
1

Characteristics of a RTS

 Large and complex

– Language and OS support

– Structuring, component-based development

 Concurrent Execution

– Concurrent programming, synchronization

– Real-Time Communication (e.g. CAN)

 Guaranteed response times

– Scheduling, response time analysis

 Extreme reliability (safety critical)

– Fault tolerance and recovery

Note that the focus of this course is on software aspects

Some facts

 1955, 10% US weapons systems required computer software, 1980s, 80%

 26 milions of lines of program code, Ericsson telecom system, less than 5
minutes shutdown per year -- Reseanably reliable

 E.g. 2.5 milions lines of code for industrial robots, no-stop per 60,000
hours (about 7 years) -- Highly reliable

 Typically every milion lines of code may introduce 20,000 bugs (from a
study on large software systems, 1986

– 90% may be found by testing

– a further 200 faults may be detected in the first year of operation

– The rest 1800 are left undetected

– Routine maintenance may result in 200 bug fixes (with 200 new faults
introduced)

 Typically 50% of the budget (money/time) for testing and bug-fixes

– E.g. 1.2 billions $ per year for

Fault Tolerance and Recovery

 Goal

– To understand the factors which affect the reliability of a system and

techniques for fault-tolerance and recovery

 Topics

– Reliability, failure, faults, failure modes

– Fault prevention and fault tolerance

• Hardware redundancy:

– Static (e.g.TMR) and

– dynamic (e.g. checksum)

• Software redundancy:

– Static: N-Version programming and

– Dynamic redundancy: recovery block and exception handling

4 sources of faults which can result in system failure

 Inadequate specification

 Design errors in software

 Processor/hardware failure

 Interference on the communication subsystem

Reliability, Failure and Faults
(terminology)

 The reliability of a system is a measure of success with
which it conforms to some authoritative specification of
its behaviour

 When the behaviour of a system deviates from its
specification, this is called a failure e.g. the aircraft is out
of control.

 Failures result from unexpected problems or errors e.g.
a deadlock internal to the system which eventually
manifest themselves in the system's external behaviour

 The mechanical or algorithmic cause for errors are
termed faults e.g. a ―wrong‖ resource allocation
algorithm (exception handling is needed)

 Systems are composed of components which are
themselves systems: hence: fault -> error -> failure

Fault Types

 Temporary faults occur from time to time

– transient faults start at a particular time, remains in the system

for some period and then disappears (mainly due to external

changes)

• E.g. hardware components which react to radioactivity

• Many faults in communication systems are transient

– Intermittent faults are transient faults that occur from time to

time (mainly due to internal problems)

• E.g. a hardware component that is heat sensitive, it works for a

time, stops working, cools down and then starts to work again

 Permanent faults remain in the system until they are

repaired; e.g., a broken wire or a software design error.

2

Approaches to Achieving Reliable Systems

 Fault prevention attempts to eliminate any possibility of

faults creeping into a system before it goes operational

– E.g. modelling, verification, testing

 Fault tolerance enables a system to continue functioning

even in the presence of faults

– Recovery

 Both approaches attempt to produce systems which

have well-defined failure modes

Failure Modes
(typically)

Failure mode

Value domain Timing domain Arbitrary

(Fail uncontrolled)

Constraint

Error
(outside of

the range,

e.g type error,

overflow of

arrays

Value

Error
(within the

Range but

Wrong)

Early Omission
(infinitely late)

Late

Fail silent
(fail! not

necessarily

detected)

Fail stop
(fail-silent but

maybe detected

by the other systems)

Fail controlled
(fails in a specified manner)

Fault Prevention

 Two stages: fault avoidance and removal

 Fault avoidance attempts to limit the introduction of

faults during system construction by:

– use of rigorous, if not formal, specification of requirements

– use of rigorous, if not formal, design methods

• modelling and verification techniques

• design reviews, code inspections and system testing

• use of techniques of component-based design and the most

reliable components within the given cost and performance

constraints

– use of languages with facilities for

• Data abstraction and modularity

• Concurrency, and real time

Why Fault Tolerance (1)

 In spite of fault avoidance, design errors in both hardware and

software components will exist

 System testing can never be exhaustive and remove all potential

faults:

– A test can only be used to show the presence of faults, not their absence.

