
Improving OCBP-based Scheduling for
Mixed-Criticality Sporadic Task Systems

Chuancai Gu1, Nan Guan1,2, Qingxu Deng1 and Wang Yi1,2

1Northeastern University, China
2Uppsala University, Sweden

Abstract—Scheduling mixed-criticality systems is a challenging
problem. Recently a number of new techniques are developed
to schedule such systems, among which an approach called
OCBP has shown interesting properties and drawn considerable
attentions. OCBP explores the job-level priority order in a very
flexible manner to drastically improve the system schedulability.
However, the job priority exploration in OCBP involves nontrivial
overheads. In this work, we propose a new algorithm LPA
(Lazy Priority Adjustment) based on the OCBP approach, which
improves the state-of-the-art OCBP-based scheduling algorithm
PLRS in both schedulability and run-time efficiency. Firstly, while
the time-complexity of PLRS’ online priority management is
quadratic, our new algorithm LPA has linear time-complexity at
run-time. Secondly, we present an approach to calculate tighter
upper bounds of the busy period size, and thereby can greatly
reduce the run-time space requirement. Thirdly, the tighter busy
period size bounds also improve the schedulability in terms of
acceptance ratio. Experiments with synthetic workloads show
improvements of LPA in all the above three aspects.

I. INTRODUCTION

Modern embedded systems usually integrate multiple func-
tions on a shared platform to meet various constraints on sys-
tem size, cost and power. These different functions may not be
equally critical to the overall system performance, and are usu-
ally subject to more or less rigorous certifications/validations.
Such mixed-criticality systems bring significant challenges in
the design of embedded real-time systems.

In 2007, Vestal [16] first formalized the mixed-criticality
scheduling problem, which turned out to be significantly more
difficult than the traditional real-time scheduling problem.
Traditional scheduling techniques like EDF and Criticality-
Monotonic scheduling may lead to poor system schedulability.
In recent years, this challenging problem has drawn consider-
able attentions in the real-time scheduling research community.
A number of heuristic algorithms and analysis techniques
are developed to achieve better schedulability performance in
terms of quantitative performance guarantees and/or accep-
tance ratio.

Among those, the OCBP (Own Criticality Based Priority)
algorithm family has shown interesting properties. First, it
is applicable to a wide range of settings (both finite job
collections and sporadic task systems; with or without ex-
ecution time monitoring support). Second, it has the best
known quantitative performance guarantee in terms of speedup
factor for sporadic task systems. The main idea of OCBP
is to explore the job-level priority order in a very flexible

manner to optimize system schedulability. This can be viewed
somehow as combining the benefits of EDF which makes
scheduling decisions based on job-level priorities and fixed-
priority scheduling with OPA (optimal priority assignment)
[1] which explores task-level priority orders to improve system
schedulability. Indeed, OCBP is optimal, in terms of speedup
factors, in scheduling a finite collection of mixed-criticality
jobs among all job-level priority based algorithms. Although
OCBP is originally designed for the mixed-criticality schedul-
ing problem, it actually represents a powerful approach which
may be applied to a much wider range of scheduling problems
where traditional EDF and fixed-priority scheduling techniques
do not perform well.

However, applying OCBP to schedule sporadic task systems
may cause nontrivial run-time efficiency problems. Due to the
infinite and non-deterministic natural of jobs released by a
sporadic task, it is infeasible to provide a complete offline
priority assignment plan to all the jobs released at run-time.
To solve this problem, Li and Baruah [3] proposed an OCBP-
based algorithm (called LB in this paper), which from time
to time recomputes the priority assignment of future jobs.
LB generalizes OCBP’s speedup factor 1.618 in scheduling
a finite collection of mixed-criticality jobs to mixed-criticality
sporadic tasks. However, the online priority assignment re-
computation in LB has pseudo-polynomial time-complexity
(polynomial regarding the maximal busy period size), which
is too high for realistic run-time schedulers. Later, Guan et
al. [9] proposed an algorithm, called PLRS, to improve the
run-time efficiency of LB. The time-complexity of the online
priority management in PLRS is quadratic (regarding the
number of tasks). Indeed, a quadratic-time scheduler is much
more convincing than the pseudo-polynomial version, but one
may still worry if this is efficient enough in practice, since in
run-time schedulers quadratic-complexity operations are still
generally considered to be a bit too expensive and should be
avoided as much as possible. Moreover, both LB and PLRS
need to store the priority assignment plan for future jobs that
may be released in the longest busy period, which is of pseudo-
polynomial complexity and in practice usually very large.

In this work, we propose a new OCBP-based scheduling
algorithm, LPA (Lazy Priority Adjustment), which improves
the state-of-the-art OCBP-based algorithm PLRS in both run-
time efficiency and schedulability:
• Improving online time efficiency. LPA’s run-time pri-

2013 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

247978-1-4799-0850-9/13/$31.00 ©2013 IEEE

ority management has linear time-complexity, which is
more efficient than PLRS, whose run-time priority man-
agement has quadratic time-complexity. Simulations with
synthetic task systems show that LPA is not only superior
in theoretical complexity bounds, but also can signif-
icantly improve the the run-time overhead in practice
comparing with PLRS.

• Improving online space efficiency. We propose a tighter
bound of the maximal busy period size for mixed-
criticality sporadic task systems. Since the run-time space
efficiency of OCBP-based algorithms is proportionate
to the maximal busy period size, LPA can significantly
reduce the run-time storage requirement comparing with
PLRS.

• Improving schedulability. LPA improves the schedula-
bility of PLRS, in the sense that it can successfully sched-
ule a considerable amount of task systems that are non-
schedulable by PLRS. The schedulability improvement is
also due to our tighter maximal busy period size bound.

II. RELATED WORK

As far as we know, Vestal [16] firstly identified and formal-
ized the mixed-criticality scheduling problem and proposed
a fixed-priority scheduling algorithm based on “Audsley ap-
proach” [1] for such systems on a preemptive uni-processor
platform. This algorithm was then improved by integrating
EDF to schedule tasks assigned to the same priority level [4].
Recently, Baruah et al. [5] studied the response time analysis
of fixed-priority scheduling algorithm and disclosed the effect
of different level of system support to the schedulability. These
works are in the framework of traditional real-time scheduling
techniques like EDF and fixed-priority scheduling, which may
lead to poor performance for mixed-criticality systems.

