
1

1

Mixing Hard and Soft Tasks

2

Problem to solve

 Hard-deadline tasks may be

 Periodic or

 Sporadic (with a known minimum arrival time)

 (or non periodic, difficult to solve)

 Soft-deadline tasks (and/or non RT) may be

 Various types (periodic or non periodic etc)

 We want to shedule the mixed task set so that

 All hard tasks meet their deadlines

 All soft tasks get average response times as low as possible

3

Simple solution: Background scheduling

 Schedule all hard tasks as usul (e.g. RMS) and Run

non RT tasks whenever CPU is free (i.e put non RT
tasks in the background)

 This is fine if we don’t care average response time for
soft tasks

4

Potential improvements

 Sporadic tasks with small Tmin and low rate (low CPU

utilization): RM analysis will be too pessimistic

 Periodic tasks with low CPU utilization: this fact may

be used to improve response times for soft-tasks

 Hard deadlines are not necessarily met as early as

possible

5

Eample

 Hard task: (C,D,T)

 Task H =(3,9,10)

 Task L =(4,14,15)

 One soft task: (C,D)

 Task S=(3,5)

 Assume that they all arrive at time 0

 If H and L are executed first as they have hard deadlines, S
will miss its deadline 5

 If S is executed first, and then H, L, all deadlines will be met

6

Combined Scheduling

 Creating a periodic server Ts=(Cs, Ps) for processing aperiodic
workload. Create one or more server tasks.

 Aperiodic tasks are scheduled in the periodic server’s time slots. This
policy could be based on deadline, arrival time, or computation time.

 Algorithms – all algorithms behave the same manner when there are enough
aperiodic tasks to execute

- Polling Server (bandwidth non-preserving)

- Deferrable Server (bandwidth preserving)

- Priority Exchange Server (bandwidth preserving)

2

7

Polling Server (PS)

 Idea:
 Consider that all hard tasks are periodic

 Create a periodic task (a server) with period Ts and capacity
Cs (the allowed computing time in each period)

 Schedule the server as a periodic task (Cs, Ts)

 Run time behaviour:
 Once the server is active, it serves all pending (buffered)

aperiodic requests within its capacity Cs according to other
algorithms e.g FCFS, SJF etc

 If no aperiodic requests, the capacity is lost: if a request
arrives after the server has been suspended, it must wait
until the next polling period

8

Deferrable server (PS preserving capacity)
[Lehoczky and Sha et al, 87,95]

 It is similar to Polling server

 The only difference is that the capacity of DS will be

preserved if no pending requests upon the activation
of the server. The capacity is maintained until the

end of the server

 within the period, an aperiodic request will be served; thus
improving average response time

9

Priority Exchange (interesting!)

 Similar to PS and DS, PE has a periodic server
(usually with high priority) for serving aperiodic
tasks. The difference is in the way how the capacity
of the server is preserved

 Run Time Behaviour:
 If the PE server is currently the task with highest priority but

there is no aperiodic request pending, then

 the periodic task with next highest priority runs and

 the server is assigned with the periodic task’s lower priority

 Thus the capacity of the server is not lost but preserved with
a lower priority (the exchange continues until new aperiodic
requests arrive)

10

So far, we should know

 How to schedule aperiodic task sets
 Optimal scheduling algorithms

 Precedence constraints

 How to schedule periodic task sets
 Schedulability tests

 Calculation of response time

 How to schedule mixed task sets
 Improve response times for soft tasks

 How to avoid un-bounded priority inversion
 Resource access protocols

 Calculation of blocking time

