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Abstract—A recent trend in the theory of real-time scheduling
is to consider generalizations of the classical periodic task model.
Work on the associated schedulability and feasibility problems
has resulted in algorithms that run efficiently and provide exact
results. While these analyses give black-and-white answers about
whether timing constraints are being met or not, response-time
analysis adds a quantitative dimension.

This brings new challenges for models more expressive than the
classical periodic task model. An exact quantification of response
time is difficult because of non-deterministic task behavior
and a lack of combinable task-local worst cases. Therefore,
previous approaches all make a trade-off between efficiency and
precision, resulting in either prohibitively slow analysis run-times
or imprecise over-approximate results.

In this paper, we show that analysis can be both exact
and efficient at the same time. We develop novel response-time
characterizations to which we apply combinatorial abstraction
refinement. Our algorithms for static-priority and EDF schedul-
ing give exact results and are shown to be efficient for typical
problem sizes. We advance the state-of-the-art by providing the
first exact response-time analysis framework for graph-based task
models.

I. INTRODUCTION

Response time analysis (RTA) characterizes the maximal

delay to complete a computational request in a multitasking

environment. It is useful for local schedulability analysis, but

its potential uses extend to other complex design problems.

An example is the case of distributed real-time systems where

the completion of a task triggers the invocation of other

computation or communication tasks. RTA can help to bound

invocation jitters of individual tasks and enable timing analysis

of the overall system [1], [2].

The classical RTA technique [3] was developed for the

simple periodic task model, which represents a collection

of independent recurrently invoked processes with certain

periods. Unfortunately, behaviors that are not entirely periodic

cannot be expressed accurately with this model. Important

examples include variable rate-dependent behavior in con-

trollers for fuel injection in combustion engines [4] or frame-

dependent execution times in video codecs [5]. The Digraph
Real-Time (DRT) task model [6] is a rather expressive model

allowing large flexibility to express release patterns accurately

by representing each task by a directed graph. It generalizes

most existing models in real-time scheduling theory.

The expressiveness of DRT comes at the price of analysis

complexity. As for many concurrent system models, the main

challenge in the analysis of DRT is due to combinatorial

explosion for problems where local worst cases do not exist.

Firstly, the number of possible paths of each individual graph

is generally unbounded, and is exponential even if restricted

to bounded time intervals. Secondly, all combinations of paths

from different graphs need to be considered to find global

worst-case behavior in response-time computations.

The combinatorial explosion problem already exists in sim-

pler special cases of DRT. Existing analysis methods either

explicitly enumerate combinations, leading to extremely poor

scalability, or over-approximate the workload to improve effi-

ciency at the cost of precision loss. In this work, we develop

efficient techniques of exact response-time analysis for DRT

task models, for both static-priority and EDF scheduling. Our

proposed techniques avoid explicit enumerations and combi-

natorial explosions via abstraction and refinement methods.

In particular, we make the following contributions:

• We formulate exact characterizations for the response

time of DRT tasks under both static priorities and EDF.

• We develop efficient RTA algorithms by extending a

combinatorial abstraction refinement technique [7] and

applying it to the above formulation.

Experiments show that our algorithms reduce the necessary

analysis effort to practically feasible amounts. They are there-

fore applicable to task systems of interesting size.

A. Prior Work
Response time analysis has been proposed first to analyze

static-priority scheduling of periodic tasks [3], and was then

intensively studied to deal with arbitrary deadlines [8], jitters

and burst behaviors [9], [10], offsets between tasks [11], as

well as dynamic-priority scheduling policies such as EDF [12],

[13] and preemptive round-robin [14].

The RTA problem suffers from combinatorial explosion

as soon as phase information is explicit in the task model

[15], [16]. For efficient analysis, previous work either resorts

to over-approximations [5], [11] or restricts to special cases

with certain monotonicity properties such that exponential

combinations are simply dominated by one of them [17], [18].

The feasibility problem of DRT with dynamic priorities can

be solved in pseudo-polynomial time [6]. Significant speed-up

can be achieved by exploring periodicity of workload bounds

using results from max-plus algebra [19]. The corresponding

problem with static priorities becomes strongly coNP -hard

[20], but recently abstraction and refinement techniques have

been developed to deal with the combinatorial explosion [7].

Timed automata have been used as well to model real-time

workload very expressively [21], but the state-space explosion

problem makes RTA using a model checker impractical.

For interval-domain workload and resource availability

characterizations (arrival and service curves in Real-time Cal-

culus [22]), RTA techniques have been developed [23], [24],
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[13]. However, applying them to detailed workload character-

izations as the task model used in our work is inherently over-

approximate since relevant information of exact task behavior

is lost in these models.

II. PRELIMINARIES

This section provides an introduction to our task model and

a problem definition.

A. Task Model
We use the digraph real-time (DRT) task model [6] to

describe the workload of a system. A DRT task set τ =
{T1, . . . , TN} consists of N independent tasks. A task T
is represented by a directed graph G(T ) with both vertex

and edge labels. The vertices {v1, . . . , vn} of G(T ) represent

the types of all the jobs that T can release. Each vertex v
is labeled with an ordered pair 〈e(v), d(v)〉 denoting worst-

case execution-time demand e(v) and relative deadline d(v)
of the corresponding job. Both values are assumed to be

positive integers. The edges of G(T ) represent the order in

which jobs generated by T are released. Each edge (u, v) is

labeled with a positive integer p(u, v) denoting the minimum

job inter-release separation time. We assume deadlines to be

constrained by inter-release separation times, i.e., for each

vertex u, its deadline label d(u) is bounded by the minimal

p(u, v) for all outgoing edges (u, v). Finally, given a vertex

v, we denote its task with T (v).
Semantics: An execution of task T corresponds to a

potentially infinite path in G(T ). Each visit to a vertex along

that path triggers the release of a job with parameters specified

by the vertex label. The job releases are constrained by inter-

release separation times specified by the edge labels. Formally,

we use a 3-tuple (r, e, d) to denote a job that is released

at (absolute) time r, with execution time e and deadline at

(absolute) time d. We assume dense time, i.e., r, e, d ∈ R�0.

