
Understanding the Dynamic Caches on Intel Processors: Methods and Applications

Yi Zhang, Nan Guan

Department of Computer Science and Technology
Northeastern University, China

{zhangyi,guannan}@ise.neu.edu.cn

Wang Yi

Department of Information Technology
Uppsala University, Sweden

yi@it.uu.se

Abstract—The design and implementation of caches on
a given platform has significant impacts to many areas in
computer system design. On chip-multiprocessors (CMP), new
cache architectures are proposed to meet the rapidly increasing
performance requirements. However, the cache architectures
are usually not well-documented for commercial processors.
This raises difficulties for people to precisely understand the
working principle of many components of the processors, not
only the cache itself, but also the related components like the
whole memory subsystem.

This paper aims at disclosing the working principle of the
last level cache of Intel Ivy Bridge processors. First, we identify
the address translation logic on this cache. Second, we disclose
the replacement policy of the cache. This is a dynamic insertion
replacement policy, which is very different from the widely used
LRU policy and its variants. Although this replacement policy
has been proposed in academic literatures, our work is the first
one showing it is actually used in commercial processors. To
show the significance of our discovery, we design a methodology
to generate controllable cache miss sequences under this new
cache, and apply it to the design of a benchmark to model the
memory concurrency. Evaluations on physical machines are
conducted to show the effectiveness of the proposed method.

Keywords-Dynamic Cache; Cache Replacement Policy; Pro-
filing;

I. INTRODUCTION

Due to the large speed gap between processors and the

memory system, memory accessing has become the perfor-

mance and throughput bottleneck. On chip-multiprocessors

(CMP), this problem is not alleviated but becomes even more

serious and complicated. On CMP, the increased number

of cores demand higher memory bandwidth. However the

memory bandwidth doesn’t scale up with the number of

cores, due to the hardware limitations such as pin numbers

and power. Another problem for CMP memory management

is raised by memory sharing, which introduces new issues

on how to manage memory resource between co-running

applications.

To achieve optimal performance and/or obtain predictable

performance, it is necessary to understand the detailed

information of memory hierarchy and the source of memory

contentions. Unfortunately, in many cases, such information

cannot be easily obtained. For example, it is usually unlikely

to get enough information about particular architectural

feature from the processor manuals (processor manufacturers

This work is partially supported by NSF of China under grant No.
61100023, 61300022 and 61370076.

commonly treat this information as commercial secretes).

Moreover, it is not straightforward to predict how much

bandwidth a program will consume. To get such informa-

tion, an effective method is to construct measurement-based

benchmark which can perform the memory characterizations

[1], [2], [3], [4].
To construct measurement-based benchmarks, a basic

prerequisite is generating memory requests in a controllable

manner. Because of the complexity of modern processors,

there are many factors that could make the final access

sequences very different from the original memory requests.

One important factor is the cache behavior. In order to

control the memory accesses that actually reach the memory,

one must know the cache behavior of these requests. In

this work we fucus on the influences that come from the

new cache characteristics on Intel Ivy Bridge processor and

explore how to build benchmarks for modeling memory

concurrency with the new cache.
Over the last few decades, cache organization and cache

replacement policies didn’t have big changes on the real

implementations. Therefore, many benchmarks are built with

the common assumptions of the underlying cache parame-

ters. However, on the newly proposed Intel processors, the

last level cache (LLC) appears to have new features. One

potential change is the cache address translation. According

to the document [5], the addresses of LLC on Sandy Bridge

and Ivy Bridge architecture are mapped by a hash function,

and it doesn’t work in the same way as the normal N-way

cache. While in our test for identifying the cache address

translation, we further discover that the cache replacement

policy of Ivy Bridge LLC adopts dynamic insertion policy

mechanism, which is very different from the widely used

least-recently used (LRU) replacement policy and its approx-

imations. As a result, the existing benchmarks that are built

based on LRU replacement policy become unsuitable to the

processors with these new cache architectures.
In this work, we study the new features of the LLC on

Intel Ivy Bridge processors and propose a method to design

benchmarks with the new caches. The contributions of this

work include:

• We study the new cache address translation on Intel Ivy

Bridge processors and discover new cache replacement

policy applied on this processor.