– It is sometimes impossible to test under realistic conditions

– most tests are done with the system in simulation mode and it is difficult

to guarantee that the simulation is accurate

– Errors that have been introduced at the requirements stage of the

system's development may not manifest themselves until the system

goes operational

Why Fault Tolerance (2)

 In spite of all the testing and verification techniques,

hardware components will fail; the fault prevention

approach will therefore be unsuccessful when

– either the frequency or duration of repair times are

unacceptable, or

– the system is inaccessible for maintenance and repair activities,

e.g. the crewless spacecraft

 Alternative is Fault Tolerance

Fault Tolerance
(levels depending on the application)

 Full Fault Tolerance — the system continues to operate in
the presence of faults, (maybe only) for a limited period,
with no significant loss of functionality or performance
– Most safety critical systems require full fault tolerance, however in

practice many settle for graceful degradation

 Graceful Degradation (fail soft) — the system continues to
operate in the presence of errors, accepting a partial
degradation of functionality or performance during recovery
or repair
– ABS in a modern car: even a sensor is broken, the brake should

continue to work.

 Fail Safe — the system maintains its integrity while
accepting a temporary halt in its operation
– A310 Airbus’s control computers on detecting an error on landing,

restore the system to a safe state and then shut down. Safe state:
both wings with the same settings

3

Fault tolerance mainly by redundancy

 All fault-tolerant techniques rely on extra elements

introduced into the system to detect & recover from faults

 Components are redundant as they are not required in a

perfect system, often called protective redundancy

– Aim: minimise redundancy while maximising reliability, subject to

the cost and size constraints of the system

– Warning: the added components inevitably increase the complexity

of the overall system; it itself can lead to less reliable systems

• It is advisable to separate out the fault-tolerant components from the

rest of the system

Hardware Fault Tolerance

 Two types: static (or masking) and dynamic redundancy:

– Static: redundant components are used inside a system to
hide the effects of faults; e.g. Triple Modular Redundancy

• TMR — 3 identical subcomponents and majority voting circuits; the
outputs are compared and if one differs from the other two that
output is masked out

• Assumes the fault is not common (such as a design error) but is
either transient or due to component deterioration

• To mask faults from more than one component requires NMR

– Dynamic: redundancy supplied inside a component which
indicates that the output is in error; provides an error
detection facility; recovery must be provided by another
component

• E.g. communications checksums and memory parity bits

TMR

Component A Component A Component A

vote

output

input

Software Fault Tolerance

– Static: N-Version programming

– Dynamic: Detection and Recovery

• Backward error recovery: Recovery blocks:

• Forward error recovery: Exceptions

Static Software Redundancy

N-Version Programming

 Design diversity

– The independent generation of N (N > 2) functionally equivalent

programs from the same initial specification

• No interactions between groups

– The programs execute concurrently with the same inputs and their

results are compared by a driver process

• Invoking each of the versions

• Waiting for the versions to complete

• Comparing and acting on the results (terminate one or more versions)

 The results (VOTES) should be identical, if different the consensus

result, assuming there is one, is taken to be correct

 E.g. Boeing 777 flight control system, a single Ada program was

produced but 3 different processors, and 3 different compilers were

used to obtain diversity

4

N-Version Programming

Version 2Version 1 Version 3

Driver

vote

status

vote
vote

status

status

Problems with Vote Comparison

 How often the comparison should take place?

– Certainly not every instruction, performance penalties

– Too large granularity may produce a wide divergence in results

 To what extent can votes be compared?

– Text or integer arithmetic will produce identical results

– Real numbers => different values

• Need inexact voting techniques

Consistent Comparison Problem

V3

T< Tth

no

P< Pth

V1

T< Tth

yes

P< Pth

yes

V2

T<Tth

yes

no
P<Pth

A2

Each version
will produce
a different
but correct
result

Even if use inexact

comparison techniques,

the problem occurs

VOTING

A1 A3

N-version programming depends on

 Initial specification — The majority of software faults stem from

inadequate specification? A specification error will manifest itself in all

N versions of the implementation

– We need to assume the assumption: no error in the specification

 Independence of effort — Experiments produce conflicting results

– It is very rare that different versions can find identical faults.

– More recent studies: a 3-version system is 5 to 9 times more reliable than

a single version system of high-quality.