A job sequence ρ = [(r1, e1, d1), (r2, e2, d2), . . .] is generated
by T , if and only if there is a (potentially infinite) path

π = (π1, π2, . . .) in G(T ) satisfying for all i:

1) ri+1 − ri � p(πi, πi+1).
2) ei � e(πi),
3) di = ri + d(πi),

For a task set τ , a job sequence ρ is generated by τ , if it is

a composition of sequences {ρT }T∈τ , which are individually

generated by the tasks T of τ .

Example II.1. For the example task T in Figure 1, consider
the job sequence ρ = [(3, 6, 15), (15, 2.1, 25), (27, 4, 37)]. It
corresponds to path π = (v4, v1, v2) in G(T ) and is thus
generated by T .

Note that this example demonstrates the “sporadic” behav-
ior allowed by the semantics of our model. While the second
job in ρ (associated with v1) is released as early as possible
after the first job (v4), the same is not true for the third
job (v2).

We assume that job sequences are executed on a unipro-

cessor system and scheduled by a preemptive scheduler. We

distinguish between dynamic and static priority schedulers,

v1〈3, 10〉

v2〈4, 10〉

v3

〈1, 3〉

v4

〈6, 12〉

v5

〈4, 8〉

15

10
15

17

3012

8

20

Fig. 1. An example task containing five different types of jobs

i.e., whether the scheduler has to obey a certain order of

relative priorities on the task set. Our analysis focuses on two

particular scheduling algorithms, static priority (SP) sched-

ulers and earliest deadline first (EDF) schedulers.

SP scheduler: Given a priority order P : τ → N which

assigns a unique priority to each task, the scheduler picks

the job for execution that was released by the task T with

highest priority, i.e., minimal P(T ). Our analysis for SP

scheduling is presented in Section III.

EDF scheduler: The scheduler picks the job with the

smallest absolute deadline, ties broken arbitrarily. This

dynamic priority scheduling strategy is known to be

optimal for our setting of independent jobs, i.e., if a task

set can be scheduled with any scheduler, it can also be

scheduled with EDF. Our analysis for EDF scheduling is

presented in Section IV.

We use standard notions of schedulability and feasibility. It

has been shown that for EDF, schedulability of DRT task sets

can be checked in pseudo-polynomial time [6]. In contrast,

the schedulability problem for the SP case is known to be

strongly coNP -hard [20], even though the state-of-the-art

algorithm based on combinatorial abstraction refinement [7]

enables very efficient analysis even for the SP case. The

algorithms presented in Sections III and IV are also based

on this refinement scheme.

B. Response-Time Analysis

The main objective of this work is to compute worst-case

response times of all jobs generated by the task system. We

distinguish jobs corresponding to different vertices.

Definition II.2 (Response Time). Given a task set τ and a
scheduler Sch , the response time RSch(v) of a vertex v ∈
G(T ) for a task T ∈ τ is the maximal time between release
and finish of any job corresponding to v for all job sequences
generated by τ when scheduled with Sch .

We briefly review the classic response-time analysis for

periodic tasks and SP scheduling [3]. Consider a set τ of

periodic tasks, i.e., for each T ∈ τ its graph G(T ) contains

only a single vertex v and a self-loop (v, v). We write E(T )
for e(v), P (T ) for p(v, v) and T ′ > T for a task T ′ with

higher priority than T . The response time R(T ) = RSP (v)
can be computed with the following equation.
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R(T ) = min
t>0

{
t | E(T ) +

∑
T ′>T

⌈
t

P (T ′)

⌉
E(T ′) � t

}
(1)

The term �t/P (T ′)�E(T ′) characterizing interference of each

higher priority task T ′ in a time interval of size t is a

(left-continuous) step function in t. Intuitively, the minimum

searches for the first time point t in which the job under

consideration and all interfering work load of higher-priority

tasks have finished their execution. A critical observation is

that the response time of the job released by v is maximized

when all other tasks release a job at the same time instant

as v, with subsequent job releases as early as possible. This

situation is usually called the critical instant.
The next two sections generalize this analysis approach to

DRT task systems scheduled with SP and EDF schedulers.

III. RTA FOR SP SCHEDULING

For a generalization of the above approach, we need to cope

with tasks represented by arbitrary graphs containing different

types of jobs, in contrast to the relatively simple structure of

periodic tasks.

Suppose we want to compute the response time of a vertex

v ∈ G(T ) of some task T . For each task T ′ > T we pick a

path π(T ′). For our job v and the set of paths
{
π(T ′)

}
T ′>T

we can simulate the synchronous arrival sequence (SAS), i.e.,

a job sequence where all jobs take their maximal execution

time, the job from v and the first job from each path π(T ′)

are released at time 0, and all subsequent jobs are released as

early as allowed by the edge labels. Simulating this sequence

leads to a response time for this particular scenario. Figure 2

illustrates an example.

π

v4 v1 v2

t

v

Scheduling window

t
0 3 6 9 12 15 18 21 24 27 30

RSP (v, π) = 18

π′

v5 v4 v1

t

v

Scheduling window

t
0 3 6 9 12 15 18 21 24 27 30

RSP (v, π′) = 19

Fig. 2. Simulated synchronous arrival sequence in the analysis of a job v
with e(v) = 9 and d(v) = 30. The interfering task of higher priority is task
T from Figure 1. We simulate paths π = (v4, v1, v2) and π′ = (v5, v4, v1).
In the upper scenario, v has a response time of 18, in the lower one a response
time of 19 which is in fact the worst-case response time.

