
Virtualized System Development

Using hardware simulation
to help software development

Dr. Jakob Engblom
Virtutech

2008-10-02Copyright Virtutech 2008

Virtutech

• Virtutech develops virtual platforms
– Both standard virtual boards and customer-specific

platforms

• Based on full-system simulation technology
• Flagship product: Simics 4.0
• We help our customers

– Save money
– Develop better products with less risk
– Get products to market sooner

Virtualized System Development

Virtuali-what?

• Making a computer program behave like a computer for the purpose of
running software

• Mechanisms for making some computer resource less subject to physical
constraints

• Virtual memory, disk virtualization, virtual machines, …
• Very hip in the data center world currently

Virtualization

• A piece of software that simulates something
• Used to perform experiments and gain insight not possible in the real world
• Control and insight into the internals of the process big advantages
• For computing, often associated with being slow
• Physics, computers, weather, games, …

Simulation

• A piece of software that mimics some computer software or hardware
• Focused on the execution of existing software
• Terminal emulators, OS emulators, console emulators

Emulation

2008-10-02Copyright Virtutech 2008

Virtutech Simics is
really doing a bit of all
of these, and it has
been called all three

What is Virtual Hardware?

• A piece of software
• Running on a regular

PC, server, or
workstation

• Functionally identical to
a particular hardware

• Runs the same
software as the
physical hardware
system

Virtual HW

2008-10-02Copyright Virtutech 2008

Virtutech Core Technology

• Model any electronic system
on a PC or workstation
– Simics is a software program,

no hardware required
• Run the exact same

software as the physical
target (complete binary)

• Run it fast (100s of MIPS)
• Model any target system

– Networks, SoCs, boards,
ASICs, ... no limits

• For the benefit of software
developers and hardware
providers

• Enables process change in
software development

SimicsSimics

User application code

Host hardwareHost hardware

Host operating systemHost operating system

Virtual target hardware

Target operating system (s)

Middleware and libraries

Typically, an embedded
or real‐time control
computer system

2008-10-02Copyright Virtutech 2008

Why use Virtual Systems?

“Because hardware is no fun”

Because Hardware Is...

Not yet available Flaky prototype stage Not available anymore

?

Photo: Computer History Museum

Photo: Freescale

2008-10-02Copyright Virtutech 2008

Because Hardware Is...

Inconvenient Dangerous Inaccessible

Photo: ESA

Photo: www.mil.se, Bromma Conquip

2008-10-02Copyright Virtutech 2008

http://www.mil.se/

Because Hardware Is...

Impractical in scale Limited Inflexible

2008-10-02Copyright Virtutech 2008

Virtual Platform Advantages and Features

Example: Early Hardware

Hardware/Software
Integration and Test

Hardware-dependent
software development

Hardware design and production

Simulator
development

Hardware-dependent
software development

Hardware/Software
Integration and Test

First successful power‐on
and boot

Reduced project time‐to‐
ship using simulated

hardware

Hardware design and production

2008-10-02Copyright Virtutech 2008

2008-10-02Copyright Virtutech 2008

Handy Features of Simulation

• Checkpointing
– Store current state; pick up and continue later
– Position workload once, use many times
– Spread a system state to multiple developers
– Package error reports
– Can checkpoint an entire network of machines
– Key for repeating executions

• Determinism/Repeatability
– Same initial state gives same execution;
– Repeat the same execution any number of times
– Investigate a problem time after time
– For multiprocessor systems & network systems
– Very useful for complex systems, where repeatable runs

otherwise do not happen

Checkpointing in Simics

Copyright Virtutech 2008

Save checkpoint

Restore to same
machine, same model
version

Restore to different host
machine, same model
version

Restore to same
machine, updated model
version (bug fix)

Restore to an updated
and upgraded version of
the model

2008-10-02

2008-10-02Copyright Virtutech 2008

Handy Features of Simulation

• Visibility (insight without intrusion)
– All state can be observed
– All events can be traced and logged

