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Abstract—Virtualization techniques are gaining significant
interests in embedded real-time system design. However, exist-
ing virtualization platforms lack strong performance isolation
among virtual machines. In this work we propose a method to
monitor and control the shared memory accesses of individual
virtual machines on multi-core processors with Xen hypervisor,
to enhance the performance isolation among virtual machines
and improve the timing predictability of real-time applications.
Experiments with the SPEC2006 benchmark programs are
conducted to validate the proposed method.

I. INTRODUCTION

Due to close interaction with physical world, embedded
systems are typically subject to timing constraints. The
correctness of these real-time systems not only depend on the
logical results, but are also sensitive to the time when the
results are produced. A occasional violation of the timing
constraints may lead to serious consequences. The major
design principle of real-time systems is to guarantee the
system timing predictability.

Modern multi-core processors provide great computation
capacity on a single chip and can execute different applica-
tions simultaneously. These different applications may have
different criticality levels in terms of the requirements of
timing predictability. For example, in automotive electronics,
an ECU may execute both an engine control application with
strong real-time requirements, and a multimedia application
with weaker real-time requirements but more demanding on
system throughput. In such an integrated system, it is a chal-
lenging problem of how to guarantee the timing predictabil-
ity of the engine control application while maintaining the
average performance of the multimedia application.

Virtualization techniques are gaining significant interests
in embedded system design [5]. The functional isolation be-
tween different virtual machines on a virtualization platform
provides strong fault-confinement and security guarantees,
which are essential to safe-critical embedded systems. Virtu-
alization techniques are promising in providing performance
isolation to meet the predictability requirements of real-
time systems, where the resource assignment is under the
strict control of the hypervisor and the interference between
different virtual machines is easier to be predicted. So
recently there has been rapidly increasing interests to apply

virtualization techniques to the design of embedded systems
with real-time requirements.

In existing virtualization platforms, the hypervisors man-
age hardware resources such as CPU, memory, disks and
I/O devices. We call them visible resources as the accesses
to these resources are directly under the control of program-
mers. On modern multi-core processors, there are also many
“invisible” resources, such as the shared on-chip bus, shared
memory and shared cache. The accesses to these resources
are not directly under the control of programmers, but
are consequences of both software behaviors and hardware
mechanisms. These invisible resources also plays important
role to the timing behavior of the system. Our experiments
show that the execution times of common programs may
vary significantly (up to 10 times) under different contention
situations on these shared invisible resources. But unfortu-
nately, these invisible resources have not been taken into
consideration of existing virtualization techniques, so the
performance isolation provided by existing virtualization
platforms is not strong enough to guarantee the timing
predictability for real-time applications.

In this paper, we propose a method to mange one of
the most important invisible resources, the shared memory
subsystem, in Xen hypervisor. The idea is to use the built-in
Performance Monitoring Unit (PMU) on common processors
to monitor the accesses to the shared memory by each virtual
machine, and enforce the accesses by each virtual machine to
comply with the predefined budgets. This provides stronger
performance isolation among different virtual machines and
provide better predictability guarantee for real-time systems
while maintaining good resource usage of the overall sys-
tem. Experiments are conducted with SPEC2006 benchmark
programs on a dual-core AMD Athlon64 X2 machine to
evaluate the proposed methods.

A. Related Work
A rich body of studies have investigated the shared-

resource contention by different performance isolating meth-
ods in recent years. Bak et al. [2] proposed a real-time
I/O management system, which uses a centralized hard-
ware reservation controller to schedule the transactions on
peripherals and provide the temporal isolation on the bus.



Akesson and Goossens [1] designed a predictable memory
controller in which the critical requester could be served
under a predictably low latency and a high bandwidth via
the predictable arbitration. Compared with the hardware
solutions above, software based schemes have higher flexi-
bility and less complexity than HW modification. Fedorova
et al. [4] presented an operating system scheduler which
ensures co-running cores running as efficiently as the one
under cache-fair allocation, by compensating extra CPU
times to the cache-interfered cores. In [9], the contentions
causing performance degradation are first classified and
analyzed, concluding the LLC cache miss as the identified
factors for contentions. Then the thread-base scheduling
algorithm DI/DIO are developed to minimize the total cache
misses, with the purpose of mitigating the degradation by
contentions.