An exhaustive enumeration and combination of all such

paths with a simulation of the corresponding SAS in the

interval [0, d(v)] would be a naive approach for computing

the worst-case response time of v. It is sufficient to focus

on synchronous arrival sequences in this interval since jobs

of a task cannot cause any direct or indirect interference to

each other. This is because of strict task priority order and

our assumption that all tasks are schedulable1. The naive

approach is of course impractical, we will therefore introduce

path abstractions and a refinement scheme to efficiently find

a path combination obtaining the worst-case response time.

A. Request Functions
We abstract a path π with a request function which for each t

returns the accumulated execution requirement of all jobs that

π may release during the first t time units.

Definition III.1. For a path π = (π0, . . . , πl) through the
graph G(T ) of a task T , we define its request function as

rf π(t) := max {e(π′) | π′ is prefix of π and p(π′) < t}
where e(π) :=

∑l
i=0 e(πi) and p(π) :=

∑l−1
i=0 p(πi, πi+1).

In particular, rf π(0) = 0 and rf π(1) = e(π0), since all edge

labels are strictly positive integers. We give a few examples

in Figure 3.

rf (t)

t

0 3 6 9 12 15 18 21 24 27 30

0

3

6

9

12

15
rf π
rf π′

rf π′′

Fig. 3. Example of request functions on [0, 30]. Paths are taken from G(T )
in Figure 1 with π = (v4, v1, v2), π′ = (v5, v4, v1) and π′′ = (v2, v1, v2),
cf. Figure 2.

Note that a periodic task T is uniquely represented by

rf (t) = �t/P (T )�E(T ), cf. Equation (1), since it contains

only one relevant path.

Let π̄ denote a tuple
(
π(T1), π(T2), . . .

)
of paths through

graphs G(T1), G(T2), . . . and Π(τ) = Π(T1) × Π(T2) × . . .
its domain. That is, Π(T ) is the set of all paths in G(T ) for

each task T . We can express the response time of a vertex v
for this particular combination of paths as follows.

RSP (v, π̄) = min
t>0

{
t | e(v) +

∑
T ′>T

rf π(T ′)(t) � t

}
(2)

This is a generalization of the case for periodic tasks in

Equation (1). The overall worst-case response time of v is

the maximum over all such path combinations π̄.

RSP (v) = max
π̄∈Π(τ)

RSP (v, π̄) (3)

1We assume schedulability of task sets in order to simplify presentation.
Our method can be generalized to include tardy jobs.
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This condition gives a formal characterization of RSP (v).
However, two challenges remain before it can be used in an ef-

ficient implementation. First, each Π(T ) is of infinite size and

contains exponentially many paths for each length. Second, the

domain Π(τ) suffers from a combinatorial explosion, since all

combinations of paths from all tasks need to be considered.

We address this issue in Section III-B.
For the first challenge, we will lift the computation from

individual paths to the level of request functions which are path

abstractions. A crucial observation is that only a subset of all

request functions representing a task is necessary to describe

its worst-case behaviors. We restrict our focus to the interval

[0, d(v)] which is the scheduling window of v. Consider two

request functions rf and rf ′ such that rf (t) � rf ′(t) for all

t in [0, d(v)]. If rf is used in the minimum computation in

Equation (2) for some path, it will result in a larger value than

if rf ′ had been used instead since the LHS of the inequality

will be smaller. Clearly, only rf needs to be considered.
Formally, we introduce a partial order on the set of request

functions.

Definition III.2. For two request functions rf and rf ′ on
domain [0, d], we say that rf dominates rf ′, written rf � rf ′,
if and only if

∀t ∈ [0, d] : rf (t) � rf ′(t).

A maximal set of request functions rf containing no other rf ′

with rf ′ � rf is called a set of critical request functions.

For each task T , the set of critical request functions on a

given domain can be computed efficiently as sketched in [7]

based on an iterative procedure from [6].

Example III.3. Consider again the three request functions
shown in Figure 3. On domain [0, 30], function rf π′′ is
dominated by both rf π and rf π′ (which are actually both
critical). Note that the example in Figure 2 does in fact
not need to be simulated with path π′′ because of this. The
interference caused by path π′′ is lower than that of π and π′

during all time points of the considered interval [0, 30].

The computation in Equation (2) is only necessary for

those combinations π̄ with critical request functions, since

other combinations will not contribute to the maximum in

Equation (3).
We can express the worst-case response time RSP (v) di-

rectly in terms of critical request functions. This lifts the

abstraction and allows us to work with only few request

functions instead of exponentially many paths. Let r̄f denote

a tuple
(
rf (T1), rf (T2), . . .

)
of request functions. For each

T , let RF (T ) denote the set of critical request functions on

domain [0, d] and RF (τ) = RF (T1)×RF (T2)× . . . all their

combinations. Using this notation, Equations (2) and (3) can

be expressed as follows.

RSP (v, r̄f ) = min
t>0

{
t | e(v) +

∑
T ′>T

rf (T
′)(t) � t

}
(4)

RSP (v) = max
r̄f∈RF(τ)

RSP (v, r̄f ) (5)

While the critical request functions abstraction dramatically

reduces the number of objects to be considered for each task

(tens of functions compared to thousands or even millions of

paths), the number of combinations that need to be considered

in Equation (5) still explodes exponentially. We will therefore

now employ a method from [7] called combinatorial abstrac-

tion refinement which we adapt to the setting of response-time

analysis.