• We propose a method for identifying the new cache re-

placement policy and a method to generate controllable

2014 International Conference on Embedded and Ubiquitous Computing

/14 $31.00 © 2014 IEEE

DOI 10.1109/EUC.2014.18

58

2014 International Conference on Embedded and Ubiquitous Computing

978-0-7695-5249-1/14 $31.00 © 2014 IEEE

DOI 10.1109/EUC.2014.18

58

2014 International Conference on Embedded and Ubiquitous Computing

978-0-7695-5249-1/14 $31.00 © 2014 IEEE

DOI 10.1109/EUC.2014.18

58

cache misses with the new cache.

• We implement memory characterization benchmarks

with our cache generating method and give the eval-

uation on an Intel Ivy Bridge machine.

The remainder of this paper is organized as follows: Sec-

tion II presents the test of cache address translation; Section

III introduces the approach to identify the new replacement

policy and the method to generate controllable cache miss

sequences; Section IV introduces the implementation of the

benchmarks for modeling memory concurrency under new

cache policy and the experimental evaluation. Section V

reviews related works, and finally conclusions are drawn in

Section VI.

II. PROBLEM STATEMENT

We observed the new cache characteristics when testing

the address translation of the LLC on our Intel processor.

In this section, we present our method and results of the

address translation testing on the Intel Ivy Bridge processor.

By this test, we also discover some abnormal phenomenons

that cannot be explained assuming the common LRU cache

is implemented. We will analyze the phenomenons in the

next section.

A. Experimental platform

The experimental machine used in this work is with a 4-

core Intel Core i7-3770 (Ivy Bridge) processor. Each core

has a 32K 8-way set-associative L1 instruction cache, 32K

8-way set-associative L1 data cache, and a private 256K

8-way unified non-inclusive L2 cache. The L3 cache, i.e.,

the last-level cache (LLC) consists of 4 identical 2M 16-

way set-associative inclusive cache slices, and all 4 slices

are shared by the on-chip cores. The cache line size is

64B. The memory controller has two memory channels. The

DIMM we use is the single-rank 2GB 1.5V 11-11-11 DDR3-

1600 DIMM with 8 banks. In this section, experiments are

conducted with one 2GB DIMM. The processor frequency

is set to be 1.6GHz and the OS is Linux 2.6.39.

B. Cache organization

The cache used in modern computer is typically set-

associative. A cache with associativity A is also called an

A-way set-associative cache. The organization of a cache is

specified by the following parameters in this paper:

• A: The associativity of cache (also the number of

ways).

• B: The block (also called cache line) size in bytes.

• N: The number of cache sets

• W = B ∗ N : The cache capacity in bytes in one way.

• S = A ∗ W : The cache capacity in bytes.

For an L3 cache slice of our platform, the above param-

eters are: A=16, B=64B, N=2K, W=128KB, S=2MB.

C. Motivational experiment

Address translation decides the data location on cache.

Commonly, address translation works according to the fol-

lowing rule:

Rule 1. The addresses that differ by n ∗ W (n is nonzero
integer) are located at the same set, different ways.

However, according to the document [5], the addresses

of LLC on Sandy Bridge and Ivy Bridge architectures are

mapped by a hash function, and it works differently from the

normal N-way caches. To get the address translation of LLC

, we design a test with the knowledge from [6], according

to which we follow the rule in below to design the test:

Rule 2. For LRU and its approximations, if the number of
items located in a cache set is greater than associativity and
those items are sequentially accessed, then each access will
cause a cache miss.

Base = memAlloc (2∗S) ;
a s s o c = 1 ;
whi le (a s s o c < maxAssoc){

s e t = 0 ;
whi le (s e t < N){

i n i t (Base + s e t , a s s o c) ;
r e p e a t A c c e s s (Base + s e t) ;
p r i n t t i m e () ;
s e t = s e t + 1 ;

}
a s s o c = a s s o c + 1 ;

}
Listing 1. Test for address translation.

1) Description of Test: Our test is illustrated in Listing

1. The main idea in this test is: at each assoc, the program

traverses all the cache sets, and on each set it repeatedly and

sequentially accesses a list with assoc items.

In the innermost loop, the function init initializes the

list with assoc items. The addresses for those items have

the offset starting at the Base + B ∗ set and differ by n ∗
W . The repeatAccess executes the item access and record

the access time. To eliminate the interferences come from

system, this function repeatedly accesses the list for 10000

times. And we directly read the time stamp counter to get

the exact execution time.

To get an accurate latency for each access, we adopt

following techniques to implement the test.

• To eliminate multiple issues of the access, we imple-

ment the item list in a form of ”pointer chasing”, where

each item contains the address of the item which should

be accessed immediately after it, thus the next access

won’t be issued until the previous one has returned.