• Controllability
– Any part of machine or state can be changed
– Fault injection

• Virtual time
– Time is completely virtual
– Global synchronization across all machines in a network
– Global stop across all processors in a multiprocessor

Convenience: Loading Flash

SimicsSimulator

FLASH
bin

Simics
Flash
Programmer

bin

Much shorter turn-around time for
changing target software setup
No risk of “bricking” a target

2008-10-02Copyright Virtutech 2008

2008-10-02Copyright Virtutech 2008

Handy Features of Simulation

• Configurability
– Any parameter of system can be changed

• Sandboxing
– Allows investigating ”nasty code”
– Simulated machine complete isolated
– Networks can be isolated
– Simics undetectable by malware

• Complete hardware simulation, no virtualization tricks

• Reverse execution
– Roll back execution to previous state
– Reverse breakpoints
– Investigate details of program errors

2008-10-02Copyright Virtutech 2008

Hardware Availability

Wide Availability
• Virtual system is ”just

software”
• Trivial to copy
• Trivial to distribute
• Each engineer can have a

custom hardware system at
their desk

Scalable
• No physical supply limit

– Any number of each type of
board

– Any type of system in
”infinite” supply

• A virtual system can be big
or small by simple software
(re)configuration

2008-10-02Copyright Virtutech 2008

Virtualization = Infinite Longevity

Host hardwareToday: 32-bit PC

Host operating systemWindows

SimicsSimics for x86/win

PPC 750fx Card

Target OS

Applications

Host hardwareTomorrow: 64-bit PC

Host operating systemLinux

SimicsSimics for AMD64/linux

PPC 750fx Card

Target OS

Applications

Host hardwareFuture: X Hardware

Host operating systemY OS

SimicsSimics for X/Y

PPC 750fx Card

Target OS

Applications

Time

...but the simulated target
hardware stays the same

And the target software
keeps working

The host machines available
change over time...

Example Systems

2008-10-02Copyright Virtutech 2008

Simulating Networks

SimicsSimics
Simulated HW

OS

Application

Simics
Network Link
Simulation

Simulated HW

OS

Application

Network connect

Simulated HW

OS

Application

Network connect

Real-network

Traffic gen

Network
tester

Rest-of-network
model

System under
test, fully
simulated

Physical HW

OS

Application

Real-world
network test
equipment

Physical HW

OS

Application

Dedicated test system that
injects packets and checks the

replies

Instrumentation
module

Other fully simulated
nodes on the

simulated network

Simplified behavioral simulation
of other nodes, based on network

I/O

2008-10-02Copyright Virtutech 2008

CardCardCardCard

Large Target System

• Telecom Switch
– ATM Backplane
– Ethernet frontside
– Serial
– 20+ different card types

• Control cards
• Timer units
• Line cards
• Backplane switch cards
• Multipro compute cards
• DSP processing cards

– 20+ cards in a rack
• Combined arbitrarily

• Extreme system size
– 10-100s processors
– 10+ of GB target RAM

Rack Backplane

Control

PPC

FLASH
PQ

Compute

PPC

Line Card

PPC

atm
asic

PPC

PPC PPC

– Multiple processor types
• PowerPC 403, 405, 440
• PowerPC 750, 750fx, 750gx
• PowerPC 8641D, 85xx
• PowerQUICC II 8260, 8270, 8280
• PowerQuicc II Pro 8360
• TI C64, C64+ DSP

2008-10-02Copyright Virtutech 2008

Board

LEON2 chip

SRAM

UARTPIC

SDRAM PROM

Timers CPUPCI

1553

1553

• LEON2 Processor
– Core complex
– Memory controller
– Serial
– PCI
– Interrupts
– Clock

