
10/13/2008

1

1

 Topics
 Distributed Real-Time Systems

 Bus-based multi-processor systems

 Real Time Networks
 RT busses e.g. CAN, TTP, TTCAN

 Analysis of Distributed RT Systems
 Message Transmission Analysis

 Response Time Analysis

Real-Time Networks and

Distributed Systems

2

A Distributed Real-Time System

3

Why Distributed Systems ?

 Physically distributed applications -
(close to physical equipment, e.g. engine control)

Modularity (components developed in isolation)

 Scalability (just add another node in the network)
 Some new cars contain > 3 miles of wire

 Clearly inappropriate to connect all pairs of communicating entities w ith their own wires

 Which needs O(n*n) w ires

 Fault tolerance (errors only propagate within sub-part of
system)

Challenge
 build complex distributed systems and maintain high reliability

at low cost!

4

- Execution time

- Period

- Deadlines

- Dependences

Tasks

Functional

Design

allocation/

scheduling

Kernel

3 aspects:

- off-line allocation

- run-time scheduling

- á priori schedulability analysis

Dsign of Distributed RTS

The core for the development

of real time systems

Running
system

5

RT-Networking: Basic Problem

 Competing traffic

 Guarantees
 Hard-RT: Absolute G.

 Soft-RT: Probabilistic G.

 Other issues
 Reliability

 F. detection & recovery

 Resource Utilisation

Bounded latency: A B

6

RT-Networking: Solutions

CSMA/CD
(Carrier Sense M ultiple Access / Collision Detection)

Ethernet
Collisions
back-off

Stochastic behaviour
No RT-guarantees

Token-ring

Physical or logical ring

Circulating token

No collisions
RT-guarantees possible

A

B

C

D

DC

BA

10/13/2008

2

7

RT-Networking: Solutions

Time triggered
TDMA
(Time Division Multiple Access,e.g. GSM)

Pre-Scheduled
Predictable

Testable

Static
e.g. TTP

time0 T

Event triggered

CSMA/CR (Collision Resolution)
(Carrier Sense Multiple Access / Collision Resolution)

Priority driven

Dynamic Scheduling

Flexible
e.g. CAN

time0

Response time for C

Pri: A>B>C>D

8

More examples

 Time triggered:
 SAFEbus - airplanes, eg. Boeing

 TTA - cars, eg. Audi, Volkswagen

 FlexRay - cars, eg. BMW, DaimlerChrysler

 Event triggered
 CAN - cars, eg. Volvo, Saab, VW, Ford, GM

 Byteflight - cars, BMW

 LIN – a cheaper and simple bus protocol

 Mixtures
 Time-Triggered CAN (TTCAN)

 TTA extended with events

9

 Initiated in the late 70’s to connect a number of processors over a cheaper shared serial
bus

 From Bosch (mid 80ies) for automotive applications

 De facto standard for
invehicle comm.
(100 million CAN nodes sold 2000, 300 million sold 2004)

 Cost ~$3 / node
 $1 for CAN interface

 $1 for the transceiver

 $1 for connectors and additional board area

 Controllers available
(from Phillips, Intel, NEC, Siemens, etc.)

 Shared broadcast bus (one sender/many receivers) (CSMA/CR)
 CAN permits ev eryone on the bus to talk

 Medium speed:
 Max: 1Mbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec

 Highly robust (error mechanisms to overcome disturbance on the bus) and

 Real-time guarantees can be made about CAN performanc

CAN: Controller Area Network

twisted-pair,

optic fibre or coax

CAN is Synchronous

 Fundamental requirement: Everyone on the bus sees the current
bit before the next bit is sent

 This is going to permit a very clever arbitration scheme (later)

 Ethernet does NOT have this requirement This is one reason Ethernet
bandwidth can be much higher than CAN

 Time per bit:
 Speed of electrical signal propagation 0.1-0.2 m/ns

 40 Kbps CAN bus → 25000 ns per bit
 A bit can travel 2500 m (max bus length 1000~1250 m)

 1 Mbps CAN bus → 1000 ns per bit
 A bit can travel 100 m (max bus length 40~50 m)

 Bandwidth
 1 Mbps up to 40~50 m

 0.5 Mbps upto 80~100 m

 40 Kbps up to ~1000 m

 5 Kbps up to ~10,000 m

10

More on CAN

 Message based with payload size 0-8 bytes
 Not for bulk data transfer!