B. Combinatorial Abstraction Refinement
The key idea of this abstraction scheme is that several

request functions can be represented by a single one by taking

their point-wise maximum. Using abstract request functions

results in an over-approximate response time. However, by

step-wise refinement of the abstraction, the result can be

made more and more precise until it eventually is not over-

approximate anymore. This leads to a dramatically improved

performance without compromising precision of the result.

For the abstraction refinement, we define an abstraction

semi-lattice containing the partial order from Definition III.2

together with the following join operator.

Definition III.4. We call rf a concrete request function if it is
derived from a path π in a graph G(T ) as in Definition III.1.

We call rf an abstract request function if there is a set
{rf 1, . . . , rf k} of concrete request functions, such that

∀t : rf (t) = max {rf 1(t), . . . , rf k(t)} .
In that case we write rf = rf 1 	 . . . 	 rf k.

As an example for an over-approximate response-time com-

putation, consider for each T the function mrf (T ) defined as

the point-wise maximum of all its concrete request functions

RF (T ). We call mrf (T ) the most abstract request function
for T (some authors call it the request bound function) and

can use it for a response-time over-approximation:

RSP (v) � min
t>0

{
t | e(v) +

∑
T ′>T

mrf (T
′)(t) � t

}

Note that the RHS is not using a maximum operator over a set

of combinations. Only one combination of (abstract) request

functions is used, the mrf (T
′) for every task T ′ of higher

priority than T . This is very efficient, but does not necessarily

compute a precise response time as Figure 4 demonstrates.

rf (t)

t
0 2 4 6 8 10 12 14 16

0
2
4
6
8

10
12
14
16

e(v) + rf π

e(v) + rf π′
e(v) +mrf

t

Fig. 4. Example of imprecision if only mrf is used. Consider the analysis
of a vertex v with e(v) = 4 and d(v) = 16. Task T from Figure 1 interferes
with paths π = (v4, v1, v2) and π′ = (v5, v4, v1). As we can see, we have
RSP (v, rf π) = 10 and RSP (v, rf π′ ) = 8, resulting in RSP (v) = 10.
However, RSP (v,mrf ) = 14, which is strictly over-approximate.
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The idea is to start with such an over-approximate result

and refine it step-by-step. In order to know how to refine an

abstract request function, we define an abstraction tree for

each T .
Abstraction Trees: Given the set {rf 1, . . . , rf k} of con-

crete request functions of a task T , we build an abstraction

tree bottom-up. Each concrete request function is a leaf in

the tree. In each step of the construction, we take two nodes

rf 1 and rf 2 which do not yet have a parent node and which

are “closest” via some similarity metric [7]. For these two

nodes, we create their parent node by taking their point-wise

maximum rf 1 	 rf 2. This is repeated until we have created

the full tree, in which case the tree root is the most abstract

request function mrf (T ). Figure 5 illustrates the abstraction

tree.

mrf

rf π1
rf π2

rf π5

rf π3
rf π4

Fig. 5. Request function abstraction tree for request functions of task T
in Figure 1. The leaves are all five concrete (critical) request functions on
[0, 50]. Each inner node is the point-wise maximum of all descendants and
thus an abstract request function. Abstraction refinements happen downwards
along the edges, starting at the root.

Refinement Procedure: The procedure starts with

just one tuple r̄f of abstract request functions, i.e.,

(mrf (T1),mrf (T2), . . .) for computing an over-approximate

response time RSP (v, r̄f ). In each step, one abstract request

function rf in the tuple is replaced by refinements rf ′ and rf ′′

with

rf � rf ′, rf � rf ′′, rf = rf ′ 	 rf ′′.

In other words, rf is replaced by its two child nodes in the

corresponding abstraction tree. We call this a split of rf ,

leading to two new tuples of request functions r̄f
′

and r̄f
′′

which are identical to r̄f except that rf is exchanged for rf ′

and rf ′′, respectively. The new response times RSP (v, r̄f
′
)

and RSP (v, r̄f
′′
) are still over-approximate, but more precise

than the first one. Of the current set of tuples, we always split

the one with the largest response time over-approximation.

The splitting results in more and more tuples in the current

set and eventually, some of them will consist of only concrete
request functions. The procedure ends as soon as one of these

tuples of concrete request functions is the maximum of any

tuple in the current set. We give our refinement procedure for

computing static priority response times in Figure 6.

The procedure in Figure 6 uses a priority queue PQ for

storing tuples of request functions. In order to add a value to

PQ , the function PQ .add(value, priority) expects a priority,

so that the head of PQ always contains the value with the

highest priority. We assume a function generate-mrf (T, d)
which computes the abstraction tree for task T and returns

mrf (T ) on domain [0, d].

function compute-RSP (v) :

1: PQ ← ∅
2: for all T ′ > T (v) do
3: rf (T

′) ← generate-mrf (T ′, d(v))
4: end for
5: PQ .add(r̄f , RSP (v, r̄f ))
6: while isabstract(PQ .head) do
7: r̄f ← PQ .pophead()
8: (r̄f

′
, r̄f

′′
)← refine(r̄f )

9: PQ .add(r̄f
′
, RSP (v, r̄f

′
))

10: PQ .add(r̄f
′′
, RSP (v, r̄f

′′
))

11: end while
12: return RSP (v,PQ .head)

Fig. 6. Algorithm for computing worst-case response time RSP (v) of a
vertex v.

