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Today’s topic:

REAL TIME SCHEDULING
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Overall Stucture of Real Time Systems

... ...Task 1 Task n

RTOS/Run-Time System

Hardware

Scheduler

How to schedule the Tasks such that given timing 
constraints are satisfied?
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Task models

 Non periodic/Aperiodic (three parameters)

 A: arrving time

 C: computing time

 D: deadline (relative deadline)
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Constraints on task sets

 Timing constraints: deadline for each task, 

 Relative to arriving time or absolute deadline

 Other constraints

 Precedence constraints

 Precedence graphs imposed e.g by input/output  relation

 Resource constraints: mutual exclusion 

 Resource access protocols
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Scheduling Problems 

Given a set of tasks (ready queue)

1. Check if all deadlines can be met (schedulability check)

2. If yes, construct a ”feasible” schedule to meet all deadlines

3. If yes, construct an optimal schedule e.g. minimizing response 

times
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Tasks with the same arrival time

Assume a list of tasks

(A, C1, D1)(A, C2, D2) ...(A, Cn,Dn)

that arrive at the same time i.e. A

 How to find a feasible schedule?

 (OBS: there may be many feasible schedules)
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Earlist Due Date first  (EDD) [Jackson 1955]

 EDD: order tasks with nondecreasing deadlines.

 Simple form of EDF (earlist deadline first)

 Example: (1,10)(2,3)(3,5) 

 Schedule: (2,3)(3,5)(1,10)

 FACT: EDD is optimal

 If EDF cann’t find a feasible schedule for a task set,  then no 

other algorithm can, which means that the task set is non 
schedulable.
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EDD: Schedulability test

 If C1+C2...+Ck <=Dk for all k<=n for the schedule 

with nondescreasing ordering of deadlines, then the 
task set is schedulable

 Response time for task i, Ri =C1+...+Ci

 Prove that EDD is optimal ?
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EDD: Examples 

 (2, 4)(1,5)(6,10) is schedulable:

 Feasible schedule: (2,4)(1,5)(6,10) 

 Note that (1,5)(2,4)(6,10) is also feasible

 (1,10)(3,3)(2,5) is schedulable

 The feasible schedule: (3,3)(2,5)(1,10)

 Why not shortest task first?

 (4,6)(1,10)(3,5) is not schedulable

 (3,5)(4,6)(1,10) is not feasible: 3+4 > 6!
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EDD: optimality

 Assume that Ri is the finishing time of task i, i.e. 
response time.  Let Li = Ri-Di (the lateness for task i)

 FACT: EDD is optimal, minimizing the maximum 
lateness Lmax= MAXi(Li)

 Note that even a task set is non schedulable, EDD 
may minimize the maximal lateness (minimizes e.g. 
the loss for soft tasks)
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Tasks with different arrival times

 Assume a list of tasks

 S= (A1, C1, D1)(A2,C2, D2) ...(An,Cn,Dn)

 Preemptive EDF [Horn 1974]: 

 Whenever new tasks arrive,  sort the ready queue according 

to earlist deadlines

 Run the first task of the queue

 FACT: Preemptive EDF is optimal [Dertouzos 1974] in 

finding feasible schedules.
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Preemptive EDF: Schedulability test

 At any time,  order the tasks according to EDF

(A’1, C’1, D’1) … ... (A’i,C’i,D’i)

 If C’1+...+C’k <=D’k for all k=1,2...i,  then the task 
set is schedulable at the moment

 If S is schedulable at all time points at which tasks 
arrive, S is schedulable
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Preemptive EDF: Example

Consider (1, 5, 11)(2,1,3)(3, 4,8)

 Deadlines are relative to arrival times

 At 1, (5,11)

 At 2, (1,3)(4,10)

 At 3, (4,8)(4,9)
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Preemptive EDF: Optimality

 Assume that Ri is the finishing time/response time of 

task i. Let Li = Ri-Di (the lateness for task i)

 FACT: preemptive EDF is optimal in minimizing the 

maximum lateness Lmax= MAXi(Li)
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On-line non preemptive  EDF

 Run a task until it’s finished and then sort the queue 

according to EDF

+The algorithm may be run on-line, easy to implement, less 

overhead (no more context switch than necessay)

- However it is not optimal, it may not find the feasible 

schedule even it exists.
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On-line non preemptive EDF: example

T1 T2

A 0 1

C 4 2

D 7 5

On-line EDF
Schedule 4

4 6

Missing the deadline 5!