II. OVERVIEW OF THE APPROACH

We consider a dual-core processor and two applications,
with each application executing on a fixed core. The critical
application is subject to real-time constraints. We need to
estimate an upper bound of the worst-case execution time
(WCET) of its executed task. There are two methods of
WCET analysis: static analysis and measurement. In both
methods, the estimated WCET of a critical task heavily
depends on the contention on the shared memory. The other
application does not have real-time requirements, and we
call it the interfering application. The interfering applica-
tion consists of several tasks with different memory access
characteristics.

In virtualization-based system design, the subsystems en-
capsulated in different virtual machines are usually provided
by different developer. The system designer of the critical
application has no information about the memory access
behavior of the other virtual machine, so they are not able
to perform meaningful WCET estimation.

Figure 1. System structure

In order to solve the above problem, we propose to
enhance the Xen hypervisor with memory access monitoring
and control. The system architecture is shown in Figure 1.
In the resource allocation phase, we assign a budget of the
memory access to the interfering application. The budget is
expressed by a tuple {P,Q}, where P is the period and
Q is the maximal number of allowed memory accesses by
the interfering application. We add a memory access control
module in the Xen kernel, which at runtime monitors the
actual memory access issued by the virtual machine of
the interfering application. As soon as the actual memory
access issued by the interfering application reaches Q in
a period of length P , the memory access control module
will notify the Xen scheduler. We modify the Xen scheduler
such that it suspends the interfering application exceeding
the budget until the start of the next period. In this way,
we can guarantee that at runtime the number of memory
accesses issued by the interfering application is at most Q
in a period of length P , and thus perform precise WCET
estimation for tasks in the critical application, by either static
analysis or measurement with artificial interfering memory
access generation.

Modern processors all equip with the Performance Mon-
itoring Units (PMU), providing processor-level information,
facilitating software-based sensing and analyzing the pro-
cessors’ or other devices’ online performance. The PMU are
implemented as privileged registers which are distributed on
CPU cores, aside the CPU die or even I/O devices. A wealth
of performance events, such as CPU cycles, cache misses
and branch mis-predictions, could be programmed in certain
performance counters. The numbers of event are accessible
by reading instructions either from user-space or kernel. An
interrupt may be triggered if the number of events reaches
a pre-defined threshold.

III. IMPLEMENTATION

As the main purpose of this design is to address the
contention on the shared memory among cores in multicore
systems, we use AMD Athlon 64 X2 which does not have
the last-level cache shared among cores, to avoid the effect
of shared cache contentions. We choose Xen 4.0.1 and Linux
2.6.32 to build the virtualization software platform. Xen
4.0.1 is one of the stable versions in Xen Hypervisor, which
has been tested in [8], [7]. Linux 2.6 is the latest kernel
isolated from Xen components, which offers us the flexibility
of modifying the Xen components.

A. Performance Counters in Athlon64 X2
AMD Athlon64 X2 3800+, our targeting platform, is a

dual-core processor positioned by AMD as Hammer K8 ”the
8th generation processor”. Two cores featured with a private
64KB L1 data cache and a 64KB L1 instruction cache are
incorporated on a single-die. Each core also exclusively
owns a 512KB L2 victim cache, which is separated from



a total 1MB L2 cache. The two independent cores are
connected by a high-speed internal bus with the system
request interfaces and the crossbar switch.

Athlon64 X2 3800+ is equipped with an integrated mem-
ory controller. Processor cores are able to deliver memory
access requests from their self-owned caches to the memory
controller without any additional interfere by an intermedi-
ate layer such as last-level shared caches. It provides the
convenience of addressing the problem of memory access
interfering specially, after peeling off extra side-effects from
the hardware features.