 But perfect for many embedded control applications

 CAN interfaces are usually pretty smart
 Interrupt only after an entire message is received

 Filter out unwanted messages in HW – zero CPU load

11

CAN Addressing

 CAN bus can have an arbitrary number of nodes
 Nodes do not have proper addresses

 Rather, each message has an 11-bit “field identifier”

 In extended mode, identifiers are 29 bits

 Everyone interested in a message type listens for it

Works like this: “I’m sending a temperature sensor reading”

 Not like this: “I’m sending a message to node 8”

 Designer should allocate the message identifiers to the
stations (different nodes send different messages!)

 Each node has a queue for messages ordered by
priorities/identifiers

12

10/13/2008

3

CAN Message Types

 Data frame:
 Frame containing data for transmission

 Remote frame:
 Frame requesting the transmission of a specific identifier

 Error frame:
 Frame transmitted by any node detecting an error

 Overload frame:
 Frame to inject a delay between data and/or remote frames if a receiver is

not ready

13 14

Controller Area Network (CAN)

id control dataCAN-frame

11 bits 36 bits 0-8 bytes

Frame layout:

 Small sized frames (messages)
 0 to 8 bytes

 Very different from mainstream computing messaging

 Relatively high overhead
 A frame size of more than 100 bits to send just 64 bits

15

Driver

Receiver

V
cc

 +5V

TxD

RxD

120 R

Node

2

Node

3

120 R

Node

n

Host

Microcontroller

V
diff

V
diff

3.5 V

1.5 V

CAN_L

CAN_H

DominantRecessive Recessive
Logic "1" Logic "1"Logic "0"

L
in

e
 V

o
lt
a

g
e

Node 1

V
cc

 +5V

CAN

Transceiver

ID part 1SOF RTR DLC DATA (0-8 by tes) CRC code EOF

Arbitration Field Control Field Data Field

Delimiter

ACK

1 11 1 1 1 4
Max. 64 data

bits
15 1 1 1 7

IDE r0

CAN data frame

Controller Area Network (CAN)

16

Shared broadcast bus

Bus behaves like a large AND-gate
- if all nodes sends 1 the bus becomes 1, otherwise 0.

A frame is tagged by an identifier
 indicates contents of frame

 also used for arbitration as ”priority”

Bit-wise arbitration
 Each message has unique priority 

node with message with lowest id wins arbitration

 Lowest id = highest priority!

 The CAN bus is a priority-based scheduled resource

A

B

C

D

The CAN Arbitration Mechanism

17

Details on CAN

 When the bus is busy, the stations wait (listening all time)

 As soon as the bus is idle, all stations who want to send
enter the arbitration phase (run the arbitration algorithm)
 Transmit the highest priority message, from the most significant

bit to the least significant one

 0 is the highest priority!!
 0: dominant bit (in fact, sending 0 by ”high voltage”)

 1: recessieve bit

 It behaves like an AND-gate

 Send and monitor:
 Send a 1, but monitor a 0: a collision

 the protocol says: nodes sending 0’s win, the others back off (monitor and
send)

 This means: the highest priority message wins, to be transmitted

 E.g. 100, 101, 111 on three stations, 100 will be sent

18

Bussen
ledig?

Vill sända ram

Nej

Ja

Lägg ut
id-bit 0

Läs värdet
på bussen

Samma som
utlagt?

Nej Lägg ut
nästa bit

Samma som
utlagt?

Ja

Nej

Sista
biten?

Nej

Ja

Läs värdet
på bussen

Skicka resten
av ramen

Ja

The CAN Arbitration Mechanism

A

B

C

D

Node A B C D

Priority 001 010 101 011

Example:

node A wins

arbitration

Bus

free?

Send a frame ?

Send ID

bit 0

Read data on

bus

The same

as sent?

Send next

bit
Read data on

bus
The same

as sent?

The last

bit?

Send the rest of

the frame

10/13/2008

4

“Idiot” Node

 What happens if a CAN node goes crazy/haywire

and transmits too many high priority frames?
 This can make the bus useless

 Assumed not to happen

 Schemes for protecting against this have been

developed but are not commonly deployed
 Most likely this happens very rarely

 CAN bus is usually managed by hardware

19 20

Error handling

Several types of errors:
 Checksum error, acknowledge error,

bit error, ...

