Real-Time Networks and
Distributed Systems

% Topics

+ Distributed Real-Time Systems
= Bus-based multi-processor systems

¢ Real Time Networks
= RT busses e.g. CAN, TTP, TTCAN

¢ Analysis of Distributed RT Systems
= Message Transmission Analysis
= Response Time Analysis

10/13/2008

A Distributed Real-Time System

s High-speed
w— Low-speed

SWM

Why Distributed Systems ?

% Physically distributed applications -

(close to physical equipment, e.g. engine control)
% Modularity (components developed in isolation)
% Scalability (just add another node in the network)

+ Somenew cars contain >3miles of wire
+ Clearlyinappropriateto connect all pairs of communicating entities with their ownwires
+ Which needs O(n*n) wires

% Fault tolerance (errors only propagate within sub-part of
system)

Challenge

% build complex distributed systems and maintain high reliability
at low cost!

RT-Networking: Basic Problem

Bounded latency: A — B

% Competing traffic
% Guarantees

+ Hard-RT: Absolute G.

+ Soft-RT: Probabilistic G.
% Other issues

+ Reliability

= F.detection & recovery
+ Resource Utilisation

atiof

Communic
Netwoilk

Dsign of Distributed RTS

Tasks -
- Execution time H Kerel Running
- Period | system
-Deadiines gy allocation/

-Dependences = scheduling =

Functional
Design

3 aspects:
-off-line allocation

The core for the development
. . of real time systems
- run-time scheduling

- & priori schedulability analysis

RT-Networking: Solutions

CSMA/CD Token-ring
(Carrier Sense Multiple Access/ Collision Detection) . . .
Physical or logical ring
Ethernet - X
Collisions Circulating token

back-off No collisions

Stochastic behaviour RT-guarantees possible

No RT-guarantees

-

Time triggered

RT-Networking: Solutions

EVenttriggered
TDMA CSMAV/CR (Collision Resolution)

(Time Division Multiple Access.e.g. GSM)

Pre-Scheduled

(Carrier Sense Multiple Access / Collision Resolution)

Priority driven

Predictable Dynamic Scheduling

Testable Flexible
Static e.g. CAN Pri: ASB>C>D
eg.TTP D CcCBA D

T time
Response time for C

10/13/2008

More examples

% Time triggered:

¢ SAFEbus - airplanes, eg. Boeing

¢ TTA-cars, eg. Audi, Volkswagen

+ FlexRay - cars, eg. BMW, DaimlerChrysler
#* Event triggered

¢ CAN - cars, eg. Volvo, Saab, VW, Ford, GM

+ Byteflight - cars, BMW

¢ LIN —a cheaper and simple bus protocol
#* Mixtures

+ Time-Triggered CAN (TTCAN)

+ TTAextended with events

*

* ¥ ¥ *

CAN: Controller Area Network

gmiated in the late 70’s to connect a number of processors over a cheaper shared serial
us

From Bosch (mid 80ies) for automotive applications
De facto standard for
invehicle comm.
(100 million CAN nodessold 2000, 300 million sold 2004)
Cost ~$3 / node
+ $1for CANinterface
+ $1forthetransceiver
+ $1for connectors and additional board area
Controllers available
(from Phillips, Intel, NEC, Siemens, etc.)
Shared broadcast bus (one sender/many receivers) (CSMA/CR)
+ CANpermits everyone on the bus to talk
Medium speed:
+ Max: IMbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec
Highly robust (error mechanisms to overcome disturbance on the bus) and

Real-time guarantees can be made about CAN performanc

twisted-pair,
optic fibre or coax

More on CAN

* Message based with payload size 0-8 bytes
+ Not for bulk data transfer!
+ But perfect for many embedded control applications

% CAN interfaces are usually pretty smart
+ Interrupt only after an entire message is received
¢ Filter out unwanted messages in HW — zero CPU load