Correctness: The worst-case response time returned by

procedure compute-RSP (v) is exact. The intuition behind

this is as follows. The procedure starts with a combination

r̄f of all most abstract request functions. The obtained value

RSP (v, r̄f ) is a safe upper bound for RSP (v). Each time we

split a request function in order to obtain two new tuples

containing combinations of abstract request functions, the

maximal RSP (v, r̄f ) of any r̄f in PQ is still a safe upper

bound for RSP (v). The reason for this is that each combination

of leafs from all abstraction trees, i.e., each combination

of concrete request functions, is always dominated by one

combination r̄f in PQ . This implies the invariant. Note that the

maximum value is achieved with the tuple stored in PQ .head .

Eventually, there will be a combination r̄f containing only

concrete request functions and with a value RSP (v, r̄f ) equal

to the current maximum over all tuples in PQ . This means that

there must be a job sequence, represented by this particular

r̄f , which leads to a response time of v which is equal to the

current safe upper bound in PQ . Thus, this upper bound is

indeed tight, since there is a concrete example. In this case, the

algorithm terminates and its return value is equal to RSP (v).
A more formal and detailed proof can be found in [25].

IV. RTA FOR EDF SCHEDULING

In this section we adjust the above response-time analysis

method to the setting of an EDF scheduler. The major differ-

ence is the response-time computation given a combination of

paths (cf. Equation 4) which needs to be changed and extended

similar to [13]. However, we will see that the basic refinement

framework from above can be reused in order to obtain exact

results from initial over-approximate estimations.

A. Workload Functions
In SP scheduling, the static priority order of tasks directly

determines which jobs may cause interference to each other:

each job of a task of higher priority may preempt any job

from a task of lower priority and thus delay its execution and

increase its response time. There is never any interference in

the opposite direction, from low to high priorities. Based on

this property, we were able to use request functions in order

to quantify interference.
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In EDF scheduling, the situation changes. When analysing

the response time of a particular job, certain jobs from other

tasks may cause interference but others do not, at least not in

the same release scenario. Consider the example in Figure 7(a).

Illustrated is the response-time analysis of v with e(v) = 20
and d(v) = 37 with an interfering periodic task. In this

scenario, only the first two jobs of the interfering task T1

do interfere with v since the third one has a later deadline

than v and therefore lower priority under EDF. In order to

quantify this interference, we would like to use a function

similar to a request function, but it should be counting only

jobs with higher priority, i.e., earlier absolute deadline. Thus,

such a function needs to consider deadlines instead of release

times. We define a demand function for a path π to return the

accumulated execution requirement of all jobs of π that are

released and have a deadline during the first t time units.

Definition IV.1. For a path π = (π0, . . . , πl) through the
graph G(T ) of a task T , we define its demand function as

df π(t) := max {e(π′) | π′ is prefix of π and d(π′) � t}
where d(π) :=

∑l−1
i=0 p(πi, πi+1) + d(πl) and e(π) as before.

However, using just a demand function does still not ex-

actly quantify the interference since it may also be over-

approximate. Consider the example in Figure 7(b). In this

second scenario, only the first three jobs of the interfering task

T2 do interfere with v. Unlike the fifth job, the fourth one has

its deadline before d(v) and is therefore included in a demand

function. However, it also does not cause interference since

it is actually released after the finish time of v. Thus, only

the first three jobs should be counted when trying to exactly

quantify the maximal interference.

T1 t

v
t

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(a) T1 with P (T1) = 14, D(T1) = 11 and E(T1) = 5.

T2 t

v
t

0 3 6 9 12 15 18 21 24 27 30 33 36 39

(b) T2 with P (T2) = 9, D(T2) = 4 and E(T2) = 2.

Fig. 7. Two different scenarios for a job v to experience interference from
periodic tasks T1 or T2. Not all of their jobs that are released during the
scheduling window of v do actually cause interference.

The solution is to define for each path a function which

counts only jobs with a deadline earlier than the deadline of

v but also with a release time earlier than the finish time of v.

A workload function has therefore a two-dimensional domain.

Intuitively, the first argument t represents the supposed finish

time of v and jobs from π that are counted should be released

earlier than t. The second argument t′ represents the deadline

of v and jobs from π that are counted should have their

deadline latest at t′.

Definition IV.2. For a path π = (π0, . . . , πl) through the
graph G(T ) of a task T , we define its workload function as

wf π(t, t
′) := max{e(π′) | π′ is prefix of π,

p(π′) < t and d(π′) � t′}.
Example IV.3. Consider the periodic task T1 in Figure 7(a).
We have wf (30, 37) = 10 since two jobs of 5 execution time
units each are released within 30 time units and have their
deadlines within 37 time units. As a consequence, the exact
interference that v experiences is 10 time units and it finishes
after 30 time units. Note that we leave out to write a path π
in wf π since a periodic task has only one (infinite) path.

As a second example, consider the periodic task T2 in
Figure 7(b). In this case we have wf (26, 37) = 6, counting
the first three jobs of T2, since these are the only ones being
released within 26 time units and having a deadline within 37
time units. Therefore, v experiences 6 time units of interference
and finishes after 26 time units.

Workload functions are a generalization of request functions

as well as demand functions, since

rf π(t) = wf π(t,∞) and df π(t) = wf π(∞, t).

In fact, a workload function can be derived from request and

demand functions of the same path, which allows compact

representation in memory.

Lemma IV.4. For a path π through a graph G(T ), the
functions rf π , df π and wf π are related via

∀t, t′ � 0 : wf π(t, t
′) = min(rf π(t), df π(t

′)).

Proof: Given t, t′ and a path π, let π′rf and π′df be the

paths used in the maximum for the computations of rf π(t)
and df π(t

′), respectively. Both paths are prefixes of π and we

have two cases depending on their lengths.

Case 1: π′rf is a prefix of π′df . Thus, rf π(t) � df π(t
′).