Baruah et al. [3] conducted a series of fundamental studies
of the mixed-criticality scheduling problem, starting from a
simple setting of a finite collection of mixed-criticality jobs
with known release times. It is proven that the problem is
highly intractable even with this very simple setting [3]. As an
efficient heuristic, they proposed the OCBP (Own Criticality
Based Priority) [3] algorithm, which has the optimal speedup
factor 1.618 among all fixed-job-priority algorithms for this
model [2]. As introduced in last section, the OCBP approach
is extended to sporadic task systems, but with a pseudo-
polynomial complexity at run-time [12], and later is improved
to quadratic complexity [9]. One major contribution of our
work is to further improve the OCBP approach for linear
complexity at run-time.

Another line of work uses the EDF-VD (EDF with Vir-
tual Deadlines) approach to schedule mixed-criticality peri-
odic/sporadic task systems. For the special case where all
tasks’ relative deadlines equal to their periods, EDF-VD can
achieve a better speedup factor than OCBP, but in general
OCBP still has the best known speedup factor. Ekberg and
Yi [8] extended the demand-bound function [6] analysis tech-
niques for mixed-criticality sporadic tasks, and improved the
EDF-based schedulability by the similar idea with EDF-VD.

De Niz et al. [7] developed the Zero-Slack algorithm to
schedule mixed-criticality sporadic task system. The key idea
is to keep the high-criticality jobs from the interference of low-
criticality jobs by adjusting jobs’ priorities dynamically. This
approach has been extended to handle non-preemptable shared
resources platforms [11] and distributed platforms where the
mixed-criticality workload needs to be allocated to different
execution units [10].

For the multiprocessor setting, Mollison et al. [14] encap-
sulated tasks with different criticality levels into containers,
and used a criticality monotonic priority assignment scheme
to schedule these containers on multicore systems. Pathan
[15] extended the traditional global multiprocessor scheduling
techniques to mixed-criticality systems. Li and Baruah [13]
presented the fp-EDF algorithm for mixed-criticality implicit-
deadline sporadic task systems based on the EDF-VD ap-
proach.

III. SYSTEM MODEL AND DEFINITIONS

In this section we formally define the mixed-criticality (MC)
sporadic task model on a preemptive single processor system.
Similar with the traditional sporadic task model, we define an
MC sporadic system as a finite set of independent MC sporadic
tasks, each of which generates a potentially infinite sequence
of MC jobs.

A. MC Tasks and MC Jobs

Each MC task is characterized by an 4-tuple τi =
(Ti, Di, Ci, ζi), where
• Ti ∈ R+ is the minimal inter-arrival separation (period).
• Di ∈ R+ is the relative deadline.
• Ci : N+ → R+ is the WCET function, specifying the

WCET of the task at each criticality level: Ci(`) denotes
the WCET of task τi at criticality level `.

• ζi ∈ {1, 2, . . . , L} is the criticality level of task τi, where
a greater value indicates a higher criticality and L is the
total number of criticality levels in the system.

Note that relative deadlines can be arbitrary positive real
numbers without any restrictions regarding the task period,
i.e., Di can be larger than, smaller than or equal to Ti.

The jth job generated by task τi is denoted by Jji , which
is characterized by its release time rji ∈ R+. Further, dji =
rji +Di is the absolute deadline of Jji and we use f ji : rji <
f ji ≤ d

j
i to denote the finish time of Jji . Note that all jobs of

τi have the same WCET function Ci and criticality level ζi.
The LPA scheduling algorithm of this paper is based on job-

level priority, i.e., each job has a fixed-priority. Following the
convention in real-time scheduling literature, we use a smaller
priority value to represent a higher priority.

B. MC Sporadic Task System Run-time Behavior

The semantic of the MC job is as follows. An MC job
Jji is released by task τi at time instant rji , and needs to
execute for γji time units. The exact value of γji is not revealed
until Jji signals that it has completed execution. The values
of γji measured from a given run defines the kind of behavior

248

exhibited by the MC system during that run. We say that the
MC system exhibits λ−criticality behavior, where

λ = max
∀γji

{
`|min

{
`|γji ≤ Ci(`)

}}
. (1)

In particular, if any job Jji has executed for Ci(L) without
signaling completion, we define the behavior of such run as
erroneous. In the following of this paper, we assume that the
system will not exhibit erroneous behavior.

Equation (1) implies that for each run-time job Jji , a longer
execution time γji leads to a potentially higher-criticality
behavior of it. Further, the jobs with the highest-criticality
behavior determine the criticality of the system behavior.

C. MC Schedulability

The schedulability of an MC system depends on the certifi-
cations on each system behavior level. Based on this principle,
we give the definition of MC-schedulability under a scheduling
algorithm A as below:

Definition III.1 (MC-schedulability). Given a scheduling al-
gorithm A, an MC task system π is MC-schedulable by A iff
the following implication holds for each λ-criticality system
behavior:

∀τi : ζi ≥ λ⇒ ∀Jji : Jji has finished by dji .

If the system exhibits λ-behavior, all the jobs with criticality
lower than λ do not need to meet their deadlines. The system
designers guarantee the temporal correctness of an MC task
τi only in the assumption that the criticality of the system
behavior does not exceed ζi, and it is not required for the jobs
generated by τi to meet their deadlines in higher-criticality
system behaviors.

IV. THE NEW ALGORITHM LPA
The common reason of PLRS and LB’s efficiency problem

is that they perform heavy priority re-computations for the
whole MC task set at each time instant when a preemption
occurs. Some priority assignment plans may be recomputed
for many times before the scheduler actually uses them (some
of them may be even unused until the current busy period is
over), which leads to a lot of redundant computation that are
actually irrelevant to the actual scheduling decisions.

In this paper, we propose a new algorithm LPA (Lazy
Priorities Adjustment). As suggested by its name, LPA adjusts
priorities as lazy as possible, in order to as much as possible
avoid redundant priority re-computations at preemption points.
When a preemption occurs, LPA does not immediately per-
form the heavy priority adjustment for all the tasks. Instead,
it only lets each task to record this event. Based on the
prior preemption records, LPA performs a lightweight priority
adjustment for the jobs of task τi when a new job Jci is
released. In this way, LPA avoids the heavy but unnecessary
online priority re-computations, but only performs lightweight
adjustment when a job is released.

Furthermore, we also propose a new approach to calculate
a tighter upper bound of the maximal size of busy periods

for an MC sporadic task. By this tighter bound we not only
reduce the online space overhead but also further improve the
schedulability, in terms of acceptance ratio, comparing with
PLRS and LB.

A. Offline Priority Assignment

Similar with LB and PLRS, LPA uses the notion of busy
period to solve the problem of priority assignment for infinitely
many jobs released by an MC sporadic task system: at any
time, one only needs to consider the priority assignment for
finitely many jobs that may be released in a busy period.
This is because by work-conserving scheduling algorithms the
processor will be idle if and only if there are no released jobs
without completing execution or being terminated (e.g., system
criticality upgrading causes all of the lower-criticality jobs to
be terminated), and there must be an idle interval between any
two successive busy periods. Therefore, no job released before
a busy period can affect the scheduling of jobs released in that
busy period.

