+

Verification of Real-Time Systems

i Example: Petersson’s algorithm

turn: shared variable

+

Process 1

Loop

flagl:=1; turn:=2

While (flag2 and turn=2)
wait

Cs1
flagl:=0
End loop

Process 2

flag2:=1; turn:=1
While (flagl and turn=1)

L]
= Loop

wait
= CS2

= flag2:=
End loop

0

Question: no more than one process run in CS?

Example: the Vikings Problem

Real time scheduling

UNSAFE

c

K g

Atmost 2
crossing at a time
Need torch

Torch

SAFE

M/nes

What is the fastest time
for getting all vikings on

the
safe side ?

+

Examples

Example: Fischer’s Protocol

o -
8 ; 8
° —
[] +
° . /
v
1 k Criticial Section

. 100 Xi= >100
Init e V=1
@ @

@< 100 Ve2 Y:=0@200v:Z

* Problem: reachability analysis

= Give an automaton and a location n, or a local
property F

= Question: does it exist an execution of the
automaton, that leads to n (or a state where F
holds)?

= This is the so called reachability problem.

* Timed Automata: Semantics

State
(location, clock-assignment)

x<=5&y-x>1

Transitions

11
x:=0 (m, x=2.4,y=3.1415) ———— (m, x=3.5, y=4.2415)

(m, x=1.14, y=3.1415) — > (n, x=0, y=3.1415)
P
\

(ﬁomputation Tree (of a system)

© 00
/o< 0 0 0

all possible executions of a systems

* E<>p “p Reachable”

= it is possible to reach a state in which p is
satisfied. /‘\

= pis true in (at least) one reachable state.

* Reachability Problems

n is reachable from mif there is a sequence of transitions:

*

(m, x=r, y=s) (n, x=r", y=s")

Specifying properties of real-time
systems
--- UPPAAL querry language

* Allp “Invariantly p”

12

= A[] p — p holds invariantly.

I
P

= p is true in all reachable states.

Specifying properties in UPPAAL

— Pis aways true
Written as E<> p in UPPAAL Written as A[] p in UPPAAL
3 P

p::=A.n | ga | ge | p and p |
porp | not p | pimply p

where
« A.n denotes the node n of automaton A
- gd is a guard on data variables

3 - gcis aguard on clocks

Example querries in UPPAAL

= Reachability properties: E<> Q

= E<> P.stop

= E<> (y>200)
= Invariant properties: A[]Q

= A[]not (P1.CS and P2.cs)

= A[l(i < 100)

= A[](x>10 imply i>100)

= After 10, i should be larger than 100

= Deadlock-freedom

= A[]!deadlock