Athlon64 X2 3800+ provides four 48-bit performance
counters supporting 87 events per physical core. Each
counter is programmed with a specific performance event.
The value is incremented once an occurrence of the event is
detected. There are four Performance Event-Select Registers
(EvtSel) corresponding to the counters. The bits in EvtSel
are used to configure the working mode of the Performance
Monitoring Counters (PMC). To start/stop its PMC, the
EN bit is set enable/disable. By turning up the INT bit of
EvtSel, the PMC is switched into overflow mode in which
the overflow of PMC at bit 47 triggers an internal interrupt
to the local core. The monitoring event is to be written into
the lowest 8 bits and the unit mask which specifies detailed
event is filled in bit 15-7.

Both PMCs and EvtSels are accessible regardless whether
the performance counters is running or pausing. To use
the overflow interrupt, an performance counter overflow
interrupt vector must be registered and initialized with an
entry to the exception handler. When an counter overflow
interrupt signaled, the interrupt handler completes a context
switch and hands over to an interrupt service routine. Here,
PMCs could be re-initialized or assigned a new value.

B. Memory Access Throttling in Xen
Xen Hypervisor is installed in the paravirtualized mode

with two virtual machine domains: Dom0 and DomU. As
there are only two individual cores, each domain is pinned
to a single processor core. The memories is also distributed
evenly, 1.5GB per domain. Dom0 is appointed as an inter-
fering VM and core 0 represents an interfering core. DomU
is a critical VM and core 1 is treated as a critical core.

We developed a throttling structure integrated with the
internal scheduling framework of Xen. An extended Memory
Access Controller is located between the interfering VM and
the physical core, to monitor the memory access flows. It
timely notifies the The overflow interrupts triggered by the
performance counters are used to monitor memory access
budgets and notify once they are used up. After the interrupt
signals the scheduler, further operations are taken to throttle
interfering core. As a VCPU is bound to a physical core, the
VCPU generating memory accesses should be immediately
paused. The throttled VCPU is waken up at the start of the
next period. The timing graph is shown in Figure 2.
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Figure 2. Timing Graph of Throttling

In the first period, the interfering core consumes up the
memory access budget Q at the time point τ . The pinned
VCPU is then removed from RUNQ. Because there is no
runnable VCPU, IDLE VCPU is scheduled in and also the
physical core turns in idle. After that, there is no interfering
memory access request generated. Till the end of this period,
the sleeping VCPU is brought back and the budget Q is
replenished. And the interfering tasks run conservatively in
the second period, thus budget Q has not been consumed
up at point 2P . The remaining budgets are discarded and
the server starts with the budget of Q again. The periodic
server above is integrated as an extension on Xen scheduler
framework.

When the PMC monitoring off-core memory accesses gets
overflowed, the hooked interrupt NMI orientates code into
the PMC overflow interrupt service routine. Before further
steps to deal with this overflow, we should confirm if Q has
actually been consumed up. Then Budget Q for next period
is written in disabled PMC beforehand. Till now, the system
is still running in NMI context, where it is forbidden to
interact with system tasks. In the next step we have to sleep
VCPU which is judged as a single thread in system-wide,
it is necessary to degrade interrupt to a lower level. So we
called a customized soft irq handling the pausing VCPU.
This soft irq callback starts with computing timing distance
from the current point to next period’s beginning, and set
it as a timer to wake up VCPU on time. Immediately after,
VCPU is paused by an inherent function vcpu pause in the
schedule.c file. Finally the schedule soft irq is signaled in
order to inform the system bringing in the IDLE VCPU.

C. The Compensation Mechanism

Till now, the interference between the critical and the
interfering cores are restricted by the periodic throttling
mechanism parameterized with a Period P and a budget Q to
the memory access flows from interfering cores. Although
it guarantees the safety of critical tasks and avoids them
suffering extra penalties, the performance on the interfering
core degrades severely. In reality, not all the execution



periods of the critical cores will experience the interference
as much as Q, leading the under-utilization of memory
bandwidth of the interfering cores. This section presents a
compensation mechanism, which reserves the not-in-effect
budgets for the future use, to improve the performance of
the interfering application.

We use A to denote the memory accesses issued by
the critical application itself in a period of length P . In
one period P , the critical cores will suffer at most Q
interferes if A is larger than Q. If A < Q, then there are
Q−A times considered as under-utilized. The basis of this
compensation algorithm is to accumulate unused budgets for
the interfering application from previous period. In the next
period, the interfering cores gain 2Q−A budgets, releasing
more running time for the throttled tasks. The budget is
increasing cumulatively only if the critical tasks continue
running under the estimation of pre-designed budget Q.