Feasible
Schedule

0

0

0

0

1 3

3 7

CPU idling

17

On-line non-preemptive EDF: Optimal?

 If we only consider non-idle algorithms (CPU waiting 
only if no tasks to run), is EDF is optimal?

 Unfortunately no!

 Example
 T1= (0, 10, 100)

 T2= (0,1,101)

 T3= (1,4,4)

 Run T1,T3,T2:  the  3rd task will miss its deadline

 Run T2,T3,T1: it is a feasible schedule
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Off-line non-preemptive EDF (complete search)

 The decision should be made according to all the 

parameters in the whole list of tasks
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Off-line Non preemptive EDF (complete search, 
NP-hard)

 The decision should be made according to all the 

parameters in the whole list of tasks

 The worst case is to test all possible combinations of

n tasks (NP-hard, difficult for large n)

20

Practical methods: Bratley’s algorithm

 Search until a non-schedulable situation occur, then 

backtrack [Bratley’s algorithm]

 simple and easy to implement but may not find a schedule 
if n is too big (worst case)
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Example (Bratley’s alg.)

T1 T2 T3 T4

A 4 1 1 0

C 2 1 2 2

D 7 5 6 4

T1

6

T2

7 T2

2

T1

6

T3

8

T3

4

T4

6

T4

2

T1

6

T2

T2

3

T3

5

T1

7
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Heuristic methods

 Similar to Bratley’s alg. But

 Use heuristic function H to guide the search until a feasible 

schedule is found, otherwise backtrack: add a new node in 
the search tree if the node has smallest value according to H 
e.g H(task i) = Ci, Ai, Di etc  [Spring alg.]

 However it  may be difficult to find the right H 
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Example Heuristics

 H(Ti) = Ai FIFO

 H(Ti) = Ci SJF

 H(Ti) = Di EDF

 H(Ti) = Di +w*Ci EDF+SJF

 ...

24

EDF: + and –

 Simple (+)

 Preemptive EDF, Optimal (+)

 No need for computing times (+)

 On-line and off-line (+)

 Preemptive schedule easy to find (+)

 But preemptive EDF is ”difficult” to implement efficiently (-)

 Need a list of ”timers”, one per task, 

 Overheads for context switch

 Nonpreemptive schedule difficult to find (-)

 But minimal context switch (+)
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Other scheduling algorithms

 Classical ones

 HPF (priorities = degrees of importance of tasks)

 Weighted Round Robin 

 LRT (Latest Release Time or reverse EDF) 

 LST  (Least Slack Time first)
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Latest Release Time (reversed EDF)

 Release time = arrival time

 Idea: no advantage to completing any hard task sooner than 

necessary. We may want to postpone the execution of hard 
tasks e.g to improve response times for soft tasks.

 LRT: Schedule tasks from the latest deadline to earliest 
deadline. Treat deadlines as ’release times’ and arrival times as 
’Deadlines’. The latest ’Deadline’ first

 FACT: LRT is optimal in finding feasible schedule (for 
preemptive tasks)

27

LRT: Example 

T1 T2 T3

A 0 11 12

C 4 3 4

D 20 18 17

20

18

17 13

13 11

11 9

T1

T2

T3

(D=absolute deadline)

Reverse time: we get the schedule:
T1(9,11)T2(11,13)T3(13,17)T2(17,18)T1(18,20)
OBS: from 0 to 9, soft tasks may be running!

18

17
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LRT: + and -

 It needs Arrival times (-)

 It got to be an off-line algorithm (-)

 Only for preemptive tasks (-)

 It could optimize Response times for soft tasks (+)
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Summary: scheduling independent tasks

Task types Same arrival times Preepmtive

Different arrival times

Non preemptive

Different arrival times

Algorithms

For 

Independent

tasks

EDD,Jackson55

O(n log n), optimal

EDF, Horn 74

O(n**2), Optimal

LST, LRT optimal

Tree search Bratley’71

O(n n!), optimal

Spring, Stankovic et al 
87

O(n**2), Heuristic
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Dependent tasks

 We often have conditions or constraints on tasks e.g.