When error is detected by node it sends an
error frame
 starting with 6 dominant bits (000000) in a row

 tells other nodes that error occurred

 other nodes then also send error frames

 Arbitration restarts when bus is idle

 In effect, error frames are used to resync
protocol engine

21

Transmission Errors

 CAN has a mechanism to protect against broken
hardware: error counters

 The CAN controller in a node counts failed frames and
successful frames
 When errors exceed a threshold, the controller gets disconnected

 ERROR-counter EC

 EC:= EC+1 when an error is signalled

 EC:= EC-1 when a frame is correctly received

 EC > K the node shuts-off itself (is fail-silent)

22

Details on CAN

 After the priority transmitted (the arbitration is finished), the
rest of the message is transmitted

 A message contains: 0-8 bytes for data and 47bits OH
 Priority/identity: 11bits

 Data field: 0-8 bytes long

 CRC field (checksum, parity bits etc: checking the message has
not been corrupted, and other ”housekeeping” bits)

 Out of the 47, 34 bits are bitstuffed

 000000 and 111111 are reserved as ”marker” to signal all
stations on the bus
 So ”bitstuffing” is needed: whenever 00000 or 11111 appears in a

bitstream, an extra bit of the opposite sign should be added

 E.g. 1111 1000 0111 1000 0111 1 should be

1111 1000 0011 1110 0000 1111 10

23

More details on CAN

The total number before bitstuffing: 8n+47

After bitstuffing: 8n+47+(34+8n-1)/4
 Max: 64+47+24=135 bits

 E.g. 1Mbit/sec, 1 bit needs 1 micro seconds

 The max transmission time for one message= 135
micro sec

CAN Message Scheduling

 Network scheduling is usually non-preemptive
 Non-preemptive scheduling means high-priority sender must wait while

low-priority sends

 Short message length keeps this delay small

24

10/13/2008

5

25

A

B

C

D

Frames
queued in
priority order

Priority queue Frame in

transmission

Removed after
transmission time

A

B

C

D

Response time

The CAN-bus Abstraction

The whole bus + CAN

controllers can be
abstracted as one queue

26

A

B

C

D
Response time

Set of messages = M (queued on different nodes)

M
j
= < T

j
, C

j
> (M

j
M)

T
j

= period (time betw een queuing)

C
j
= transmission time

B
j
= blocking time (waiting for low priority message, bus non-preemptive)

Worst-case waiting/queuing time (before transmission):

q
i
= B

i
+Sjhp(i) qi

/T
j
C

j

hp(i) = frames with priority higher than Pi

Worst-case Response time (delay before delivered):

R
i
= C

i
+q

i

Transmission Delay

Calculation for CAN

27

Transmission delay analysis

 C
i

= (number of bits) X (time to transmit 1 bit)

 B
i

= MAX k  lp(i) (Ci) <= time to transmit 135 bits

 Worst case: B
i

= C
i
= 135 micro sec

(for 1MB/sec CAN)

28

End of Story?

Unfortunately not!
 Non-periodic queuing times causes jitter

 No global time reference

 Transmission errors (recovery + retransmission)

A

B

C

D

29

Queuing causes jitter

 Task_3 on node A executes with certain

period

 Message mAtoB gets same period as

task_3

 Shortest time before send:
BCET = C3 for task_3

 Longest time before send: task_3’s worst

case response time = R3

 R3 - C3 = jitter for message mAtoB

A

B

C

D

task_3() {

while(1) {

read_sensor();

if(...)

// do some work

else

// do some other work

send_CAN(mAtoB, prio);

// some more work

sleep_until_next_period();
}

task_1 RTOS

task_2

task_3

task_4

min

min

30

Adding Jitter to the Analysis

New equation for worst-case Transmission Delay:

R
i
= J

i
+q

i
+ C

i

q
i
= B

i
+Sjhp(i) (qi

+J
j
)/T

j
C

j

10/13/2008

6

31

Transmission Errors

Max number of errors must be bounded

Fault hypothesis 
 Error function E(t) = max time required for error

signalling and recovery in any time interval of length t

New equation for worst-case transmission delay:

R
i

= J
i
+ q

i
+ C

i

q
i
= B

i
+ E(q

i
) +Sjhp(i) (qi

+J
j
)/T

j
C

j

32

Analysis of Distr.

Systems

 System wide (end-to-end) timing requirements
 control closed over the entire system

 includes sensors, CPUs, controllers, busses, actuators, OS, ...

