WNC
i (x) =

⌊
x

Ti

⌋
· Ci + [x mod Ti]

Ci (1)

WCI
i (x) =

⌊
[x− Ci]0

Ti

⌋
· Ci + Ci + α (2)

where α = [[x− Ci]0 mod Ti − (Ti −Ri)]Ci−1
0 .

Following the notation in [3], [A]B = max(A,B), [A]C =
min(A,C), and [A]CB = [[A]B]C .

Lemma 3. Let τk be a task under analysis, and let τi be a
higher priority task. If task τk is schedulable, then an upper
bound to the interference that τi causes to the first h instances
of τk in a problem window of length x (x ≥ h · Ck) is given
by:

INCk (τi, x, h) = min(WNC
i (x), x− h · Ck + 1) (3)

ICIk (τi, x, h) = min(WCI
i (x), x− h · Ck + 1) (4)

Given a time interval x, the total interference Ωk(x, h) on
the first h jobs of task τk is defined as :

max
T CI∈Z

 ∑
τi 6∈T CI

INCk (τi, x, h) +
∑

τi∈T CI

ICIk (τi, x, h)

 (5)

Ωk(x, h) upper bounds the interference from higher priority
tasks to the first h jobs of τk in the problem window. Ωk(x, h)
can be computed in linear time, since it is sufficient to find
the m − 1 maximal values of the difference ICIk (τi, x, h) −
INCk (τi, x, h). Given the workload formulation in Lemma 2,
ICIk is never smaller than INCk .

Theorem 2. (Theorem 2 in [3]) For each h ≥ 1, let X h be
the minimal solution of the following Equation by doing an
iterative fixed point search of the right hand side starting with
x = h · Ck.

x =

⌊
Ωk(x, h)

m

⌋
+ h · Ck (6)

then,
Rk = max

h∈[1,H]
{X h − (h− 1) · Tk} (7)

is an upper bound of τk’s WCRT.

The H in (7) is an upper bound to the values of h that need
to be checked to get the maximal response time bound Rk.
The response time analysis procedure terminates as long as
the obtained X h − (h − 1) · Tk is no larger than Tk. It has
been proved in [3] that a bounded H exists to guarantee the
termination of the response time analysis procedure if task τk
satisfies∑
i<k

V ki +M × Uk 6= M, where V ki = min(Ui, 1− Uk) (8)

A. Pessimism and Optimism in RTA-LC

1) Pessimism in the iteration procedure: Let us first con-
sider the following task set running on two processors:
τ1 = (28, 50, 50), τ2 = (13, 30, 30), τ3 = (5, 50, 50),
τ4 = (6, 30, 30), and τ5 = (6, 40, 40). Following Theorem 2,
we compute the WCRT upper bound of first four tasks and
obtain: R1 = 28, R2 = 13, R3 = 18 and R4 = 24. While
iteratively computing the WCRT of task τ5 and along with x
increasing, the CI task set that corresponds to the maximised
Ω5(x) varies. For example, when x = 31, the total interference
Ω5(x) is maximised with τ4 as the CI task; and when x = 38,
Ω5(x) is maximised if τ3 is the CI task. Finally, the iteration
in Theorem 2 will report a deadline miss for τ5. However,
this task set is indeed schedulable, according to our improved
analysis method that will be introduced in next section.

We now formalize the pessimism in the iteration pro-
cedure of RTA-LC. For simplicity we focus on the
constrained-deadline case, but the pessimism also exists in
the unconstrained-deadline case. Let T CI1 and T CI2 be two
possible candidates of the carry-in task set. Suppose T CI1
is indeed the carry-in task set that leads to the worst-case
response time of the analysed task τk, then during the whole
analysis procedure the total interference to task τk can be
bounded by

Ω1
k(x) =

∑
τi 6∈T CI1

INCk (τi, x) +
∑

τi∈T CI1

ICIk (τi, x)

suppose with the above calculation of Ω1
k(x) the fixed-point

iteration procedure converges at x1.
Similarly, if T CI2 is indeed the carry-in task set that leads

to the worst-case response time of the analysed task τk, then
during the whole analysis procedure the total interference to
task τk can be bounded by

Ω2
k(x) =

∑
τi 6∈T CI2

INCk (τi, x) +
∑

τi∈T CI2

ICIk (τi, x)

and the fixed-point iteration procedure converges at x2.
In general, Ω1

k(x) and Ω2
k(x) may not dominate each other.