Further, d(π′rf ) � d(π′df ) since deadlines are constrained and

therefore ordered monotonically. Hence wf π(t, t
′) � e(π′rf ) =

rf π(t) since π′rf satisfies both conditions in the definition of

wf . However, any prefix π′ of π longer than π′rf has p(π′) � t,
therefore rf π(t) is the maximal value for wf π(t, t

′).
Case 2: π′df is a (strict) prefix of π′rf , same proof but with

swapped roles of df and rf .

We can now do a first attempt to use workload functions for

response time analysis. Consider a vertex v ∈ G(T ) from a

task T for which we want to compute the worst-case response

time with an EDF scheduler and pick a workload function

wf (T ) for each task T . We search for the first time instant tf
at which a job v does finish its execution. While doing so, we

need to consider interference of jobs from other tasks which

1) are released strictly before tf and

2) have their deadline latest at d(v).

136148148148



The following expression captures this intuition and is very

similar to Equation 4 for SP scheduling.

tf = min
t>0

⎧⎨
⎩t | e(v) +

∑
T ′ �=T

wf (T
′)(t, d(v)) � t

⎫⎬
⎭ (6)

B. Busy Window Extension

As we will see now, this tf does not correctly capture the

worst-case response time of v. The underlying assumption

is that a synchronous arrival sequence creates the maximal

interference for a job. Unfortunately, this assumption does not

hold in the EDF case as Figure 8 shows.

T1 t

T2 t

T

Scheduling window
v5 v4

t
0 2 4 6 8 10 12 14 16 18 20 22 24

Extension x = 10 REDF (v4) = 9

x+ t

x+ d(v4)

Fig. 8. Example demonstrating that the worst-case response time may be
achieved by a job sequence which is not an SAS. The schedule shows the
response time calculation of v4 in task T from Figure 1, preempted by two
periodic tasks T1 and T2. T first releases a job from v5 at time t = 2 followed
by the job v4 to be analyzed at t = 10. For the busy window extension we
have x = 10 which leads to the worst-case response time REDF (v4) = 9.
In an SAS, v4 would finish after already 8 time units.

In order to solve this problem, we use the common busy
window extension technique, summarized as follows. The

worst-case response time of v is caused by an arrival sequence

where all tasks T ′ 
= T (v) synchronously release their jobs

at some time point before the release of v. Together with

jobs from T (v), the processor is kept continuously busy until

v is released and finally finishes. This period is called the

busy window. It is difficult to predict the exact size of the

busy window leading to the worst-case response time of v,

but an upper bound can be given by computing the maximal

size of any busy window2 for τ . With this upper bound, all

possibilities can be enumerated.

We now give details of this procedure. We consider ex-

tensions of the analyzed window, which initially is just the

scheduling window of v. We extend this window by additional

x time units into the past, i.e., to the left, cf. Figure 8. For each

integer x � 0, we analyze a scenario in which all tasks T ′ 
= T
start releasing their jobs at time 0 while the job corresponding

to v is released at time x and has its deadline at x+d(v), i.e.,

its scheduling window is the interval [x, x+d(v)]. In addition

to this job, T releases other jobs before time x as late as

2A bound of the maximal busy window size can be easily computed by
finding smallest interval size t for which

∑
T∈τ mrf (T )(t) � t.

possible, i.e., corresponding to a path through G(T ) ending in

v. This construction maximizes the interference experienced

by v for a particular x. In Figure 8 this is the case for x = 10
where T is following path (v5, v4). In order to find the worst-

case response time, all x are enumerated up to the size L of

the maximal busy window.

Formally, we can use workload functions as before to

describe the interference to v by tasks T ′ 
= T . The value

of wf π(x+ t, x+d(v)) for a path captures the interference of

all jobs along that path that

1) are released within the extended busy window before a

supposed finish time x+ t of v, but

2) still have their deadline latest at x + d(v) so that they

actually interfere with v because of having a higher

priority under EDF.

In addition to that, we also need to have a way of describing

the interference of jobs from T that are released before v, since

they can cause indirect interference (by delaying jobs of some

T ′ which then interfere with v). For this purpose, we define a

suffix demand function which is defined like a demand function

but ensures that the last vertex of a path is always included in

the workload.

Definition IV.5. For a path π = (π0, . . . , πl) through the
graph G(T ) of a task T , we define its suffix demand function

as

df sfxπ (t) := max {e(π′) | π′ is suffix of π and d(π′) � t.}
Example IV.6. We give an example in Figure 9.

df sfx (t)

t
0 4 8 12 16 20 24 28 32

0
3
6
9

12
15

df sfxπ

π

v5 v4 v1

t
−32 −28 −24 −20 −16 −12 −8 −4 0

Fig. 9. Example of a suffix demand function on [0, 30] for π = (v5, v4, v1)
from G(T ) in Figure 1. We also show the job sequence in a graphical
schedule, with time 0 being the deadline for the job from v1. This illustrates

that df sfxπ builds backwards from this deadline.

We are now finally ready to give the full method for

computing the worst-case response time of a vertex v ∈ G(T )
for a task T . Let w̄f be a vector containing

• a workload function wf (T
′) for each task T ′ 
= T

describing its workload interfering with T , and

• for task T a function f(t, t′) defined as

f(t, t′) := max(df sfx (t′), e(v)).

This function expresses the workload of T and always

contains the job of v itself. All jobs released by T are
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always implicitly released before time t which therefore

is discarded, i.e., just a dummy argument. The role of this

function is just to unify notation so that we can represent

all functions in vector w̄f containing only functions in

two arguments.

