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Today’s topic: RTOS
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Overall Stucture of Computer Systems
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Application

Program

Application

Program

Application

Program

OS User Interface/Shell, Windows

Filesystem and  Disk management

OS kernel

Hardware

Why OS?

 To run a single program is easy
 What to do when several programs run in parallel?

 Memory areas
 Program counters 
 Scheduling (e.g. one instruction each)
 ....
 Communication/synchronization/semaphors

 Device drivers

 OS is a program offering the common services needed in all applications 
 (e.g.  Enea’s OSE kernel)
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Operating System Provides

 Environment for executing programs

 Support for multitasking/concurrency

 Hardware abstraction layer (device drivers)

 Mechanisms for Synchronization/Communication

 Filesystems/Stable storage

We will focus on concurrence and real-time issues

First, a little history 

Batch Operating Systems

 Original computers ran in batch mode:

 Submit job & its input

 Job runs to completion

 Collect output

 Submit next job

 Processor cycles very expensive at the time

 Jobs involved reading, writing data to/from tapes

 Cycles were being spent waiting for the tape!

Timesharing Operating Systems

 Solution

 Store multiple batch jobs in memory at once

 When one is waiting for the tape, run the other one

 Basic idea of timesharing systems

 Fairness,  primary goal of timesharing schedulers

 Let no one process consume all the resources

 Make sure every process gets “equal” running time
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Real-Time Is Not Fair

 Main goal of an RTOS scheduler: 

 meeting timing constraints e.g. deadlines

 If you have five homework assignments and only one 
is due in an hour, you work on that one

 Fairness does not help you meet deadlines

Do We Need OS for RTS?

 Not always

 Simplest approach: cyclic executive

loop

do part of task 1

do part of task 2

do part of task 3

end loop

Cyclic Executive

 Advantages

 Simple implementation

 Low overhead

 Very predictable

 Disadvantages

 Can’t handle sporadic events (e.g. interrupt)

 Everything must operate in lockstep

 Code must be scheduled manually

Real-Time Systems and OS

 We need an OS

 For convenience

 Multitasking and threads

 Cheaper to develop large RT systems

 But - don’t want to loose ability to meet deadlines 
(timing and resource constraints in general)

 This is why RTOS comes into the picture

Requirements on RTOS

 Determinism

 Responsiveness (quoted by vendors)

 Fast process/thread switch

 Fast interrupt response

 User control over OS policies

 Mainly scheduling, many priority levels

 Memory support (especially embedded)

 Reliability

Basic functions of OS kernel

 Process mangement 

 Memory management 

 Interrupt handling

 Exception handling

 Process Synchronization (IPC)

 Process schedulling
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Process, Thread and Task

 A process is a program in execution.

 A thread is a “lightweight” process, in the sense that different 
threads share the same address space,  with all code, data, 
process status in the main memory, which gives Shorter creation 
and context switch times, and faster IPC

 Tasks are implemented as threads in RTOS.

13

Basic functions of  RTOS kernel

 Task mangement 

 Interrupt handling 

 Memory management

 no virtual memory for hard RT tasks

 Exception handling (important)

 Task synchronization 

 Avoid priority inversion

 Task scheduling

 Time management
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Micro-kernel architecture
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System

calls

Hardware/software
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interrupts

Immediate
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Create task

Suspend task

Terminate task

Create timer

Sleep-timer

Timer-notify

Other system calls

Scheduling

Time services

Kernel

Exception handling

Basic functions of  RTOS kernel

 Task mangement 

 Interrupt handling 

 Memory management 

 Exception handling

 Task synchronization

 Task scheduling

 Time management
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Task: basic notion in RTOS

 Task = thread (lightweight process)

 A sequential program in execution

 It may communicate with other tasks

 It may use system resources such as memory blocks

 We may have timing constraints for tasks
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Typical RTOS Task Model

 Each task a triplet: (execution time, period, deadline)

 Usually, deadline = period

 Can be initiated any time during the period

Execution 
time

Period

Deadline

Time

Initiation
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Task Classification (1)

 Periodic tasks: arriving at fixed frequency, can be 

characterized by 3 parameters (C,D,T) where

 C = computing time

 D = deadline

 T = period (e.g. 20ms, or 50HZ)

Often D=T, but it can be D<T or D>T

Also called Time-driven tasks, their activations are 
generated by timers
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Example: Fly-by-wire Avionics:
Hard real-time system with multi-rate tasks

INU
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Air data
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Joystick

500 Hz

Pitch control

500 Hz

Lateral Control

250 Hz

Throttle Control

250 Hz

Aileron 1

1 kHz

Aileron 2

1 kHz

Elevator

1 kHz

Rudder

1 kHz

gyros,

accel.