The first step of the offline priority assignment is to compute
the maximal size of busy periods for an MC sporadic task
system. Li and Baruah [12] introduced a method to compute
an upper bound of the maximal busy period size. In this paper,
we will derive a tighter upper bound of the maximal busy
period size, which will be discussed in subsection IV-E.

We use I to denote the set of jobs that can be released in
a busy period, and ni =

⌈
Γ
Ti

⌉
(Γ denotes the upper bound of

busy period size) to denote the number of task τi’s jobs in I .
The total number of jobs in I is denoted by n =

∑
τi∈π ni.

LPA’s offline algorithm assigns priorities to all the jobs in I
based on the OCBP principle. We use a variable δi to denote
the number of task τi’s jobs that have not been assigned a
priority yet. Initially, δi = ni. At each step, the algorithm
checks each task’s largest-index job to find a job Jδkk which
can be assigned the lowest priority among all the jobs that
have not been assigned a priority, by examining whether the
following condition is satisfied:∑

τj∈π

(Cj(ζk) · δj) ≤ Tk · (δk − 1) +Dk (2)

The LHS of the inequality represents the total workload of
all the jobs that will get priority higher than or equal to Jδkk
under the ζk-criticality system behavior, and the RHS is the
minimal distance between the absolute deadline of Jδkk and the
beginning of the current busy period. Generally, the algorithm
may find more than one eligible jobs in each step, and we can
select any of them to assign the current lowest priority. After
assigning the lowest priority to Jδkk , we reduce δk to δk−1 and
repeat the former procedure until no jobs left without being
assigned a priority or at some iteration no job is eligible to
get the lowest priority. If each job in I has been assigned a
priority successfully, we say that the offline algorithm of LPA
succeeds, otherwise, it is a failure. We use a table Λ to record
the results of the offline priority assignment algorithm.

According to the offline priority assignment algorithm, we
have the follow lemma:

249

Table I
AN EXAMPLE TASK SET

Task Ti Di ζi Ci(1) Ci(2)
τ1 10 10 1(LOW) 1 1
τ2 20 20 2(HIGH) 1 2
τ3 30 30 1(LOW) 15 15
τ4 50 50 2(HIGH) 15 25

Lemma IV.1. For any two jobs Jmi and Jni of task τi in the
same busy period, if ni > m > n ≥ 0 then Λi(m) > Λi(n).

Example IV.2. Consider the MC task set in Table I. We
assume n1 = 5, n2 = 3, n3 = 2 and n4 = 11. At the first
step, we check the candidate jobs

{
J5

1 , J
3
2 , J

2
3 , J

1
4

}
for the

lowest priority. We first check job J5
1 . Since ζ1 = 1, the LHS

of Condition (2) equals:

C1(1)× δ1 + C2(1)× δ2 + C3(1)× δ3 + C4(1)× δ4 = 53.

On the other hand, the RHS of Condition (2) is:

T1 × (δ1 − 1) +D1 = 50 < 53.

Since Condition (2) is false for J5
1 , we go to the next candidate

J3
2 . Since ζ2 = 2, the LHS equals:

∑
∀τi Ci(2)·δi = 66, but the

RHS is 60. So J3
2 is not eligible for the lowest priority either,

and we go to the next candidate J2
3 . For J2

3 , LHS = 53 and
RHS = 60, so Condition (2) is true and it can be assigned the
lowest priority 11 at that step. Then we set δ3 = δ3 − 1 = 1
and go into the next iteration. Following the steps above, we
can construct the priority assignment for all the jobs that can
be released in a busy period as below:

Λ1 1 2 4 8 9
Λ2 3 6 10
Λ3 5 11
Λ4 7

Note that the priority assignment obtained in the offline
phase of LPA cannot be directly used for online priority
assignment. Simply following this plan to assign priorities to
jobs that are actually released at run-time does not guarantee
the system schedulability. This information is just a reference
for actual online priority assignment. The run-time scheduler
of LPA will adjust the priority assignment based on current
system state information.

B. Run-time Scheduling

We cannot directly use the offline constructed priority
assignment plan to assign priorities to jobs released by the
system at run-time. This is because that our offline priority
assignment assumes that all tasks release their first jobs at
the beginning of the current busy period simultaneously and
the successive jobs Jc+1

i are released exactly at rci + Ti, but
in sporadic task systems a job may be released at any time

1The potential number of jobs that can be released in same busy period is
actually larger than our assumption. Here we only consider a small subset of
them for demonstration.

instant, as long as the inter-release separation constraint is
satisfied. Now we introduce our run-time scheduling of LPA
to solve this problem.

LPA is a job-level fixed-priority preemptive scheduling algo-
rithm. The system criticality ` is assigned to the lowest value 1
when the system starts execution and at any time instant when
the processor becomes idle. The system criticality ` will be
increased to ` + 1 when any job Jci executes for more than
Ci(`) time units without signaling completion. At any time,
LPA always only assigns the processor to the highest priority
unfinished job among the ones whose criticality levels are
equal to or higher than current system criticality. It implies that
all the tasks satisfying ζi ≤ ` will be discarded immediately
when system criticality upgrades to `+ 1.

For each MC task τi, we use a variable idxi to indicate the
sequence number of the coming job Jci in the current busy
period. We do not directly use Λi(c − 1) for its priority (the
index of Λi() starts from 0, so the cth element in Λi is Λi(c−
1)). Instead, we use an adjusted value Λi(c− αi) : 0 ≤ αi ≤
c. The key goal of our new algorithm LPA is to efficiently
calculate a proper offset variable αi for each released job Jci to
assign its run-time priority prt(Jci) in the current busy period.

When system starts a new busy period, LPA resets idxi
and αi to 1 for each task τi, i.e., in the current busy period,
the first coming job J1

s gets the first value Λs(0) of Λs for
its priority and αi = 1 will be used to calculate future jobs’
priorities until some run-time preemption occurs. Unlike LB
and PLRS, LPA does not adjust priorities for all the future
jobs at every preemption point. Instead, we define a variable
δi for each task τi to record the maximal priority value of
the jobs which are preempted during (rc−1

i , rci], and only do
lightweight adjustment when a future job is released. This is
the key for LPA to have linear run-time complexity.

To calculate the proper αi for each job of task τi, LPA also
maintains an auxiliary set Ωi = {(x1, y1) , (x2, y2) , · · · }. For
each tuple (xj , yj) in Ωi, xj records a previously used α′i
and yj records the preemption value δ′i when this tuple was
inserted. The pseudo codes of the online priority assignment
routine AdjustPrt is shown in Figure 1.