In other words, we may have Ω1
k(x′) > Ω2

k(x′) for some x′

and Ω1
k(x′′) < Ω2

k(x′′) for some x′′. In particular, we assume
it holds

Ω1
k(x1) < Ω2

k(x1)

Ω2
k(x2) < Ω1

k(x2)

Since the interference upper bound Ωk(x) calculated by (5)
upper bounds both Ω1

k and Ω2
k, we know

Ω1
k(x1) < Ωk(x1)

Ω2
k(x2) < Ωk(x2)

Therefore, we can conclude that in RTA-LC (using Ωk cal-
culated by (5)), the fixed-point iteration may not converge at
either x1 or x2, but converges at some point which is larger
than both x1 and x2.

2) Pessimism in the carry-in workload of constrained-
deadline tasks: Given a task τi = (19, 50, 50) with Ri = 20
and x = 29. By using Lemma 2, there is WCI

i (x) = 19.
However, since we know τi is running before the problem
window, we can observe that the workload of τi in a window
of length 29 cannot exceed 18. As the minimum time interval
between a job’s finishment and the successive job’s arrival for
τk is Ti −Ri = 30.

3) Optimism in the carry-in workload of unconstrained-
deadline tasks: Since we allow Di > Ti, it could be Ri > Ti.
Suppose a task τi is a CI task and

⌈
Ri

Ti

⌉
= 3. This means at

the same moment, there could be at most 3 active jobs from
τi in the system. And given a problem window with length
equivalent to Ti, the workload upper bound of τi should be
≥ 3 ·Ci−1. But the computation result returned by Lemma 2
is 2 · Ci − 1.

V. RTA-CE: IMPROVED RESPONSE TIME ANALYSIS

In this section we introduce a new response time analysis
that solves the problems described above.

A. New Workload Upper Bound

We start by proposing a new upper bound on the workload.

Lemma 4. The workload bound of a carry-in task τi in the
problem window of length x can be computed as:

WCI
i (x) = WNC

i ([x− xp]0) + [x]δ (9)

where xp and δ are defined as:

xp = Ci − 1 +

⌈
Ri − Ci
Ti − Ci

⌉
Ti −Ri (10)

δ =

⌈
Ri − Ci
Ti − Ci

⌉
Ci − 1 (11)

and WNC is calculated as in (1).

Proof:
We use w to denote the number of carry-in jobs of τi.

Suppose t is the starting time of the problem window, then
by the definition of critical instant, there are at most m − 1
tasks having active jobs at time t− 1, so the carry-in jobs are
already executing at t− 1, and the total unfinished execution
demand of the carry-in jobs by the start of the problem window
is bounded by w · Ci − 1.

We argue that the worst-case release pattern leading to the
maximal workload of τi is as follows: (1) the earliest carry-in
job executes as late as possible and finishes at exactly its worst-
case response time, (2) the earliest carry-in job starts execution
one time unit before the starting point of the problem window,
(3) inside the problem window all jobs are released as fast as
possible. The argument follows the same strategy as in [6], [3],
showing that if we shift the release times in any way, this will
not increase the total workload of the job inside the problem
window. We omit the detailed reasoning procedure, but we use
Figure 1 to depict this worst-case scenario. In the following,
we show that with this particular release pattern, the workload
of τi in the problem window is bounded by Equation (9).

Fig. 1: The CI workload of a task.