The body of the pointer chasing is implemented in the

following method:

p = ∗(void ∗ ∗)p
• To eliminate the latency caused by TLB misses, we

allocate memory by huge pages.

595959

(a) Number of items smaller than 64

(b) Number of items greater than 64

Figure 1. Results for address translation test.

• To guarantee the continuous physical address mapping

on cache, we configure the size of continuous mem-

ory allocation in OS twice as much as the size of

LLC(16MB in our test).

• To eliminate prefetching, we initialize the item list in

a random order.

• Because write can be stalled by read, the access is

implemented with read.

If the tested cache adopts the LRU policy or its approxi-

mations, and meanwhile the address translation adopts Rule

1, when assoc is larger than the associativity of cache, the

access of each item will generate a cache miss and the

latency for each item access will be the memory access time;

otherwise, when assoc is smaller than the associativity of

cache, the latency for each item access will be the cache

access time.

Figure 1 shows parts of the test results. In our test, S is

8MB, N is 2048, W is 128KB, and maxAssoc is 80. The

results can be classified into two parts:

• When assoc is from 8 to 64, the average latency for

each access time is roughly 30 cycles, as shown in

Figure 1-(a).

• When assoc is greater than 64, latencies for accesses

on different sets are shown in Figure 1-(b).

We don’t show the results when assoc is not greater than

8, which is the associativity of the L2 cache. During this

range, most accesses are serviced on the L2 cache but not on

the LLC, and the average latency for each access is roughly

10 cycles.

2) Observations: From Figure 1-(a) we can see that each

access roughly takes 30 cycles (the latency for access LLC

cache [5]) which implies all those accesses arrive at LLC

cache. While in Figure 1-(b), the average access time on all

sets is longer than 30 cycles, which implies there are cache

misses generated under this condition.

From Figure 1-(b) we can also observe that the latencies

on different sets are not uniform. On some sets, they are

about 200 cycles (the order of memory accesses), which

implies every access incurs a miss and coheres with Rule 2.

While on some sets, the latencies are between 30 and 200

cycles, which implies not all of the accesses incur cache

misses. We infer that on those sets the address translation

still follow Rule 1, otherwise it won’t incur cache misses on

those sets in our test.

Thus through this test, we could get two informations

about this LLC: (1) the associativity on the LLC is 64;

(2) its address translation (at least for 16MB continuous

address) follows Rule 1 and evenly distribute the addresses

(continuous 128KB physical address covers 2K sets).

III. DISCOVERY OF THE NEW REPLACEMENT POLICY

We infer that abnormal phenomenon is due to a new cache

replacement policy used in the Intel Ivy Bridge processors.

In [7], [8], it has been pointed out that on the LLC of

multi-core processors, the LRU policy uses cache space

inefficiently. These works present two main ideas to design

new cache replacement policy. The first one is Set Dueling
based Dynamic Insertion Policy (SDDIP) [7], which could

dynamically estimate the number of misses incurred by

the two competing insertion policies and select the policy

that incurs the fewest misses [7]. The other idea is the

Hit Promotion Policies which do not place the incoming

line at the MRU position as the LRU policy does. Instead,

they would place the incoming line at LRU position or

some middle position and promote that line to the MRU

position when it is reused. The hit promotion mechanism

gives an utility-based replacement policy and could reduce

the thrashing problem when a working set is greater than the

cache size. We could observe that, in Figure 1-(b), the cache

miss line appears to have two patterns and in one pattern the

sets still have cache hits when the number of the items is

greater than the cache associativity.

Our goal in this part is to identify the cache replacement

policy that matches the above phenomenon, and develop

methods to issue predictable cache misses under the new

policy. The main challenge is to solve the unpredictable

cache behavior caused by SDDIP.

A. SDDIP identification

We first introduce the mechanism of SDDIP. Under the

SDDIP mechanism, there are two policies which dynami-

cally compete to be the dominant policy on the cache. The

Set Dueling mechanism dedicates a small number of sets to

each of the two competing policies. The policy that incurs

fewer misses on the dedicated sets is used for the remaining

606060

Figure 2. Results for SDDIP policy identification.

follower sets. Thus under SDDIP, most sets become adaptive

to the access patterns. This mechanism is designed with the

insight in [9] that the cache behavior can be approximated

by sampling a small number of sets on the cache.