When a job Jck is released, LPA executes the priority adjust-
ment routine AdjustPrt to check whether all the previously
released jobs are finished. If yes, a new busy period starts,
and LPA resets the scheduling variables to the initial values.
Otherwise, if the criticality of the released job is not lower
than current system criticality, LPA will execute AdjustPrt to
assign it an appropriate priority and add it to the ready queue.

AdjustPrt first uses α′ to record the current offset variable
αk, then assigns Jck the priority Pk = Λk(idxk − αk) and
compares Pk with the maximal between δk and current running
job’s priority value. If Pk is higher (the value is smaller),
AdjustPrt increases αk to idxk and assigns Λk(0) to Pk. Then
the routine checks the preemption condition by comparing Pk
with the currently running job’s priority. If Pk is higher, each
task’s preemption record variable δi will be updated as shown
at line 13 of the AdjustPrt algorithm.

The Modify function is used to update the auxiliary set

250

1: if there are no unterminated jobs except Jck then
2: for each τi ∈ π do
3: (idxi, αi, δi,Ωi)← (1, 1, 0, ∅)
4: end for
5: prt(Jck)← Λk(0); idxk ← idxk + 1
6: else
7: Pcur ← priority of the current job
8: α′ ← αk; Pk ← Λk(idxk − α′)
9: if Pk < max{δk, Pcur} then

10: αk ← idxk; Pk ← Λk(0)
11: end if
12: if Pk < Pcur then
13: update δi ← max{δi, Pcur} for ∀τi
14: end if
15: Modify(Ωk, α′, αk, δk) {check and update Ωk}
16: prt(Jck)← Pk; (idxk, δk)← (idxk + 1, 0)
17: end if

Figure 1. The online priority assignment routine AdjustPrt.

Modify(Ωk, α′, αk, δk)
1: if α′ < αk then
2: for each (xi, yi) in Ωk satisfies yi ≤ δk do
3: remove (xi, yi) from Ωk
4: α′ = min{α′, xi}
5: end for
6: add (α′, δk) to Ωk
7: end if
8: for (xi, yi) in Ωk satisfies yi ≤ Λk(idxk + 1− αi) do
9: αk = min{αk, xi}

10: end for
11: remove any tuple (xi, yi) satisfying xi ≥ αk from Ωk

Figure 2. The Modify function invoked in AdjustPrt.

Ωk and offset variable αk. It comprises two parts which are
detailed in Figure 2. In the first part, starting from line 1
and ending at line 7, if the previous offset value α′ is less
than the current value αk, i.e., αk is updated just now, the
previous value α′ needs to be stored in Ωk for reusing in
future. From line 2 to line 5, the Modify function removes all
of the tuples in which the recorded preemption δi is not greater
than current preemption value δk, and meanwhile, updates α′

to the minimum recorded offset value of the removed tuples.
Then the Modify function checks whether the current offset
variable αk needs to be replaced by some previous offset value
in Ωk following line 8 to line 10, then removes all of the tuples
whose recorded offset value αi is no less than the current offset
value αk.

Finally, AdjustPrt assigns Pk as Jck’s run-time priority and
updates idxk and δk to idxk + 1 and 0 respectively.

Any MC sporadic task set that succeeds with the offline pri-
ority assignment of LPA is guaranteed to be MC-schedulable
by the run-time scheduling of LPA, the proof of which is
shown in the appendix.

0 5 10 15 20 25 30 35 40 45 50 time

τ1 :

τ2 :

τ3 :

τ4 : J1
4 [7]

J1
3 [5] J2

3 [11]

J1
2 [3] J2

2 [3] J3
2 [3]

J1
1 [1] J2

1 [1] J3
1 [1] J4

1 [1]

Figure 3. An example of scheduling sequence during a busy period

C. A Running Example

We use the MC task system in Table I and the priority plan
computed in Example IV.2 to illustrate how AdjustPrt(Jci)
works in a busy period BI , as shown in Figure 3.

Without loss of generality we assume that the new busy
period starts at time 0, at which time point τ3 and τ4 re-
lease their first job simultaneously2 and all of the scheduling
parameters are reset to the initial values, i.e., ∀τi ∈ π :
idxi = 1, α′ = αi = 1, δi = 0,Ωi = ∅. According to
AdjustPrt, J1

3 gets the priority Λ3(0) = 5, which is higher
than prt(J4) = Λ4(0) = 7, thus J1

3 starts execution. The
following released jobs J1

1 and J1
2 get priorities Λ1(0) = 1 and

Λ2(0) = 3 respectively. For the jobs released so far, AdjustPrt
does not modify the auxiliary set Ωi and offset variable αi,
because α′ = αi.

When J2
1 , the second job of task τ1, is released at time 17.5,

the current offset variable α′ = α1 : 1 and AdjustPrt(J2
1)

tries to set its priority to Λ1(idx1 − α′) = 2, which is higher
than the running job J1

4 ’s priority 7, so this function adjusts
current offset variable α1 = idx1 : 2 and reassigns P1 =
Λ1(0) : 1 < prt(J1

4) : 7, then updates the preemption record
parameter δi to max{δi, 7} for each task τi. Since α1 = 2 >
1 = α′, the Modify function adds the tuple (α′ : 1, δ1 : 7) to
set Ω1.

Similar operations are conducted when J2
2 is released at

time 28. At the beginning of AdjustPrt(J2
2), α′ = α2 :

1, prt(J1
4) = 7, Ω2 = {}, Λ2(idx2 − α2) = 6 < δ2 = 7,

so the routine sets α2 = idx2 : 2 and P2 = Λ2(0) : 3
at line 10, then updates the preemption records for each
task. Since α2 > α′, the Modify function executes line 2
to line 6 to add (α′ : 1, δ2 : 7) to Ω2. However, since
Λ2(idx2 : 2 + 1 − x1 : 1) = 10 > y1 : 7, this function
resets α2 = x1 : 1 and remove (1, 7) from Ω2, i.e., Ω2 ← ∅,
following line 8 to line 11 in Figure 2.

D. Run-time Complexity

In this section, we discuss the run-time complexity of
AdjustPrt. It is obvious that there are only two non-nested
loops (line 2 to line 4, and line 13) in Figure 1, and each
loop only iterates for N (the number of tasks) times. In the

2In this example, we assume the scheduler firstly receives the releasing
event of J1

3 , and, of course, it may treat J1
4 as the first job during the current

busy period. However, it does not impact the priority assignment results in
this time instant.