We index the job released inside problem window as
Ji,1, Ji,2, . . . , and we assume ξ be the smallest index (if there
exists) such that, when Ji,ξ is released, all the preceding jobs
have been finished. Therefore, the time interval between the
starting time of the problem window and the release time
of Ji,ξ must be at least enough to execute all its preceding
jobs. On the other hand, the release time of the ξth job in the
problem window is xp = (Ci− 1) + (w+ ξ− 1) ·Ti−Ri. So
we have

w · Ci − 1 + (ξ − 1)Ci ≤ (Ci − 1) + (w + ξ − 1) · Ti −Ri

Since ξ is an integer, the minimum value for it is:

ξ =

⌈
Ri − Ci
Ti − Ci

⌉
− (w − 1)

Then we can obtain the expression of xp as in Equation (10).
The total workload of τi in the problem window is con-

tributed by two parts: (i) the jobs executing before the release
of the ξth job; (i) the jobs executing after the release of the
ξth job.

The jobs executing before the ξth job include the carry-
in jobs (the workload of which in the problem window is
bounded by w ·Ci − 1 as we discussed above), and the ξ − 1
jobs that are released in the problem window. So their total
workload is bounded by

δ = w · Ci − 1 + (ξ − 1)Ci =

⌈
Ri − Ci
Ti − Ci

⌉
Ci − 1

On the other hand, the maximal workload actually executed in
the problem window is bounded by the length of the problem
window x.

When τi releases a job at xp, all its preceding jobs have
been finished, so the total workload of jobs released in [xp, x]
is bounded by

WNC
i ([x− xp]0)

Putting the workload upper bound of the two parts together
establishes the lemma.

Our new formulation (9) for calculating WCI
i (x) fixes both

the pessimism and optimism issues in Lemma 2. Moreover,
our new calculation of WCI

i (x) leads to an interesting fact:
now, when Ri < Ti, the two functions WCI

i (x) and WNC
i (x)

are in general incomparable. More specifically, WCI
i (x) may

be smaller than WNC
i (x) with certain x. This can be demon-

strated by the following example. Consider the analysis of
the workload of task τi with Ci = 2, Ti = 4 and Ri = 3,

x

Wi(x)

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6

WNC
i (x)

WCI
i (x)

Fig. 2: The worst-case workload of a task with Ci = 2,
Ti = 4 and Ri = 3

whose workload function is depicted in Figure 2. We have
WCI
i (2) = 1 < WNC

i (2) = 2. This (somehow counter-
intuitive) phenomenon is due to the fact that a carry-in job
has at least been executed for one time unit before the start
of the problem window. However, when Ri ≥ Ti, the relation
WCI
i (x) ≥WNC

i (x) still holds.
Finally, we can still compute the carry-in and non-carry-

in interference ICIk (τi, x, h) and INCk (τi, x, h) of a higher-
priority task τi to the analysed task τk based on WCI

i (x) and
WNC
i (x) by (3) and (4).

B. New Iterative Analysis Procedure

Given a specific carry-in task set T CI , we define the total
interference (over time interval x) on task τk as follows :

Ωk(T CI , x, h) =
∑

τi 6∈T CI

INCk (τi, x, h) +
∑

τi∈T CI

ICIk (τi, x, h)

(12)
We denote X h,T CI

the minimal solution of the following
iteration :

x =

⌊
Ωk(T CI , x, h)

m

⌋
+ h · Ck (13)

Lemma 5. Given a task τk and a carry-in task set T CI , the
WCRT of τk with respect to T CI is upper bounded by :

RT
CI

k = max
h∈[1,H]

{X h,T
CI

− (h− 1) · Tk} (14)

Proof: We show here the case when deadlines are less
than or equal to periods and the arbitrary deadline case can be
derived similarly. For simplicity, we use Ik(τi, x), Ωk(T CI , x)

and X T CI

by ignoring h = 1.
Suppose X T CI

is the minimal solution of the iteration

x =

⌊
Ωk(T CI , x)

m

⌋
+ Ck (15)

We are going to prove X T CI

is an upper bound of τk’s
response time with respect to T CI .

