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 Topics
 Distributed Real-Time Systems

 Bus-based multi-processor systems

 Real Time Networks
 RT busses e.g. CAN,  TTP, TTCAN 

 Analysis of Distributed RT Systems
 Message Transmission Analysis

 Response Time Analysis

Real-Time Networks and 

Distributed Systems
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A Distributed Real-Time System

3

Why Distributed Systems ?

 Physically distributed applications -
(close to physical equipment, e.g. engine control)

Modularity (components developed in isolation)

 Scalability (just add another node in the network)
 Some new cars contain > 3 miles of wire

 Clearly inappropriate to connect all pairs of communicating entities w ith their own wires

 Which needs O(n*n) w ires

 Fault tolerance (errors only propagate within sub-part of 
system)

Challenge
 build complex distributed systems and maintain high reliability 

at low cost!
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- Execution time

- Period

- Deadlines

- Dependences

Tasks

Functional

Design 

allocation/

scheduling

Kernel

3 aspects:

- off-line allocation

- run-time scheduling

- á priori schedulability analysis

Dsign of Distributed RTS

The core for the development  

of real time systems

Running
system
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RT-Networking: Basic Problem

 Competing traffic

 Guarantees
 Hard-RT: Absolute G.

 Soft-RT: Probabilistic G.

 Other issues
 Reliability

 F. detection & recovery

 Resource Utilisation

Bounded latency: A B
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RT-Networking: Solutions

CSMA/CD 
(Carrier Sense M ultiple Access / Collision Detection)

Ethernet
Collisions
back-off

Stochastic behaviour
No RT-guarantees

Token-ring

Physical or logical ring

Circulating token

No collisions
RT-guarantees possible

A

B

C

D

DC

BA
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RT-Networking: Solutions

Time triggered
TDMA 
(Time Division Multiple Access,e.g. GSM )

Pre-Scheduled
Predictable

Testable

Static
e.g. TTP

time0 T

Event triggered

CSMA/CR (Collision Resolution)
(Carrier Sense Multiple Access / Collision Resolution)

Priority driven

Dynamic Scheduling

Flexible
e.g. CAN

time0

Response time for C

Pri: A>B>C>D
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More examples

 Time triggered:
 SAFEbus - airplanes, eg. Boeing

 TTA - cars, eg. Audi, Volkswagen

 FlexRay - cars, eg. BMW, DaimlerChrysler

 Event triggered
 CAN - cars, eg. Volvo, Saab, VW, Ford, GM 

 Byteflight - cars, BMW

 LIN – a cheaper and simple bus protocol

 Mixtures
 Time-Triggered CAN (TTCAN)

 TTA extended with events
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 Initiated in the late 70’s to connect a number of processors over a cheaper shared serial 
bus

 From Bosch (mid 80ies) for automotive applications

 De facto standard for 
invehicle comm. 
(100 million CAN nodes sold 2000, 300 million sold 2004)

 Cost ~$3 / node
 $1 for CAN interface

 $1 for the transceiver

 $1 for connectors and additional board area

 Controllers available 
(from Phillips, Intel, NEC, Siemens, etc.)

 Shared broadcast bus (one sender/many receivers) (CSMA/CR)
 CAN permits ev eryone on the bus to talk

 Medium speed:
 Max: 1Mbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec

 Highly robust (error mechanisms to overcome disturbance on the bus) and 

 Real-time guarantees can be made about CAN performanc

CAN: Controller Area Network

twisted-pair, 

optic fibre or coax

CAN is Synchronous

 Fundamental requirement: Everyone on the bus sees the current 
bit before the next bit is sent

 This is going to permit a very clever arbitration scheme (later)

 Ethernet does NOT have this requirement This is one reason Ethernet 
bandwidth can be much higher than CAN

 Time per bit:
 Speed of electrical signal propagation 0.1-0.2 m/ns

 40 Kbps CAN bus → 25000 ns per bit
 A bit can travel 2500 m (max bus length 1000~1250 m)

 1 Mbps CAN bus → 1000 ns per bit
 A bit can travel 100 m (max bus length 40~50 m)

 Bandwidth
 1 Mbps up to 40~50 m

 0.5 Mbps upto 80~100 m

 40 Kbps up to ~1000 m

 5 Kbps up to ~10,000 m
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More on CAN

 Message based with payload size 0-8 bytes
 Not for bulk data transfer!