251

following we will show that the complexity of the Modify
function is also O(N), and thereby the overall complexity of
AdjustPrt is O(N).

Lemma IV.3. At any time the number of elements in each
Ωi : τi ∈ π is no more than N .

Proof: Following the run-time scheduling policy of LPA,
once a new element (x, y) is inserted to Ωi at rci , there
must exist a job Jpk preempted at time t ∈ (rc−1

i , rci] during
the current busy period, and no job with priority lower than
prt(Jpk) was preempted during (rc−1

i , rci].
Then we prove by contradiction. Suppose at a time instant

t1 in the current busy period, Ωi gets the (N + 1)st element
(xN+1, yN+1), and the related job is denoted by J1. Since the
total number of tasks is N , there must exist a previous inserted
element (xm, ym) whose relevant job J2 was generated by the
same task as J1 at a time instant t2 during the current busy
period. Since the element (xm, ym) is still contained in Ωi
at t1, by the definition of Modify function in Figure 2, we
know that no job with priority lower than ym was preempted
during the time interval [t2, t1]. Therefore, each job J that
has executed during [t2, t1] satisfies prt(J) < prt(J2), thus,
prt(J1) < prt(J2). By Lemma VI.5, J2 cannot be active
at the release time r1 of J1, i.e., J2 must have finished its
execution during (t2, t1). However, when J2 finishes exe-
cution, the current busy period will be over unless another
active job with a lower priority executes. It contradicts with
prt(J) < prt(J2). So the lemma is proved.

Theorem IV.4. The run-time priority management of LPA is
of complexity O(N).

Proof: By Lemma IV.3, we know that at any time the
maximal number of elements in each Ωi is N (the number
of tasks in the system). Therefore the run-time complexity
of the three Ωi-size based loops (line 2 to line 5, line 8 to
line 10, and line 11 in Figure 2) is O(N). Combining the
complexity analysis of the other parts of AdjustPrt, the overall
time complexity of the online priority management of LPA is
O(N).

E. Bounding the Busy Period Size
In [12], Li and Baruah introduced an upper bound of the

maximal busy period size based on the load metric for dual-
criticality systems. Their bound is safe, but grossly over-
approximate. Since the OCBP approach (all of LB, PLRS and
LPA) needs to store the offline constructed priority assignment,
a more precise bound is important to reduce the run-time space
overhead. Actually, a more precise busy period size bound not
only improves the run-time space efficiency, but also improves
the system schedulability as will be discussed later in this
subsection.

In this paper, we propose an efficient algorithm to compute
a tighter upper bound of the maximal busy period size for
systems with an arbitrary number of criticality levels.

Definition IV.5. The criticality-` workload bound Γ` of
an MC task system π denotes an upper bound of the total

workload of the tasks whose criticality levels are equal or
lower than `, in any busy period where the system criticality
level do not exceed `. Note that ΓL is equal to the busy period
size upper bound of task system π. In particular, we define
Γ0 = 0.

Theorem IV.6. Given an MC sporadic task system π and the
criticality-(`-1) workload bound Γ`−1, we have

Let φ` =
Γ`−1 +

∑
ζi≥` Ci(`)

1−
∑
ζi≥`

Ci(`)

Ti

(3)

Γ` = Γ`−1 +
∑
ζi=`

Ci(`) ·
(

1 +

⌊
φ`
Ti

⌋)
(4)

Proof: Consider an arbitrary busy period BI , starting at
ts, in which the system criticality level upgrades to ` at some
time instant t∗ and keep this level until BI is over at te. We use
Wi to denote the workload of task τi in BI , and divide the total
workload into W l− =

∑
∀ζi<`Wi, W ` =

∑
∀ζi=`Wi and

W `+ =
∑
∀ζi>`Wi. Because W `− can only be accumulated

from [ts, t
∗) which must be in some busy period in which the

system criticality level keep from going beyond ` − 1, it is
clear that

W `− ≤ Γ`−1. (5)

Then, we prove by contradictions. We use bl to denote the
length of BI , and it is clear that bl = W `−

m + W `
m + W `+

m .
By (5), we have that∑
∀ζi=`

Ci(`) · (1 +

⌊
bl

Ti

⌋
) ≥ W `

m

>
∑
∀ζi=`

Ci(`) ·
(

1 +

⌊
φ

Ti

⌋)

⇒ bl > φ

⇔ bl >
Γ`−1 +

∑
∀ζi≥` Ci(`)

1−
∑
∀ζi≥`

Ci(`)

Ti

⇔ bl > Γ`−1 +
∑
∀ζi≥`

Ci(`) ·
(

1 +
bl

Ti

)

≥ Γ`−1 +
∑
∀ζi≥`

Ci(`) ·
(

1 +

⌊
bl

Ti

⌋)
≥ W `− +W ` +W `+

⇔ bl > bl

The contradiction proves the theorem.

By Theorem IV.6, we give a recursive algorithm to bound
the longest busy period through bounding ΓL as shown in
Figure 4.

Comparing with the bound computed in [12], we can also
reduce the number of jobs for each task τi during same busy

252

ComputeGamma(`)
1: if ` = 0 then
2: return 0
3: end if
4: Γ← ComputeGamma(`− 1)

5: γ ←
Γ +

∑
ζi≥` Ci(`)

1−
∑
ζi≥`

Ci(`)

Ti

6: return Γ`−1 +
∑
ζi=`

Ci(`) ·
(

1 +

⌊
γ`
Ti

⌋)
Figure 4. Compute Criticality-` work load.

period by parameter φ` in (3), as follow

Ni =

⌈
φζi
Ti

⌉
. (6)

It is easy to see our tighter busy period size bound can
improve the system space efficiency at run-time. However,
it is a bit surprising that this also leads to improved system
schedulability. We use the following example to illustrate this.
Consider the MC task system comprises two MC tasks :

Task Ti Di ζi Ci(1) Ci(2)
τ1 15 15 2 8 14
τ2 80 80 1 9 9

According to the approach in LB [12], we can compute the
upper bound of busy period length bl = 3309. And in such a
larger interval, it contains 221 high-criticality jobs from τ1 and
42 low-criticality jobs from τ2. Since the utilization of high-
criticality task τ1 is very high (93.33%), jobs of τ1 cannot
afford too many low-criticality jobs to have higher priorities.
So at the beginning of offline priority assignment routine, it
gives low-priorities to low-criticality jobs. However, a larger
number of higher-priority high-criticality jobs will cause the
low-criticality jobs to miss their deadlines as well. In our
experiment, when the system remains 215 high-criticality jobs
of τ1 and 24 low-criticality jobs of τ2, we have:

C1(2) ·215 +C2(2) ·24 = 3226 > T1 ·214 +D1 = 3225 (7)

C1(1) · 215 +C2(1) · 24 = 1936 > T2 · 23 +D2 = 1920. (8)

So both J215
1 and J24

2 cannot be assigned the current lowest
priority, which causes the schedulability test failure. In this
case, we can find that d24

2 = 1920 and τ1 can release
⌈

1920
15

⌉
=

128 jobs at most, but the test condition (7) counts 215 jobs
from τ1 which includes too much workload overestimation.