We identify the SDDIP by running Double Scans over

the cache. The scanning program is implemented in the

same way as presented in the address translation test. In

this program, assoc is greater than cache associativity which

could ensure the generation of cache misses and distinguish

the behaviors between LRU and hit promotion policy. The

first scan starts from the set with the lowest address to the

highest end, and the second scan is the other way around.

The goal of this program is to tell the location of the

dedicated sets on Set Dueling based cache. By running

this program, we shall observe three behaviors if SDDIP

is implemented:

• When the scan is going on the follower sets: since

there is no accesses on the dedicated sets, the cache

replacement policy should stay the same, and hence

cache miss pattern and scanning line pattern stay the

same.

• When the scan comes to the dedicated sets: since the

scan incurs cache misses on the current one, that means

the other dedicated sets at this moment have fewer

cache misses. When scan with this dedicated sets is

finished, the cache miss pattern should change to the

other one and the scanning line jumps into another

pattern.

• Since we scan the cache from different directions, then

the orders that two scans meet the dedicated sets are

the opposite and the behaviors on follower sets are the

opposite. But in both runs, the scanning line behavior

on the dedicated sets keeps the same.

We run the double scan program with assoc equals to

80. The results are shown in Figure 2, where the blue line

represents the scan from low to high, and the red line is

from high to low. From the Figure 2 we can observe that

there are two small areas (each area covers 64 continuous

sets) that only give the high access latency and low access

latency respectively and all the other sets can have both

latency patterns. According to the results, we infer that Set

Dueling policy is implemented on this cache and get the

locations of dedicated sets.

B. Predictable cache miss generation on SDDIP

To build a measurement-based benchmarks, it is critical

to make the behavior of benchmark predictable. However,

SDDIP would dynamically switch the running replacement

policy and change the pattern of memory accesses. To deal

with this problem, we propose to explicitly fix the available

replacement policy in benchmarks. To achieve this goal, two

steps need to be added into the benchmark building process.

• Identifying dedicated sets: this work can be achieved

by running the double scan approach.

• Policy-fix: In the benchmark building process, we do

not use the memory area maps to the dedicated sets

with the needed policy. Instead we include the memory

area maps to the other dedicated sets in use. Thus, the

needed policy will be activated when the benchmark is

running. Also, to minimize the unnecessary cache miss

generations, the used dedicated sets should keep a low

percentage in the overall used sets (this is achievable

since the dedicated sets take a small percentage among

overall sets).

By adding the above steps, the aimed policy can be applied

when benchmark is running.

IV. MODELING MEMORY CONCURRENCY

To evaluate the effectiveness of the policy-fix method, in

this section we apply it into building the benchmarks for

modeling the memory concurrency bottlenecks and perform

examinations with our machine.

A. Background

1) Memory Hierarchy: Most memory system of modern

computer is built on DRAM which is a three dimensional

hierarchy organized by bank, row and column. A DRAM

module is composed of several independent banks. Among

banks, requests can be operated in parallel and within each

bank, data is organized based on row and column. Memory

controller (MC) is the mediator between cache and DRAMs,

manages requests into and out of DRAMs while ensuring

protocol compliance. DRAM modules are connected with

MC via channel. When there are multiple channels, requests

can be independently operated between channels. Transfer

size for a memory request is typically the same as cache line

(64 bytes on our machine), which means a bunch of words

will be transferred on a single memory request.

To read or write a word of data on a bank, the row with

requested data must be first loaded into row buffer which

is single for each bank. The latency of a memory request

therefore depends on whether or not the requested row is

in the buffer. Caused by the operations on row buffer, a

memory request can have three different access events: row-
hit, requested row is already in the buffer and data can

be accessed directly; row-closed, row buffer is empty and

requested row needs to be loaded from the bank before

616161

Figure 3. An illustration for memory hierarchy considered in this paper.

access is performed; row-conflict, row buffer is holding the

contents of another row. In this case, the contents need to

be first written back to the bank, and then load requested

row into buffer and conduct access. In these three events,

row conflict is with the longest access latency and row hit

has the shortest. If there is a multi-socket multiprocessor

system, memory access latency also depends on in which

socket the contents are resided and how the MC is shared

among processors.

The memory hierarchy explored in this paper is shown

in Figure 3. It has multiple layer caches with the last level

cache shared among cores and a on-chip MC manages the

memory accesses for all the cores. When a memory request

is issued, it will go from the top level cache down to the

memory until it gets the requested data.
2) Medeling Memory Hierarchy: In the view of per-

formance, there are three metrics for measuring memory

hierarchy: bandwidth, latency and concurrency. By using

Little’s law [10] to give model, the three metrics can draw

the following equation:

bandwidth =
cacheline size ∗ conc num

latency
(1)

where conc num is the in-flight accesses in the memory

system and latency is the average service time for each

cache miss.