The proof is similar as in [8]. By contradiction. Suppose,
for some carry-in task set T CI , the iteration in Equation (15)
ends with a value X T CI ≤ Dk, but the response time of τk,

released with the same T CI , is higher than X T CI

. Since the
iteration ends, there is

X T
CI

=

⌊
Ωk(T CI ,X T CI

)

m

⌋
+ Ck

That is,

X T
CI

=

∑
τi∈T

Ik(τi,X T
CI

)

m

+ Ck (16)

Remind that
∑
τi∈T

Ik(τi,X T
CI

) is a short form for

∑
τi 6∈T CI

INCk (τi,X T
CI

) +
∑

τi∈T CI

ICIk (τi,X T
CI

)

According to Theorem 3 in [8], if Rubk is a response time upper
bound of τk, we have∑

τi∈T
Ik(τi, R

ub
k) < m(Rubk − Ck + 1)

We assumed that X T CI

is not an upper bound, hence we
reverse the above formula:∑

τi∈T
Ik(τi,X T

CI

) ≥ m(X T
CI

− Ck + 1) (17)

Then, by replacing
∑
τi∈T

Ik(τi,X T
CI

) in (16) with the right

hand side of (17), we have

X T
CI

≥ (X T
CI

− Ck + 1) + Ck

= X T
CI

+ 1

By contradiction, we know that X T CI

is the upper bound of
response time of τk with carry-in task set T CI .

Theorem 3. (RTA-CE) The upper bound of WCRT of task τk
is

Rk = max
T CI∈Z

(
RT

CI

k

)
(18)

Proof: As long as τk is released at one of its critical
instants, its response time is then upper bounded by Rk, which,
according to Theorem 1, is the upper bound of τk’s worst-case
response time.

Note that with our new formulation of computing WCI
i (x)

the overall analysis procedure still guarantees to terminate
under the condition (8). This follows the similar reasoning
in [3].

The WCRT upper bound returned by RTA-CE will never be
larger than the result of RTA-LC. As the cost of a more precise
response time estimation, the new RTA needs to explicitly
enumerate all possible carry-in task sets in Z (this is where the
name RTA-CE comes from) and this leads to an exponential
time complexity for the new RTA. However, as shown later
in the experiment, the RTA-CE can handle task systems with
realistic scales in reasonable time.

C. Improving the Efficiency

The iterative fixed-point calculation in RTA-CE with each
given h should start with an initial value no larger than the
minimal solution of (13) (otherwise the iteration converges at
a larger solution and results in more pessimistic response time
bounds). Under this constraint, the initial value should be as
large as possible, to make the iteration procedure converge
faster. A straightforward and safe initial value is x = h · Ck.
In the following, we introduce a larger safe initial value to
speedup the analysis procedure. We first define:

ωk(x, h) =
∑
τi∈T

min{INCk (τi, x, h), ICIk (τi, x, h)} (19)

Note that, as we discussed in Section V-A, WNC
i and WCI

i

are generally incomparable, and so do INCk and ICIk . Let sh

be the minimal solution of the following iteration starting with
x = h · Ck:

x =

⌊
ωk(x, h)

m

⌋
+ h · Ck (20)

For any T CI , it holds ωk(x, h) ≤ Ωk(T CI , x, h), so we know
sh is no larger than X h,T CI

for any T CI . Therefore, sh can
be used as a safe initial value for x in Equation (13) for any
T CI .

Furthermore, to find X h,T CI

, we could utilise the already
computed X h−1,T CI

and start with x = Ck + X h−1,T CI

.
In conclusion, the starting point for Equation (13) is

x =

{
sh h = 1

max{sh, Ck + X h−1,T CI} h > 1
(21)

VI. EXPERIMENTS

Each test in the experiment is described by a tuple (m,n,U)
where m is the number of processors, n is the number of tasks
and U is the total task utilisation in the task set. Task sets are
randomly generated according to Randfixedsum algorithm
in [13]. Every task has its period Ti uniformly distributed
in the range [100, 200]. For constrained-deadline tasks, the
ratio between Di and Ti is distributed in the range [0.7, 1];
for arbitrary-deadline tasks, Di

Ti
∈ [0.7, 1.3]. Before applying

RTA-CE and RTA-LC, tasks in a task set are first assigned
priorities by the Deadline Monotonic (DM) strategy, i.e. a task
with shorter deadline gets a higher priority.