GPS

Air

Sensor

Stick

Aileron

Aileron

Elevator

Rudder

Sensors Signal 

Conditioning

Control laws Actuating Actuators

Task Classification (2)

 Non-Periodic or aperiodic tasks = all tasks that are 

not periodic, also known as Event-driven, their 
activations may be generated by external interrupts

 Sporadic tasks = aperiodic tasks with minimum 
interarrival time Tmin    (often with hard deadline)

 worst case = periodic tasks with period Tmin
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Task states (1)

 Ready

 Running

 Waiting/blocked/suspended ...

 Idling

 Terminated
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Task states (2)
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Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Task states (Ada, delay)
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Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
delaytimeout
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Task states (Ada95)
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Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
Sleeptimeout

created

declared

TCB (Task Control Block)

 Id

 Task state (e.g. Idling)

 Task type (hard, soft, background ...)

 Priority

 Other Task parameters 

 period

 comuting time (if available)

 Relative deadline

 Absolute deadline

 Context pointer

 Pointer to program code, data area, stack

 Pointer to resources (semaphors etc)

 Pointer to other TCBs (preceding, next, waiting queues etc)
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Basic functions of RT OS

 Task mangement
 Interrupt handling

 Memory management

 Exception handling

 Task synchronization 

 Task scheduling

 Time management
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Task managment

 Task creation: create a newTCB

 Task termination: remove the TCB

 Change Priority: modify the TCB

 ...

 State-inquiry: read the TCB
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Task mangement

 Challenges for an RTOS

 Creating an RT task, it has to get the memory without delay: this is 
difficult because memory has to be allocated and a lot of data 
structures, code seqment must be copied/initialized

 The memory blocks for RT tasks must be locked in main memoery
to avoid access latencies due to swapping

 Changing run-time priorities is dangerous: it may change the run-
time behaviour and predictability of the whole system

29

Basic functions of RT OS

 Task mangement

 Interrupt handling
 Memory management

 Exception handling

 Task synchronization 

 Task scheduling

 Time management

30
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Interrupts

 Interrupt: environmental event that demands attention
 Example: “byte arrived” interrupt on serial channel

 Interrupt routine: piece of code executed in response to an 
interrupt

Handling an Interrupt

1. Normal program 
execution

2. Interrupt 

occurs

3. Processor state 
saved 4. Interrupt routine 

runs

5. Interrupt routine 
terminates

6. Processor state 
restored

7. Normal 
program 
execution 
resumes

Interrupt Service Routines

 Most interrupt routines:

 Copy peripheral data into a buffer

 Indicate to other code that data has arrived

 Acknowledge the interrupt (tell hardware)

 Longer reaction to interrupt performed outside interrupt routine

 E.g., causes a process to start or resume running

Interrupt Handling

 Types of interrupts

 Asynchronous (or hardware interrupt)  by hardware event (timer, network card …) the 
interrupt handler as a separated task in a different context.

 Synchronous (or software interrupt, or a trap)  by software instruction (swi in ARM, int 
in Intel 80x86), a divide by zero, a memory segmentation fault, etc. The interrupt 
handler runs in the context of the interrupting task

 Interrupt latency

 The time delay between the arrival of interrupt and the start of corresponding ISR.

 Modern processors with multiple levels of caches and instruction pipelines that need to 
be reset before ISR can start might result in longer latency.

 The ISR of a lower-priority interrupt may be blocked by the ISR of a high-priority
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Basic functions of RT OS

 Task mangement

 Interrupt handling

 Memory management
 Exception handling

 Task synchronization

 Task scheduling

 Time management
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Memory Management/Protection

 Standard methods

 Block-based,  Paging, hardware mapping for protection

 No virtual memory for hard RT tasks

 Lock all pages in main memory

 Many embedded RTS do not have memory protection – tasks 
may access any blocks – Hope that the whole design is proven 

correct and protection is unneccessary

 to achive predictable timing

 to avoid time overheads

 Most commercial RTOS provide memory protection as an option

 Run into ”fail-safe” mode if an illegal access trap occurs

 Useful for complex reconfigurable systems

36



7

Basic functions of RT OS

 Task mangement

 Interrupt handling

 Memory management

 Exception handling
 Task synchronization

 Task scheduling

 Time management
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Exception handling

