Real Time Systems

Wang Yi, "google Wang Yi"

Course Information

What are "Real-Time Systems"?

An Example Real-Time System

The Evolution of Automotive Electronics

The Evolution of Automotive Electronics

The Evolution of Automotive Electronics

A Real-Time System

65-70 ECU's/micro-processors in the newest S80 Upto 30-40% of the total cost of a car = control system

Computers that do not look like a computer

- Safety-critical: Reliability = must!
- Mass production: a bug = milions of dollars

Towards a "standard" definition of RTS

- A real-time system is any information processing system which has to respond to externally generated input stimuli within a finite and specified period
 - the correctness depends not only on the logical result but also the time it was delivered
 - Failure to respond in time is as bad as the wrong response!
- The computer is a component in a larger engineering system => EMBEDDED COMPUTER SYSTEM

Remember:

In RT systems, the correctness of computation depends not only on the results but also on the times when outputs are produced.

- Real Time =/= Fast
- Real Time =/= Time Sharing
- Real Time = just in Time (predictable)

Main Goal of this course

Study Techniques for constructing Real-Time Software with predictable response times

Further details ...

- To understand the basic requirements of real-time systems, and how to program such systems so that the requirements are met.
- To understand how these requirements have influenced the design of real-time programming languages and real-time operating systems.
- To understand the implementation and analysis techniques which enable the requirements to be realized.

Prerequisites

- Basic understanding of C
- Basic understanding of Computer Architectures.
- Basic understanding of Operating Systems

Course Form

- Lectures
- Programming assignments (Ada, C, OS kernel)
- Playing with Legos!
- Examination
 - 4 assignments and
 - final written exam (week 43: 5 hours)

Software and Lab assignments

- Real Time Programming (Ada)
- Programming with OS Kernel (LegOS)
- Response Time Analysis (FpsCal)
- Modeling and Analysis (UPPAAL/TIMES)

Literature

- Real Time Systems, J.W. Liu 2000
- On-line materials (appear in real-time ③)
- Further readings:
 - Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings, Addison Wesley, 2001.
 - Hard Real Time Computing Systems Predictable Scheduling Algorithms and Applications, Giorgio Buttazzo, Springer,

People to help you!

- - Wang Yi, office: 1235, yi@it.uu.se
- Assistants:
 - Pavel Krcal, office 1217, pavelk@it.uu.se
 - Simon Tschirner, office 1218, simon.tschirner@it.uu.se

Course Outline (lectures)

- - Characteristics of RTS
- Real Time Operating Systems (RTOS)
 OS support: scheduling, resource handling

- Language support, e.g. Ada tasking
 Scheduling and Timing Analysis of RT Software
 Worst-case execution and response time analysis
- WOIse Code
 Design and Validation
 Modeling, Verification and Testing
 Reliability and Fault-Tolerance
 Fault tolerant, failure recovery, exception handling
- Distributed real time systems
 Real Time Communication: CAN Bus

18