The equation 1 tells the fact that the memory bandwidth

a hardware platform can provide or an application will

consume is decided by the memory access concurrency and

latency. However, those two parameters varies at different

levels of memory hierarchies. For example, at the bank level,

access concurrency is limited by the number of banks and the

access time spent on bank operations is the longest among

all memory hierarchy levels. While at the cache level, more

parallel memory accesses can be serviced with several or

tens of cpu cycles.

By explicitly controlling the number of requests issued

to memory system, Mandal et al. [3] studied the memory

performance bottleneck affected by memory concurrency on

multi-socket multi-core systems. In addition to measuring

the performance impact of memory contention on real hard-

ware, Eklov et al. [4] further utilized this method to analyze

memory bandwidth and latency sensitivity of applications.

But all those works take the assumption that the cache

replacement policy is LRU or its approximations.

B. Building benchmark
To examine the memory concurrency, it is required that

the benchmark could specify the number of issued memory

accesses. To achieve this goal, this benchmark is imple-

mented by traversing a number of linked lists. Each list is

implemented with pointer-chasing method which guarantees

each access on list generates one memory access at a time.

By adjusting the number of linked lists in each run, we

could control the number of parallel accesses issued into

the system. In building this benchmark, we also use the

techniques introduced in address translation test at Section

II-C (such as huge pages and random order initialization) to

eliminate the potential interferences from system.

C. Experimental evaluation
We run the experiment on the same machine used in

previous tests. The experiment was conducted under four

different memory configurations which differed in the num-

ber of available DIMMs and channels. In each memory con-

figuration, we varied the number of simultaneously running

threads from 1 to 4 (each tied to its own core) and increased

the number of each thread’s parallel memory accesses from

1 to 16. There were 64 combinations of number of threads

and concurrency in each memory configuration.
Each thread was running under LRU policy by using

policy-fix method. For each thread, it monopolized 500

follower sets, 5 dedicated sets and had 96 (1.5 associativity)

items located in each set. Using the above parameters, we

could assume that every access on a linked list would cause

a cache miss. The items in linked lists were initialized

with the random order and the size of overall items took

around 3MB memory. Therefore for most of the cases, the

consecutive cache misses located in different rows and the

average latency for each memory access was the row conflict

latency (about 220 cpu cycles in our experiment).
To reduce the interferences, under each memory con-

figuration we first enable the LRU policy by running a

function to generate cache misses on the dedicated sets.

After that, the threads start to repeatedly read the linked

lists for 100000 times. The results are shown in Figure 4,

illustrated with bandwidth and concurrency. According to

Eg. 1, if the latency is fixed, the bandwidth will increase with

respect to the concurrency. Hence, we can detect the memory

concurrency bottlenecks by reading when the curves level

off. From those results, we could get three different memory

concurrency bottlenecks on our machine:

• Maximal concurrency at each core: in each figure, every

1 thread curve levels off at 10 concurrency. It means

every single core can at most issue 10 memory accesses

in parallel.

• Maximal concurrency in a channel: from Figure 4(a),

4(b), the curve for 3 threads levels off at 8 (3*8=24) and

curve for 4 threads levels off at 6 (4*6=24), indicating

the maximal concurrency of a channel is about 24.

• Maximal global concurrency: in Figure 4(d), curve for

3 threads levels off at 11 (3*11=33) and curve for 4

626262

(a) 1 DIMM 1 channel (b) 2 DIMMs 1 channel

(c) 2 DIMMs 2 channels (d) 4 DIMMs 2 channels

Figure 4. Modeling memory concurrency with different number of DIMMs and channels.

threads levels off at 8 (4*8=32), indicating the maximal

global concurrency is around 32.

V. RELATED WORK

Researchers have studied CMP memory sharing and con-

tention problem from different aspects. Zhuravlev et al.

[11] presented the contention-aware scheduling policies for

mitigating contentions on shared cache&memory and ana-

lyzed the various thread classification schemes for scheduler

design. Mutlu et al. [12] showed that a MC with memory

parallelism awareness can both improve system throughput

and fairness. Tang et al. [13] and Dey et al. [14] studied

the impact of shared-resource contention on multithreaded

applications and investigated approaches on how to design

a good thread-to-core mappings based on the resource sen-

sitivity of applications.