CAN is Synchronous

#* Fundamental requirement: Everyone on the bus sees the current
bit before the next bit is sent
= This is going to permit a very clever arbitration scheme (later)
= Ethernet does NOT have this requirement > This is one reason Ethernet
bandwidth can be much higher than CAN
* Time per bit:
+ Speed of electrical signal propagation 0.1-0.2 m/ns
+ 40 Kbps CAN bus — 25000 ns per bit
= Abitcantravel 2500 m (max bus length 1000~1250 m)
+ 1 Mbps CAN bus — 1000 ns per bit
= Abitcantravel 100 m (max bus length 40~50 m)
* Bandwidth
¢+ 1 Mbps upto 40~50 m
0.5 Mbps upto 80~100 m
40 Kbps up to ~1000 m
5 Kbps up to ~10,000 m

* o0

CAN Addressing

% CAN bus can have an arbitrary number of nodes
+ Nodes do not have properaddresses
+ Rather, each message has an 11-bit “field identifier”
= In extended mode, identifiers are 29 bits
+ Everyone interested in amessage type listens for it
= Works like this: “'m sending a temperature sensor reading”
= Not like this: “rm sending a message to node 8"

* Designer should allocate the message identifiers to the
stations (different nodes send different messages!)

* Each node has a queue for messages ordered by
priorities/identifiers

CAN Message Types

+* Data frame:

+ Frame containing data for transmission

+* Remote frame:

+ Frame requesting the transmission of a specific identifier

% Error frame:
+ Frame transmitted by any node detecting an error

* Overload frame:
+ Frame to inject adelay betweendata and/or remote frames if areceiveris
not ready

10/13/2008

Controller Area Network (CAN)

Frame layout:

SOF Sun [ldeatificr | RIR, | Contol | Duis CRC, CRC | ACK, | ACK |EOF End | IFS, Inter
Of Frame Remote Cyclic | DBL, | Acknow- | DEL, |OfFame | Frame
CRC ledge | Acknow- Space

ledge |
Delimiter

Thit W bitar Toit 6bitar | 0-8bytes | 15 bitar Thit Thit b 7hitar |3~ min3
bitar

+* Small sized frames (messages)
+ 0to 8 bytes
+ Very differentfrom mainstream computing messaging

% Relatively high overhead
+ Aframe size of more than 100 bits to send just 64 bits

11 bits 36 bits 0-8 bytes “

Controller Area Network (CAN)

Line Voltage

H
<
2
2
Arbitration Field Control Field ~ Data Field ACK.
JeK
etmier
SoF (DR [RR] BE [© \mc_ckcm\
acsidan
e s v
CAN data frame

Details on CAN

% When the bus is busy, the stations wait (listening all time)

% As soon as the bus is idle, all stations who want to send
enter the arbitration phase (run the arbitration algorithm)
+ Transmit the highest priority message, from the most significant
bit to the least significant one
+ Ois the highest priority!!
= 0:dominant bit (in fact, sending 0 by "high voltage”)
= 1l:recessieve bit
+ Itbehaves like an AND-gate
+ Send and monitor:
= Send a 1, but monitor a 0: a collision
= the protocol says: nodes sending 0’s win, the others back off (monitor and
send)
= This means: the highest priority message wins, to be transmitted
= Eg. 100, 101, 111 on three stations, 100 will be sent

The CAN Arbitration Mechanism

% Shared broadcast bus
% Bus behaves like a large AND-gate

- if all nodes sends 1 the bus becomes 1, otherwise 0.
* A frame is tagged by an identifier
+ indicates contents of frame
+ also used for arbitration as ”priority”
% Bit-wise arbitration

+ Each message has unique priority =
node with message with lowest id wins arbitration

+ Lowest id = highest priority!

#% The CAN bus is a priority-based scheduled resource

The CAN Arbitration Mechanism

node A wins
Example: arbitration

Node A B © D
Priority 001 010 101 011

18

“Idiot” Node

+* What happens if a CAN node goes crazy/haywire
and transmits too many high priority frames?