 Holistic analysis can be applied!

Initial

processing
Detect obstacle

(read sensor)

Send msg

on bus

Calculate

action

Inflate

airbag

Send msg

on bus

A

B

C

D

time

33

When tasks on a node can both send and receive
messages we have a holistic scheduling problem

 The equations giving the worst case time for
tasks depends on messages arriving at the node

We cannot apply the processor
scheduling analysis before we
get values from the bus
scheduling analysis

 Similarly: We cannot apply the
bus scheduling analysis before we get values
from the processor scheduling analysis

 Solution: Holistic Analysis

Holistic Scheduling Problem

0 CPU

CAN
msg(i)

dest(i)

msg(j)

act(i)
send(i)

34

Tasks on CPUs are exchanging msgs over CAN

Tasks are queuing messages
Completion times will vary =>

 Jitter (variations in release times) will be inherited

Message m(i), queued by a task send(i):

 Jm(i)= Rsend(i) – Csend(i)

Task dest(i) is activated by a
message m(i):

 Jdest(i) = Rm(i) - Cm(i)

Distributed Systems

0
CPU CPU

CAN

send(i)

msg(i)

dest(i)

35

Example:

 Rsend(i) = Csend(i)+Sjhp(send(i)) (Rsend(i) + Jj)/T j Cj

 Jm(i) = Rsend(i) - Csend(i)

 Rm(i) = qm(i) + Jm(i) + Cm(i)

 qm(i) = Bm(i) +Sjhp(m(i)) (qm(i) + Jm(j)) /Tm(j) Cm(j)

 Jdest(i) = Rm(i) - Cm(i)

 Rdest(i) = wdest(i)+ Jdest(i)

wdest(i) = Cdest(i)+Sjhp(dest(i)) (wdest(i) + Jj)/Tj  Cj

Node B:

CAN:

Distributed Systems

0 CPU

CAN

send(i)

msg(i)

dest(i)

Node A:

Cm(i) = Bm(i) = 135 micro sec

36

Problem with CAN: some of the message

may never get a chance for transmission

10/13/2008

7

37

Deadline for

message 9

Event Driven

Peak Load

Time

M
e

s
s

a
g

e
 R

e
a

d
y

CAN

BUS

N
e

tw
o

rk
 M

e
s

s
a

g
e

 Q
u

e
u

e

Time

3

9

3

9

3

6

6

9

6

2 1

2

9

1

1

5 8

8

9

5

2

2

5

8

9

5

9 9 9

8

9

8

9

9

Engin

e

Gear-Shift Gear-Box ABS ABS ABS ABS

9

3 6

2

1

5

8

38

Other Solutions:
e.g.TTP - the Time Triggered Protocol

 Intended for X-by-wire applications
Example: Break-by-wire in car

A lot of features built in into the bus protocol
(which must be added on top of the CAN bus)

Conceptually similar to
static cyclic scheduling

n
e
tw

o
rk

39

TTP - Time Triggered (TDMA)

TDMA round

TDMA - slot reserved
for node 1

frame Nod 1 does not
use its slot.

TDMA round

Delay of message

sending due to
synchronization

Node 1 Node 2 Node 3 Node 4

All nodes

has identical

message tables

40

Node 1 Node 2 Node 3 Node 4

TTCAN: an example of TTP

REF1 REF1MSG1 MSG3MSG2 REF1MSG5MSG
4

Time

0 1 2 3 0 1 2 3

Basic Cycle (n) Basic Cycle

(n+1)

0

Transmission

Column

Master

41

TTP - CAN: a comparison

TTP
 Time triggered

 Overallocation of
aperiodic messages

 No jitter

 Ultra-reliable systems

 Includes distributed
system functionality
 Clock-synchronization

 Fault-handling

 Membership protocol

 Capacity 10 Mb/sec

CAN
 Event triggered

 No message sending
if not neccessary

 Jitter due to varying
system loads

 Priority driven

 RT-Network

 Some functionality
added on top

 Capacity: 1Mb/sec

42

Trends for RT networks in Automotives

 Today CAN dominates

 Time-triggered seems to be the future for X-by-wire: TTP
e.g. FlexRay, TTCAN

 Future cars will include many different and parallel buses:
 CAN for comfort

 TT for X-by-wire

 MOST (Media Oriented Systems Transport) for multimedia

 etc.