 Exceptions e.g missing deadline, running out of 
memory, timeouts, deadlocks
 Error at system level, e.g. deadlock

 Error at task level, e.g. timeout 

 Standard techniques:
 System calls with error code 

 Watch dog 

 Fault-tolerance (later)

 However, difficult to know all senarios
 Missing one possible case may result in disaster

 This is one reason why we need Modelling and Verification
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Watch-dog

 A task, that runs (with high priority) in parallel with all others

 If some condition becomes true, it should react ...

Loop

begin 

....

end

until condition

 The condition can be an external event, or some flags

 Normally it is a timeout
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Example

 Watch-dog (to monitor whether the application task is alive)

Loop

if flag==1 then

{

next :=system_time;  

flag :=0

}

else  if system_time> next+20s then WARNING;

sleep(100ms)

end loop

 Application-task

 flag:=1 ... ... computing something ... ... flag:=1 ..... flag:=1 ....
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Basic functions of RT OS

 Task mangement

 Interrupt handling

 Memory management

 Exception handling

 Task synchronization 
 Time management

 CPU scheduling

41

Task Synchronization

 Synchronization primitives
 Semaphore: counting semaphore and binary semaphore

 A semaphore is created with initial_count, which is the number of allowed holders 
of the semaphore lock. (initial_count=1: binary sem)

 Sem_wait will decrease the count; while sem_signal will increase it.

 A task can get the semaphore when the count > 0; otherwise, block on it.

 Mutex: similar to a binary semaphore, but mutex has an owner.
 a semaphore can be “waited for” and “signaled” by any task,

 while only the task that has taken a mutex is allowed to release it.

 Spinlock: lock mechanism for multi-processor systems,
 A task wanting to get spinlock has to get a lock shared by all processors.

 Read/write locks: protect from concurrent write, while allow concurrent 
read

 Many tasks can get a read lock; but only one task can get a write lock.

 Before a task gets the write lock, all read locks have to be released.

 Barrier: to synchronize a lot of tasks, 
 they should wait until all of them have reached a certain “barrier.”

42
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Task Synchronization

 Challenges for RTOS
 Critical section (data, service, code) protected by lock 

mechanism e.g. Semaphore etc. In a RTOS, the maximum time a 
task can be delayed because of locks held by other tasks should be 
less than its timing constraints.

 Race condition – deadlock, livelock, starvationSome 
deadlock avoidance/prevention algorithms are too complicate and 
indeterministic for real-time execution. Simplicity is preferred, like

 all tasks always take locks in the same order.
 allow each task to hold only one resource.

 Priority inversion using priority-based task scheduling and 
locking primitives should know the “priority inversion” danger: a 
medium-priority job runs while a highpriority task is ready to 
proceed.
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IPC: Data exchanging

 Semaphore

 Shared variables

 Bounded buffers

 FIFO

 Mailbox

 Message passing

 Signal
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Semaphore is the most primitive and widely used construct for 
Synchronization and communicatioin in all operating systems

Semaphore, Dijkstra 60s

 A semaphore is a simple data structure with
 a counter 

 the number of ”resources”

 binary semaphore

 a queue
 Tasks waiting 

and two operations:

 P(S): get or wait for semaphore

 V(S): release semaphore
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Implementation of Semaphores: SCB

 SCB: Semaphores Control Block
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Counter

Queue of TCBs (tasks waiting)

Pointer to next SCB

The queue should be sorted by priorities (Why not FIFO?)

Implementation of semaphores: P-operation

 P(scb):
Disable-interrupt;

If scb.counter>0 then

scb.counter - -1;

end then

else

save-context();

current-tcb.state := blocked;

insert(current-tcb, scb.queue);

dispatch();

load-context();

end else

Enable-interrupt  
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Implementation of Semaphores: V-operation

 V(scb):
Disable-interrupt;

If not-empty(scb.queue)  then

tcb := get-first(scb.queue);

tcb.state := ready;

insert(tcb, ready-queue);

save-context();

schedule(); /* dispatch invoked*/

load-context();

end then 

else scb.counter ++1;

end else

Enable-interrupt  

48
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Advantages with semaphores

 Simple (to implement and use)

 Exists in most (all?) operating systems

 It can be used to implement other 
synchronization tools

 Monitors, protected data type, bounded buffers, 
mailbox etc
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Exercise/Questions

 Implement Mailbox by semaphore

 Send(mbox, receiver, msg)

 Get-msg(mbox,receiver,msg)

 How to implement hand-shaking communication?