Using w̄f we can express the response time REDF (v, w̄f , x)
of v for this particular w̄f and a particular x. The worst-case
response time REDF (v) of v is derived by maximizing over
all x and w̄f . Note that the maximum is over all w̄f that can
be constructed from individual wf (T ) and df sfx as described
above.

REDF (v, w̄f , x) := min
t>0

{
t |

∑
T∈τ

wf (T )(x+ t, x+ d(v)) � x+ t

}

(7)

REDF (v) = max
w̄f

max
x�L

REDF (v, w̄f , x) (8)

C. Refinement Procedure
As for the SP scheduler case, enumerating all combinations

of workload functions and suffix demand functions leads to

combinatorial explosion. However, we can employ the same

combinatorial abstraction refinement technique as in Sec-

tion III. Abstract workload functions and suffix demand func-

tions can be defined just as in the case of request functions.

Their abstraction trees are also built in a similar way. They can

be stored efficiently since for abstract workload functions, we

may choose to just store pairs of abstract request and demand

functions instead. Because of Lemma IV.4, these can be used

to derive corresponding abstract workload functions using the

minimum operator.

In summary, the full algorithm is given in Figure 10.

function compute-REDF (v) :

1: PQ ← ∅
2: wf (T (v)) ← generate-mdf sfx (T (v), L+ d(v))
3: for all T ′ 
= T (v) do
4: wf (T

′) ← generate-mwf (T ′, L+ d(v))
5: end for
6: PQ .add(w̄f ,maxx�L REDF (v, w̄f , x))
7: while isabstract(PQ .head) do
8: w̄f ← PQ .pophead()
9: (w̄f

′
, w̄f

′′
)← refine(w̄f )

10: PQ .add(w̄f
′
,maxx�L REDF (v, w̄f

′
, x))

11: PQ .add(w̄f
′′
,maxx�L REDF (v, w̄f

′′
, x))

12: end while
13: return maxx�L REDF (v,PQ .head , x)

Fig. 10. Algorithm for computing worst-case response time REDF (v) of a
vertex v.

The structure is very similar to the algorithm for SP schedul-

ing in Section III. It is assumed that L is the size of the maxi-

mal busy window. Further, functions generate-mwf (T, d) and

generate-mdf sfx (T, d) compute abstraction trees for a task T
on domain [0, d] for all workload functions and suffix demand

functions, respectively. Efficient implementations are similar

to those for request functions [7]. They return the tree roots

to be used for the first over-approximate estimate and later

refinements, i.e., splitting. The major difference to the SP

algorithm is that each response-time computation maximizes

over all possible busy window extensions x � L.

D. Optimizations
Our algorithm for computing the worst-case response time

under EDF in this section is slower than the one we present

in Section III for SP. One of the reasons is that for any

given combination w̄f of (abstract) workload functions, all

x � L need to be enumerated and REDF (v, w̄f , x) needs to

be computed via Equation (7) again for each x. Evaluating

Equation (7) so many times can be costly if L is large. Thus,

we employ an optimization that allows to skip a large fraction

of possible values for x.

The key idea is to use a simple over-approximation

R∗EDF (v, w̄f , x) of the response time REDF (v, w̄f , x).

R∗EDF (v, w̄f , x) :=
∑
T∈τ

wf (T )(∞, x+ d(v))− x

Clearly, REDF (v, w̄f , x) � R∗EDF (v, w̄f , x), since R∗ even

counts all jobs from other tasks until the deadline of v, includ-

ing those released after its finish time, cf. Figure 7(b). While

searching for the maximal value of REDF (v, w̄f , x) over all

x, we only need to do an exact evaluation of REDF (v, w̄f , x)
if R∗EDF (v, w̄f , x) is strictly larger than the current maximum

over those x already considered. If R∗EDF (v, w̄f , x) is smaller

than the current maximum, then an exact evaluation will not

find a new maximum either, so we can directly skip to the

next value of x.

Another possible optimization is based on the property

of rf and df to be step functions. Consider an expression

with structure f(x) − x like the above for R∗EDF . If f is

piecewise constant and we are looking for maximal values of

that expression for increasing x, then it is sufficient to evaluate

the expression for x where f changes. This can be done for

the above optimization using R∗EDF , but similar optimizations

can be applied to the search for maxima with RSP and REDF .

V. EXPERIMENTAL EVALUATION

For evaluating our response-time analysis algorithms, we

run them on synthetic task sets of different sizes. We use an

implementation in the Python programming language. This

prototype is not the most optimized in terms of speed, but

is suitable for qualitative comparisons of scaling and other

interesting properties. We evaluate two key properties of our

method.

Efficiency. In order to evaluate efficiency of our method,

we investigate how many combinations of path ab-

stractions are actually tested compared to the total

number of possible combinations. As an effect of

this, we further evaluate how the run-time changes

when task sets change in size and utilization.

Precision improvement. We evaluate how much the final

exact worst-case response time value changes com-

pared to the first imprecise estimate where only the

most abstract functions are used.
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A. Task Set Generation
Task set size and its utilization are directly related: we define

the utilization of a task T as the highest ratio of the sum

of WCET vertex labels over the sum of edge labels in all

cycles in G(T ). The system utilization is the sum of the task

utilizations and therefore increases with the number of tasks.

Each task set is randomly generated with a given goal of a task

set utilization. Tasks are added to a task set until it satisfies

the given goal.
A task is generated randomly as follows. A random number

of vertices is created with edges connecting them according

to a specified branching degree (“fan-out”). Edges are placed

such that the graph is strongly connected. After choosing edge

labels with uniform probability, deadlines are chosen randomly

with a uniformly chosen ratio to the minimal outgoing edge

label. Finally, execution time labels are chosen randomly

with a uniformly chosen ratio to the vertices deadlines. The

following table gives details of the used parameter ranges.