 But perfect for many embedded control applications

 CAN interfaces are usually pretty smart
 Interrupt only after an entire message is received

 Filter out unwanted messages in HW – zero CPU load
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CAN Addressing

 CAN bus can have an arbitrary number of nodes
 Nodes do not have proper addresses

 Rather, each message has an 11-bit “field identifier”

 In extended mode, identifiers are 29 bits

 Everyone  interested in a message type listens for it

Works like this: “I’m sending a temperature sensor reading”

 Not like this: “I’m sending a message to node 8”

 Designer should allocate the message identifiers to the 
stations (different nodes send different messages!)

 Each node has a queue for messages ordered by 
priorities/identifiers

12
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CAN Message Types

 Data frame: 
 Frame containing data for transmission

 Remote frame: 
 Frame requesting the transmission of a specific identifier

 Error frame: 
 Frame transmitted by any node detecting an error

 Overload frame: 
 Frame to inject a delay between data and/or remote frames if a receiver is 

not ready
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Controller Area Network (CAN)

id                control dataCAN-frame

11 bits           36 bits                  0-8 bytes

Frame layout:

 Small sized frames (messages)
 0 to 8 bytes

 Very different from mainstream computing messaging

 Relatively high overhead 
 A frame size of more than 100 bits to send just 64 bits 
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CAN data frame

Controller Area Network (CAN)
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Shared broadcast bus 

Bus behaves like a large AND-gate
- if all nodes sends 1 the bus becomes 1, otherwise 0. 

A frame is tagged by an identifier
 indicates contents of frame

 also used for arbitration as ”priority”

Bit-wise arbitration 
 Each message has unique priority 

node with message with lowest id wins arbitration

 Lowest id = highest priority!

 The CAN bus is a priority-based scheduled resource

A

B

C

D

The CAN Arbitration Mechanism
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Details on CAN

 When the bus is busy, the stations wait (listening all time)

 As soon as the bus is idle, all stations who want to send 
enter the arbitration phase (run the arbitration algorithm)
 Transmit the highest priority message, from the most significant 

bit to the least significant one

 0 is the highest priority!!
 0: dominant bit  (in fact, sending 0 by ”high voltage”)

 1: recessieve bit

 It behaves like an AND-gate

 Send and monitor:
 Send a 1, but monitor a 0: a collision

 the protocol says: nodes sending 0’s win, the others back off (monitor and 
send)

 This means: the highest priority message wins, to be transmitted

 E.g. 100, 101, 111 on three stations, 100 will be sent
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Bussen
ledig?

Vill sända ram

Nej

Ja

Lägg ut
id-bit 0

Läs värdet
på bussen

Samma som
utlagt?

Nej Lägg ut
nästa bit

Samma som
utlagt?

Ja

Nej

Sista
biten?

Nej

Ja

Läs värdet
på bussen

Skicka resten
av ramen

Ja

The CAN Arbitration Mechanism
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Node A B C D

Priority 001 010 101 011

Example:

node A wins 

arbitration

Bus 

free?

Send a frame ? 

Send ID 

bit 0

Read data on

bus

The same 

as sent?

Send next 

bit
Read data on

bus
The same 

as sent?

The last 

bit?

Send the rest of 

the frame



10/13/2008

4

“Idiot”  Node

 What happens if a CAN node goes crazy/haywire 

and transmits too many high priority frames?
 This can make the bus useless

 Assumed not to happen

 Schemes for protecting against this have been 

developed but are not commonly deployed
 Most likely this happens very rarely

 CAN bus is usually managed by hardware
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Error handling

Several types of errors:
 Checksum error, acknowledge error, 

bit error, ...