• Mil-Std 1553 bus
• Multiple 1553 controllers
• Multiple cards
• RTEMS OS

1553 bus

LEON Space Computer Board

Board

LEON2 chip

SRAM

UARTPIC

SDRAM PROM

Timers CPUPCI

1553

1553

2008-10-02Copyright Virtutech 2008

Virtual Reference Kit for Switch Chip

• Standard components from VT
– ATCA rack
– PPC 8548
– PCIe & Ethernet traffic

• Customer work
– Custom switch chip models
– Custom backplane link

• Simics integration
– Wrapping customer models

into Simics models
• Features

– Multiple cards, multiple chips
– Same SW as real platform
– Months before hardware
– Shipped to subcontractors and

OEMs

ATC
A R

ack B
ackplane

C
om

bined card

PPC
etheth

PCIe

link SC

S
w

itch card
P

rocessor card

RAM

PCIe

SC

SC SC

SC

PPC
eth

RAM

PCIe

UART

Debugging with Virtual Platforms

2008-10-02Copyright Virtutech 2008

Three Steps of Debugging

1. Provoking errors
– Forcing the system to a state where things break

2. Reproducing errors
– Recreating a provoked error reliably

3. Locating the source of errors
– Investigating the program flow and data
– Depends on success in reproduction

A simulator can help with all three steps

Simics Debugging Features

Synchronous stop
for entire system

Determinism and
repeatability

Reverse execution

Unlimited and powerful
breakpoints

Trace anything Insight into all devices

break –x 0x0000->0x1F00

break-io uart0

break-exception int13

2008-10-02Copyright Virtutech 2008

2008-10-02Copyright Virtutech 2008

Repeatability and Reverse Debugging

• Repeat any run trivially
– No need to rerun and hope

for bug to reoccur
• Stop & go back in time

– Instead of rerunning
program from start

– Breakpoints & watchpoints
backwards in time

– Investigate exactly what
happened this time

• This control and reliable
repeatability is very powerful
for parallel code!

On hardware, only some
runs reproduce an error

On virtual hardware,
debugging is much easier

2008-10-02Copyright Virtutech 2008

Code is not just about CPUs

On a modern SoC, the processor
cores are just one part of the
system

Much application functionality is
implemented by using special
accelerators... and you need to debug
their interaction with the processors &
software

2008-10-02Copyright Virtutech 2008

Divide-by-zero in OS Kernel

• Operating-system kernel crash in virtual model
– Divide-by-zero right in the kernel
– Algorithm to determine and compensate for clock skew
– Division by difference in time between two processors

• Virtual model had zero clock skew = provoked error
– Could have happened on a real system
– Just not very likely
– Typical rare problem in the field
– Essentially testing a rare corner case in system state

2008-10-02Copyright Virtutech 2008

Race Condition in Serial Driver

• The problem:
– Dual-core MPC8641D machine
– Changed clock frequency from 800 to 833 Mhz
– OS froze on startup – quite unexpectedly

• Investigation:
– Only happened at 832.9 to 833.3 MHz
– Determinism: 100% reproduction of error trivial
– Time control: single-step code feasible
– Insight: look at complete system state, log interrupts, check

the call stack at the point of the freeze, check lock state
• What we found:

– An interrupt service routine attempted to take a lock, before
re-enabling interrupts. In the case that froze, the lock was
already taken when the service routine was entered, and
with no interrupts enabled there was no way for it to be
released.

Simulation Technology

Part II…

2008-10-02Copyright Virtutech 2008

Softw
are stack

Communications
networks

Controlled
Environment

Human user interface

Embedded Computer System

BootROM, drivers, HAL

Operating system

Middleware, libraries

Applications

2008-10-02Copyright Virtutech 2008

Simulating Embedded Computer System

Softw
are stack

Communications
networks

Controlled
Environment

Human user interface

BootROM, drivers, HAL

Operating system

Middleware, libraries

Applications

Simulation: “fake” one or more of the
system pieces to enable work on other
pieces. Some parts may be physical,
while others are virtual.