+ This can make the bus useless
¢ Assumed notto happen

+* Schemes for protecting against this have been
developed but are not commonly deployed

+ Mostlikely this happens veryrarely
+ CAN busis usually managed by hardware

10/13/2008

Error handling

% Several types of errors:

¢ Checksum error, acknowledge error,
bit error, ...

% When error is detected by node it sends an

error frame

+ starting with 6 dominant bits (000000) in a row
+ tells other nodes that error occurred

+ other nodes then also send error frames

Arbitration restarts when bus is idle

* In effect, error frames are used to resync
protocol engine

Transmission Errors

% CAN has a mechanism to protect against broken
hardware: error counters

% The CAN controller in a node counts failed frames and
successful frames
+ When errors exceed a threshold, the controller gets disconnected
% ERROR-counter EC
+ EC:= EC+1 when an error is signalled
+ EC:= EC-1 when a frame is correctly received
+ EC > K = the node shuts-off itself (is fail-silent)

More details on CAN

% The total number before bitstuffing: 8n+47
* After bitstuffing: 8n+47+(34+8n-1)/4]

¢ Max: 64+47+24=135 bits
¢ E.g. 1Mbit/sec, 1 bit needs 1 micro seconds

¢ Themax transmission time for one message= 135
micro sec

Details on CAN

% After the priority transmitted (the arbitration is finished), the
rest of the message is transmitted
* A message contains: 0-8 bytes for data and 47bits OH
+ Priority/identity: 11bits
+ Datafield: 0-8 bytes long
+ CRCfield (checksum, parity bits etc: checking the message has
notbeen corrupted, and other "housekeeping” bits)
+ Out of the 47, 34 bits are bitstuffed

% 000000 and 111111 are reserved as "marker” to signal all
stations on the bus
+ So ”"bitstuffing” is needed: whenever 00000 or 11111 appearsin a
bitstream, an extra bit of the opposite sign should be added
¢ E.g.1111 10000111 1000 0111 1 should be
111110000011 1110 0000 1111 10

CAN Message Scheduling

* Network scheduling is usually non-preemptive

+ Non-preemptive scheduling means high-priority sender must wait while
low-priority sends

+ Short message length keeps this delay small

The CAN-bus Abstraction

Frames

ueuedin
priority order

The whole bus + CAN
controllers can be
abstracted as one queue

. Removed after
transmission time

Frame in

Priority queue A
transmission

+~— Response time ——>

25

10/13/2008

J| Transmission Delay

e M

Set of messages = M (queued on different nodes)
Mj:<Tj,cl> (MIEM)
Tj = period (ime betw een queving)
€ =transmission time

Bj = bIOCking time (waiting for low priority message, bus non-preemptive)

Worst-case waiting/queuing time (before transmission):
qi=B+X;c hp(i)l_qllTi—l cj
hp(i) = frames with priority higher than P;

Worst-case Response time (delay before delivered):

R = C+q

Transmission delay analysis

% € = (number of bits) X (time to transmit 1 bit)
% By = MAX < pgy (Ci) <= time to transmit 135 bits

* Worst case: B; = C;= 135 micro sec
(for 1MB/sec CAN)

27

Queuing causes jitter

i —. % Task_3 on node A executes with certain
- periOd
= % Message mAtoB gets same period as

’v:ask_s(){ task_3
W,':';‘fiénsoro; #* Shortest time before send:
if(‘/)‘)do somework BCET = C3 minfor task_3
else % Longest time before send: task_3's worst

I'do some other work

send_CAN(m AtoB, prio); case response time = R;
Il some more work

) sleep_until_next_period(); % R3- C3 min= jitter for message mAtoB

29

End of Story?

| o=

% Unfortunately not!
+ Non-periodic queuing times causes jitter
+ No global time reference
¢+ Transmission errors (recovery + retransmission)

Adding Jitter to the Analysis

New equation for worst-case Transmission Delay:

Ri=J;+q;+ C;
qi= B +Zic) r(qi+Ji)ITi-|ci

Transmission Errors

% Max number of errors must be bounded
% Fault hypothesis =

< Error function E(t) = max time required for error
signalling and recovery in any time interval of length t

New equation for worst-case transmission delay:
Ri=J;+ q;+ G
qi= B; + E(q;) +Xjcny) r(qill"'j)l.rj—lcj

10/13/2008

Analysis of Distr.
- Systems

Detect obstacle Initial Send msg Calculate Sendmsg Inflate

(read sensor) processing on bus action on bus airbag i
ime

% System wide (end-to-end) timing requirements
+ control closed over the entire system
+ includes sensors, CPUs, controllers, busses, actuators, OS, ...