 Adequate budget — The predominant cost is software. A 3-version

system will triple the budget requirement and cause problems of

maintenance.

– Would a more reliable system be produced if the resources potentially

available for constructing an N-versions were instead used to produce a

single version?

Dynamic Software Redundancy

Software Dynamic Redundancy

Four phases

 error detection — no fault tolerance scheme can be

utilised until the associated error is detected
– damage confinement and assessment — to what extent has the

system been corrupted? The delay between a fault occurring and the
detection of the error means erroneous information could have
spread throughout the system

 error recovery — techniques should aim to transform

the corrupted system into a state from which it can continue
its normal operation (perhaps with degraded functionality)
– fault treatment and continued service — an error is a symptom of a

fault; although damage repaired, the fault may still exist

5

Error Detection

 Platform detection (by the execution environment where the program runs)

– hardware — protection violation, arithmetic overflow

– OS/RTS — array bound error, null pointer, value out of range

 Application detection

– Timing checks (e.g. watch dog timer)

– Coding checks (checksums, memory parity bits)

– Reasonableness checks (assertions?)

– Dynamic reasonableness check (new output should not be too

different from the previous one)

Error Recovery

 Probably the most important phase of any fault-

tolerance technique

 Two approaches: forward and backward recovery

Forward error recovery (FER)

 FER relies on continue from an erroneous state by

making selective corrections to the system state

– This includes making the controlled environment safe, which

may be damaged because of the failure

– It is system specific and depends on accurate predictions of the

location and cause of errors (i.e, damage assessment)

• E.g. error code in UNIX for system calls

Backward Error Recovery (BER)

 BER relies on restoring the system to a previous safe state

and executing an alternative section of the program

– This has the same functionality but uses a different algorithm (c.f.

N-Version Programming) and therefore ―no fault‖

– The point to which a process is restored is called a recovery point

and the act of establishing it is termed checkpointing (saving

appropriate system state)

 Advantage: the erroneous state is cleared and it does not

rely on finding the location or cause of the fault

 Disadvantage: it cannot undo errors in the environment!

The Domino Effect

 With concurrent processes that interact with each other,

BER is more complex Consider:

R22

R21

R13

R12

R11

IPC4

IPC3

IPC2

IPC1

E
x

ec
u
ti

o
n
 t
im

e

Terror

P1 P2

If the error is detected in

P1 rollback to R13

If the error is detected in

P2 ?

Fault Treatment and Continued Service

 ER returned the system to an error-free state; however, the error

may recur; the final phase of F.T. is to remove the fault from the

system

– The automatic (on-line) treatment of faults is difficult and system

specific

– Often, assume that all faults are transient, and error recovery

techniques can cope with recurring faults

 Fault treatment can be divided into 2 stages: fault location and

system repair

– Error detection techniques can help to trace the fault to a component.

For hardware the component can be replaced

– A software fault can be removed in a new version of the code

 In non-stop applications it will be necessary to modify the program

while it is executing, e.g. Erlang allows ―on-line upgrading of

module‖

6

Language Support for Error Recovery

Language support for BER: Recovery Block

 At the entrance to a block, design an automatic recovery

point and at the exit an acceptance test

– The acceptance test is used to test that the system is in an acceptable

state after the block’s execution (primary module)

– If the acceptance test fails, the program is restored to the recovery

point at the beginning of the block and an alternative module is

executed

 If the alternative module also fails the acceptance test, the

program is restored to the recovery point and yet another

module is executed, and so on

 If all modules fail then the block fails and recovery must take

place at a higher level

Recovery Block Mechanism

Establish

Recovery

Point

Any

Alternatives

Left?