When error is detected by node it sends an 
error frame
 starting with 6 dominant bits (000000) in a row

 tells other nodes that error occurred

 other nodes then also send error frames

 Arbitration restarts when bus is idle

 In effect, error frames are used to resync 
protocol engine
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Transmission Errors

 CAN has a mechanism to protect against broken 
hardware:  error counters

 The CAN controller in a node counts failed frames and 
successful frames
 When errors exceed a threshold, the controller gets disconnected

 ERROR-counter EC

 EC:= EC+1 when an error is signalled

 EC:= EC-1 when a frame is correctly received

 EC > K the node shuts-off itself (is fail-silent)
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Details on CAN

 After the priority transmitted (the arbitration is finished), the 
rest of the message is transmitted

 A message contains: 0-8 bytes for data and 47bits OH
 Priority/identity: 11bits

 Data field: 0-8 bytes long

 CRC field (checksum, parity bits etc: checking the message has 
not been corrupted, and other ”housekeeping” bits)

 Out of the 47, 34 bits are bitstuffed

 000000 and 111111 are reserved as ”marker” to signal all 
stations on the bus
 So ”bitstuffing” is needed: whenever 00000 or 11111 appears in a 

bitstream, an extra bit of the opposite sign should be added

 E.g. 1111 1000 0111 1000 0111 1 should be

1111 1000 0011 1110 0000 1111 10
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More details on CAN

The total number before bitstuffing: 8n+47

After bitstuffing: 8n+47+(34+8n-1)/4
 Max: 64+47+24=135 bits

 E.g. 1Mbit/sec, 1 bit needs 1 micro seconds

 The max transmission time for one message= 135 
micro sec

CAN Message Scheduling

 Network scheduling is usually non-preemptive
 Non-preemptive scheduling means high-priority sender must wait while 

low-priority sends

 Short message length keeps this delay small

24
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A
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C

D

Frames
queued in
priority order

Priority queue Frame in

transmission

Removed after
transmission time

A

B

C

D

Response time

The CAN-bus Abstraction

The whole bus + CAN 

controllers can be 
abstracted as one queue
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A

B

C

D
Response time

Set of messages = M (queued on different nodes)

M
j
= < T

j
, C

j
> (M

j
M )

T
j

= period (time betw een queuing)

C
j
= transmission time

B
j
= blocking time (waiting for low priority message, bus non-preemptive) 

Worst-case waiting/queuing time (before transmission ):

q
i 
= B

i
+Sjhp(i) qi

/T
j
C

j

hp(i) = frames with priority higher than Pi

Worst-case Response time (delay before delivered):

R
i
= C

i
+q

i 

Transmission Delay 

Calculation for CAN
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Transmission delay analysis

 C
i

= (number of bits) X (time to transmit 1 bit)

 B
i

= MAX k  lp(i) (Ci) <= time to transmit 135 bits

 Worst case: B
i

= C
i
= 135 micro sec

(for 1MB/sec CAN)
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End of Story?

Unfortunately not!
 Non-periodic queuing times causes jitter

 No global time reference

 Transmission errors (recovery + retransmission)

A

B

C

D
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Queuing causes jitter

 Task_3 on node A executes with certain 

period

 Message mAtoB gets same period as 

task_3

 Shortest time before send: 
BCET = C3 for task_3

 Longest time before send: task_3’s worst 

case response time = R3 

 R3 - C3 = jitter for message mAtoB

A

B

C

D

task_3() {

while(1) {

read_sensor();

if(...)

// do some work

else

// do some other work

send_CAN(mAtoB, prio);

// some more work

sleep_until_next_period();
}

task_1   RTOS

task_2

task_3   

task_4

min

min
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Adding Jitter to the Analysis

New equation for worst-case Transmission Delay:

R
i
= J

i 
+q

i 
+ C

i

q
i 
= B

i
+Sjhp(i) (qi

+J
j
)/T

j
C

j
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Transmission Errors

Max number of errors must be bounded

Fault hypothesis 
 Error function E(t) = max time required for error 

signalling and recovery in any time interval of length t

New equation for worst-case transmission delay:

R
i

= J
i 
+ q

i 
+ C

i

q
i 
= B

i
+ E(q

i
) +Sjhp(i) (qi

+J
j
)/T

j
C

j
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Analysis of Distr. 