 A must be computed before B

 B must be computed before C and D

 Such conditions are called precedence constraints

which can be represented as Directed Acyclic Graphs
(DAG) known as Precedence graphs

 Such graphs are also known as ”Task Graph”
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Dependent tasks: Examples

 Input/output relation

 Some task is waiting for output of the others, data flow 
diagrams

 Synchronization

 Some task must be finished before the others e.g. It is 

holding  a shared resource 

T1

T2

T3

T4

T5

T6

T7
sampling

output

32

Precedence graph: Example

 A must be computed before B

 B must be computed before C and D

A

C

B

D

33

Precedence graph: Examples

A

B C

D

A

B C

D

Not a precedence graph!

A

B C

D

Conjunct and Disjunct join: We will only consider conjunct join!

E

E

FA
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AND/OR-precedence graphs

 AND-node, all incomming edges must be finished first

 OR-node: some of the incomming edges must be 

finished
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Scheduling under 
Timing and Precedence constraints

 Feasible schedules should meet 

 Timing constraints: deadlines and also

 Precedence constraints: Precedence graphs

 Overlapping area of blue and red is what we need

 Precedence constraints restrict the search area (Guiding!)

All possible schedules
(feasible/infeasible)

Schedules satisfying
Precedence constraints

Schedules Satisfying
Timing constraints

36

Dependent tasks with the same arrival times

 Assume a list of tasks: 

(A,C1,D1)(A,C2,D2) ...(A,Cn,Dn)

 In addition to the deadlines D1...Dn,  the tasks are 
also constrained by a DAG

 Solution: Latest Deadline First (LDF), Lawler 1973

 FACT: LDF is optimal (in finding feasible schedules)
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Latest Deadline First (LDF)

 It constructs a schedule from tail to head using a queue:

1. Pick up a task from the current DAG, that 

 Has the latest deadline and

 Does not precede any other tasks (a leaf!)

2. Remove the selected task from the DAG and put it to the queue

 Repeat the two steps until the DAG contains no more tasks. 

Then the queue is a potentilly feasible schedule. The last task 
selected should be run first.

 Note that this is similar to LRT

38

LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5

LDF: T6
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T4

3

T5

5

LDF: T6
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T4

3

T5

5

LDF: T6,T5
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T4

3

LDF: T6,T5
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LDF: Example

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T4

3

LDF: T6,T5,T3
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LDF: Example

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

LDF: T6,T5,T3,T4
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LDF: Example

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

LDF: T6,T5,T3,T4,T2
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LDF: Example

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

LDF: T6,T5,T3,T4,T2,T1
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LDF: Example

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

LDF: T6,T5,T3,T4,T5,T1

Feasible Schedule
48

Earlest Deadline First (EDF)

 It is a variant of LDF, but start with the root of the DAG:

1. Pick up a task with earlest deadline among all nodes that have no 
fathers (the roots)

2. Remove the selected task from the DAG and put it to the queue

 Repeat the two steps until the DAG contains no more tasks. 
Then the queue is a feasible schedule. 

 Unfortunately,  EDF is not optimal (see the following example)
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5

EDF: T1
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EDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T2

5

T3

4

T6

6

T4

3

T5

5

EDF: T1
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T2

5

T6

6

T4

3

T5

5

EDF: T1,T3
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T6

6

T4

3

T5

5

EDF: T1,T3,T2
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

EDF: T1,T3,T2,T4,T5,T6
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LDF: Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

EDF: T1,T3,T2,T4,T5,T6LDF: T6,T5,T3,T4,T2,T1

Feasible Infeasible

T4 will miss its

Deadline: 3
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Dependent tasks with different arrival times

 Assume a list of tasks:

S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)

 In addition to the deadlines D1...Dn,  the tasks are 
also constrained by a DAG

 Solution: The Complete Search guided by the DAG

 The Bratley’s algorithm 

 The Spring algorithm
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Better algorithms?