A. Performance Tests

We conduct experiments with randomly generated task sets
to evaluate the precision improvement of RTA-CE over RTA-
LC. We consider m ∈ {2, 4}, and given m we set its
corresponding task set size n and task set utilisation U to
be n = 10 · m and U ∈ {0.025m, 0.5m, . . . , 0.975m,m},
respectively. For each configuration (m,n,U), 1000 task sets
are randomly generated.

We report the results in Figure 3. The horizontal axis
specifies task set utilisations and the vertical axis denotes the
number of schedulable systems found. We omit plotting points
where the number of schedulable task sets is simply 1000 or
0 in figures.

The experimental results confirm RTA-CE’s improvement
over RTA-LC in practice. For example, in the case of tasks
with arbitrary deadlines where m = 2, n = 20 and U = 1.35,
RTA-CE finds 111 more schedulable task sets (among 1000
randomly generated task sets) than RTA-LC.

The advantage of RTA-CE over RTA-LC may not be always
as shown in Figure 3. For example, if we assume task periods
are distributed in range [10, 1000] and Di

Ti
∈ [0.7, 2], we

obtain the experimental results in Figure 4. On the other hand,
it is possible to set up different experiments and get even
stronger dominance relation between RTA-CE and RTA-LC
than Figure 3 shows.

B. Efficiency Tests

The efficiency tests contain two parts:
• We investigate how much the efficiency improvement

scheme introduced in Section V-C can effect the run-time
performance of RTA-CE;

• we demonstrate to which extent RTA-CE can (or cannot)
scale through a showcase study.

All tests are conducted in a MacBook with 2.5 GHz Intel
Core i5 processor.

At first, we discuss the experiment for testing RTA-CE’s
efficiency strategy. To set up tests, we consider m = 6,
n = 60, U ∈ {3, 4, 5, 6} and arbitrary-deadline tasks. For
every (m,n,U), 30 task sets are randomly generated. In
the experiment, we measure the time spent for deciding
the schedulability of tasks by RTA-CE with efficiency en-
hancement (RTA-CE-WE) and without efficiency enhancement
(RTA-CE-WOE).

There are 60 different priority levels (1-60) in each gener-
ated task set and a lower number means higher priority. RTA
procedure is applied from highest priority task (with priority
1) to lowest priority task (with priority 60). For all task sets we
report the accumulated time, which starts from applying RTA-
CE on the task with priority 1, that is used by RTA-CE-WE
and RTA-CE-WOE respectively to decide the schedulability at
each priority level. In this way, for a schedulable task set, the
time obtained for priority level 60 is actually the time used to
decide the schedulability of a task set. For a task set that is
not schedulable, we report time instances recorded till the last
task that RTA-CE checks.

The final results are plotted in Figure 5. On average, RTA-
CE-WE saves 1/5 ∼ 1/4 RTA-CE-WOE’s run-time. For
instance, the time RTA-CE-WE uses to deal with 60 tasks and
the time RTA-CE-WOE spends on 58 tasks are almost the
same. And RTA-CE-WE can always obtain the analysis result
(schedulable or unschedulable) for a task set in less than 20
minutes.

To further stress the efficiency improvements, we randomly
generate an arbitrary-deadline task set with m = 8, n = 80
and U = 4. Then we measured the run-time for applying RTA-
CE on this task set. The test result is reported in Figure 6.
We manually stopped the test after the run-time exceeded 20
hours: at that instant, RTA-CE had finished the schedulability
check of the first 63 tasks.