Meanwhile, this continuous accumulation possibly results
in an unlimitedly large values of Q, which could make the
interferes uncontrollable in the following periods. So it is
necessary to reset the budget in a certain amount of periods
to limit the expansion of Q. If we reset the budget every
two periods, the budget Q will be accumulated at most 2Q,
in the extreme case that in the first period critical task is
silent while in the second and period running in full speed.
No matter how the critical tasks behave, the maximum
interferes are controlled at 2Q constantly as before being
compensated. In the meantime, the interfering cores could
get 2Q budgets in every 2 periods, leading 50% lift-up
of performance. The designer may choose any number of
periods for budget resetting to balance the performance of
interfering application and the predictability of the critical
application.

IV. EVALUATIONS

We conduct experiments to evaluate our proposed ap-
proach in the following three aspects:

1) Worst-Case Execution Time of Critical Tasks: We will
examine whether the throttling algorithm is able to
mitigate the present contentions on memory accesses.
The criterion is that the assigned deadline for a crit-
ical task should always be respected when it runs
simultaneously with different programs in the throttled
interfering VM.

2) Memory Throttling Performance: The interfering
memory access flows should be throttled immediately
once the monitoring PMCs gets overflowed. The flows
could be regulated under the constraints of the config-
urable bandwidth budgets.

3) Compensation Mechanism: We will evaluate how
much the performance of interfering tasks could be
lifted-up. We also need to check whether it will affect
the running performance of the critical tasks.

Experimental evaluation are conducted with the SPEC
CPU2006 Benchmark Suite. We select four benchmark pro-
grams: 403.gcc, 429.mcf , 470.lbm and 459.GemsFDTD.
Figure 3 shows the memory access characteristics of these
programs, where 403.gcc has mild memory access, while
470.lbm is the most aggressive one. The other two bench-
marks generate the moderate memory access flows.

Figure 3. Average Memory Access Rate of SPEC CPU2006 benchmarks

A. Execution Time on Critical VM

We assume the critical VM executes program
429.mcf , co-running with one of 429.mcf , 470.lbm,
459.GemsFDTD on the interfering VM. 403.gcc is not
considered since its memory access ratio is too low.

In each experiment, the critical task 429.mcf runs for
200 times accompany the interfering throttle tasks. Figure
4-(a) summarizes the execution times of 429.mcf run-
ning together with three benchmarks. We set an artificial
deadline for 429.mcf as 11.4s. The average degradation
of 429.mcf is controlled within 9% and deadline is suc-
cessfully secured, even with the most aggressive co-runner
470.lbm. The same experiments are repeated with 470.lbm
and 459.GemsFDTD as the critical task, the results of
which are shown in Figure 4-(b) and (c).

In all the experiments above the execution time of the
critical task is kept low and stable, regardless the memory
access behavior of its co-runner. Meanwhile, we have no-
ticed that the memory interferes by co-running tasks are not
so intensive as it was expected in assumption. Due to the
different micro-activities of tasks, memory accesses are not
generated continuously nor intensively. Factors of proces-
sor architecture, such as inter-connection bus and memory
controller, also affects the extent of memory contentions in
reality. Concluded from the experimental results, the budget
is considered pessimistically and has potential to find a still
safe but more loose bound for the interfering VMs/cores.

B. Memory Throttling Performance

The memory access controller is embedded in Xen hy-
pervisor, throttling the interfering VM. In the following
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Figure 4. Execution Time on Critical VM

experiments, the SPEC CPU2006 benchmark suite is in-
stalled on the throttled VM where the bandwidth budget
is configurable. The single benchmark will be executed
under two budget settings: no throttling (unlimited) and low
bandwidth throttling. We are profiling the phase records of
the memory access requests on all solo-running benchmarks
with the built-in tracing tool Xentrace in Xen.
Xentrace is an event-based logger for recording sys-

tem activities across the Xen Hypervisor layer and virtual
machines. The pre-defined trace events cover scheduling,
memory page and hvm. The trace functions embedded in
the running code record the corresponding information into a
log-buffer, which is accessible by up-running VMs. In user-
space, Xentrace daemon reads and takes the buffer down
to log files.

