
1

1

Modeling real-time systems
--- UPPAAL modeling language

2

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock natural number “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

nx =:

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

3

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock natural number “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

nx =:

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

Actions:
• “a” name of action
• a! or a?
• one or zero per edge

4

Networks of Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….

Two-way synchronization
on complementary actions.

Closed Systems!

5

Declarations in UPPAAL

• The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

• Clocks:
– Syntax:

clock x1, …, xn ;

– Example:
– clock x, y; Declares two clocks: x and y.

6

Declarations in UPPAAL (cont.)

• Data variables
– Syntax:

int n1, … ; Integer with “default” domain.
int[l,u] n1, … ; Integer with domain from “l” to “u”.
int n1[m], … ; Integer array w. elements n1[0] to

n1[m-1].

– Example;
– int a, b;
– int[0,1] a, b[5];

2

7

Declarations in UPPAAL (cont.)

• Actions (or channels):
– Syntax:

chan a, … ; Ordinary channels.
urgent chan b, … ; Urgent actions (described later)

– Example:
– chan a, b[2];
– urgent chan c;

8

Declarations UPPAAL (const.)

• Constants
– Syntax:

const int c1 = n1;

– Example:
– const int[0,1] YES = 1;
– const bool NO = false;

9

Declarations in UPPAAL

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

10

Templates in UPPAAL

• Templates may be parameterised:

int v; const min; const max

int[0,N] e; const id

• Templates are instantiated to form
processes:

P:= A(i,1,5);
Q:= A(j,0,4);

Train1:=Train(el, 1);
Train2:=Train(el, 2);

11

Urgent Channels: Example 1

• Suppose the two edges in
automata P and Q should be
taken as soon as possible.

• I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).

• How to model with invariants if
either one may reach l1 or s1

first?

a! a?

l1

l2

s1

s2

P: Q:

12

Urgent Channels: Example 1

• Suppose the two edges in
automata P and Q should be
taken as soon as possible

• I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).

• How to model with invariants if
either one may reach l1 or s1

first?
• Solution: declare action “a” as

urgent.

a! a?

l1

l2

s1

s2

P: Q:

3

13

Urgent Channels

urgent chan hurry;

Informal Semantics:
• There will be no delay if transition with urgent action can be
taken.

Restrictions:
• No clock guard allowed on transitions with urgent actions.
• Invariants and data-variable guards are allowed.

14

Urgent Channel: Example 2

• Assume i is a data variable.
• We want P to take the transition

from l1 to l2 as soon as i==5.

i==5

l1

l2

P:

15

Urgent Channel: Example 2

• Assume i is a data variable.
• We want P to take the transition

from l1 to l2 as soon as i==5.
• Solution: P can be forced to take

transition if we add another
automaton:

where “go” is an urgent channel,
and we add “go?” to transition l1 l2
in automaton P.

i==5

l1

l2

P:

s1 go!
go?

16

Broadcast Synchronisation

broadcast chan a, b, c[2];

• If a is a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast

• A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.

• A process can always emit.
• Receivers must synchronize if they can.
• No blocking.

17

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
• No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

18

Urgent Location: Example

• Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.

• P models the media using clock x.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0

4

19

Urgent Location: Example

• Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.

• P models the media using clock x.
• Q models the media using urgent

location.
• P and Q have the same behavior.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0

a?

l1
Q:

b!

l2

l3

urgent

20

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
• No delay in committed location.
• Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of
clocks in a model), and thus allows for more space and time efficient
analysis.

21

Committed Location: Example 1
• Assume: we want to model a process

(P) simultaneously sending message a
and b to two receiving processes
(when i==0).

• P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear

a!b!

l1

l2

P:

a!

l1
P’:

b!

n

l2

urgenti:=1

i==0
i==0

i:=1
k1 k2

i==0Q:

22

Committed Location: Example 1
• Assume: we want to model a process

(P) simultaneously sending message
(a) to two receiving processes (when
i==0).

• P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear:

• Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

a!b!

l1

l2

P:

a!

l1
P’:

b!

n

l2

committedi:=1

i==0
i==0

i:=1 k1 k2
i==0 b!Q:

23

Committed Location: Example 2

• Assume: we want to pass
the value of integer ”k” from
automaton P to variable ”j” in
Q.

• The value of k can is passed
using a global integer
variable ”t”.

• Location “n” is committed to
ensure that no other automat
can assign “t” before the
assignment “j:=t”.

a?

l1

l2

Q:l1
P:

a!

n

l2

j:=t

t:=k

committed

