Today's topic:

REAL TIME SCHEDULING

Task models

- Non periodic/Aperiodic (three parameters)
- A: arrving time
- C: computing time
- D: deadline (relative deadline)

How to schedule the Tasks such that given timing constraints are satisfied?

- Timing constraints: deadline for each task,
- Relative to arriving time or absolute deadline
- Other constraints
- Precedence constraints
- Precedence graphs imposed e.g by input/output relation
- Resource constraints: mutual exclusion
- Resource access protocols

Scheduling Problems
Given a set of tasks (ready queue)

Check if all deadlines can be met (schedulability check)
2. If yes, construct a "feasible" schedule to meet all deadlines
3. If yes, construct an optimal schedule e.g. minimizing response times

Tasks with the same arrival time
Assume a list of tasks

$$
(A, C 1, D 1)(A, C 2, D 2) \ldots(A, C n, D n)
$$

that arrive at the same time i.e. A

- How to find a feasible schedule?
- (OBS: there may be many feasible schedules)

Earlist Due Date first (EDD) [Jackson 1955]

- EDD: order tasks with nondecreasing deadlines.
- Simple form of EDF (earlist deadline first)
- Example: $(1,10)(2,3)(3,5)$
- Schedule: $(2,3)(3,5)(1,10)$
- FACT: EDD is optimal
- If EDF cann't find a feasible schedule for a task set, then no other algorithm can, which means that the task set is non schedulable.

EDD: Examples

- $(2,4)(1,5)(6,10)$ is schedulable:
- Feasible schedule: $(2,4)(1,5)(6,10)$
- Note that $(1,5)(2,4)(6,10)$ is also feasible
- $(1,10)(3,3)(2,5)$ is schedulable
- The feasible schedule: $(3,3)(2,5)(1,10)$
- Why not shortest task first?
- $(4,6)(1,10)(3,5)$ is not schedulable
- $(3,5)(4,6)(1,10)$ is not feasible: $3+4>6$!
- Assume a list of tasks
- $\mathrm{S}=(\mathrm{A} 1, \mathrm{C} 1, \mathrm{D} 1)(\mathrm{A} 2, \mathrm{C} 2, \mathrm{D} 2) \ldots(\mathrm{An}, \mathrm{Cn}, \mathrm{Dn})$
- Preemptive EDF [Horn 1974]:
- Whenever new tasks arrive, sort the ready queue according to earlist deadlines
- Run the first task of the queue
- FACT: Preemptive EDF is optimal [Dertouzos 1974] in finding feasible schedules.

EDD: Schedulability test

- If $\mathrm{C} 1+\mathrm{C} 2 \ldots+\mathrm{Ck}<=\mathrm{Dk}$ for all $\mathrm{k}<=\mathrm{n}$ for the schedule with nondescreasing ordering of deadlines, then the task set is schedulable
- Response time for task $\mathrm{i}, \mathrm{Ri}=\mathrm{C} 1+\ldots+\mathrm{Ci}$
- Prove that EDD is optimal ?

EDD: optimality

- Assume that Ri is the finishing time of task i, i.e. response time. Let $\mathrm{Li}=\mathrm{Ri}-\mathrm{Di}$ (the lateness for task i)
- FACT: EDD is optimal, minimizing the maximum lateness Lmax $=\operatorname{MAXi}(\mathrm{Li})$
- Note that even a task set is non schedulable, EDD may minimize the maximal lateness (minimizes e.g. the loss for soft tasks)

Preemptive EDF: Schedulability test

- At any time, order the tasks according to EDF

$$
\left(A^{\prime}{ }_{1}, C^{\prime}{ }_{1}, D_{1}^{\prime}\right) \ldots \ldots\left(A_{i}^{\prime}, C^{\prime}, D_{1}^{\prime}\right)
$$

- If $C^{\prime}{ }_{1}+\ldots+C_{k}^{\prime}<=D_{k}^{\prime}$ for all $k=1,2 \ldots i$, then the task set is schedulable at the moment
- If S is schedulable at all time points at which tasks arrive, S is schedulable

Preemptive EDF: Example
Consider $(1,5,11)(2,1,3)(3,4,8)$

- Deadlines are relative to arrival times
- At $1,(5,11)$
- At $2,(1,3)(4,10)$
- At $3,(4,8)(4,9)$

Preemptive EDF: Optimality

- Assume that Ri is the finishing time/response time of task i. Let Li $=$ Ri-Di (the lateness for task i)
- FACT: preemptive EDF is optimal in minimizing the maximum lateness Lmax $=\operatorname{MAXi}(\mathrm{Li})$

On-line non preemptive EDF

- Run a task until it's finished and then sort the queue according to EDF
+The algorithm may be run on-line, easy to implement, less overhead (no more context switch than necessay)
- However it is not optimal, it may not find the feasible schedule even it exists.