Systems

 System wide (end-to-end) timing requirements
 control closed over the entire system

 includes sensors, CPUs, controllers, busses, actuators, OS, ...

 Holistic analysis can be applied!

Initial 

processing
Detect obstacle

(read sensor)

Send msg 

on bus

Calculate

action

Inflate

airbag

Send msg 

on bus

A

B

C

D

time
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When tasks on a node can both send and receive 
messages we have a holistic scheduling problem

 The equations giving the worst case time for 
tasks depends on messages arriving at the node

We cannot apply the processor 
scheduling analysis before we 
get values from the bus 
scheduling analysis  

 Similarly: We cannot apply the 
bus scheduling analysis before we get values 
from the processor scheduling analysis

 Solution: Holistic Analysis

Holistic Scheduling Problem

0 CPU

CAN
msg(i)

dest(i)

msg(j)

act(i)
send(i)
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Tasks on CPUs are exchanging msgs over CAN

Tasks are queuing messages
Completion times will vary =>

 Jitter (variations in release times) will be inherited

Message m(i), queued by a task send(i):

 Jm(i)= Rsend(i) – Csend(i)

Task dest(i) is activated by a 
message m(i):

 Jdest(i) = Rm(i) - Cm(i)

Distributed Systems 

0
CPU CPU

CAN

send(i)

msg(i)

dest(i)
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Example:

 Rsend(i) = Csend(i)+Sjhp(send(i)) (Rsend(i) + Jj)/T j Cj

 Jm(i) = Rsend(i) - Csend(i) 

 Rm(i) = qm(i) + Jm(i) + Cm(i)

 qm(i) = Bm(i) +Sjhp(m(i)) (qm(i) + Jm(j)) /Tm(j) Cm(j)

 Jdest(i) = Rm(i) - Cm(i)

 Rdest(i) = wdest(i)+ Jdest(i)

wdest(i) = Cdest(i)+Sjhp(dest(i)) (wdest(i) + Jj)/Tj  Cj

Node B:

CAN:

Distributed Systems 

0 CPU

CAN

send(i)

msg(i)

dest(i)

Node A:

Cm(i) = Bm(i) = 135 micro sec
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Problem with CAN: some of the message 

may never get a chance for transmission
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Other Solutions:
e.g.TTP - the Time Triggered Protocol

 Intended for X-by-wire applications
Example: Break-by-wire in car

A lot of features built in into the bus protocol 
(which must be added on top of the CAN bus)

Conceptually similar to 
static cyclic scheduling

n
e
tw

o
rk
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TTP - Time Triggered (TDMA)

TDMA round

TDMA - slot reserved
for node 1

frame Nod 1 does not 
use its slot.

TDMA round

Delay of message 

sending due to 
synchronization 

Node 1 Node 2 Node 3 Node 4

All nodes 

has identical 

message tables
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Node 1 Node 2 Node 3 Node 4

TTCAN: an example of TTP

REF1 REF1MSG1 MSG3MSG2 REF1MSG5MSG
4

Time

0 1 2 3 0 1 2 3

Basic Cycle (n) Basic Cycle 

(n+1)

0

Transmission

Column

Master
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TTP - CAN: a comparison

TTP
 Time triggered

 Overallocation of 
aperiodic messages 

 No jitter

 Ultra-reliable systems

 Includes distributed 
system functionality
 Clock-synchronization

 Fault-handling

 Membership protocol

 Capacity 10 Mb/sec

CAN
 Event triggered

 No message sending 
if not neccessary

 Jitter due to varying 
system loads

 Priority driven

 RT-Network

 Some functionality 
added on top

 Capacity: 1Mb/sec
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Trends for RT networks in  Automotives

 Today CAN dominates 

 Time-triggered seems to be the future for X-by-wire: TTP 
e.g. FlexRay, TTCAN

 Future cars will include many different and parallel buses:
 CAN for comfort 

 TT for X-by-wire

 MOST (Media Oriented Systems Transport) for multimedia 

 etc.