Each piece has its own simulation
issues and specialized simulation
tools

We will focus on running the
software today

2008-10-02Copyright Virtutech 2008

User Interface Simulation

• A category of tools of its own
• Part of many other

simulation tools

• Many different levels:
– Virtual screen & mouse like

VmWare and its ilk
– Clickable simulation of

touch screens
– Clickable panels of buttons
– Graphics displays, text

displays, LEDs, etc.
– Full hardware mockups

connected over CAN bus to
PC

• Software:
– Simulated by scripts
– Special code for special API
– Actual target code in some

form of other simulator

Environment Simulation

• Large field for powerful
commercial tools
– MatLab/Simulink
– LabView/Matrixx
– MSC software
– .. and many more ...

• In-house models common

• Everybody is using it, CAD
has been doing mechanical
simulations for 50 years

• Commonly used for control
algorithm development

• Key part of the model-driven
architecture/model-driven
design paradigm

• Interface to board
simulation:
– AD, DA converters
– Digital inputs & outputs

2008-10-02Copyright Virtutech 2008

Network Simulation Variants

• Connections between
abstracted nodes, to study
communication patterns
– Contains models of node

behavior, no actual code
• “Rest of network simulation”

to provide the environment
for a single node
– Generates “real” traffic
– Implements actual protocols
– Bidirectional reactive traffic

• Dumb traffic generation
– Generate traffic from rules
– Unidirectional

• Virtual packet-level network
links between simulated
nodes
– No protocol understanding
– Nodes run network stacks

• Connect physical and
simulated nodes
– Virtual machines visible on

physical network
• Network types:

– Ethernet, AFDX, CAN, LIN,
FlexRay, MOST, PCIe, I2C,
LonWorks, ARINC 429,
MIL-STD-1553, Serial,
RapidIO, VME, SpaceWire,
USB, FireWire, ...

2008-10-02Copyright Virtutech 2008

Network Simulation Levels

Physical signaling

Bit stream

Packet transmission

Network protocol

Application protocol

High-level application actions

Analog signals, bit errors, radio modeling

Clocked zeros and ones, CAN with
contention, Ethernet with CSMA model

Ethernet packets with MAC address, CAN packets,
serial characters, VME data read/write

TCP/IP etc.

FTP, DHCP, SS7, CANopen

Load software, configure node, restart

Hardware/software
boundary

2008-10-02Copyright Virtutech 2008

Computer System Simulation Technology

2008-10-02Copyright Virtutech 2008

System Simulation use Cases

• System-on-Chip Design
– Focus on hardware

designer needs
– Architecture exploration
– Sizing, performance,

optimization of hardware

• Fidelity to target is primary
driver for models
– Timing
– Bandwidth
– Latency
– Bus structure

• All components are equals

• Software Development
– Focus on software

developer needs
– Execute large workloads
– Debug code

• Speed of execution is the
primary driver for model
– Abstract as far as possible
– Approximate timing

• Work from the processor
outwards

• Clear difference between
processors and other
devices

Full-System Simulation

• Detail level determines speed
– The more detail, the slower the simulation

• Abstraction: timing precision, implementation details
• Functionality must always be correct!

Simulation detail level Typical
slowdown

Approximate
speed in “MIPS”

Time to simulate one
real-world minute

Gate-level simulation 1000000 0.002 2 years

Cycle-accurate simulation 10000 0.2 7 days

Cycle-approximate simulation 500 4 8 hours

Fast functional simulation 5 400 5 minutes

2008-10-02Copyright Virtutech 2008

Cardinal Rule of Simulation

Scope of
modeled system

Quarks

Atom

Galaxy

Galaxies

Reasonable to
simulate: scope
proportional
to abstraction

Universe

Planets
Units of the
simulation

2008-10-02Copyright Virtutech 2008

2008-10-02Copyright Virtutech 2008

Abstraction Levels

Functional instruction-set
& transaction-level device behavior

Timing-correct cycle-level (SystemC)

Implementation-level (VHDL/Verilog)

Operating system API (VxSim)

Service API (Java library)

Operating System API Standard (POSIX)