 V(S1)P(S2)

 V(S2)P(S1)

 Solve the read-write problem

 (e.g max 10 readers, and at most 1 writer at a time)
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Disadvantages (problems) with semaphores

 Deadlocks

 Loss of mutual exclusion

 Blocking tasks with higher priorities (e.g. FIFO)

 Priority inversion !
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Priority inversion problem

 Assume 3 tasks: A, B, C with priorities Ap<Bp<Cp

 Assume semaphore: S shared by A and C

 The following may happen:

 A gets S by P(S)

 C wants S by P(S) and blocked

 B is released and preempts A 

 Now B can run for a long long period .....

 A is blocked by B, and C is blocked by A

 So C is blocked by B

 The above senario is called ’priority inversion’

 It can be much worse if there are more tasks with priorities in 
between Bp and Cp, that may block C as B does!
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Solution?

 Task A with low priority holds S that task C with highest 
priority is waiting.

 Tast A can not be forced to give up S, but A can be 
preempted by B because B has higher priority and can run 
without S

So the problem is that ’A can be preempted by B’

 Solution 1: no preemption (an easy fix) within CS sections

 Solution 2: high A’s priority when it gets a semaphore shared 

with a task with higher priority! So that A can run until it 
release S and then gets back its own priority

53

Resource Access Protocols

 Highest Priority Inheritance
 Non preemption protocol (NPP)

 Basic Priority Inheritance Protocol (BIP)
 POSIX (RT OS standard) mutexes

 Priority Ceiling Protocols (PCP)

 Immedate Priority Inheritance 
 Highest Locker’s priority Protocol (HLP)

 Ada95 (protected object) and POSIX mutexes

54
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Basic functions of RT OS

 Task mangement

 Interrupt handling

 Memory management

 Exception handling

 Task synchronization

 Task scheduling
 Time management
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Task states
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Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
delaytimeout

Priority-based Scheduling

 Typical RTOS based on fixed-priority 
preemptive scheduler

 Assign each process a priority

 At any time, scheduler runs highest priority 
process ready to run

 Process runs to completion unless 
preempted

Scheduling algorithms

 Sort the READY queue acording to

 Priorities (HPF)

 Execution times (SCF)

 Deadlines (EDF)

 Arrival times (FIFO)

 Classes of scheduling algorithms

 Preemptive vs non preemptive

 Off-line vs on-line

 Static vs dynamic

 Event-driven vs time-driven
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Task Scheduling

 Scheduler is responsible for time-sharing of CPU among tasks.
 A variety of scheduling algorithms with predictable behaviors exist.
 The general trade-off: the simplicity and the optimality.

 Challenges for an RTOS
 Different performance criteria

 GPOS: maximum average throughput
 RTOS: deterministic behavior

 A theoretically optimal schedule does not exist
 Hard to get complete knowledge – task requirements and hard properties 
 the requirements can be dynamic (i.e., time varying) – adaptive scheduling

 How to garuantee Timing Constraints?
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Schedulability

 A schedule is an ordered list of tasks (to be executed) and a 
schedule is feasible if it meets all the deadlines

 A queue (or set) of tasks is schedulable if there exists a 
schedule such that no task may fail to meet its deadline
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scheduling
New tasks

Preemption

Dispatching

Running Termination

 How do we know all possible queues (situations) are schedulable? 

we need task models  (next lecture)
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Priority-based scheduling in RTOS

 static priority
 A task is given a priority at the time it is created, and it keeps this 

priority during the whole lifetime.