�0

�200

�400

�600

�800

�1000

�1 �1.1 �1.2 �1.3 �1.4 �1.5

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(a) m = 2, n = 20, Di
Ti
∈ [0.7, 1]

�0

�200

�400

�600

�800

�1000

�1.1 �1.2 �1.3 �1.4 �1.5

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(b) m = 2, n = 20, Di
Ti
∈ [0.7, 1.3]

�0

�200

�400

�600

�800

�1000

�1.8 �1.9 �2 �2.1 �2.2 �2.3 �2.4 �2.5 �2.6 �2.7

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(c) m = 4, n = 40, Di
Ti
∈ [0.7, 1]

�0

�200

�400

�600

�800

�1000

�2 �2.1 �2.2 �2.3 �2.4 �2.5 �2.6 �2.7 �2.8 �2.9

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(d) m = 4, n = 40, Di
Ti
∈ [0.7, 1.3]

Fig. 3: RTA-CE v.s. RTA-LC

�0

�200

�400

�600

�800

�1000

�1.2 �1.3 �1.4 �1.5 �1.6 �1.7 �1.8

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(a) m = 2, n = 20

�0

�200

�400

�600

�800

�1000

�2.2 �2.4 �2.6 �2.8 �3 �3.2

N
O
.�o
f�s
ch
ed
ul
ab
le
�t
as
k�
se
ts

task�set�utilization

RTA-CE
RTA-LC

(b) m = 4, n = 40

Fig. 4: RTA-CE v.s. RTA-LC (Ti ∈ [10, 1000], Di

Ti
∈ [0.7, 2])

�0

�200

�400

�600

�800

�1000

�1200

�1400

�1600

�40 �45 �50 �55 �60

Ti
m
e�
(s
ec
on
ds
)

Priority�Level

RTA-CE-WOE
RTA-CE-WE

Fig. 5: Efficiency improvement tests

�0

�200

�400

�600

�800

�1000

�1200

�1400

�30 �35 �40 �45 �50 �55 �60 �65

Ti
m
e�
(m
in
ut
es
)

Priority�Level

RTA-CE

Fig. 6: The scalability test (m = 8, n = 80, U = 4)

VII. CONCLUSION

In this paper we considered the response time analysis prob-
lem for global fixed-priority scheduling on multiprocessors.
We proved the existence of a type of critical instant leading
to the worst-case response time of a task. The idea of this

critical instant has been used in the context of approximated
analysis, but has not been strictly proved to lead to the actual
worst-case response time for arbitrary-deadline task sets.

Then we improved the state-of-the-art technique RTA-LC by
addressing both its pessimism and optimism. We first propose
a new formula to bound the workload of carry-in jobs. The
new formula is, on one hand more precise than the one used
in RTA-LC, and on the other hand it fixes the potential under-
estimation of the carry-in workload for unconstrained-deadline
tasks. We then proposed a new iterative response time analysis
procedure that achieves better precision. Experiments with
randomly generated tasks show that our new method RTA-CE
can successfully accept a considerable number of task sets that
are deemed to be unschedulable by RTA-LC.

REFERENCES

[1] C. L. Liu, “Scheduling algorithms for multiprocessors in a hard real-time
environment,” In JPL Space Programs Summary, 1969.

[2] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[3] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds
for fixed priority multiprocessor scheduling,” in Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE. IEEE, 2009, pp. 387–397.

[4] A. Saifullah, Y. Xu, C. Lu, and C. Y., “End-to-end delay analysis for
fixed priority scheduling in wirelesshart networks,” IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[5] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on
multiprocessors,” IEEE Real-Time Systems Symposium (RTSS), 2001.

[6] T. Baker, “Multiprocessor edf and deadline monotonic schedulability
analysis,” IEEE Real-Time Systems Symposium (RTSS), 2003.

[7] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of edf on multiprocessor platforms,” Euromicro Conference on
Real-Time Systems (ECRTS), 2005.

[8] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE, 2007,
pp. 149–160.

[9] B. Andersson and J. Jonsson, “Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling,” Technical Report,
Chalmers University of Technology, 2001.

[10] A. Burns and A. Wellings, Real-time systems and programming lan-
guages. Addison-Wesley, 3rd edition, 2001.

[11] L. Lundberg, “Multiprocessor scheduling of age constraint processes,”
RTCSA, 1998.

[12] R. I. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, vol. 47, no. 1, pp. 1–40, 2011.

[13] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), 2010, pp. 6–11.