% Holistic analysis can be applied!

Holistic Scheduling Problem

% When tasks on a node can both send and receive
messages we have a holistic scheduling problem
% The equations giving the worst case time for
tasks depends on messages arriving at the node
% We cannot apply the processor
scheduling analysis before we
get values from the bus
scheduling analysis msaO~d o un
% Similarly: We cannot apply the msg0)
bus scheduling analysis before we get values
from the processor scheduling analysis

% Solution: Holistic Analysis

Distributed Systems

send(i
% Example: .
msg():
[RBEERT ¢ Reend) = Csend(y* 2 1€ mpisend |—(Rsend(i) + I, | G

¢ Jing) = Rsend(y = Csend(i)
¢ Ry = Amgy + Imiy + Cmay
*) = By *+Z jenp(m) [Gy + Im) /Ty | Congy
-‘ Jdest(i) = Rm(i) = Cmapy
@ Ryest(i) = Waest(i)* Jdest()
® Wyes(i) = Cest()*Z jshp(desta))r(Wdest(i) +Jj)/Tj-| G

CAN

Cm(i) = Bm(i) = 135 micro sec

Distributed Systems

|
% Tasks on CPUs are exchanging msgs over CAN

% Tasks are queuing messages
+ Completion times will vary =>
¢ Jitter (variations in release times) will be inherited

* Message m(i), queued by a task send(i):
= Im(iy= Rsend(i) ~ Csenc(i)
* Task dest{(i) is activated by a

message m(i): _@ l
= Jdest(i)= Rm@) = Cmi) T

CAN

34

Problem with CAN: some of the message
may never get a chance for transmission

Event Driven
Peak Load Deadline for

. i message 9
© o0
L1121 008
Lo
HE O - e | |

Time

Message Ready

Engin Gear-Shift Gear-Box ABS ABS ABS

10/13/2008

Other Solutions:
€.g.TTP - the Time Triggered Protocol

% Intended for X-by-wire applications
Example: Break-by-wire in car

% A lot of features built in into the bus protocol
(which must be added on top of the CAN bus)

% Conceptually similar to
static cyclic scheduling

&

TTP - Time Triggered (TDMA)

)

> & O
F * | fnodes

message tables

TDMA round TDMA round

o [- - NI II=

N) P
TDMA-slot reserved frame Nod 1 does not Delay of message
fornode1 useits slot. sending dueto

synchronization

TTP - CAN: a comparison

TTP CAN

R + Eventtriggered

+ No message sending
if not neccessary

+ Jitter due to varying
system loads

¢ Priority driven

¢ RT-Network

+ Some functionality
added on top

¢ Timetriggered
+ Overallocation of
aperiodic messages
+ No jitter
+ Ultra-reliable systems
¢ Includes distributed
system functionality
= Clock-synchronization
= Fault-handling
= Membership protocol

+ Capacity 10 Mb/sec + Capacity: 1Mb/sec

a1

TTCAN: an example of TTP

BO B He v

Node 1 Node 2 jode 3 Node 4
Master
Transmission

Column o 1 2 3 0 1 2 3 0

EE - . .

Basic Cycle (n) Basic Cycle
(n+1)

Trends for RT networks in Automotives

% Today CAN dominates

% Time-triggered seems to be the future for X-by-wire: TTP
e.g. FlexRay, TTCAN

% Future cars will include many different and parallel buses:
+ CAN for comfort
¢ TTfor X-by-wire
¢ MOST (Media Oriented Systems Transport) for multimedia
* etc.