However, with our improved method, we can compute a
much tighter upper bound blHI = 345, and it only comprises
23 high criticality jobs from τ1 and 5 low criticality jobs from
τ2. It reduces the overestimated workload significantly and can
successfully complete the offline priority assignment to this
task set (therefore, this task set is MC-schedulable by LPA).

V. EXPERIMENTAL EVALUATION

In this section we evaluate the performance improvement of
LPA over the state-of-the-art OCBP-based algorithm PLRS,

in online time efficiency, online space efficiency as well as
schedulability. Our experiments use dual-criticality implicit
deadline sporadic task model on a uni-processor platform.

We follows the approach in [8] to generate random MC
task sets. A task set is generated by starting with an empty
task set π = ∅, to which random tasks are successively
added. The generation of a random task is controlled by four
parameters: the probability PHI of being of high-criticality,
the maximal ratio RHI between high- and low-criticality
execution time of each high-criticality task, the maximal low-
criticality execution time CmaxLO and the maximal period Tmax.
Each new task τi is generated as follows:
• ζi = HI with probability PHI , otherwise ζi = LO.
• Ci(LO) is drawn from the uniform distribution over
{1, 2, · · · , CmaxLO }.

• Ci(HI) is drawn from the uniform distribution over
{Ci(LO), Ci(LO) + 1, · · · , RHI · Ci(LO)} if ζi = HI .
Otherwise, Ci(HI) = Ci(LO).

• Ti is drawn from the uniform distribution over
{Ci(ζi), Ci(ζi) + 1, · · · , Tmax}.

• Di = Ti since deadlines are implicit.
We define the average utilization of a dual-criticality task

set π as
Uavg(π) =

ULO(π) + UHI(π)

2
.

Each task set is generated with a target average utilization
U∗min with a acceptable range of errors: U∗min = U∗ − 0.005
and U∗max = U∗ + 0.005.

As long as Uavg(π) < U∗min, we generate more tasks and
add them to π. If a task is added such that Uavg(π) > U∗max,
we discard the whole task set and start with a new empty task
set. If a task is added such that U∗min ≤ Uavg(π) ≤ U∗max,
the task set is finished, unless all tasks in π have the same
criticality level or ULO(π), UHI(π) > 0.99, in which case
the task set is instead discarded. The random task sets for
each experiment are generated with parameters PHI = 0.5,
RHI = 2, CmaxLO = 10 and Tmax = 100.

We first evaluate the online scheduling time overheads
by simulating the scheduling procedures. For each random
task set, the simulator generated 1,000 randomly released
sporadic jobs to count the time overhead. We compare the time
overhead of LPA and PLRS with the following two metrics:
• Total overhead denotes the sum of measured time over-

head of these 1,000 jobs in the simulation.
• Maximal overhead denotes the maximal measured time

overhead among these 1,000 jobs in the same simulation.
Figure 5 compares the online time overheads of LPA and
PLRS. Each point in the figure includes at least 5,000 random
task sets. The x-axis is the average utilization and the y-axis
is the ratio between the total and maximal time overhead of
LPA and PLRS. For example, considering the point (0.81,
0.29) on the curve labeled Maximal overhead, the x-value
0.81 means the target utilization of the randomly generated
task sets is 81%. The y-value 0.29 means that on average the
maximal online time overhead of LPA is 29% of the maximal

253

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average utilization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
T

im
e

ov
er

he
ad

co
m

pa
ri

so
n

ra
ti

o

Total overhead
Maximal overhead

Figure 5. PHI = 0.5, RHI = 2, Cmax
LO = 10 and Tmax = 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average utilization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ac

e
ov

er
he

ad
co

m
pa

ri
so

n
ra

ti
o

Job number

Figure 6. PHI = 0.5, RHI = 2, Cmax
LO = 10 and Tmax = 100

online time overhead of PLRS. We can see that LPA can
significantly improve the online time efficiency in both the
total time overhead and maximal time overhead over PLRS,
especially for task sets with larger utilization.

We evaluate the space overheads by counting the number of
jobs that may be released in a busy period, i.e., the size of the
priority list Λ. Each point in Figure 6 includes at least 5,000
random task sets. The x-axis is the average utilization and
the y-axis is the ratio between the number of jobs that may
be released in a busy period under LPA and under PLRS. We
can see that LPA can significantly improve the online space
efficiency over PLRS as LPA uses a much shorter priority list
Λ at run-time. The advantage of LPA is greater for task sets
with larger utilization.

In the last experiment, we compare the acceptance ratio of
our improved algorithm LPA and PLRS. The simulation result
is shown in Figure 7. The x-axis is the average utilization
and the y-axis is the acceptance ratio, i.e., the portion of
schedulable task sets out of all the random task sets generated

0.5 0.6 0.7 0.8 0.9 1.0
Average utilization

0

10

20

30

40

50

60

70

80

90

100

A
cc

ep
ta

nc
e

ra
ti

o
(%

)

LPA
PLRS

Figure 7. PHI = 0.5, RHI = 2, Cmax
LO = 10 and Tmax = 100

at this utilization range. Each point in this figure is based on
10,000 random task sets. From the figure we can see that our
algorithm LPA improves the schedulability over PLRS. This
is because our tighter maximal busy period size bound can
reduce the pessimism in the workload calculation by excluding
many jobs that are not possible to execute before the deadline
of the analyzed job. The detailed explanation of this point is
provided in Section IV-E.

VI. CONCLUSION

In this paper we propose an OCBP-based scheduling algo-
rithm LPA, to schedule mixed-criticality sporadic task systems.
Comparing with the previous OCBP-based algorithms, it can
improve the online time efficiency, online space efficiency, as
well as schedulability. The central idea of LPA is to make
online priority adjustment as lazy as possible, in order to
avoid redundant priority adjustments that are not relevant to
the actual scheduling decisions. Experiments with synthetic
workloads show the performance improvement of our new
algorithm in online time efficiency, online space efficiency and
schedulability.

ACKNOWLEDGEMENT

Supported in part by “China Fundamental Research Funds
for the Central Universities” under grant No. N100204001 and
N110804003; and “China Research Fund for the Doctoral Pro-
gram of Higher Education” under grant No. 20110042110021.