A
bs

tra
ct

io
n

HW/SW
interface

Stable & narrow
interface, enables fast

execution

Excessive detail
gives very slow
simulation

Not same binaries as
target, additional

build chain

Too abstract to provide
information on actual

target behavior

Cycle-accurate instruction-set

Fast Functional Simulation

The Art of Fast Simulation

• ”Know when to bluff”
– You are in a poker game

against the software ☺

• It is an art to implement
just enough to fool the
software, but not more
– Details cost dev time and

execution speed
– Implement the what and

not the how
– Do work in largest

possible units
• entire Ethernet packets
• DMA in a single step

– ”transaction-level
modeling”

Copyright Virtutech 2008 2008-10-02

2008-10-02Copyright Virtutech 2008

Simics Modeling Level: Processor

• Instruction-set simulation (ISS)
• Complete and correct processor functionality

– All instructions semantics bit-correct vs real machine
– Supervisor-mode & user-mode
– Runs the complete target instruction set

• Including Altivec, SSE, 3dNow, VIS, etc. extensions
– All accessible values represented

• User-level registers
• Supervisor-level registers
• Model-specific registers, ASIs, debug register, etc.

• Memory-management unit
• Timing abstracted

– Fixed execution time per instruction
– No cache model, normally

2008-10-02Copyright Virtutech 2008

Simics Modeling Level: Devices

• Hardware modeled as a set of devices
– Memory map of machine (as seen by processor)
– At the programming register level

• Model the program-visible behavior
– Configuration registers
– Control register
– Data transmitted & received

• Transaction-level modeling
– Reads, writes, DMA transfers, network packets

• Reactive, passive models
– Only execute code when a transaction occurs

• ASICs & FPGAs
– Model programming interface behavior
– Not detailed implementation

2008-10-02Copyright Virtutech 2008

Simics Modeling Level: Networks

• Interfaced using “real” network devices
• Networks modeled at message level

– Entire messages (packets, frames, ...) delivered as a unit

• Hardware addressing used
– Ethernet MAC
– Does not care about higher-level protocols
– Ethernet allows IPv4, IPv6, TCP, UDP, SCP, ICMP, ...

• Any topology or addressing scheme
– Broadcast, unicast, switched, point-to-point, etc.

• Perfect network by default
– Introduce latencies
– Introduce bandwidth limits
– Introduce faults

Endianness – Has to be Modeled

• Correct endianness • Incorrect endianness

Copyright Virtutech 2008 2008-10-02

Temporal Decoupling

2008-10-02Copyright Virtutech 2008

Board

Chipset

Board

SoC

Core Core PCIe

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

CPU

Core Core UART

EthRTOS

SW

MW RTC

PIC

RAM

Disk
UART

USB

SATA

ROM

Board

SoC

Core IO

Eth
RTOS

SW

MW RTC

PIC

RAM FLASH

UART

network

Simulation progress, temporal decoupling

Core

Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Simulation progress, cycle‐by‐cycle interleave

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Temporal Decoupling Speed Impact