Evaluate

Acceptance

Test

Restore

Recovery

Point

Execute

Next

Alternative

Discard

Recovery

Point

Fail Recovery Block

Yes

No

Pass

Fail

Recovery Block Syntax
(it may be easily programmed using “exception handling” e.g. in Ada)

 Recovery blocks can be nested

 If all alternatives in a nested recovery block fail the
acceptance test, the outer level recovery point will be
restored and an alternative module to that block
executed

ensure <acceptance test>

by

<primary module>

else by

<alternative module>

else by

<alternative module>

...

else by

<alternative module>

else error

The Acceptance Test

 The acceptance test provides the error detection

mechanism which enables the redundancy in the system

to be exploited
– The design of the acceptance test is crucial to the effectiveness of the RB

scheme, and ―completeness‖ to detect ―all possible errors‖

– There is a trade-off between providing comprehensive acceptance tests and

keeping overhead to a minimum, so that fault-free execution is not affected

 Note that the term used is acceptance not correctness;

this allows a component to provide a degraded service

– All the previously discussed error detection techniques can be

used to form the acceptance test

N-Version Programming vs Recovery Blocks

 Static (NV) versus dynamic redundancy (RB)

 Design overheads — both require alternative

algorithms, NV requires driver, RB requires acceptance

test

 Runtime overheads — NV requires N * resources, RB

requires establishing recovery points

 Diversity of design — both susceptible to errors in

requirements

 Error detection — vote comparison (NV) versus

acceptance test(RB)

 Atomicity — NV vote before it outputs to the

environment, RB must be structured to only output after

the passing of an acceptance test

7

Language support for FER: Exception Handling

 An exception = occurrence of an error

 Exception handling is a forward error recovery

mechanism, as there is no roll back to a previous state;

instead control is passed to the handler so that recovery

procedures can be initiated

– However, the exception handling facility can be used to provide

backward error recovery

Exceptions

Exception handling can be used to:

 cope with abnormal conditions arising in the environment,

 provide a general-purpose error-detection and recovery facility

 enable program design faults to be tolerated.

Ideal Fault-Tolerant Component

Interface

Exception

Failure

Exception

Interface

Exception

Failure

Exception

Service

Request

Normal

Response

Service

Request

Normal

Response

Normal Activity Exception Handlers

Return to Normal

Service

Internal

Exception

EH in “Traditional” Languages

 Unusual return value or error return from a procedure or a function.

 C supports this approach

if(function_call(parameters) == AN_ERROR) {

-- error handling code

} else {

-- normal return code

}

Exception Declaration and Handling in Ada (1)

 Each handler is a sequence of statements

declare

Sensor_High, Sensor_Low, Sensor_Dead : exception;

begin

-- statements which may cause the exceptions

exception

when E: Sensor_High | Sensor_Low =>

-- Take some corrective action

-- if either sensor_high or sensor_low is raised.

-- E contains the exception occurrence

when Sensor_Dead =>

-- sound an alarm if the exception

-- sensor_dead is raised

end;

Exception Declaration and Handling in Ada (2)

 when & others is used to avoid enumerating all

possible exception names

 Only allowed as the last choice and stands for all

exceptions not previously listed

declare

Sensor_High, Sensor_Low, Sensor_Dead: exception;

begin

-- statements which may cause exceptions

exception

when Sensor_High | Sensor_Low =>

-- take some corrective action

when E: others =>

Put(Exception_Name(E));

Put_Line(" caught. Information is available is ");

Put_Line(Exception_Information(E));

-- sound an alarm

end;

8

“Pre-defined/Standard” Exceptions in Ada

 The exceptions that can be raised by the Ada RTS are

declared in package Standard:

package Standard is

...

Constraint_Error : exception;

Program_Error : exception;

Storage_Error : exception;

Tasking_Error : exception;

...

end Standard;

 This package is visible to all Ada programs.

Example

declare

subtype Temperature is Integer range 0 .. 100;

begin

-- read temperature sensor and calculate its value

exception

-- handler for Constraint_Error

end

Scope/Domain

 In a block structured language, like Ada, the domain
is normally the block.

declare

subtype Temperature is Integer range 0 .. 100;

begin

-- read temperature sensor and calculate its value

exception

-- handler for Constraint_Error

end;

 Procedures, functions, accept statements etc. can
also act as domains

Granularity of Domain

 Is the granularity of the block is inadequate?
declare

subtype Temperature is Integer range 0 .. 100;

subtype Pressure is Integer range 0 .. 50;

subtype Flow is Integer range 0 .. 200;

begin

-- read temperature sensor and calculate its value

-- read pressure sensor and calculate its value

-- read flow sensor and calculate its value

-- adjust temperature, pressure and flow

-- according to requirements

exception

-- handler for Constraint_Error

end;