Many measurement-based approaches have been proposed

to obtain the details of memory hierarchy. Yotov et al.

[1] presented micro-benchmarks for determining parame-

ters of different memory hierarchy, including registers, all

data caches and translation look-aside buffer. Molka et al.

[15] revealed detailed performance characteristics of cache

and memory subsystem of Intel Nehalem microarchitecture.

Abel et al. [6] proposed an algorithm to automatically infer

the cache replacement policy and applied this algorithm

to various popular microarchitectures. Mandal et al. [3]

modeled memory concurrency for multi-socket multi-core

system and use the results to create a more accurate model

of memory subsystem. Based on this model, Eklov et al.

[4] presented a bandwidth stealing method to analyze the

resource sensitivity of applications

In the architecture community, much work has been

proposed on designing new efficient CMP cache replacement

policies. The advantage for the works in [7], [8] is they use

existing cache structure and require small changes into exist-

ing cache replacement policy. The dynamic insertion policy

cache brings in big changes to conventional replacement

policies, and existing approaches needs to be redesigned on

this new architecture [16].

VI. CONCLUSION

In this work, we examine two characteristics of the LLC

on Intel Ivy Bridge processors: the address translation logic

and cache replacement policy. We discover that, the cache

replacement policy on this processor adopts a new dynamic

insertion mechanism, which is very different from the widely

used conventional LRU policy and makes many existing

techniques infeasible. We present a method to identify and

profile this new policy. With the understanding of this new

policy, we design a method to generate controllable cache

misses on this cache. We then integrate this method into

building the benchmark for modeling memory concurrency

and evaluate the benchmark by examining the memory

concurrency bottlenecks of a physical machine.

REFERENCES

[1] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measure-
ment of memory hierarchy parameters,” ACM SIGMETRICS
Performance Evaluation Review, vol. 33, no. 1, pp. 181–192,
2005.

636363

[2] D. M. Pase and M. A. Eckl, “Performance of the AMD
opteron LS21 for IBM Bladecenter,” Technical Report, IBM
Corporation, Research Triangle Park, North Carolina, Tech.
Rep., 2006.

[3] A. Mandal, R. Fowler, and A. Porterfield, “Modeling memory
concurrency for multi-socket multi-core systems,” in IEEE
International Symposium on Performance Analysis of Systems
& Software (ISPASS). IEEE, 2010, pp. 66–75.

[4] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten,
“Bandwidth bandit: Understanding memory contention,” in
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2012, pp. 116–117.

[5] “Intel 64 and IA-32 architectures optimization reference man-
ual,” April 2012.

[6] A. Abel and J. Reineke, “Measurement-based modeling of
the cache replacement policy,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 65–74.

[7] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
ACM SIGARCH Computer Architecture News, vol. 35, no. 2.
ACM, 2007, pp. 381–391.

[8] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval
prediction (RRIP),” in ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 3. ACM, 2010, pp. 60–71.

[9] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case
for mlp-aware cache replacement,” ACM SIGARCH Computer
Architecture News, vol. 34, no. 2, pp. 167–178, 2006.

[10] J. D. Little, “A proof for the queuing formula: L= λ w,”
Operations research, vol. 9, no. 3, pp. 383–387, 1961.

[11] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Address-
ing shared resource contention in multicore processors via
scheduling,” ACM SIGPLAN notices, vol. 45, no. 3, pp. 129–
141, 2010.

[12] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enabling high-performance and fair shared mem-
ory controllers,” Micro, vol. 29, no. 1, pp. 22–32, 2009.

[13] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L.
Soffa, “The impact of memory subsystem resource sharing on
datacenter applications,” in Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2011, pp. 283–294.

[14] T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa, “Charac-
terizing multi-threaded applications based on shared-resource
contention,” in IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). IEEE,
2011, pp. 76–86.

[15] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller,
“Memory performance and cache coherency effects on an
intel nehalem multiprocessor system,” in Parallel Architec-
tures and Compilation Techniques, 2009. PACT’09. 18th
International Conference on. IEEE, 2009, pp. 261–270.

[16] A. Jaleel, H. H. Najaf-Abadi, S. Subramaniam, S. C. Steely,
and J. Emer, “Cruise: cache replacement and utility-aware
scheduling,” in ACM SIGARCH Computer Architecture News,
vol. 40, no. 1. ACM, 2012, pp. 249–260.

646464