On-line non-preemptive EDF: Optimal?

- If we only consider non-idle algorithms (CPU waiting only if no tasks to run), is EDF is optimal?
- Unfortunately no!
- Example
- T1 = $(0,10,100)$
- T2 $=(0,1,101)$
- T3= $(1,4,4)$
- Run T1,T3,T2: the 3rd task will miss its deadline
- Run T2,T3,T1: it is a feasible schedule

On-line non preemptive EDF: example

	T1	T2
A	0	1
C	4	2
D	7	5

16

- The decision should be made according to all the parameters in the whole list of tasks

Off-line Non preemptive EDF (complete search, NP-hard)

- The decision should be made according to all the parameters in the whole list of tasks
- The worst case is to test all possible combinations of n tasks (NP-hard, difficult for large n)

Practical methods: Bratley's algorithm

- Search until a non-schedulable situation occur, then backtrack [Bratley's algorithm]
- simple and easy to implement but may not find a schedule if n is too big (worst case)

Example (Bratley's alg.)

	T 1	T 2	T 3	T 4
A	4	1	1	0
C	2	1	2	2
D	7	5	6	4

Heuristic methods

- Similar to Bratley's alg. But
- Use heuristic function H to guide the search until a feasible schedule is found, otherwise backtrack: add a new node in the search tree if the node has smallest value according to H e.g $\mathrm{H}($ task i$)=\mathrm{Ci}, \mathrm{Ai}$, Di etc [Spring alg.]
- However it may be difficult to find the right H

EDF: + and -

- Simple (+)
- Preemptive EDF, Optimal (+)
- No need for computing times (+)
- On-line and off-line (+)
- Preemptive schedule easy to find (+)
- But preemptive EDF is "difficult" to implement efficiently (-)
- Need a list of "timers", one per task,
- Overheads for context switch
- Nonpreemptive schedule difficult to find (-)
- But minimal context switch (+)

Other scheduling algorithms

- Classical ones
- HPF (priorities = degrees of importance of tasks)
- Weighted Round Robin
- LRT (Latest Release Time or reverse EDF)
- LST (Least Slack Time first)

Latest Release Time (reversed EDF)

- Release time = arrival time
- Idea: no advantage to completing any hard task sooner than necessary. We may want to postpone the execution of hard tasks e.g to improve response times for soft tasks.
- LRT: Schedule tasks from the latest deadline to earliest deadline. Treat deadlines as 'release times' and arrival times as 'Deadlines'. The latest 'Deadline' first
- FACT: LRT is optimal in finding feasible schedule (for preemptive tasks)

($\mathrm{D}=$ absolute deadline)

Reverse time: we get the schedule: T1 $(9,11)$ T2 $(11,13) \mathrm{T} 3(13,17) \mathrm{T} 2(17,18) \mathrm{T} 1(18,20)$ OBS: from 0 to 9 , soft tasks may be running!

LRT: + and

- It needs Arrival times (-)
- It got to be an off-line algorithm (-)
- Only for preemptive tasks (-)
- It could optimize Response times for soft tasks (+)

Summary: scheduling independent tasks

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times		
Algorithms EDD,Jackson55 EDF, Horn 74 Tree search Bratley'71 For Independent tasks		$(\mathrm{n}$ log n$)$, optimal			
$\mathrm{O}(\mathrm{n} * * 2)$, Optimal					
LST, LRT optimal					$\mathrm{O}\left(\mathrm{n} \mathrm{n!)} ,\mathrm{optimal} \begin{array}{l}\text { Spring, Stankovic et al } \\ 87 \\ \mathrm{O}(\mathrm{n} * * 2), \text { Heuristic }\end{array}\right.$
:---					

Dependent tasks

- We often have conditions or constraints on tasks e.g.
- A must be computed before B
- B must be computed before C and D
- Such conditions are called precedence constraints which can be represented as Directed Acyclic Graphs (DAG) known as Precedence graphs
- Such graphs are also known as "Task Graph"

Dependent tasks: Examples

- Input/output relation
- Some task is waiting for output of the others, data flow diagrams
- Synchronization
- Some task must be finished before the others e.g. It is holding a shared resource

Precedence graph: Examples

Conjunct and Disjunct join: We will only consider conjunct join!