REFERENCES

[1] N. C. Audsley, Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Citeseer, 1991.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
IEEE Transactions on Computers, vol. 61, no. 8, pp. 1140–1152, 2012.

[3] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in the 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010, pp. 13–22.

[4] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in the 20th Euromicro Conference on
Real-Time Systems (ECRTS), 2008, pp. 147–155.

254

[5] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in the 32nd IEEE Real-Time Systems Symposium
(RTSS), 2011, pp. 34–43.

[6] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in the 11th IEEE Real-Time
Systems Symposium (RTSS), 1990, pp. 182–190.

[7] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling
of mixed-criticality real-time task sets,” in the 30th IEEE Real-Time
Systems Symposium (RTSS), 2009, pp. 291–300.

[8] P. Ekberg and W. Yi, “Outstanding paper award: Bounding and shaping
the demand of mixed-criticality sporadic tasks,” in the 24th Euromicro
Conference on Real-Time Systems (ECRTS), 2012, pp. 135–144.

[9] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in the
32nd IEEE Real-Time Systems Symposium (RTSS), 2011, pp. 13–23.

[10] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-criticality task
synchronization in zero-slack scheduling,” in the 17th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2011,
pp. 47–56.

[11] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, “Resource
allocation in distributed mixed-criticality cyber-physical systems,” in the
30th IEEE International Conference on Distributed Computing Systems
(ICDCS), 2010, pp. 169–178.

[12] H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems,” in the 31st IEEE Real-Time Systems
Symposium (RTSS), 2010, pp. 183–192.

[13] ——, “Outstanding paper award: Global mixed-criticality scheduling
on multiprocessors,” in the 24th Euromicro Conference on Real-Time
Systems (ECRTS), 2012, pp. 166–175.

[14] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos,
“Mixed-criticality real-time scheduling for multicore systems,” in the
10th IEEE International Conference on Computer and Information
Technology (CIT), 2010, pp. 1864–1871.

[15] R. Pathan, “Schedulability analysis of mixed-criticality systems on mul-
tiprocessors,” in the 24th Euromicro Conference on Real-Time Systems
(ECRTS), 2012, pp. 309–320.

[16] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in the 28th IEEE Real-
Time Systems Symposium (RTSS), 2007, pp. 239–243.

APPENDIX: CORRECTNESS OF LPA

We will prove that any MC task set that succeeds with the
offline priority assignment of LPA is MC-schedulable by the
online scheduling of LPA.

Definition VI.1 (Busy Set). During a certain run-time busy
period, suppose there exists a job Jαi : α ∈ N getting Λi(0) as
its priority. The busy set Sα is the set of τi’s jobs Jci satisfying
c ≥ α.

Definition VI.2 (Problem Window). Given a run-time job Jck
with a run-time priority Λk(c − α), the problem window of
Jck is the time interval (rαk , f

c
k], where rαk denotes the release

time of a job Jαk that gets Λk(0) as its priority in the current
busy period.

Note that for each offset value θ used as αi in the current
busy period, it can only be activated when a certain job Jθi is
released and assigned the priority Λi(0).

Definition VI.3 (Bound of Interrupt Count). Given a run-time
job Jck and a task τi, the bound of interrupt count, denoted
by BIC(Jck, τi), is the maximal number of jobs of τi whose
priority is equal to or higher than Jck in Jck’s problem window.

Definition VI.4 (Active Job). A job that has been released but
has not been finished execution or terminated due to system
criticality upgrading.

Lemma VI.5. Suppose an arbitrary job Jci ∈ Sα is released
at time instant rci , and finished at time instant f ci , i.e., Jci is
active during (rci , f

c
i). For each job Jhi : h > c, which is

released when Jci is active, satisfies Jhi ∈ Sα.

Proof: We prove by contradiction. Assume job Jhi is the
first job released in (rci , f

c
i) satisfying

prt(Jhi) < Λi(h− α).

Suppose job Jhi is released at time instant rhi . At rhi , by the
definition of AdjustPrt, it is obvious that

δi > Pk ≥ Λi(h− α) > Λi(c− α) = prt(Jci).

Therefore, there must exist a job Jl of priority δi which is
preempted in (rci , r

h
i] ⊂ (rci , f

c
i), i.e., such a job Jl with

priority δi > prt(Jci) must have executed for a while during
(rci , r

h
i]. Moreover,Jci is active in (rci , r

h
i].

However, a job with lower priority cannot preempt a higher-
priority job, so Ji cannot execute in (rci , f

c
i), in which Jci is

active.
Therefore, this contradiction proves the lemma.

Lemma VI.6. For an arbitrary run-time job Jck which gets
priority Λk(c−α) following the rule of AdjustPrt, it must be
true that no jobs with priority lower than prt(Jck) executes
during the problem window of Jck .

Proof: If c = α, then Jck’s problem window is (rck, f
c
k] and

it is clear that no jobs with priority lower than prt(Jck) could
execute during it. We prove this lemma under the condition
of c > α by contradiction.

Assume J∗ is the lowest-priority job executing in Jck’s
problem window (rαk , f

c
k], which satisfies prt(J∗) > prt(Jck).

Since prt(J∗) > prt(Jck), J∗ cannot execute in time interval
(rck, f

c
k], so we only analyze the case that J∗ executes in

(rαk , r
c
k]. Once J∗ starts execution, it must be the only active

job in the system. If no higher priority job releases and
preempts it, J∗ will finish or be terminated at some instant
t∗ ∈ (rαk , r

c
k], at which point a lower-priority job starts execut-

ing or the current busy period is over before Jck’s arrival. Both
of these two cases contradict with our assumptions. Therefore
J∗ must be preempted at some time instant tp ∈ (rαk , r

c
k]

and then keep active until f ck . We use Jnk : α < n ≤ c to
denote the first released job of τi during [tp, rck]. As discussed
above, we have Pk < prt(J∗) = δ′ at rnk , thus αk is set to
n > α and a tuple (α′, δ′) must be added to Ωk following the
Modify function. Furthermore, since J∗ is the lowest-priority
job during (rαk , r

c
k], we have know δk < δ′ during (rαk , r

c
k].

If α′ 6= α, since all the tuple (x, y) satisfying y ≤ δ′ will be
removed by the Modify function at Jnk ’s release time, and Ωk
does not include such a tuple containing the offset record α,
thus αk cannot be reset to α after rnk during the current busy
period. It contradicts with the assumption that some future
job Jck gets the priority Λk(c − α′). And if α′ = α, due to
∀idx < c : Λk(idx + 1 − α) ≤ Λk(c − α) < δ′, α cannot be
reused before Jck’s release time. And it contradicts with the
assumption as well.