• Experimental data
– 4 virtual PPC440

boards
– Booting Linux

• Which is a particularly
hard workload, lots of
device accesses

– Execution quanta of 1,
10, 100, ... 1000_000
cycles

• Notable points:
– 10x performance

increase from 10 to
1000 quantum

– +30% from 1000 to
1000_000 quantum

2008-10-02Copyright Virtutech 2008

2008-10-02Copyright Virtutech 2008

Memory Bus Modeling

DDR
SDRAM

Core0

UART

Coherency
module

DDR MC

L1 cache

Core1

DDR MC

Core2

L1 cache L1 cache

Shared
L2 cache

DDR
SDRAMFast interconnect for

high-bandwidth devices

Bridge

Slower interconnect for
other devices Flash MC

Flash
memory

Timer

I2C

Ethernet

Accelerator

RapidIO

Typical hardware
structure of a generic
modern SoC

2008-10-02Copyright Virtutech 2008

Fast Memory Bus Modeling

DDR
SDRAM

UART

Coherency
module

DDR MC

L1 cache

DDR MC

L1 cache L1 cache

Shared
L2 cache

DDR
SDRAMFast interconnect for

high-bandwidth devices

Bridge

Slower interconnect for
other devices

Flash MC
Flash
memory

Timer

I2C

Ethernet

Accelerator

RapidIO

Coherency
module

L1 cache L1 cache L1 cache

Shared
L2 cache

Coherency
module

L1 cache L1 cache L1 cache

Fast interconnect for
high-bandwidth devices

Shared
L2 cache

Coherency
module

L1 cache L1 cache L1 cache

Bridge

Fast interconnect for
high-bandwidth devices

Shared
L2 cache

Coherency
module

L1 cache L1 cache L1 cache

Slower interconnect for
other devices

Bridge

Fast interconnect for
high-bandwidth devices

Shared
L2 cache

Coherency
module

L1 cache L1 cache L1 cache

Simics does not model cache
timing & coherency protocol

Memory traffic goes directly to
memory store, memory

controller, bridges, etc only
modeled for their effect on the
configuration of the memory

map

A single global memory map
directly routes memory
accesses to devices or

memory

Memory map

Core0 Core1 Core2

Dummy Devices

• Many devices lack interesting behavior
– From the perspective of the software for a particular system

• Only affect low-level system timing
• Not used by current software setup
• No interesting effects from using them

– Replace with dummies that do nothing
• But do not give “access out of memory” errors

• Examples: memory timing setup, performance
counters, error detection registers, ...
– Note that you can add them later if effects are needed

2008-10-02Copyright Virtutech 2008

Stubs

• Not all parts of a system need to be modeled
• Replace by stubs

– Find an appropriate (narrow) interface to cut at
– Replace complete model with its behavior

2008-10-02Copyright Virtutech 2008

Stubs Example

Control card

Main
processor
SoC

Line card

Interface
processor Rack

back-plane

DSP DSP

DSP DSP

DSP DSP

Control card

Main
processor
SoC

Line card

Interface
processor Rack

back-plane

DSP DSP

DSP DSP

DSP DSP

For simulation of rack
management, stub out the
DSPs on the line cards

For testing control‐plane
algorithms, stub out the

entire line card

2008-10-02Copyright Virtutech 2008

3 October 2008Virtutech Confidential60

Host WorkstationHost Workstation

Simics

Multithreading the Simulation

Simple system Complex system Complex system with
Simics Accelerator

Simics

Single thread

Simics

Host Workstation

Target
simulation

speed

Overall
simulation
performance

25% 100% 100% 400%100% 100%

2008-10-02Copyright Virtutech 2008

Redundancy in Target Systems

• Large systems are not built
from all-unique components

• Software repeats
– Machines use the same

OS, middleware,
applications

• Data repeats
– Redundant databases
– Data packets passed

around in a cluster
• Copies within machine

– Code and data copied from
disk to memory to be used

• Simulator sees the whole
system, leverage repetition
to reduce memory footprint

Linux

DB App A

App A

DB App A

DB Dataset

Dataset

Dataset

Dataset

RTOS

RTOS

RTOS

RTOS

Packet

Packet

Packet

2008-10-02Copyright Virtutech 2008

Simics

Data Page Sharing Principle

• Simics memory images used
for all data stores (flash,
ram, rom, disks, etc.)
– Standard Simics feature

• Identical pages in different
memory images stored in a
single copy
– Within machines
– Between machines
– Regardless of type of

memory in the target
– Copy-on-write semantics for

safety (obviously)
• Reduces memory footprint,

increase data locality, helps
maintain performance

cpu

RAM

flash

dev

dev

dev

cpu
cpu

RAM

flash

dev

dev

dev

cpu

RAM

flash

dev

dev

dev

cpu

2008-10-02Copyright Virtutech 2008

Insight: Recurring Target Data

Three 8572e/Linux machines Single PPC440GP/Linux machines

Mixed network (4 mach, 6 OS) Eight PPC440GP/Linux machines

Local unique
data: 4%

Shared data
across
machines: 96%

Total data
savings: 65%

Total data
savings: 20%

Data repeated
within the
machine: 20%

All results are for networks of machines booted to prompt, but no applications loaded