 The problem for the handler is to decide which calculation

caused the exception to be raised

 Further difficulties arise when arithmetic overflow and

underflow can occur

declare -- First Solution: decrease block size

subtype Temperature is Integer range 0 .. 100;

subtype Pressure is Integer range 0 .. 50;

subtype Flow is Integer range 0 .. 200;

begin

begin

-- read temperature sensor and calculate its value

exception -- handler for Constraint_Error for temperature

end;

begin

-- read pressure sensor and calculate its value

exception -- handler for Constraint_Error for pressure

end;

begin

-- read flow sensor and calculate its value

exception -- handler for Constraint_Error for flow

end;

-- adjust temperature, pressure and flow according

-- to requirements

exception -- handler for other possible exceptions

end;

-- this is long-winded and tedious!

(there are other solutions, check the details in Ada)

Recovery Blocks and Exceptions

 Remember:
ensure <acceptance test>

by

<primary module>

else by

<alternative module>

else by

<alternative module>

...

else by

<alternative module>

else error

 Error detection is provided by the acceptance test; this is
simply the negation of a test which would raise an exception

 The only problem is the implementation of state saving and
state restoration

9

Recovery Blocks in Ada

procedure Recovery_Block is

Primary_Failure, Secondary_Failure,

Tertiary_Failure: exception;

Recovery_Block_Failure : exception;

type Module is (Primary, Secondary, Tertiary);

function Acceptance_Test return Boolean is

begin

-- code for acceptance test

end Acceptance_Test;

procedure Primary is

begin

-- code for primary algorithm

if not Acceptance_Test then

raise Primary_Failure;

end if;

exception

when Primary_Failure =>

-- forward recovery to return environment

-- to the required state

raise;

when others =>

-- unexpected error

-- forward recovery to return environment

-- to the required state

raise Primary_Failure;

end Primary;

-- similarly for Secondary and Tertiary

begin

Recovery_Cache.Save;

for Try in Module loop
begin

case Try is
when Primary => Primary; exit;

when Secondary => Secondary; exit;
when Tertiary => Tertiary;

end case;
exception

when Primary_Failure =>

Recovery_Cache.Restore;

when Secondary_Failure =>

Recovery_Cache.Restore;

when Tertiary_Failure =>

Recovery_Cache.Restore;

raise Recovery_Block_Failure;

when others =>

Recovery_Cache.Restore;

raise Recovery_Block_Failure;

end;
end loop;

end Recovery_Block;

Summary

 All exception handling models address the following

issues

– Exception representation: an exception may, or may not, be

explicitly represented in a language

– The domain of an exception handler: associated with each

handler is a domain which specifies the region of computation

during which, if an exception occurs, the handler will be

activated

– Exception propagation: when an exception is raised and there is

no exception handler in the enclosing domain, either the

exception can be propagated to the next outer level enclosing

domain, or it can be considered to be a programmer error

– Resumption or termination model: this determines the action to

be taken after an exception has been handled.

Exception handling: final remark

 It is not unanimously accepted that exception handling facilities

should be provided in a language

 The C and the occam2 languages, for example, have none

 To sceptics, an exception is a GOTO where the destination is

undeterminable and the source is unknown!

 They can, therefore, be considered to be the antithesis of structured

programming

 This is not the view taken here!

Summary

 Reliability: a measure of the success with which the system

conforms to some authoritative specification of its behaviour

 Failure: When the behaviour of a system deviates from that

which is specified for it, this is called a failure

– Failures result from errors caused by faults

– Faults can be transient, permanent or intermittent

 Fault prevention consists of fault avoidance and fault removal

 Fault tolerance involves the introduction of redundant

components into a system so that faults can be detected and

tolerated

10

Summary

 Static techniques for fault-tolerence

– N-version programming: the independent generation of N (where N

>= 2) functionally equivalent programs from the same initial

specification

– TMR: Triple Modular Redundancy

 Dynamic techniques:

– BER: backward error recovery

– FER: forward error recovery

Summary

 With backward error recovery, it is necessary for

communicating processes to reach consistent recovery

points to avoid the domino effect

 For sequential systems, the recovery block is an

appropriate language concept for BER

 Although forward error recovery is system specific,

exception handling has been identified as an

appropriate framework for its implementation

 The concept of an ideal fault tolerant component was

introduced which used exceptions