 Assume a list of tasks:

S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)

 In addition to the deadlines D1...Dn,  the tasks are 
also constrained by a DAG

 Idea: 

 Transform the task set S (constrained by the DAG) to an 
Independent task set S* such that 

S is schedulable under DAG iff S* is schedulable

58

Idea: how to transform S to S*?

 Idea:

If Ti ->Tj is in the DAG i.e. Ti must be executed 

before Tj, we replace the arrival time for Tj and 
deadline for Ti with

 Aj* = max(Aj, Ai+Ci)

 Tj can not be computed before the completion of Ti

 Di*=min(Di,Dj-Cj)  

 Ti should be finished early enough to meet the deadline for Tj
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Algorithm (EDF*): transform S to S*

 Let arrival times and deadlines be ’absolute times’

 Step 1: Transform the arrival times from roots to leafs
 For all initial (root) nodes Ti, let Ai* = Ai 

 REPEAT: 
 Pick up a node Tj whose fathers’ arrival times have been modified. If 

no such node, stop. Otherwise:

 Let Aj* =max(Aj, max{Ai*+Ci: Ti->Tj})

 Step 2: Transform the deadlines from leafs to roots
 For all terminal (leafs) nodes Tj, let Dj* = Dj

 REPEAT: 
 Pick up a node Ti all whose sons deadlines have been modified. If no 

such node, stop. Otherwise:

 Let Di* =min(Di, min{Dj*-Cj: Ti->Tj})

 Step 3: use EDF to schedule S*=(A1*,C1,D1*)...(An*.Cn,Dn*)
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EDF*: optimality

FACT:

 S is schedulable under a DAG iff S* is schedulable

 EDF* is optimal in finding a feasible schedule
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Example 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5

A 0 1 0 2 1 0

0

1 0

2 1 0
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EDF*: Example(1) 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5

A 0 1 0 2 1 0

0

1 1

2 2 2

Step 1: Modifying the arrival times (top-down)
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EDF*: Example(1) 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2

T2

5

T3

4

T6

6

T4

3

T5

5

A* 0 1 1 2 2 2

0

1 1

2 2 2

Step 1: Modifying the arrival times (top-down)
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EDF*: Example(2)

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D 2 5 4 3 5 6

T1 

2(1)

T2

5(2)

T3

4(4)

T6

6(6)

T4

3(3)

T5

5(5)

A* 0 1 1 2 2 2

Step 2: Modifying the deadlines (bottom-up)
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EDF*: Example(2) 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D* 1 2 4 3 5 6

T1 

2(1)

T2

5(2)

T3

4(4)

T6

6(6)

T4

3(3)

T5

5(5)

A* 0 1 1 2 2 2

Step 2: Modifying the deadlines (bottom-up)

S*
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EDF*: Example(3) 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D* 1 2 4 3 5 6

T1 

2(1)

T2

5(2)

T3

4(4)

T6

6(6)

T4

3(3)

T5

5(5)

A* 0 1 1 2 2 2

Step 3: now we don’t need the DAG any more!

S*
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EDF*: Example(3) 

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D* 1 2 4 3 5 6

A* 0 1 1 2 2 2

Step 3: schedule S* using EDF

S*
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EDF*: Example(3)

T1 T2 T3 T4 T5 T6

C 1 1 1 1 1 1

D* 1 2 4 3 5 6

A* 0 1 1 2 2 2

Finally we have a schedule: T1,T2,T4,T3,T5,T6

S*
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Summary: scheduling aperiodic tasks

Task types Same arrival times Preepmtive

Different arrival times

Non preemptive

Different arrival times

Algorithms  for

Independent 
tasks

EDD,Jackson55

O(n log n), optimal

EDF, Horn 74

O(n**2), Optimal

LST, optimal

LRT, optimal

Tree search Bratley’71

O(n n!), optimal

Spring, Stankovic et al 87

O(n**2) Heuristic

Algorithms for 
Dependent 
tasks

LDF, Lawler 73

O(n**2)

Optimal

EDF*

Chetto et al 90

O(n**2) optimal

Spring 

As above