Local unique
data: 1%

Shared data
across and within
machines: 98%

Total data
savings: 89%

Zero pages: 90%

Total data
savings: 91%

Other shared: 1%

2008-10-02Copyright Virtutech 2008

Hybrid Simulation

Hybrid Model

• Mix fast functional and cycle-accurate models
– Two models of each device: fast and detailed
– User fast simulation to get to interesting places
– Zoom in selectively using detailed models

• Additional Simics mode: support detailed models
– Allows out-of-order transactions and timed buses
– Supports full bus hierarchy, not just a streamlined memory

map

• First product: the Freescale QorIQ P4080
– Functional fast models from Virtutech
– Detailed models from Freescale (internal engineering)

2008-10-02Copyright Virtutech 2008

Hybrid: What it Means

• Mix temporally: change from functional to detailed
simulation when workload reaches interesting point
– Use fast mode to position in reasonable time

• Mix spatially: combine fast and detailed models in
the same simulation setup
– Leverage fast models to get complete system
– Speed up simulation by only simulating what is relevant

time

Functional simulation

Detailed
simulation

Drop into
detailed mode at

interesting
points

Virtual board

Virtual model of new SoC

CPU

Pattern
Matching

Timer

Interrupt MemCtrl

UART

Ethernet

Ethernet

CPU

CryptoBuffer
Memory

TCP
Offload

Buffer
Memory

CPU
RT clock

RAM FLASH

A packet processing pipeline in
detail, rest of virtual platform

functional

Flow control

2008-10-02Copyright Virtutech 2008

Questions?

Work for Us!

• Exjobb finnes!

2008-10-02Copyright Virtutech 2008

	Virtualized System Development
	Virtutech
	Simulation in the Real World
	Virtualized System Development
	Virtuali-what?
	What is Virtual Hardware?
	Virtutech Core Technology
	Why use Virtual Systems?
	Because Hardware Is...
	Because Hardware Is...
	Because Hardware Is...
	Virtual Platform Advantages and Features
	Example: Early Hardware
	Handy Features of Simulation
	Checkpointing in Simics
	Handy Features of Simulation
	Example system insight: Load over time
	Convenience: Loading Flash
	Handy Features of Simulation
	Hardware Availability
	Virtualization = Infinite Longevity
	Example Systems
	Simulating Networks
	Large Target System
	LEON Space Computer Board
	Virtual Reference Kit for Switch Chip
	Debugging with Virtual Platforms
	Three Steps of Debugging
	Simics Debugging Features
	Repeatability and Reverse Debugging
	Code is not just about CPUs
	Divide-by-zero in OS Kernel
	Race Condition in Serial Driver
	The Disk Corruption
	Simulation Technology
	Embedded Computer System
	Simulating Embedded Computer System
	User Interface Simulation
	Environment Simulation
	Network Simulation Variants
	Network Simulation Levels
	Computer System Simulation Technology
	System Simulation use Cases
	Full-System Simulation
	Cardinal Rule of Simulation
	Abstraction Levels
	Fast Functional Simulation
	The Art of Fast Simulation
	Simics Modeling Level: Processor
	Simics Modeling Level: Devices
	Simics Modeling Level: Networks
	Endianness – Has to be Modeled
	Temporal Decoupling
	Temporal Decoupling Speed Impact
	Memory Bus Modeling
	Fast Memory Bus Modeling
	Dummy Devices
	Stubs
	Stubs Example
	Multithreading the Simulation
	Redundancy in Target Systems
	Data Page Sharing Principle
	Insight: Recurring Target Data
	Hybrid Simulation
	Hybrid Model
	Hybrid: What it Means
	Questions?
	Work for Us!
	Spares
	Locking Test Program
	Temporal Decoupling Affects Execution
	Locking Test Program: Find Race
	Units of Simulation
	Virtual Platform Block Diagram

