Modeling real-time systems
--- UPPAAL modeling language

Timed Automata in UPPAAL

Clock Assignments

Location Invariants

n

,inv::=fx< ?‘l| X <= nlinv,inv
f

Variable Assighments <=5 T T

.y clock natural number “and”
b= Lapr x>=5,y>3
Expr =i |i[Expr i

— —
gi=gclgilg. g

n|—Expr| at

Expr + Expr| gi=x®n|x@y+n Clock guards
x:=0

Expr— Expr | ga v=Expr op Expr Data guards

Expr* Expr | e Rel<,<=,==,>=>}
g4

Expr/Expr| 4 op €{<,<=,==,>=,>,!=}

(ga? Expr : Expr)

Timed Automata in UPPAAL

Clock Assignments Location Invariants

n

Variable Assighments <=5 T T

Linv = x <n| x <= nlinv,inv
| f

i~ clock natural ber “and”
. \ i[E)A{] Actions:

Pr= 4) « “a” name of action

n|—Expr| al « alora? uards

Expr + Expr | x:=0 ° « one or zero per edge 9

Expr— Expr | &9 puards

Expr* Expr| e ®

g4
Expr/Expr\ ‘g1 93 O =T <> g ey
(ga? Expr : Expr) 92

Networks of Timed Automata

y<=4

a?

Two-way synchronization
on complementary actions.

Closed Systems!

Declarations in UPPAAL

» The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

* Clocks:
— Syntax:

clock x1, .., xn ;

— Example:

- clock x, y; Declares two clocks: x and y.

Declarations in UPPAAL (cont.)

« Data variables

— Syntax:

int nl1, .. ; Integer with “default” domain.

int[1l,u] n1, .. ; Integer with domain from “I” to “u”.

int nl[m], .. ; Integer array w. elements n1[0] to
n1[m-1].

— Example;

- int a, b;
- int[0,1] a, b[5];

Declarations in UPPAAL (cont.)

» Actions (or channels):
— Syntax:

chan a, .. ; Ordinary channels.

urgent chan b, .. ; Urgent actions (described later)

— Example:
- chan a, b[2];
— urgent chan c;

Declarations UPPAAL (const.)

Constants
— Syntax:

const int cl = nl;

— Example:
- const int[0,1] YES = 1;
— const bool NO = false;

Declarations in UPPAAL

Dt aisd S i Tkt o ikl 34Tt - gatesimd - BPPAAL Rl
T Telstr Sew Cumes Otore teb

Dol a ®8 (B@§ -
St Ebe | S | Vo
Dvmg it

Templates in UPPAAL

Constants
Bounded integers
Channels

Clocks

Arrays

Templates
Processes

« Templates may be parameterised:

\ int v; const min; const max

int[0,N] e; const id

Templates are instantiated to form
processes:

P:
Q:

A(i,1,5);
A(3,0,4);

Systems

Trainl:=Train(el, 1);
Train2:=Train(el, 2);

Urgent Channels: Example 1

» Suppose the two edges in
automata P and Q should be
taken as soon as possible.

« l.e. as soon as both automata
are ready (simultaneously in
locations I1 and s1).

0 e * How to model with invariants if

either one may reach |1 or s1
first?

Urgent Channels: Example 1

» Suppose the two edges in
Q: automata P and Q should be
taken as soon as possible

« l.e. as soon as both automata

al a? are ready (simultaneously in
locations I1 and s1).

0 e » How to model with invariants if
either one may reach |1 or s1

first?

« Solution: declare action “a” as
urgent.

Urgent Channels

urgent chan hurry;

Informal Semantics:

* There will be no delay if transition with urgent action can be
taken.

Restrictions:
* No clock guard allowed on transitions with urgent actions.
« Invariants and data-variable guards are allowed.

Urgent Channel: Example 2

* Assume i is a data variable.

* We want P to take the transition
from 11 to 12 as soon as i==5.

Urgent Channel: Example 2

* Assume i is a data variable.

* We want P to take the transition
from 11 to 12 as soon as i==5.

+ Solution: P can be forced to take
transition if we add another
automaton:

@0

where “go” is an urgent channel,
and we add “go?” to transition 11->12
in automaton P.

Broadcast Synchronisation

broadcast chan a, b, c[2];

+ Ifais a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast
« A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.
* A process can always emit.
« Receivers must synchronize if they can.
« No blocking.

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

Urgent Location: Example

* Assume that we model a simple

media M: P: 0

that receives packages on channel a
and immediately sends them on
channel b.

» P models the media using clock x. °

Urgent Location: Example

Assume that we model a simple
media M: P: Q

that receives packages on channel a @
and immediately sends them on

channel b. bl
P models the media using clock x.

Q models the media using urgent °
location.

P and Q have the same behavior.

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
* No delay in committed location.
« Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of

clocks in a model), and thus allows for more space and time efficient

analysis.

Committed Location: Example 1

* Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
(when i==0).

* P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear

O ©
— ~

Committed Location: Example 1

* Assume: we want to model a process
(P) simultaneously sending message
(a) to two receiving processes (when

j== i==0)

a!

* P’ sends “a” two times at the same

time instant, but in location “n” other
automata, e.g. Q may interfear:

Q: ° i==0 b! e
—_— —~

+ Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

Committed Location: Example 2

Assume: we want to pass
the value of integer "k” from
automaton P to variable ”j” in
Q.

The value of k can is passed
using a global integer
variable "t".

Location “n” is committed to
ensure that no other automat
can assign “t” before the
assignment “j:=t”".