 The scheduler is very simple, because it looks at all wait queues at 
each priority level, and starts the task with the highest priority to 
run.

 dynamic priority
 The scheduler becomes more complex because it has to calculate 

task’s priority on-line, based on dynamically changing parameters.
 Earliest-deadline-first (EDF) --- A task with a closer deadline gets a 

higher scheduling priority.
 Rate-monotonic scheduling

 A task gets a higher priority if it has to run more frequently.
 This is a common approach in case that all tasks are periodic.  So, a 

task that has to run every n milliseconds gets a higher priority than a 
task that runs every m milliseconds when n<m.
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Basic functions of RT OS

 Task mangement

 Interrupt handling

 Memory management

 Exception handling

 Task synchronization

 Task scheduling

 Time management
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Time mangement

 A high resolution hardware timer is programmed to  
interrupt the processor at fixed rate – Time interrupt

 Each time interrupt is called a system tick (time 
resolution):

 Normally, the tick can vary in microseconds (depend on hardware)
 The tick may (not necessarily) be selected by the user
 All time parameters for tasks should be the multiple of the tick
 Note: the tick may be chosen according to the given task parameters
 System time = 32 bits

 One tick = 1ms: your system can run 50 days

 One tick = 20ms: your system can run 1000 days = 2.5 years

 One tick = 50ms: your system can run 2500 days= 7 years
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Time interrupt routine

 Save the context of the task in execution
 Increment the system time by 1, if current time > system 

lifetime, generate a timing error

 Update timers (reduce each counter by 1) 
 A queue of timers

 Activation of periodic tasks in idling state
 Schedule again - call the scheduler

 Other functions e.g.
 (Remove all tasks terminated -- deallocate data structures e.g TCBs)
 (Check if any deadline misses for hard tasks, monitoring)

 load context for the first task in ready queue
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Basic functions of RT OS

 Task mangement !

 Interrupt handling !

 Memory management !

 Exception handling !

 Task synchronization !

 Task scheduling !

 Time management !
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Features of current RTOS: SUMMARY

 Multi-tasking

 Priority-based scheduling

 Application tasks should be programmed to suit ...

 Ability to quickly respond to external interrupts

 Basic mechanisms for process communication and 

synchronization

 Small kernal and fast context switch

 Support of a real time clock as an internal time 

reference

66
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Existing RTOS: 4 categories

 Priority based kernel for embbeded applications e.g. OSE, VxWorks, 
QNX, VRTX32, pSOS .... Many of them are commercial kernels
 Applications should be designed and programmed to suite priority-based 

scheduling e.g deadlines as priority etc

 Real Time Extensions of existing time-sharing OS e.g. Real time Linux, 
Real time NT by e.g locking RT tasks in main memory, assigning 
highest priorities etc

 Research RT Kernels e.g. SHARK,  TinyOS … …

 Run-time systems for RT programmingn languages e.g. Ada, Erlang, 
Real-Time Java ...
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RT Linux: an example

RT-Linux is an operating system, in which a small real-time  

kernel co-exists with standard Linux kernel:
 – The real-time kernel sits between standard Linux kernel and the 

h/w. The standard Linux Kernel sees this RT layer as actual h/w.
 – The real-time kernel intercepts all hardware interrupts.

 Only for those RTLinux-related interrupts, the appropriate ISR is run.
 All other interrupts are held and passed to the standard Linux kernel as 

software interrupts when the standard Linux kernel runs.

 – The real-time kernel assigns the lowest priority to the standard 
Linux kernel. Thus the realtime tasks will be executed in real-time

 – user can create realtime tasks and achieve correct timing for 
them by deciding on scheduling algorithms, priorities, execution 
freq, etc.

 – Realtime tasks are privileged (that is, they have direct access to 
hardware), and they do NOT use virtual memory.
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RT Linux
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Scheduling

 Linux contains a dynamic scheduler

 RT-Linux allows different schedulers 

 EDF (Earliest Deadline First)

 Rate-monotonic scheduler

 Fixed-prioritiy scheduler
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Time Resolution

 RT tasks may be scheduled in microseconds

 Running RT Linux-V3.0 Kernel 2.2.19 on the 
486 allows stable hard real-time operation: 

 17 nanoseconds timer resolution.

 6 microseconds interrupt response time (measured 

on interrupts on the parallel port).

 High resolution timing functions give 
nanosecond resolution (limited by the 
hardware only)
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Linux v.s. RTLinux

 Linux Non-real-time Features
 – Linux scheduling algorithms are not designed for real-time tasks

 But provide good average performance or throughput

 – Unpredictable delay
 Uninterruptible system calls, the use of interrupt disabling, virtual 

memory support (context switch may take hundreds of microsecond).

 – Linux Timer resolution is coarse, 10ms
 – Linux Kernel is Non-preemptible.

 RTLinux Real-time Features
 – Support real-time scheduling: guarantee hard deadlines
 – Predictable delay (by its small size and limited operations)
 – Finer time resolution
 – Pre-emptible kernel

 – No virtual memory support

72