AND/OR-precedence graphs

- AND-node, all incomming edges must be finished first
- OR-node: some of the incomming edges must be finished

Scheduling under
Timing and Precedence constraints

- Feasible schedules should meet
- Timing constraints: deadlines and also
- Precedence constraints: Precedence graphs
- Overlapping area of blue and red is what we need
- Precedence constraints restrict the search area (Guiding!)

Latest Deadline First (LDF)

- It constructs a schedule from tail to head using a queue:

1. Pick up a task from the current DAG, that

- Has the latest deadine and
- Does not precede any other tasks (a leaf!)

2. Remove the selected task from the DAG and put it to the queue

- Repeat the two steps until the DAG contains no more tasks. Then the queue is a potentilly feasible schedule. The last task selected should be run first.
- Note that this is similar to LRT

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

40

電

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6,T5

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6,T5

LDF: T6,T5,T3

	T1	T2	T3	T4	T5	T6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6,T5,T3,T4
LDF: Example

	T1	T2	T3	T4	T5	T6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6,T5,T3,T4,T2

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

LDF: T6,T5,T3,T4,T2,T1

EDF: T1

EDF: T1

EDF: T1,T3

LDF: Example

	T 1	T 2	T	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6

T4 will miss its Deadline: 3

EDF: $\underset{\sim}{T 1, T 3, T 2, T 4, T 5, T 6}$
Infeasible

Dependent tasks with different arrival times

- Assume a list of tasks:

$$
S=(A 1, C 1, D 1)(A 2, C 2, D 2) \ldots(A 3, C n, D n)
$$

- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Solution: The Complete Search guided by the DAG
- The Bratley's algorithm
- The Spring algorithm

Better algorithms?

- Assume a list of tasks:

$$
S=(A 1, C 1, D 1)(A 2, C 2, D 2) \ldots(A 3, C n, D n)
$$

- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Idea:
- Transform the task set S (constrained by the DAG) to an Independent task set S^{*} such that S is schedulable under DAG iff S^{*} is schedulable
- Let arrival times and deadlines be 'absolute times'
- Step 1: Transform the arrival times from roots to leafs
- For all initial (root) nodes Ti, let Ai* $=\mathrm{Ai}$
- REPEAT:
- Pick up a node Tj whose fathers' arrival times have been modified. If no such node, stop. Otherwise:
- Let $\mathrm{Aj}^{*}=\max \left(\mathrm{Aj}, \max \left\{\mathrm{Ai}^{*}+\mathrm{Ci}: \mathrm{Ti}->\mathrm{Tj}\right\}\right)$
- Step 2: Transform the deadlines from leafs to roots
- For all terminal (leafs) nodes Tj , let $\mathrm{Dj}{ }^{*}=\mathrm{Dj}$
- REPEAT:
- Pick up a node Ti all whose sons deadlines have been modified. If no such node, stop. Otherwise:
Let $\mathrm{Di}^{*}=\min \left(\mathrm{Di}, \min \left\{\mathrm{Dj}^{*}-\mathrm{Cj}: \mathrm{Ti}->\mathrm{Tj}\right\}\right)$
- Step 3: use EDF to schedule $\mathrm{S}^{*}=\left(\mathrm{A} 1^{*}, \mathrm{C} 1, \mathrm{D} 1^{*}\right) \ldots\left(\mathrm{An} * . \mathrm{Cn}, \mathrm{Dn}{ }^{*}\right)$

Step 1: Modifying the arrival times (top-down)

Step 2: Modifying the deadlines (bottom-up)

Step 2: Modifying the deadlines (bottom-up)

Step 3: now we don't need the DAG any more!
EDF*: Example(3)
S*

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D^{*}	1	2	4	3	5	6
$\mathrm{~A}^{*}$	0	1	1	2	2	2

Step 3: schedule S* using EDF

EDF*: Example(3)
S*

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D^{*}	1	2	4	3	5	6
$\mathrm{~A}^{*}$	0	1	1	2	2	2

Finally we have a schedule: $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 4, \mathrm{~T} 3, \mathrm{~T} 5, \mathrm{~T} 6$

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times
Algorithms for Independent tasks	EDD,Jackson55 O(n log n), optimal	EDF, Horn 74 O(n**2), Optimal LST, optimal LRT, optimal	Tree search Bratley'71 O(n n!), optimal Spring, Stankovic et al 87 O(n**2) Heuristic
Algorithms for Dependent tasks	LDF, Lawler 73 O(n**2) Optimal	EDF* Chetto et al 90 O(n**2) optimal	Spring As above