Figure 5 shows the performance of two benchmark pro-
grams 403.gcc and 403.lbm under throttling. In the first two
figures of both Figure 5-(a) and (b), the x-axis represents
the execution time and the y-axis represents the actual
memory access bandwidth usage in each period. When
403.gcc executes without any memory bandwidth limitation,
the transitional memory access within 1ms could reach 1.3
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Figure 5. Memory Throttling Performance

MB in maximum and is around 0.5 MB in average. It
takes about 3.3s to finish the program execution. Then we
execute 403.gcc with the memory access budget with period
P = 10ms and configure Q such that the effective bandwidth
is 91MB/s. In this case, the actual memory access bandwidth
usage in each period is limited by 0.9e+ 06B and the total
execution time of 403.gcc is 7s. Comparing the two zoom-
in windows, the memory accesses is dense before being
throttled, while it is regularly sparse in a rate of 10ms with
throttling.

The last graph in Figure 5-(a) illustrates the arrival
curve [3] of the memory access issued by 403.gcc with
and without throttling. The arrival curve is a standard
workload/interference representation in real-time analysis
techniques. The obtained arrival curves enables the system
designers to perform real-time performance analysis of the
system by either analytical or simulation-based methods [3],
[6]. A detailed explanation of the arrival curve is omitted due
to the page limit, and we refer to [3] for details. In general,
a smoother and less-bursty arrival curve of the interference
is better for the real-time performance.
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Figure 6. 403.lbm Phase Graph Comparison
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Figure 7. Execution times of interfering tasks with and without the
compensation mechanism.

From the figure we can see that the throttled arrival
curve is linearly increasing at a constant rate, while the
non-throttled one is very bursty in the sense that it may
increase very fast in short time intervals. The zoom-in
window displays a staircase curve with the step length of
10ms.

The benchmark program 470.lbm generates more ag-
gressive memory access flows than 403.gcc, as shown in
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Figure 8. Execution time of critical task with the compensation mecha-
nism.

Figure 3. We also conduct the experiment under the same
configurations, and the results are shown in Figure 6. From
the top graph, the maximum memory access rate is approx-
imately 2.5 MB/ms, close to the reference system memory
bandwidth 3 MB/ms. The total execution time of 470.lbm
is extended from 13s to 200s.

C. Compensation Mechanism
The above experiments show that while the memory

access throttling improves the timing predictability of the
critical VM, the price we paid is the average performance
of the interfering tasks. Now we evaluate the compensation
mechanism, which aims at improving the average perfor-
mance of the interfering tasks on the throttled core, while
maintaining the good timing predictability of the critical
VM. We assume that the budget is reset every two periods.

The first graph in Figure 8 shows the measured execution
time of interfering task with and without compensation (with
different co-runner benchmark program as the critical task).



The overall performance has been improved by up to 20%
by the compensation mechanism.

On the other hand, the compensation mechanism may
degrades the timing predictability of the critical task. The
three graphs in Figure 8 show the execution time of the
critical task with different co-runners with the compensation
mechanism. From Figure 8 we can see that The overall
execution time of the critical task increases slightly. If we
use more aggressive compensation mechanism, e.g., reset-
ting the budget in a larger number of periods. It is up to the
system designer to choose proper compensation mechanisms
to balance the timing predictability of the critical task and
the average performance of the interfering applications.

V. CONCLUSION AND FUTURE WORK

In this work we propose a method to monitor and control
the shared memory access of virtual machines with Xen
hypervisor on multi-core processors, to enhance the perfor-
mance isolation among virtual machines and improve the
timing predictability of real-time applications. The memory
access monitoring is implemented using built-in hardware
PMU of processors, which keep track of the number of
target events such as cache misses and bus accesses. In order
to control the contention on the shared memory, we assign
a periodic memory access budget to the virtual machine.
As soon as the budget is exceeded, the PMU triggers
an interrupt and scheduler will suspend the corresponding
virtual machine. Experiments with SPEC2006 benchmark
suite are conducted to validate the proposed method.
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