Vertices Fan-out p d/p e/d

[5, 10] [1, 3] [100, 300] [0.5, 1] [0, 0.07]

Feasible task sets created by this method have sizes up to

about 20 tasks with over 100 individual job types in total.

Note that we only consider task sets which are feasible for SP

or EDF scheduling, i.e., do not miss any deadlines. This is a

basic assumption for the correctness of our method. However,

this is not a fundamental limitation, since our analysis can be

extended to cope with tardy jobs.

B. Efficiency
Work Reduction: For evaluating the effectiveness of the

abstraction refinement scheme, we capture for each call to the

algorithms shown in Figures 6 and 10 how many combinations

of request or workload functions have been tested. We compare

this number with the total number of their combinations. This

ratio indicates how much computational work the refinement

scheme saves, compared to a naive brute-force style test. We

capture 105 samples and show our results in Figure 11.

100 101 102 103 104 105 106 107 108 109 1010 1011 1012

Total Combinations

100

101

102

103

Te
st

ed
C

om
bi

na
ti

on
s EDF

SP

Fig. 11. Tested versus total number of combinations of path abstractions.
Crosses represent SP, dots EDF cases. Both scales are logarithmic.

We see that the combinatorial abstraction refinement scheme

saves work in the order of several magnitudes. Except for a

few cases, no more than 100 tests have been executed. The

improvement is more dramatic for the EDF case since more

path abstractions represent each task. The refinement scheme

is effective in masking this effect.

Run-Time Scaling: We evaluate how increasing sizes

of task sets and their utilization influences run-time of our

method. Since the problem is fundamentally exponential in

complexity, we expect also the run-time to increase expo-

nentially. However, the abstraction refinement technique is

expected to be effective in hiding the exponential factor which

is due to combinatorial explosion. We plot the run-time results

in Figure 12.
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(a) Run-time of RTA for SP.
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(b) Run-time of RTA for EDF.

Fig. 12. Run-times of SP and EDF response-time analyses. We only consider
feasible task sets, leading to a cut-off at about 40% and 50% utilizations,
respectively.

In the SP case in Figure 12(a), we note that the run-time is

very low even for the largest task sets that are feasible. With

our set of parameters, the schedulability phase-change is at

about 40%, i.e., task sets with higher utilization are not schedu-

lable and therefore not eligible for our RTA computation. We

see that up to this point, the abstraction refinement technique

is effective in hiding most of the exponential increase in run-

time.

In the EDF case in Figure 12(b), the run-time of our

algorithm is longer by about two orders of magnitude. We also

note a clear exponential increase in run-time. This is due to

several contributing factors. Higher utilization results in longer

sizes of the maximal busy window. This means that the busy

window extension to be considered grows with increasing uti-

lization. Further, the domain of workload functions increases

because of this, leading to increased computational effort for

deriving them. Finally, the set of critical workload functions is

generally larger than the set of critical request functions (used

in the SP case), contributing further to increased complexity of

the analysis. All three factors have an exponential effect that

is independent of the issue of combinatorial explosion which

the abstraction refinement scheme is designed to solve.

C. Precision Improvement
During the refinement procedure, the worst-case response

time estimate is improved further and further until the al-

gorithm terminates with a precise value. We evaluate how

significant this improvement is. We compare two types of task
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sets which are created with different sets of parameters. Task

sets of type A are created with the same parameters as for

the experiments above. Task sets of type B are created with

a significantly larger interval of possible edge labels. This

impacts also choices of deadlines and WCET labels.

Type Vertices Fan-out p d/p e/d

A [5, 10] [1, 3] [100, 300] [0.5, 1] [0, 0.07]

B [5, 10] [1, 3] [10, 300] [0.5, 1] [0, 0.07]

The idea is to demonstrate that large intra-task differences

in labels have an impact on the precision of the initial estimate.

For each generated task set of either type, we record the frac-

tion of jobs for which the refinement procedure improved upon

the initial over-approximate estimate. Further, for each job

where this was the case, we record how large the improvement

was. For both types A and B, we run 250 tests each with EDF

RTA of task sets with 10 tasks and plot the results in Figure 13.
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Fig. 13. Precision improvement for two different types of task sets.

A clear difference can be seen between both types of task

sets. The precision improvement for type A task sets is both

seldom and small. For only up to about 20% of all jobs, the

initial estimate is actually over-approximate, and if it is, the

precise one is only at most about 5% lower. On the other hand,

type B task sets improve the estimate for roughly between

40% and 90% of all jobs for each task, and the average

improvement per job is up to about 15% and beyond.
This comparison tells us that our refinement scheme has the

potential to significantly improve response-time estimates that

were only rough over-approximations with previous methods.

This is especially the case if jobs of different types have very

different WCET bounds and inter-release delays. Further, since

we provide the first tractable exact method, it is now possible

to characterize workload for which over-approximate estimates

are already rather precise. The more equal WCET bounds and

inter-release delays are within tasks, the higher the precision.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an exact response-time analysis frame-

work based on combinatorial abstraction refinement. Novel

characterizations of worst-case response times for DRT task

sets are the key for efficient analysis, taking advantage of

the speed-up provided by our refinement approach. Exper-

iments show that our method provides good performance

when analyzing task sets of interesting size, demonstrating

that combinatorial abstraction refinement is applicable beyond

feasibility analysis. Our result leads to important insights

about precision of response-time over-approximations. These

insights were not possible before as exact and efficient tests

were not available. In future work, we would like to use more

domain insights in order to speed up the process even further.

We would also like to explore applications of this framework

to different extensions of the DRT task model.
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