255

Lemma VI.7. Given an arbitrary run-time job Jci ∈ Sα, for
each τi’s job Jhi : h > c which belongs to the same busy
period as Jci , if no jobs with priority lower than Λi(h − α)
executes during the time interval (rαi , r

h
i], then Jhi ∈ Sα, i.e.,

prt(Jhi) ≥ Λi(h− α).

Proof: We prove this lemma by contradiction. Assume
Jhi : h > c is the first job of τi satisfying prt(Jhi) < Λi(h−α),
i.e., αhi > α. By the definition of the Modify function in
Figure 2, if no future jobs get priority Λi(0), the value of αi is
monotonically decreasing, so prt(Jci) = Λi(c−αi) ≥ Λi(c−
α). Since prt(Jhi) < Λi(h − α), it must satisfy prt(Jhi) =
Λi(0), which is true only if Pk < max {δi, Pcur}.

If δi > Pcur, there must exist a preemption during (rci , r
h
i)

and the preempted job’s priority is δi > Pk. Otherwise,
the current executing job’s priority is lower than Pk. Both
conditions imply that some job with priority lower than Pk
has executed during (rci , r

h
i).

It contradicts with the assumption that no jobs with prior-
ity lower than Λi(h − α) executes during the time interval
(rαi , r

h
i].

Lemma VI.8. Suppose a job Jck is released at time instant rck
and gets run-time priority Λk(c−αk) : 1 ≤ αk ≤ c following
the LPA policy. Then ∀τi ∈ π it satisfies

BIC(Jck, τi) ≤‖ {x|Λi(x) ≤ prt(Jck)} ‖ . (9)

where ‖s‖denotes the number of elements in set s.

Proof: Following the priority assignment policy of Ad-
justPrt, there must be a earlier job Jαkk getting Λk(0) as its
priority. And following Lemma VI.7, each Jji that executes in
(rαkk , dck] satisfies

prt(Jji) ≤ prt(Jck). (10)

To count the number of higher-priority jobs in Jck’s problem
window, we use xi to indicate the index of the first entry of
Λi, which satisfies that Λi(xi) > prt(Jck) = Λk(c− αk), i.e.,
xi = min {x|Λi(x) > prt(Jck)}. Especially, Λ(x) = +∞ for
x ≥ Ni. By Lemma IV.1, it is clear that

‖ {x|Λi(x) ≤ prt(Jck)} ‖= xi. (11)

We divide the MC task set π into two subsets πactive and
πsilent, according to whether some active jobs of the task
exists at time instant rαkk . For each MC task τi,if there exists
some active job Ji at rαkk , then τi ∈ πactive, otherwise, τi ∈
πsilent. We distinguish two cases as follows.

1) Consider πactive:
For each task τi ∈ πactive, without loss of generality, we use

Jai to indicate the least-index active job (the earliest released
one) of τi at time instant rok. Suppose that Jai is released at time
instant rai and Jai ∈ Sai. It is straightforward that a ≥ ai ≥ 1,
so Λi(a+ xi − ai) ≥ Λi(xi).

If prt(Jai) > prt(Jck), since Jck has a higher priority than
Jai , Jai will not execute in Jck’s problem window (rαkk , f ck], fol-
lowing Lemma VI.6. So Jai must keep active during (rαkk , fck]
and all of task τi’s jobs, which are released in (rαkk , f ck],

belong to Sai. Therefore, for each job Jji , such that j ≥ a
and rji ∈ (rαkk , f ck], it satisfies prt(Jji) ≥ Λi(j − ai) ≥
Λi(a− ai) = prt(Jai) > prt(Jck), i.e., no jobs of τi executes
in Jck’s problem window, thus

BIC(Jck, τi) = 0 ≤ xi. (12)

If prt(Jai) < prt(Jck), from Lemma VI.5, we can conclude
that at time instant rαkk , all of τi’s active jobs belong to Sai and
δi ≤ prt(Jai). By Lemma VI.6, no jobs with lower priority
than prt(Jck) executes and is preempted during (rok, f

c
k]3. Thus,

it satisfies that δi ≤ max {prt(Jai), prt(Jck)} = prt(Jck) <
Λi(xi) in the interval (rαkk , f ck]. Therefore, following Lemma
VI.7, for each of τi’s job Jhi : h ≥ xi+ai > c, it must belong
to Sai, i.e., prt(Jhi) ≥ Λi(xi) > prt(Jci). Thus

BIC(Jck, τi) ≤ (xi + ai)− a ≤ xi (13)

2) Consider πsilent:
For each task τi ∈ πsilent, without loss of generality, we

use Jsi ∈ Ssi to indicate the τi’s first job released in (rαkk , f ck].
As above, we also use the definition of xi. It is obvious that
s ≥ si ≥ 1 and Λi(s + xi − si) ≥ Λi(xi). And by Lemma
VI.6, during the time interval (rsi , f

c
k] ⊂ (rαkk , f ck], it satisfies

δi ≤ prt(Jck) < Λi(xi). Therefore, following Lemma VI.7, for
each of τi’s job Jhi : h ≥ xi + si > c, it must belong to Ssi.
In addition Jsi ∈ Ssi, therefore, for each of τi’s job releasing
in (rck, tf), it satisfies that if h ≥ xi + si then prt(Jhi) ≥
Λi(xi) > prt(Jci). Thus

BIC(Jck, τi) ≤ xi + si− s ≤ xi − 1. (14)

By (12), (13), (14) and (11), we have that ∀τi ∈ π it satisfies

BIC(Jck, τi) ≤ xi − 1 =‖ {x|Λi(x) ≤ prt(Jck)} ‖ .

Therefore, the lemma is proved.

Theorem VI.9. Any MC task system π that succeeds with
the offline calculation algorithm of LPA is MC-schedulable by
LPA’ run-time scheduling.

Proof: We prove this theorem by contradiction. Assume
job Jm+α−1

k is the first job missed its deadline at dm+α−1
k and

gets priority Λk(m−1). By Lemma VI.6 and Lemma VI.8, we
know that during Jm+α−1

k ’s problem window (rαk , d
m+α−1
k],

it satisfies∑
τi∈π

Ci(ζk)×BIC(Jck, τi) ≤
∑
τi∈π

Ci(ζk)× (xi − 1)

≤
∑

∀i,j:Λi(j)≤Λk(m)

Ci(ζk)

≤ Tk × (m− 1) +Dk

≤ dmk − rαk
It is contradict with (2).

3Note that there may be more than one jobs from different tasks release at
same time instant t, and the scheduler will handle these events respectively
with arbitrary order. To simplify the analysis, we treat the earlier handled job
as earlier released one and vice versa.

256

